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Abstract. The simulation of chemically reacting ows in speci�c situations is a basic instrument in
natural sciences in order to understand complex phenomena (e.g., salt concentrations in oceans) as well as
in engineering sciences (e.g., the optimization of the Czochralski growth in semiconductor industries, see e.g.
[7, 15]). The objective of the paper is two-fold: First, we will present a �rst-order time-splitting scheme that
is suitable for parallelization of the related quantities in each time-step. Additionally, this scheme is based
on the separate computation of the new velocity-�eld and pressure by means of Chorin's scheme. Second, we
present a thorough analysis of this scheme deriving optimal error statements that are applicable for general
ow situations.
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convergence analysis, projection methods, splitting methods, Chorin scheme.

AMS subject classi�cations. 35Q35, 65M12, 76D05, 76V05.

1 Introduction. The modeling of chemically reacting ows is important for the
analysis and control of manufacturing processes, surface catalytic reactors for methane to
methanol conversion and chemical vapor deposition (CVD) process modeling for production
of advanced semiconductor materials. As far as the last application is concerned, designers
of CVD reactors need detailed information on the complex ow structure, temperature dis-
tribution, chemical species distribution and the uniformity of deposition rates. In a typical
reaction mechanism, there can be over thirty important species undergoing more than �fty
reactions, see [1, 7, 10, 14].

The goal of the work is to propose a time-splitting scheme for the system of equations
that describe the dynamics of the chemically reacting ow. They are derived from the
conservation principles for impulse, mass and energy. If we consider a bounded domain

 � Rd, d = 2; 3 where the reactive ow is in and observe its behavior over a period of time
[0; tM+1], the dynamics is described by the system of equations

ut � Pr�u+ (u � r)u+rp = f0(T );

divu = 0;

Tt ��T + (u � r)T = �
NX
i=1

hiWi

�fYigNi=1; T �;

Yi;t � 1

Le
�Yi + (u � r)Yi = Wi

�fYigNi=1; T �; i = 1; :::; N:

(1)
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For simplicity, we suppose the following initial and boundary value data for the problem
under consideration,

u
��
@

= 0; T

��
@

= 0; Yi

��
@

= 0;

u(0) = u0 2 J1 \H2; T (0) = T0 2 H1
0 \H2; Yi(0) = Y 0

i 2 H1
0 \H2:

(2)

In the presented model, Pr is the Prandl number, Le the Lewis number that scale the
di�erent di�usive and the convective characters in the equations. In the following studies,
they will be set equal to 1. p = p(x; t) is the scalar pressure and u = u(x; t) 2 Rd the
solenoidal velocity �eld. The ow is driven by the buoyant forcing term f0(T ) as a function
of the temperature T = T (x; t), by making use of the Boussinesq model. Finally, the N -
tuple fYigNi=1 determines the mass fractions Yi = Yi(x; t) of the species indexed by i of the
chemically reacting uid ow in space and time. Owing to the mass conservation principle,
they satisfy

0 � Yi � 1; and

NX
i=1

Yi = 1;

NX
i=1

Wi = 0; 8 (x; t) 2 
� [0; tM+1]:

The value hi is the enthalpy of the species i divided by its molecular weight, i.e., a measure
of the amount of heat that is contained in species i.

The chemical reactions between the diverse species are described by means of the Arrhe-
nius model in which the net production/removal rates Wi take the form

Wi

�fYigNi=1; T � =
miX
j=1

Aje
�Ej=R0T

NY
k=1

C
�j;k
j ;(3)

with Aj the frequency factors, Ej the activation energies, R0 the universal gas constant, and
Ci the concentrations, i.e., the mass fraction Yi divided by the molecular weight. The �j;k
are nonegative integers, where at least one of the �j;k for k = 1; :::; N is nonzero, for each j.

In the subsequent analysis, we abstract from the speci�c form of the change of mass
fractions, and make the following assumptions:

1. The Wi are Lipschitz functions, Wi 2 C0;1(0; T ;
QN+1

i=1 L2). In particular, each Wi is
bounded,

��Wi(
�
Yi
	N
i=1
; T
��� � C; 8 (fYigNi=1; T ) 2 [0; 1]N � [0;1); 1 � i � N:

2. The mass conservation implies the relation

NX
i=1

Wi

�fYigNi=1; T � = 0; 8 (fYigNi=1; T ) 2 [0; 1]N � [0;1):

The well-posedness of (1), (2) has been shown in [9, 16], and the analysis has been
extended in [12] to practically more relevant boundary conditions. For further discussions,
especially on the chemical background, we refer to [11, 12].
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2 Presentation of the time-splitting scheme. The e�ective time-discretization
of system (1) is made di�cult through a couple of problems. First, the coupling of the
diverse functions in the 'ow part' and the 'chemical part' gives rise to large discretization
matrices that limit the exibility of a fully implicit discretization approach, due to limited
computational resources. Second, we have to choose a stable �nite element discretization
pairing for the velocity and pressure �elds to satisfy the LBB-condition of Ladyszhenskaya,
Babuska and Brezzi, cf. [2]. Finally, the nonlinear parts given by the reaction terms and the
convective term in the �rst equation necessitate a careful numerical treatment.

In order to signi�cantly reduce the computational e�ort, we propose a splitting scheme
that decouples the computation of velocity and pressure, temperature and the N mass frac-
tion functions in each iteration step. The sti�ness matrices for the computation of velocity
�eld, temperature and mass fractions that arise from a spatial discretization will then be
generated from the knowledge of the previous velocity �eld, temperature and mass fractions
and the solution process itself can then be done in parallel. Furthermore, the decoupling of
the computation of velocity �eld and pressure iterate is accomplished through the classical
projection method of Chorin, see [3, 4]. The scheme then reads:

Given
�
um; Tm; fY m

i gNi=1
	
, determine

�
um+1; pm+1; Tm+1; fY m+1

i gNi=1
	 2 �

J0 \ H2
� �

H1=R� �
H1

0 \H2
��QN

i=1

�
H1

0 \H2
�
in the following way.

1. Start with an initial guess u0 = u0, T
0 = T0,

�
Y 0
i

	N
i=1

=
�
Yi(0)

	N
i=1

. Then, for m � 0,
the following steps determine the iterates.

2. Find ~um+1 that solves

1

k

�
~um+1 � um

	 ��~um+1 + (um � r)~um+1 = f0(T
m);(4)

3. Determine the tuple
�
um+1; pm+1

	
that solves the system

1

k

�
um+1 � ~um+1

	
+rpm+1 = 0

divum+1 = 0; um+1
��
@

�n = 0;

(5)

4. Compute Tm+1 that is the solution of

1

k

�
Tm+1 � Tm

	��Tm+1 + (um � r)Tm+1 = �
NX
i=1

hiWi(fY m
i gNi=1; Tm+1);(6)

5. The N -tuple fY m+1
i gNi=1 is governed by

1

k

�
Y m+1
i � Y m

i

	��Y m+1
i + (um � r)Y m+1

i = Wi

�fY m+1
i gNi=1; Tm

�
;(7)
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with k > 0 being the time-step used in the scheme. | Note that the computation of
the diverse functions at each time-step can be accomplished in a fully decoupled manner.
Furthermore, we can bene�t from this approach by parallelizing the computation in each
iteration step. In this respect, we recall that (5) can be reformulated in the following way.
Applying the div operator amounts to solving a Laplace-Neumann problem for the pressure
iterate,

��pm+1 = �1

k
div~um+1; @np

m+1
��
@

= 0;(8)

followed by an algebraic update for the solenoidal velocity �eld,

um+1 = ~um+1 � krpm+1:

This decoupling strategy in the computation of the velocity �eld and pressure iterate has
been proposed by Chorin and is known as a �rst order projection scheme for solving the
incompressible Navier-Stokes equations, see [3, 4].

The goal of the remainder of the present paper is devoted to an analysis of the scheme
(4) through (7) by investigating its stability and approximation properties. There are dis-
tinct error mechanisms acting in the present scheme, that are subject to the subsequent
investigation. We have to quantify the e�ects of the projection scheme approach as well as
those of the decoupling of the equations in (1). In doing so, we propose a series of auxiliary
problems in section 4 that are devoted to the study of these distinct error mechanisms in-
herent to (4) through (7). We mention, that the subsequent study heavily relies on results
that have been obtained for Chorin's projection scheme in [13]. A brief summary of results
for Chorin's projection method that are relevant for the present analysis is given in section 4.

For the subsequent analysis, we need some technical assumptions regarding the regularity
of the given problem data. In the following, we often refer to the spaces

J0 =
�
v 2 L2; divv = 0 and v

��
@

�n = 0; weakly

	
;

and

J1 =
�
v 2 H1

0; divv = 0
	
:

We make the following basic assumptions concerning the solution of (1),(2) for our analysis,
compare [6],

� condition (A1), concerning the regularity of the domain: The unique solution u 2 J1
of the stationary, incompressible Stokes problem with homogeneous boundary data of
Dirichlet-type (with the Stokes operator A � �PJ0�) is already in J1 \H2, provided
the right-hand side enjoys f 2 L2, and satis�es the following stability result,

kuk2 � CkAuk:
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� condition (A2), concerning the regularity of the given data: We suppose the following
degrees of regularity for the given data, fu0; T0; fY 0

i gNi=1g

u0; T0; fY 0
i gNi=1 2 H1

0 \H2:

The given function f0 is supposed to be a�ne.

� condition (A3), concerning the existence of a strong solution: Given tM+1 > 0, suppose
that there exists a strong solution fu; p; T; fYigNi=1g 2 L1(0; tM+1;X ), with the space
X de�ned below.

Note that the existence of a strong solution can only be veri�ed locally in time, with the
length of the time interval [0; tM+1] depending on the parameters of the given problem.

Subsequently, we will make use of the following notation: let L2(
);Hr(
), and Hr
0(
), r

an integer, be the standard Lebesgue and Sobolev spaces, see [5] for details. These spaces are
endowed with the standard scalar products and their induced norms k � kr. Further, H�r(
)
is the space that is dual to Hr(
) \ H1

0 (
). L
2
0(
) is the subspace of L2(
) consisting of

functions with vanishing spatial average, which is isomorphic to L2(
)=R. The spaces of

vector-valued functions will be indicated with boldface letters, for instance H1
0 �

�
H1

0

�d
, for

d = 2; 3.
Due to the evolutionary character of the problem, let Lp(0; tM+1;X) be the space of functions
� = �(x; t) s.t. holds: the map t 7! k�(t)kpX, t 2 [0; tM+1] is measurable almost everywhere,

and
R tM+1

0
k�(s)kpX ds <1, for 1 � q <1 and X a Banach space. For the case p =1, we

require the property sup0�s�tM+1
k�(s)kX < 1 to be satis�ed. Correspondingly, we de�ne

C(0; tM+1;X) to be the space of functions � = �(x; t), s.t. the map t 7! k�(t)kX is con-
tinuous, for all t 2 [0; tM+1], and max0�s�tM+1

k�(s)kX < 1. | In the following, we make
frequent use of the di�erence quotient de�ned by dt�

m+1 := 1
k

�
�m+1 � �m

	
. Further, we

employ the spaces `p(0; tM+1;X), for 1 � p <1, which is the space of functions
�
�m+1gMm=0,

with bounded norm
�
k
PM

m=0 k�m+1kpX
�1=p

, for the time-step k = tm+1 � tm. For the case
p =1, functions

�
�m+1gMm=0 need to satisfy max0�m�M k�m+1kX <1. Finally, we employ

the notations � (s) � min
�
1; s

	
and �m+1 � min

�
1; tm+1

	
.

As already mentioned, the analysis of scheme (4) through (7) is split in an investigation
of its stability and approximation properties. In order to abbreviate the notational e�ort,

let us introduce the following denomination: Given the quadruple
�
am+1
i

	4
i=1

2 X with

X :=
�
H1

0 \H2
��H1=R � �H1

0 \H2
��

NY
i=1

�
H1

0 \H2
�
:

We then say that

1. the quadruple
�
am+1
i

	4
i=1

2 X satis�es Property (P1), provided the following a-priori
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statements are satis�ed, for i 2 f1; 3; 4g,

k

MX
m=1

kdtam+1
i k21 + max

1�m�M

n
kdtam+1

i k2 + kam+1
i k22 + kram+1

2 k2
o
� C:

2. The quadruple
�
am+1
i

	4
i=1

2 X satis�es Property (P2), if the following approximation
properties are satis�ed:

max
0�m�M

n
ku(tm+1)� am+1

1 k+ kp(tm+1)� am+1
2 k�1 + kT (tm+1)� am+1

3 k

+ kY (tm+1)� am+1
4 k+

p
k
�
ku(tm+1)� am+1

1 k1 + kp(tm+1) � am+1
2 k

+ kT (tm+1)� am+1
3 k1 + kY (tm+1)� am+1

4 k1
�o

� Ck;

where Y :=
�
Yi
	N
i=1

. | We are now in a position to formulate the main result that states
optimal convergence behavior of the solution of (4) through (7).

Theorem 2.1 Suppose the basic assumptions (A1), (A2), (A3) to be valid. Then, the solu-

tion
�
um+1; pm+1; Tm+1; fY m+1

i gNi=1
	 2 X of scheme (4) through (7) satis�es the properties

(P1) and (P2), for su�ciently small time-steps k � k0(tM+1).

As we see from property (P2), the pressure approximation quality is worse than corre-
sponding statements for the remaining quantities, measured in the l1(0; tM+1;X )-norm. This
reects arising boundary layers that are due to the prescription of unphysical, homogeneous
pressure data in (8) for the computed pressure iterates. This observation is well-understood
in the Navier-Stokes context, see section 4 for further details. Furthermore, this perturbation
of the pressure iterates also a�ects the gradient velocity �eld, and the question is whether
there is also a crucial impact on concentration and temperature iterates from the projection
step (5). Surprisingly, it turns out that the answer depends heavily on the dimension d of
the problem. In fact, in the case d = 3 there is a signi�cant impact on the temperature
approximation and the mass fractions, caused by the projection step (5).

Corollary 2.1 Suppose the conditions of Theorem 2.1 to be valid. Then, the approximates�
Tm+1; fY m+1

i gNi=1
	
satisfy the improved estimates

1. in two space dimensions (i.e., d = 2), for all  > 0, and lim!0 C =1:

max
0�m�M

p
�m+1

n
kT (tm+1)� am+1

3 k1 + kY (tm+1)� am+1
4 k1

o
� Ck

1�;

2. in three space dimensions (i.e., d = 3):

max
0�m�M

p
�m+1

n
kT (tm+1)� am+1

3 k1 + kY (tm+1)� am+1
4 k1

o
� Ck3=4:
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3 Outline of the Proof of Theorem 2.1. In order to understand the ongoing error
mechanisms in the numerical model (4) through (7), we will propose several auxiliary prob-
lems in the following that will be subject to investigation in the subsequent sections. Each
of the presented auxiliary problems is formulated to identify and analyze one of the present
error sources inherent to (4) through (7). It is our goal to verify the properties (P1) and
(P2) for each single problem.

In the following formulations, we omit to write down the boundary conditions and the
initial data if they coincide with those given in Lemma 5.1.

1st auxiliary problem: This problem is proposed to study the impact of implicit time-
discretization e�ects.
For initial data

�
u0; T 0; fY 0

i gNi=1
	
given in (1), determine

�
um+1
a ; pm+1

a ; Tm+1
a ; fY m+1

a;i gNi=1
	 2

X as the solution of

dtu
m+1
a ��um+1

a + (um+1
a � r)um+1

a +rpm+1
a = f0(T

m+1
a );

divum+1
a = 0;

dtT
m+1
a ��Tm+1

a + (um+1
a � r)Tm+1

a = �
NX
i=1

hiWi

�fY m+1
a;i gNi=1; Tm+1

a

�
:

dtY
m+1
a;i ��Y m+1

a;i + (um+1
a � r)Y m+1

a;i = Wi

�fY m+1
a;i gNi=1; Tm+1

a

�
:

(9)

The result of the investigation is given in Lemma 6.1.

2nd auxiliary problem: In this auxiliary problem, we analyze the explicit coupling of
temperature phenomena and the momentum equation.

For initial data
�
u0; T 0; fY 0

i gNi=1
	
given in (1), determine

�
um+1
b ; pm+1

b ; Tm+1
b ; fY m+1

b;i g	N
i=1

2
X being the solution of

dtu
m+1
b ��um+1

b + (um+1
b � r)um+1

b +rpm+1
b = f0(T

m
b );

divum+1
b = 0;

dtT
m+1
b ��Tm+1

b + (um+1
b � r)Tm+1

b = �
NX
i=1

hiWi

�fY m+1
b;i gNi=1; Tm+1

b

�
:

dtY
m+1
b;i ��Y m+1

b;i + (um+1
b � r)Y m+1

b;i = Wi

�fY m+1
b;i gNi=1; Tm+1

b

�
:

(10)

We refer to Lemma 6.2 for corresponding statements of convergence and stability.

3rd auxiliary problem: The investigation of the inuence of an "explicit treatment" of
the convective part is the reason for the following auxiliary problem:
For initial data

�
u0; T 0; fY 0

i gNi=1
	
given in (1), determine

�
um+1
c ; pm+1

c ; Tm+1
c ; fY m+1

c;i gNi=1
	 2
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X being the solution of

dtu
m+1
c ��um+1

c + (umc � r)um+1
c +rpm+1

c = f0(T
m
c );

divum+1
d = 0;

dtT
m+1
c ��Tm+1

c + (umc � r)Tm+1
c = �

NX
i=1

hiWi

�fY m+1
c;i gNi=1; Tm+1

c

�
:

dtY
m+1
c;i ��Y m+1

c;i + (umc � r)Y m+1
c;i =Wi

�fY m+1
c;i gNi=1; Tm+1

c

�
:

(11)

The results of this analysis are summarized in Lemma 6.3.

4th auxiliary problem: This auxiliary problem deals with the decoupling of the chemical
part, i.e., temperature and concentrations.
For initial data

�
u0; T 0; fY 0

i gNi=1
	
given in (1), determine

�
um+1
d ; pm+1

d ; Tm+1
d ; fY m+1

d;i gNi=1
	 2

X being the solution of

dtu
m+1
d ��um+1

d + (umd � r)um+1
d +rpm+1

d = f0(T
m
d );

divum+1
d = 0;

dtT
m+1
d ��Tm+1

d + (umd � r)Tm+1
d = �

NX
i=1

hiWi

�fY m
d;igNi=1; Tm+1

d

�
:

dtY
m+1
d;i ��Y m+1

d;i + (umd � r)Y m+1
d;i = Wi

�fY m+1
d;i gNi=1; Tm

d

�
:

(12)

We refer to Lemma 6.4 for a summary of the related analysis.

5th auxiliary problem: In order to study the impact of the projection scheme of Chorin,
we will be dealing with the following problem:

For initial data
�
u0; T 0; fY 0

i gNi=1
	
given in (1), and

�
Tm
d ; fY m

d;igNi=1
	M
m=0

determined by (12),

compute iterates
�
um+1
e ; pm+1

e g 2 H1
0 �H1=R being the solution of

dtu
m+1
e ��um+1

e + (PJ0u
m
e � r)um+1

e +rpme = f0(T
m
d );

divum+1
e � k�pm+1

e = 0; @np
m+1
e j@
 = 0:

(13)

Corresponding statements on the solution behavior will be given in Lemma 6.5.

6th auxiliary problem: We will �nally study the recoupling of the "ow part" with the
"chemical part".

For initial data
�
u0; T 0; fY 0

i gNi=1
	
given in (1), determine

�
um+1
f ; pm+1

f ; Tm+1
f ; fY m+1

f;i g	N
i=1

2
X being the solution of

dtu
m+1
f ��um+1

f + (PJ0u
m
f � r)um+1

f +rpmf = f0(T
m
f );

divum+1
f � k�pm+1

f = 0; @np
m+1
f j@
 = 0;

dtT
m+1
f ��Tm+1

f + (umf � r)Tm+1
f = �

NX
i=1

hiWi

�fY m
f;igNi=1; Tm+1

f

�
:

dtY
m+1
f;i ��Y m+1

f;i + (umf � r)Y m+1
f;i = Wi

�fY m+1
f;i gNi=1; Tm

f

�
:

(14)
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Lemma 6.6 provides the results of the corresponding analysis.

The combination of the Lemmata 6.1 through 6.6 provides the proof of Theorem 2.1.

4 Chorin's projection method. In 1968, Chorin has proposed a splitting algorithm
to reduce the computational e�ort in CFD simulations, see [3, 4]. The idea is to decouple the
computation in each iteration step by �rst calculating a guess ~um+1 2 H1

0 for the new velocity
and then projecting it in the space of divergence free functions by means of calculating a
pressure approximate as a solution of a Laplace-Neumann problem.
Let us �x notation and the problem setting where this projection method was originally
applied to. Assume 
 � R3 to be a bounded domain where an incompressible uid ow with
constant viscosity � > 0 is in, driven by a given external force f = f(x; t). The equations
governing the ow are the following ones,

ut � ��u+ (u � r)u+rp = f;

divu = 0;
(15)

together with initial and boundary value data,

u(0) = u0 2 J1 \H2; u
��
@

= 0:(16)

Now, Chorin's method reads as follows:

1. Start with an approximate initial guess u0 � u0.

2. For m � 0, �nd ~um+1 as the solution of

1

k

�
~um+1 � um

	� ��~um+1 + (um � r)~um+1 = fm+1;

~um+1
��
@

= 0:

(17)

3. Provided with ~um+1, determine the tuple
�
um+1; pm+1

	
as the solution of

1

k

�
um+1 � ~um+1

	
+rpm+1 = 0;

divum+1 = 0; um+1
��
@

�n = 0:

(18)

The projection step (18) can be reformulated through application of the div operator, leading
to a Laplace-Neumann problem for the pressure,

��pm+1 = �1

k
div~um+1; @np

m+1
��
@

= 0:(19)

Now, the projection method of Chorin is the following: In each iteration step, calculate a
guess ~um+1 from (17) and then determine pm+1 from (19). Finally, calculate um+1 from (18)
through a simple algebraic update.
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The key observation to start an error analysis for this method is its reinterpretation as
a semi-explicit pressure stabilization method. For the purpose of this work, we recall the
main statements of stability of the solution and its approximation features with respect to
the solution of (15) in the subsequent lemma, see [13].

Lemma 4.1 Suppose f~um+1; pm+1g to be the (semi-)discrete solution of Chorin's method

(17), (18), whereas fu(tm+1); p(tm+1)g is the solution of the Navier-Stokes equations (15) at

time 0 < tm+1 � tM+1. Assume the basic assumptions (A1), (A2) and (A3) be valid, for

a given function f = f0. Then, for su�cient small time-steps k � k0(tM+1), there exists a

constant C which only depends on the given data of the problem, such that the following

1. convergence estimates hold true:

max
0�m�M

n
ku(tm+1)� ~um+1k+ �m+1kp(tm+1)� pm+1k�1

o
� Ck;

max
0�m�M

n
ku(tm+1)� ~um+1k1 +p�m+1kp(tm+1)� pm+1k

o
� C

p
k:

2. stability results hold true:

max
0�m�M

n
kdt~um+1k+ k~um+1k2 + krpm+1k

o
+ k

MX
m=0

krdt~um+1k2 � C:

5 A priori Analysis of the Chemically Flow Problem. This section is devoted
to the presentation of striking a priori bounds for the solution of system (1),(2), as well as
to the presentation of energy arguments that will continuously be employed in the following
sections. Let us recall that the well-posedness of the problem has been veri�ed in [9] and [16].
Note that standard regularity results apply, furnishing L1

�
0; tM+1;H

1
0 \ H2

�
-regularity of

velocity �eld u, temperature T and mass fractions
�
YigNi=1, thanks to the parabolic character

of the equations and the regularity of the given data. We omit the elaboration of these
(sketchy) standard arguments, since they can be given analogously to those that guarantee
the existence, uniqueness and regularity of (weak and strong) solutions for the incompressible
Navier-Stokes equations, see [17, 16].

Lemma 5.1 Assume
�
u; p; T; fYigNi=1

	 2 L1(0; tM+1;X ) to be the solution of (1), (2), and

the given data to satisfy the assumptions (A1), (A2), (A3). Then, the following a priori

statements are satis�ed,

sup
[0;tM+1]

n
kuk2 + kpk1 + kTk2 +

NX
i=1

kYik2
o
� C;

sup
(0;tM+1]

n
kutk+ kTtk+

NX
i=1

kYi;tk
o2

+

Z tM+1

0

n
kut(s)k21 + kTt(s)k21 +

NX
i=1

kYi;t(s)k21
o
ds

+

Z tM+1

0

n
kutt(s)k2�1 + kTtt(s)k2�1 +

NX
i=1

kYi;tt(s)k2�1
o
ds � C;

where C is a constant that depends on the given data of the problem.
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Proof. The veri�cation can be accomplished by means of simple energy arguments: we
observe that the construction of each equation is of di�usion-convection-reaction type. The
transfer of information is solely accomplished through the leading term in the convection
part and the reaction terms, in particular with \lower order" operators. Therefore, testing
the equations in (1) successively with

���u;��T; f��YigNi=1	 and summing give

1

2
dt

n
kuk21 + kTk21 +

NX
i=1

kYik21
o
+ kuk22 + kTk22 +

NX
i=1

kYik22

� C
n
kruk6 + kruk4krTk2 + kruk4

NX
i=1

krYik2 + kTk2
o
:

If we apply Gronwall's inequality, we are lead to the �rst result

sup
[0;tM+1]

n
kuk21 + kTk21 +

NX
i=1

kYik21
o

+

Z tM+1

0

n
ku(s)k22 + kT (s)k22 +

NX
i=1

kYi(s)k22
o
ds � C:

(20)

We now di�erentiate system (1) in time (in a weak sense) and �nally test it with
�
ut; Tt; fYi;tgNi=1

	
.

We can make use of the skew-symmetricity rule that holds for the trilinear form

b(�; 1;  2) :=

Z



(� � r) 1 2 d
;

which implies

b(�; 1;  2) = �b(�; 2;  1); 8 f�; 1;  2g 2 J0 �
�
H1

0

�2
:

From this and the Lipschitz continuity of
�
Wi

	N
i=1

, we end up with

1

2
dt

n
kutk2 + kTtk2 +

NX
i=1

kYi;tk2
o
+ kutk21 + kTtk21 +

NX
i=1

kYi;tk21

� C
n
kutk2 + kTtk2 +

NX
i=1

kYi;tk2 + kutk2kuk1kuk2

+ kutk2kTk1kTk2 + kutk2
NX
i=1

kYik1kYik2
o
:

(21)

From this inequality, we shall integrate over the time interval [0; tM+1]. Owing to (20), we
obtain pointwise in time a priori statements for the quantities

�
ut; Tt; fYi;tgNi=1

	
in the L2

product norm. | Now, in order to verify the remaining statements that are formulated in
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the lemma, we turn back to the equations (1): The terms
�k�uk; k�Tk;PN

i=1 k�Yik
	
can

now be easily bounded by quantities that we have already under control. | The validity
of the boundedness of the remaining quantities is now an immediate consequence of the
previous results. 2

Remark 5.1 For subsequent studies, we also need a-priori statements for higher time-

derivatives of velocity �eld, temperature function, and mass fraction functions. As it is

known from previous works, see [6, 8], this involves time-weights to control initial rough

perturbances. We skip the veri�cation of the following a-priori results, refering to the cited

literature for the needed standard energy arguments,

Z tM+1

0

� (s)
n
kut(s)k22 + kTt(s)k22 +

NX
i=1

kYi;t(s)k22
o
ds

+

Z tM+1

0

� (s)
n
kutt(s)k2 + kTtt(s)k2 +

NX
i=1

kYi;tt(s)k2
o
ds � C:

In subsequent considerations, we shall make frequent use of energy type arguments with-
out presenting them in detailed way. | The following sections are now devoted to analyze
the auxiliary problems proposed in section 3.

6 Analysis of the Auxiliary Problems.

6.1 The auxiliary problem (9). The presentation of a consistence analysis is the
goal of this section. We will study the approximation properties of the fully implicit time-
discretization scheme (9). The main result presented in this section is summarized in the
following lemma.

Lemma 6.1 Assume the assumptions (A1), (A2) and (A3) to be valid for the solution of

(1), (2). Then, the solution
�
um+1
a ; pm+1

a ; Tm+1
a ; fY m+1

i;a gNi=1
	 2 X of scheme (9) satis�es the

properties (P1) and (P2), for su�ciently small time-steps k � k0(tM+1).

Proof. We omit the veri�cation of the statements given in (P1) for the problem, since they
can be immediately veri�ed by means of arguments that are analogous to those presented
in the proof of Lemma 5.1, causing no further di�culties. | In order to verify the property
(P2), we subtract the equations (1) and (9). In the following, we will make use of the
following abbreviative notation,

em+1 := u(tm+1)� um+1
a ; �m+1 := p(tm+1)� pm+1

a ;

T m+1 := T (tm+1)� Tm+1
a ; Ym+1

i := Y (tm+1)� Y m+1
a;i :
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Then, the resulting error equations are as follows,

dte
m+1 ��em+1 + (u(tm+1) � r)em+1 + (em+1 � r)um+1

a

+r�m+1 = rm+1(u) +
h
f0
�
T (tm+1)

�� f0
�
Tm+1
a

�i
;

divem+1 = 0;

dtT m+1 ��T m+1 + (u(tm+1) � r)T m+1 + (em+1 � r)Tm+1
a

= rm+1(T )�
NX
i=1

hi

h
Wi

�
Yi(tm+1); T (tm+1)

��Wi

�
Y m+1
a;i ; Tm+1

a )
i
;

dtYm+1
i ��Ym+1

i + (u(tm+1) � r)Ym+1
i + (em+1 � r)Y m+1

a;i

= rm+1(Yi) +
h
Wi

�
Yi(tm+1; T (tm+1)

��Wi(Y
m+1
a;i ; Tm+1

a )
i
;

(22)

where

rm+1(�) := �1

k

Z tm+1

tm

(s� tm)�tt(s) ds:(23)

We start the analysis of (22), testing the �rst equation in (22) with em+1 and the subsequent
ones with T m+1 and Ym+1

i . We �nally obtain

1

2
dt

n
kem+1k2 + kT m+1k2 +

NX
i=1

kYm+1
i k2

o

+ krem+1k2 + krT m+1k2 +
NX
i=1

krYm+1
i k2

� C
n
krm+1(u)k2�1 + krm+1(T )k2�1 +

NX
i=1

krm+1(Yi)k2�1

+ kem+1k2 + kT m+1k2 +
NX
i=1

kYm+1
i k2

o
:

(24)

Thanks to Lemma 5.1, we have

k

MX
m=0

krm+1(�)k2�1 � Ck�1
MX

m=0

Z tm+1

tm

(s� tm)
2 ds

Z tm+1

tm

k�tt(s)k2�1 ds � Ck2:(25)

Thus, using the discrete Gronwall Lemma in (24), we have succeeded in proving error state-
ment (P2). 2
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6.2 The auxiliary problem (10). We will now focus on the perturbation e�ect that
an explicit treatment of the temperature function on the right hand side of the �rst equation
in (10) has on the approximation of the solution

�
um+1
a ; pm+1

a ; Tm+1
a ; fY m+1

a;i gNi=1
	
. The proof

of the following Lemma is presented in the remainder of this section.

Lemma 6.2 Suppose the basic assumptions (A1), (A2), (A3) to be valid. Then, the solution�
um+1
b ; pm+1

b ; Tm+1
b ; fY m+1

b;i gNi=1
	 2 X of scheme (10) satis�es the properties (P1) and (P2),

provided time-steps k � k0(tM+1) are chosen that are su�ciently small.

Proof. It is su�cient to compare the di�erence in the solutions of (9) and (10), since (9)
inherits the properties under consideration, see Lemma 6.1. | Using the error notation,

em+1 := um+1
a � um+1

b ; �m+1 := pm+1
a � pm+1

b ;

T m+1 := Tm+1
a � Tm+1

b ; Ym+1
i := Y m+1

a;i � Y m+1
b;i ;

(26)

the error equations are then the following ones,

dte
m+1 ��em+1 + (um+1

a ) � r)em+1 + (em+1 � r)um+1
b +r�m+1

=
h
f0(T

m+1
a )� f0(T

m
a ) + f0(T

m
a )� f0(T

m
b )
i
;

divem+1 = 0;

dtT m+1 ��T m+1 + (um+1
a � r)T m+1 + (em+1 � r)Tm+1

b

= �
NX
i=1

hi

h
Wi

�fY m+1
a;i gNi=1; Tm+1

a

��Wi

�fY m+1
b;i gNi=1; Tm+1

b

�i
;

dtYm+1
i ��Ym+1

i + (um+1
a � r)Ym+1

i + (em+1 � r)Y m+1
b;i

=
h
Wi

�fY m+1
a;i

	N
i=1
; Tm+1

a

��Wi

�fY m+1
b;i

	N
i=1
; Tm+1

b

�i
:

(27)

For the corresponding error analysis, we can make use of the fact that the fWigNi=1 are
all Lipschitz functions and, secondly, the fact that f0 is an a�ne functions. Then, an
immediate analysis establishes the properties (P2). | The veri�cation of (P1) can again be
done analogously to the proof of Lemma 5.1 and will be omitted therefore. 2

6.3 The auxiliary problem (11). In here, we investigate the inuence of an "ex-
plicit treatment" of the ow information in the chemical part. The results of the correspond-
ing error analysis are formulated in the following lemma.

Lemma 6.3 Suppose the basic assumptions (A1),(A2),(A3) to be valid. Then, the solution�
um+1
c ; pm+1

c ; Tm+1
c ; fY m+1

c;i gNi=1
	 2 X of scheme (11) satis�es the properties (P1) and (P2),

for su�ciently small time-steps k � k0(tM+1).
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Proof. Again, we omit the straightforward veri�cation of property (P1) and discuss the
validity of property (P2), focusing on the di�erence in the solution of the systems (10) and
(11). By using the error functions

em+1 := um+1
b � um+1

c ; �m+1 := pm+1
b � pm+1

c ;

T m+1 := Tm+1
b � Tm+1

c ; Ym+1
i := Y m+1

b;i � Y m+1
c;i ;

(28)

the corresponding error identities are as follows,

dte
m+1 ��em+1 + (umb � r)em+1 + (em � r)um+1

c + k(dtu
m+1
b � r)um+1

b +r�m+1

=
h
f0(T

m
b )� f0(T

m
c )
i
;

divem+1 = 0;

dtT m+1 ��T m+1 + (umb � r)T m+1 + (em � r)um+1
c + k(dtu

m+1
b � r)um+1

b

= �
NX
i=1

hi

h
Wi

�fY m+1
b;i gNi=1; Tm+1

b

��Wi

�fY m+1
c;i gNi=1; Tm+1

c

�i
;

dtYm+1
i ��Ym+1

i + (umb � r)Ym+1
i + (em � r)Y m+1

c;i + k(dtu
m+1
b � r)Y m+1

b;i

=
h
Wi

�fY m+1
b;i gNi=1; Tm+1

b

��Wi

�fY m+1
c;i gNi=1; Tm+1

c

�i
:

(29)

The energy arguments can again be carried out in a straightforward manner, owing to the
validity of Lemma 6.2, the properties of the functions f0 and fWigNi=1, by applying the
discrete Gronwall Lemma. This furnishes property (P2). 2

6.4 The auxiliary problem (12). This step is devoted to analyze the error e�ect
coming from the semi-explicit treatment of the reaction part in the temperature and con-
centration equations. The preservation of the properties (P1) and (P2) is assured through
the next lemma.

Lemma 6.4 Suppose the assumptions (A1),(A2),(A3) to be valid for the solution of (1), (2).

Then, the solution
�
um+1
d ; pm+1

d ; Tm+1
d ; fY m+1

d;i g	 2 X of scheme (12) satis�es the properties

(P1) and (P2), for su�ciently small time-steps k � k0(tM+1).

Proof. Again, the veri�cation of property (P1) is straightforward and we move forward
to writing down the equations that determine the di�erence in the solutions of the systems
(11) and (12). Setting

em+1 := um+1
c � um+1

d ; �m+1 := pm+1
c � pm+1

d ;

T m+1 := Tm+1
c � Tm+1

d ; Ym+1
i := Y m+1

c;i � Y m+1
d;i ;



FIRST ORDER SPLITTING FOR CHEMICALLY REACTING FLOWS 16

we have the following system of equations,

dte
m+1 ��em+1 + (umc � r)em+1 + (em � r)um+1

d +r�m+1 =
h
f0(T

m
c )� f0(T

m
d )
i
;

divem+1 = 0;

dtT m+1 ��T m+1 + (umc � r)T m+1 + (em � r)Tm+1
d

�
NX
i=1

hi

h
Wi

�fY m+1
c;i gNi=1; Tm+1

c

��Wi

�fY m
c;i gNi=1; Tm+1

c

�

+Wi

�fY m
c;igNi=1; Tm+1

c

��Wi

�fY m
d;igNi=1; Tm+1

d

�i
;

dtYm+1
i ��Ym+1

i + (umc � r)Ym+1
i + (em � r)Y m+1

d;i

=
h
Wi

�fY m
c;igNi=1; Tm+1

c

��Wi

�fY m
c;i gNi=1; Tm

c

�

+Wi

�fY m
c;igNi=1; Tm

c

��Wi

�fY m
d;igNi=1; Tm

d

�i
:

(30)

In order to verify the properties (P1) and (P2), we can make use of the regularity properties
of fWigNi=1 and f0. The elaboration of the standard energy arguments will again be omitted.

2

6.5 The auxiliary problem (13). This is the essential step in our investigation,
as we pass from an incompressible velocity �eld to a slightly compressible one. The error
mechanisms of Chorin's projection scheme have been outlined in section 4, and we can state
the following lemma.

Lemma 6.5 Suppose (A1),(A2) and (A3) to be satis�ed for the solution of (1),(2). Then,

the solution
�
um+1
e ; pm+1

e ; Tm+1
e ; fY m+1

e;i gNi=1
	 2 X of scheme (13) satis�es the properties (P1)

and (P2), provided the time-steps k � k0(tM+1) are chosen su�ciently small.

Remark 6.1 Note that the driving forces in the momentum equations in (12) and (13) are

identical and that the 'chemical parts' are the same. Thanks to Lemma 6.4, the regularity of

the right hand side in (13) enables the application of Lemma 4.1.

6.6 The auxiliary problem (14). This section is devoted to gain further under-
standing in the e�ect the projection scheme has on the temperature and the concentration
in scheme (4) through (7), or the reformulation (14).

Lemma 6.6 Assume the assumptions (A1),(A2) and (A3) to be valid. Then, the solution�
um+1
f ; pm+1

f ; Tm+1
f ; fY m+1

f;i gNi=1
	 2 X of scheme (14) satis�es the properties (P1) and (P2),

provided the time-steps k � k0(tM+1) are su�ciently small.

Proof. By using the error notation

em+1 := um+1
e � um+1

f ; �m+1 := pm+1
e � pm+1

f ;

T m+1 := Tm+1
d � Tm+1

f ; Ym+1
i := Y m+1

d;i � Y m+1
f;i ;
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we obtain the following system of error equations,

dte
m+1 ��em+1 + (PJ0u

m
e � r)em+1 + (PJ0e

m � r)um+1
f

+r�m =
h
f0(T

m
d )� f0(T

m
f )
i
;

divem+1 � k��m+1 = 0; @n�
m+1j@
 = 0;

dtT m+1 ��T m+1 + (PJ0u
m
d � r)T m+1 + (PJ0

�
em + (umd � ume )

� � r)Tm+1
d

= �
NX
i=1

hi

h
Wi

�fY m
d;igNi=1; Tm+1

d

��Wi

�fY m
f;igNi=1; Tm+1

f

�i
;

dtYm+1
i ��Ym+1

i + (PJ0u
m
d � r)Ym+1

i + (PJ0
�
em + (umd � ued)

� � r)Y m+1
d;i

=
h
Wi

�fY m+1
d;i gNi=1; Tm

d

��Wi

�fY m+1
f;i gNi=1; Tm

f

�i
:

(31)

The energy analysis is again evident, and (P2) is satis�ed | apart from the �rst step
that involves the treatment of the pressure term:

1

2
dtkem+1k2 + 1

2
kkdtem+1k2 + krem+1k2 + 1

2
kkr�m+1k2

� C
n
kT mk2 + kem+1k2

o
+
1

2
k3krdt�m+1k2:

(32)

Because of the following inequality that is a consequence of the second equation in (31),

k2krdt�m+1k2 � kdtem+1k2;
the second term on the right hand side can be absorbed by the left hand side. | As al-
ready mentioned, the remainder of the veri�cation of the approximation property (P2) will
be omitted.

As a consequence of the upper error analysis, we can easily obtain a couple of a priori
bounds for the solution of (14). The bound

max
0�m�M

krpmf k2 � C

is a consequence of the error bound (32) and the second identity in (31), together with
Lemma 6.5, and the following two bounds,

k

MX
m=0

n
k�um+1

f k2 + kdtum+1
f k2

o
� C

then easily follow from the �rst identity in (14). | Now, we can apply dt to the �rst equation
of (14) and test it with dtu

m+1
f . We can make use of the previous results to �nally verify the

following inequality,

kdtuM+1
f k2 + k�uM+1

f k2 + k

MX
m=0

n
krdtum+1

f k2 + kkrdtpm+1
f k2

o
� C:(33)
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This proves the properties (P1) for the velocity �eld. The easy veri�cation of the corre-
sponding properties for the temperature �eld and the N concentrations is omitted. 2

7 Proof of Corollary 2.1 From the analysis of the auxiliary problems (9) through
(28) that has been performed in the previous sections, we have striking stability results (given
by property (P1)) and `1

�
0; tM+1;L

2(
)
�
-convergence results (given by property (P2)) at

hand for the velocity components, the temperature distribution and the mass fractions.
Coming back to the third and fourth error equations in each of the identities (22), (27), (29),
(30), and (31), we can make use of these results.
We start with (22), since it is exeptional from the technical point of view: due to (23), we
have to test with time weighted functions. For example, if we consider the third equation,
testing with ��m+1�T m+1 �nally leads to

�M+1krT M+1k2 + k

MX
m=0

�m+1k�T m+1k2 � Ck2 + k

MX
m=0

krT mk2:(34)

The latter inequality is a result of Gronwall's discrete inequality and Remark 5.1. The last
term can now be bounded by Ck2, using (24) (in summed version).
In the second part of this section, we now focus on the remaining error systems, exept from
system (22). Since the arguments can be given in the same way for each of the systems, we
can con�ne on illustrating it for the third equation of system (27). If we test this equation
with ��T m+1, we obtain after summation over all iteration steps,

1

2
krT M+1k2 + k

MX
m=0

k�T m+1k2 � Ck

MX
m=0

NX
i=1

n
kY m+1

a;i � Y m+1
b;i k2 + kTm+1

a � Tm+1
b k2

o

+ Ck

MX
m=0

n
kum+1

a k1kT m+1k1=21 k�T m+1k3=2 + kem+1k0;qkrTm+1
b k0;rk�T m+1k

o
;

(35)

for positive numbers q; r satisfying 1
q
+ 1

r
= 1

2
. The �rst sum can be bounded by Ck2, thanks

to Lemma 6.2. In order to deal with the �rst part of the second sum, we can apply Young's
inequality twice to absorb terms on the left hand side of the inequality.
Owing to di�erent Sobolev inequalities for d = 2; 3, we have to deal with the last term in
(35) independently for both cases. We start with the case d = 2. Thanks to the Gagliardo-
Nirenberg interpolation inequality (see, [16], e.g.), we obtain for positive values q,

� C
n
k2 + k

MX
m=0

krT m+1k2
o
+
1

4
k

MX
m=0

k�T m+1k2

+ Ck

MX
m=0

kem+1k4=qkrem+1k2�4=qkrTm+1
b k2

0; 2q
q�2
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� C
n
k2 + k4=q+1�2=q max

0�m�M
kTm+1

b k2
o
+
1

4
k

MX
m=0

k�T m+1k2;(36)

using again Lemma 6.2 (property (P2)). Furthermore, we made use of the embedding in-
equality k�k0;q � Ck�k1; 8 1 � q <1. Note, that the constant C in the last inequality in
(36) depends on the choice of the value q, and goes to in�nity as q ! 2. The last term in
(36) can be absorbed on the left hand side of (35).
For the three-dimensional case (d = 3), we can continue in (35) in the following way,

� C
n
k2 + k

MX
m=0

krT m+1k2
o
+
1

4
k

MX
m=0

k�T m+1k2

+ Ck

MX
m=0

kem+1kkrem+1kkTm+1
b k22 � Ck3=2:

(37)

The latter inequality is a consequence of Lemma 6.2 (property (P2)).
Corresponding arguments furnish the statement of Corollary 2.1.

Remark 7.1 As it turns out from the latter considerations, suboptimal convergence behavior

for the gradients of temperature distribution and mass fraction in (4) through (7) is caused by

the nonlinear character of system (1). More precisely, the actual "bottle-neck" can be found

in the auxiliary problem (13) that is devoted to the study of the pressure-stabilization feature

of the method. In this contents, the gradient of the velocity �eld can only be approximated of

the order O(k1=2) in the norms `1
�
0; tM+1;H

1
0

�
or `2

�
0; tM+1;H

1
0

�
.

8 Conclusion and Outlook. In the present work, we proposed and analyzed the
time-splitting scheme (4) through (7) that decouples the computation of approximates in
each iteration step. This approach reduces the computational e�ort in a signi�cant way,
by solving equations for each of the quantities

�
um+1; pm+1; Tm+1; fY m+1

i gNi=1
	 2 X inde-

pendently in each iteration step. This scenario is justi�ed by a rigorous error analysis,
with optimal convergence results given in Theorem 2.1 and Corollary 2.1. In particular,
the scheme is suitable for parallelization strategies, and can be combined with e�ective �-
nite element discretizations that take into account speci�c spatial and temporal features of
the involved quantities. | A basic ingredient of the algorithm is the projection method of
Chorin, for which modest approximation of the pressure iterate in the vicinity of the bound-
ary @
 is known, owing to the prescription of homogeneous boundary data in (8), which
leads to a boundary layer. This topic has been extensively analyzed in [13], where also a
new projection-type method has been proposed and investigated that avoids this drawback
of Chorin's method, called the Chorin-Uzawa method. In particular, the application of the
Chorin-Uzawa projection method { instead of the classical Chorin scheme { in this context
leads to error statements that are superior to those given in Corollary 2.1. This is due to an
improved error statement for the gradient of the velocity �eld for the approximation of the
Navier-Stokes equations (15), see Theorem 8.2 in [13], which can be successfully applied in



FIRST ORDER SPLITTING FOR CHEMICALLY REACTING FLOWS 20

(37). This �nally leads to �rst order convergence results for the corresponding error quanti-
ties given in Corollary 2.1, even in three space dimensions.
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