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Summary. In this work we calculate the eigenvalues obtained by precon-
ditioning the discrete Helmholtz operator with Sommerfeld-like boundary
conditions on a rectilinear domain, by a related operator with boundary con-
ditions that permit the use of fast solvers. The main innovation is that the
eigenvalues for two and three-dimensional domains can be calculated ex-
actly by solving a set of one-dimensional eigenvalue problems. This permits
analysis of quite large problems. For grids fine enough to resolve the so-
lution for a given wave number, preconditioning using Neumann boundary
conditions yields eigenvalues that are uniformly bounded, located in the first
quadrant, and outside the unit circle. In contrast, Dirichlet boundary condi-
tions yield eigenvalues that approach zero as the product of wave number
with the mesh size is decreased. These eigenvalue properties yield the first
insight into the behavior of iterative methods such as GMRES applied to
these preconditioned problems.

Mathematics Subject Classification (1991):65N22

1. Introduction

This paper is concerned with properties of the eigenvalues of matrices arising
from discretization of the Helmholtz equation

−∆u − k2u = f.(1)
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This problem is of fundamental use for the models of scattering of acoustic
waves in fluids [8]. We will consider it on domainsΩ ⊂ R

d, d = 1, 2, 3,
whereΩ is either the unit interval, square, or cube, with Sommerfeld-like
boundary conditions

un − iku = 0(2)

on∂Ω, whereun is the outward normal derivative.
Discretization of the problem (1)–(2) results in a linear system of equa-

tions

Au = f.(3)

whereA is typically complex, non-Hermitian, indefinite, and in two or three
dimensions, very large and sparse. In [1], we developed a set of precondi-
tioning techniques for this problem in the three-dimensional case, and we
demonstrated their effectiveness in a collection of numerical experiments on
benchmark problems. Although the results in this work were encouraging,
the indefiniteness of the matrices together with the large size of the three-
dimensional problems make it difficult to derive an analysis that explains
the behavior of such techniques. The purpose of this paper is to introduce a
methodology for computing the eigenvalues of various preconditioned op-
erators associated with (3), and to use the computed eigenvalues to help
explain the performance of the ideas presented in [1].

The approach under consideration for preconditioning derives from per-
turbation of the boundary conditions leading toA. That is, we use a discrete
Helmholtz operator (1) but replace the Sommerfeld-like conditions (2) on
some subset of the boundary with either Dirichlet conditions (prescribed
values ofu) or Neumann conditions (prescribed values ofun). Let the re-
sulting preconditioning matrix be denotedM. One great advantage of such
preconditioners is that the preconditioning operation, i.e., the computation
of the action ofM−1, can be performed using a fast direct method in time
proportional to the number of mesh points times a logarithmic factor [13].
Moreover, since the preconditioner differs from the matrix by a relatively
low-rank operator (depending only on the number of grid points on the
boundary), many of the eigenvalues of the preconditioned operator will be
identically one, and therefore we expect good performance of Krylov min-
imization or projection methods such as GMRES [12] or QMR [4].

Thus, we seek an understanding of the nonunit eigenvalues ofM−1A.
The methodology presented here is to examine the eigenvalues of one-
dimensional versions of these preconditioned problems, and then to boot-
strap these results into expressions for eigenvalues for problems in two or
three dimensions. This technique applies in the case where both the dis-
cretization matrix and the preconditioning matrix are tensor products of
one-dimensional problems, so we consider finite difference discretizations.
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For problems in one dimension, the difference between the discrete Sommer-
feld and perturbed operators is a matrix of rank two, and identification of the
eigenvalues of the preconditioned problem entails the (trivial) computation
of eigenvalues of a2 × 2 matrix. We then show that in two and three di-
mensions, the eigenvalues of the preconditioned operators can be computed
by solving a set of smaller eigenvalue problems derived by generalizing the
approach used for one dimension. In particular, the computations entail the
solution of eigenvalue problems for matrices of size at mostO(n), where
n is the number of grid points in one dimension. This enables the identi-
fication of the eigenvalues of the higher-dimensional problems, a task that
would otherwise be computationally intractable for fine grids, especially in
the three dimensional case. Using these computed values, we demonstrate
a correlation between the performance of the various preconditioners as
presented in [1] and the spectral properties of the preconditioned operators.

Manteuffel and Parter [9] and Joubert, Manteuffel, Parter, and Wong [7]
have proven a very interesting series of results about problems similar to
ours. In particular, if the preconditionerM and the given operatorA are
both discretizations of second-order elliptic operators, then theL2 condition
number of the preconditioned problemAM−1 is bounded independent of
h if and only if M andA have the same boundary conditions. Similarly, the
L2 condition number ofM−1A is bounded independent ofh if and only if
the adjoint problemsM∗ andA∗ have the same boundary conditions. They
also show results on theH1 condition number. Unfortunately, these beautiful
results do not directly yield insight into the behavior of iterative methods
such as GMRES and QMR; see, for example, [10]. The first two statements
say that the singular values ofAM−1 and those ofM−1A can behave quite
differently. In contrast, the eigenvalues ofAM−1 are the same as those of
M−1A, and the convergence properties of GMRES and QMR are largely
determined by these eigenvalues along with their eigenvectors. Hence the
need for this study. For similar results applied to first order operators, see
[5,11].

A summary of the paper is as follows. In Sects. 2, 3 and 4, we locate the
eigenvalues of the preconditioned problems in one, two and three dimen-
sions, respectively. In Sect. 5, we show how the performance of the precon-
ditioned GMRES algorithm for three-dimensional problems is correlated
with eigenvalue distributions. The final section draws some conclusions.

2. One-dimensional problems

LetÂS be then×nmatrix derived from finite difference approximation to (1)
and (2) using a meshxj = jh, j = 0, 1, . . . , n+1, with h = 1/(n+1). We
use central differences for the second derivatives in (1), using discrete values
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uj to approximateu(xj). For the boundary conditions, we approximate
the normal derivative by one-sided first-order accurate finite differences
to obtain equations foru0 andun+1, and we then use these equations to
eliminate these values from the central differences for−∆u = −u′′ at x1
andxn. We thus obtain then × n matrix

ÂS =




γS −1
−1 β −1

. . .
. . .

−1 β −1
−1 γS




,

where

β = 2 − k2h2 ,

γS = 2 − k2h2 − 1 + ikh

1 + k2h2 .

For this one-dimensional problem, we wish to determine the eigenvalues
and eigenvectors ofM−1ÂS , whereM is a preconditioning matrix.

2.1. Preconditioning by changing the boundary conditions

Suppose we choose as our preconditioner the matrix corresponding to im-
posing different boundary conditions at the two endpoints. This yields the
matrix

M̂ =




γM −1
−1 β −1

. . .
. . .

−1 β −1
−1 γM




,

A similarity transformation that moves the first row and column ofÂS and
M to the last will put the troublesome part of the matrices in the bottom
right corner:

M =




β -1 -1
-1 β -1

. . .
. . .

-1 β -1
-1 β -1

-1 γM

-1 γM




≡
[
C1 C2
C3 C4

]
,
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AS =




β -1 -1
-1 β -1

. . .
. . .

-1 β -1
-1 β -1

-1 γS

-1 γS




≡
[
C1 C2
C3 C̄4

]

Two lemmas provide the formulas we need to obtain the eigenvalues of the
preconditioned problem.

Lemma 1. Given two matrices

M =
[
C1 C2
C3 C4

]
, A =

[
C1 C2
C3 C̄4

]
,

whereM andC1 are nonsingular, then

M−1A = I +
[−C−1

1 C2S
−1

S−1

] [
0 C̄4 − C4

] ≡ I + UV ∗ ,

where the Schur complement is defined byS ≡ C4 − C3C
−1
1 C2.

Proof. The formula is verified by direct computation.ut
Lemma 2. If U and V are full-rank matrices of dimensionn × p (p ≤
n), then the matrixUV ∗ hasn − p eigenvalues equal to zero, with right
eigenspace equal to the orthogonal complement of the column space ofV ,
andp eigenvalues matching those of thep × p matrixΦ = V ∗U .

Proof. The matrixUV ∗ is similar to the matrixWUV ∗W−1 for any non-
singular matrixW . Let

W =
[
V ∗
V̄ ∗

]
,

where the columns of̄V form an orthonormal basis for the subspace orthog-
onal to the column space ofV . Clearly, then − p columns ofV̄ span the
null space ofΦ. If V = QR, where the columns ofQ are orthonormal and
the matrixR is upper triangular, then

W−1 =
[
QR−∗ V̄

]
and

WUV ∗W−1 =
[

Φ 0
V̄ ∗U 0

]
.

This matrix clearly has rank at mostp, and the block triangular form tells
us that the nonzero eigenvalues are those ofΦ. ut
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Corollary 1. GivenM andA as in Lemma 1, the nonunit eigenvalues of
M−1A are equal to1 + µ whereµ is an eigenvalue ofΦ = V ∗U =
(C̄4 − C4)S−1.

Applying the first lemma to our reordered matrices yields

M−1AS = I + UV ∗ ,

where

U =
[
ZES−1

S−1

]
, V ∗ =

[
0 δI2×2

]
.

HereZ = C−1
1 is the inverse of the Toeplitz tridiagonal matrix withβ on

the main diagonal and−1 above and below,E = C2 is an(n−2)×2 matrix
containing the last and first unit vectors,

δ = (γS − γM ) ,

and

S = γMI2×2 − ETZE =
[
γM − zn−2,n−2 −zn−2,1

−z1,n−2 γM − z11

]
.

Applying the second lemma, we see thatΦ = δS−1, so its eigenvalues
depend only on four elements ofZ: z11 = zn−2,n−2 andz1,n−2 = zn−2,1.
Computation of these eigenvalues yieldsφ11 ± φ12, so the eigenvalues of
the preconditioned matrix are

λ
(
A−1

M AS

)
= {1 + φ11 ± φ12, 1} .(4)

This analysis requires thatM andC1 be nonsingular, which will not
hold for certain values ofk andh in the one-dimensional case. For the two-
and three-dimensional problems, however, both of these matrices are always
nonsingular due to the Sommerfeld boundary conditions on at least a portion
of the boundary.

2.2. Preconditioning using Neumann boundary conditions

If we choose as our preconditioner the matrixQ = ÂN corresponding to im-
posing Neumann boundary conditions at the two endpoints, approximating
these conditions with a first order difference, then

γM = 1 − k2h2 .



Eigenanalysis of some preconditioned Helmholtz problems 237

Figure 1 displays the nonunit eigenvalues ofA−1
N AS for various values ofk

andn, calculated using (4).1 As n is increased , the eigenvalues come closer
to each other, with the one with smaller real part staying relatively stationary
near the value1 and with the real part of the other one converging to1.

2.3. Preconditioning using Dirichlet boundary conditions

Suppose instead that we precondition by the matrix that corresponds to
Dirichlet boundary conditions at both ends of the interval:

M = ÂD =




β −1
−1 β −1

. . .
. . .

−1 β −1
−1 β




.

In this case,γM = β. Using (4), we can determine the eigenvalues of the
preconditioned matrix̂A−1

D ÂS . Figure 2 displays the two non-unit eigenval-
ues for various values ofk andn. Asn is doubled, the distance between these
eigenvalues and the distance to the origin are both halved. Ask is increased,
the eigenvalues move away from the origin and away from each other. The
overall result is that an eigenvalue approaches zero ask is decreased orn is
increased.

3. Two-dimensional problems

We now consider problem (1), (2) in two spatial coordinates. In this case,
the coefficient matrix in (3) has the tensor product form

A = Â0 ⊗ I + I ⊗ ÂS

and the preconditioners have the form

M = M̂0 ⊗ I + I ⊗ ÂS ,

whereÂ0 = ÂS + k2h2I, M̂0 = M̂ + k2h2I, andÂS andM̂ are as in the
one-dimensional problem. Thus, the preconditioners are discretizations of
the same differential operator but with different boundary conditions on two
of the four edges of the unit square. This approach was first developed in

1 If central differences are used for the boundary conditions, instead of one-sided differ-
ences, then the resulting matricesAN andAS are of dimension(n + 1) × (n + 1), with

γN = 1 − k2h2

2 andγS = γN − ikh. In this case, the matrixΦ is pure imaginary, so the
real part of each eigenvalue is1, localizing all eigenvalues to the right half plane.
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Fig. 1. The two nonunit eigenvalues of the 1-d Sommerfeld problem preconditioned by the
1-d Neumann. The top figure shows eigenvalues for valuesk = 1 (∗), k = 4 (◦), k = 16 (×)
andk = 64 (+) with n = 1600. The bottom figure shows eigenvalues for valuesn = 400
(*), n = 800 (◦), n = 1600 (×), n = 3200 (+), n = 6400 (ut), andn = 12800 (�) with
k = 16, 64. For each value ofk, the maximal nonunit eigenvalues are connected by a dashed
line and the minimal nonunit eigenvalues by a dotted line
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Fig. 2. The two nonunit eigenvalues of the 1-d Sommerfeld problem preconditioned by the
1-d Dirichlet. The top figure shows eigenvalues for valuesk = 1 (∗), k = 4 (◦), k = 16 (×)
andk = 64 (+) with n = 1600. The bottom figure shows eigenvalues for valuesn = 400
(*), n = 800 (◦), n = 1600 (×), n = 3200 (+), n = 6400 (ut), andn = 12800 (�) with
k = 16, 64. For each value ofk, the maximal nonunit eigenvalues are connected by a dashed
line and the minimal nonunit eigenvalues by a dotted line
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[2]. As above, we wish to determine the eigenvalues of the preconditioned
matrix, which now takes the form(

M̂0 ⊗ I + I ⊗ ÂS

)−1 (
Â0 ⊗ I + I ⊗ ÂS

)
.(5)

Let M̂0 = FΣF ∗, whereF is the matrix of eigenvectors andΣ is
diagonal. We simplify our matrix (5) somewhat through a similarity trans-
formation usingF ⊗ I to obtain

(
Σ ⊗ I + I ⊗ ÂS

)−1 (
(Σ + R) ⊗ I + I ⊗ ÂS

)
= I +

(
Σ ⊗ I + I ⊗ ÂS

)−1
(R ⊗ I) ,(6)

whereR = F (ÂS − M̂0)F ∗ is a rank-2 matrix:

R = δf1f
∗
1 + (γS − qnn)fnf∗

n

= (γS − q11)
([

f1 fn

] [
f∗
1

f∗
n

])
≡ δGG∗ ,

andf∗
1 is the first row of the eigenvector matrix andf∗

n is the last. Lemma
2 tells us how the eigenvalues of the matrix in (6) can be computed from
those of a matrix of dimension2n × 2n:

(Σ ⊗ I + I ⊗ AS)−1 (R ⊗ I)
= δ (Σ ⊗ I + I ⊗ AS)−1 (G ⊗ I) (G∗ ⊗ I)

= δ




ÂS + σ1I
.
.

ÂS + σnI




−1

(G ⊗ I) (G∗ ⊗ I) ,

so we need the eigenvalues of the2n × 2n matrix

C ≡ δ(G∗ ⊗ I)




ÂS + σ1I
.
.

ÂS + σnI




−1

(G ⊗ I)

=


 ∑n

j=1 f2
j1

(
ÂS + σjI

)−1 ∑n
j=1 fj1fjn

(
ÂS + σjI

)−1

∑n
j=1 fj1fjn

(
ÂS + σjI

)−1 ∑n
j=1 f2

jn

(
ÂS + σjI

)−1


 .
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Now the eigendecomposition of each of the matrices in the summation is
of the form ÂS + σjI = U(Λ + σjI)U−1, so each block ofC can be
diagonalized by a similarity transformation involving the eigenvectors of
ÂS : [

U−1 0
0 U−1

]
C

[
U 0
0 U

]

=

[ ∑n
j=1 f2

j1 (Λ + σjI)−1 ∑n
j=1 fj1fjn (Λ + σjI)−1∑n

j=1 fj1fjn (Λ + σjI)−1 ∑n
j=1 f2

jn (Λ + σjI)−1

]
,

and if we permute the rows and columns of this matrix by taking them in
order1, n + 1, 2, n + 2, . . ., the problem breaks inton eigenproblems of
dimension2 × 2 with entries [

sm tm
tm sm

]
,

with

sm =
n∑

j=1

f2
j1

λm + σj
, tm =

n∑
j=1

fj1fjn

λm + σj
.

Therefore, the eigenvalues aresm ± tm, m = 1, . . . , n.

3.1. Preconditioning using Neumann boundary conditions

If we construct the preconditioning matrix using Neumann boundary con-
ditions on two sides of the domain, then multiplication by the matrixF
corresponds to a discrete inverse cosine transform, and multiplication by
F ∗ corresponds to a discrete cosine transform. Forj = 1, . . . , n, the eigen-
values ofM̂0 are

σj = 4
(

sin
(j − 1)π

2n

)2

,

and the eigenvector components are

fj1 =
1√
n/2

cos
(j − 1)π

2n
,

fjn =
1√
n/2

cos
(2n − 1)(j − 1)π

2n
,

except thatf11 = f1n = 1/
√

n. Figure 3 shows the location of the eigen-
values for the preconditioned problem forn = 50 and forn = 500. These
computations were done using Matlab 4.2, since Matlab 5 does not correctly
handle Kronecker products of sparse complex matrices.
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Fig. 3. Eigenvalues of the problem for a50 × 50 grid (2500 unknowns, top) and500 ×
500 grid (250, 000 unknowns, bottom) using a preconditioner with Neumann boundary
conditions on two edges. Eigenvalues are displayed fork = 1 (*), k = 10 (o), k = 20 (×),
andk = 30 (+)
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Fig. 4. Eigenvalues of the problem for a50×50 grid (2500 unknowns, top) and a500×500
grid (250, 000 unknowns, bottom) using a preconditioner with Dirichlet boundary conditions
on two edges. Eigenvalues are displayed fork = 1 (*), k = 10 (o),k = 20 (×), andk = 30
(+)
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We note that all of the eigenvalues are in the right half plane, and that
they remain outside the unit circle centered at the origin, except forn =
50, k = 30, which has an eigenvalue0.9939 from the origin. Note that this
mesh size is generally considered to be too coarse for this value ofk, since
it has fewer than ten grid points per wavelength; the usual rule is to keep
k ≤ 2π/(10h) [6].

3.2. Preconditioning using Dirichlet boundary conditions

If we construct the preconditioning matrix using Dirichlet boundary condi-
tions on two sides of the domain, the situation is similar. Multiplication by
the matrixF corresponds to a discrete inverse sine transform, and multipli-
cation byF ∗ corresponds to a discrete sine transform. Forj = 1, . . . , n, the
eigenvalues ofM̂0 are

σj = 4
(

sin
jπ

2(n + 1)

)2

,

and the eigenvector components are

fj1 =
1√

(n + 1)/2
sin

jπ

n + 1
,

fjn =
1√

(n + 1)/2
sin

jnπ

n + 1
.

Figure 4 shows the results for a50 × 50 grid and for a500 × 500 grid.
Note that most eigenvalues lie on a smooth curve, with an accumulation
point far from the origin and a few outliers. The curve moves away from the
origin ask increases and toward the origin asn increases, and it has a slope
of about0.05 k

n .

4. Three-dimensional problems

In three dimensions, we consider the discretized version of (1), (2) precon-
ditioned by the discretized version of the same operator but with the Som-
merfeld boundary conditions replaced by separable boundary conditions on
four faces of the unit cube. The coefficient matrix is

Â0 ⊗ I ⊗ I + I ⊗ Â0 ⊗ I + I ⊗ I ⊗ ÂS ,

the preconditioner has the form

M̂0 ⊗ I ⊗ I + I ⊗ M̂0 ⊗ I + I ⊗ I ⊗ ÂS ,
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and we wish to determine the eigenvalues of the preconditioned matrix(
M̂0 ⊗ I ⊗ I + I ⊗ M̂0 ⊗ I + I ⊗ I ⊗ ÂS

)−1

×
(
Â0 ⊗ I ⊗ I + I ⊗ Â0 ⊗ I + I ⊗ I ⊗ ÂS

)
.

Again we can simplify our matrix through a similarity transformation
usingF ⊗ F ⊗ I (recall thatM̂0 = FΣF ∗ is the eigendecomposition) to
obtain(

Σ ⊗ I ⊗ I + I ⊗ Σ ⊗ I + I ⊗ I ⊗ ÂS

)−1

×
(
(Σ + R) ⊗ I ⊗ I + I ⊗ (Σ + R) ⊗ I + I ⊗ I ⊗ ÂS

)
(7)

= I +
(
Σ ⊗ I ⊗ I + I ⊗ Σ ⊗ I + I ⊗ I ⊗ ÂS

)−1

× (R ⊗ I + I ⊗ R) ⊗ I ,

whereR = F (ÂS−M̂0)F ∗ = δGG∗ is a rank-2 matrix. Now(R⊗I+I⊗R)
is a matrix of rank4(n − 1) and can be expressed asWZ∗, whereW and
Z have4(n− 1) columns. (These columns span the row and column spaces
and can be computed by the singular value decomposition or by takingW
to have the first2(n − 1) columns ofR ⊗ I and columns1, 2, n + 1, n +
2, . . . , (n−3)n+1, (n−3)n+2, (n−1)n+1, (n−1)n+2 fromI⊗R.) We
can now apply Lemma 2 to compute the eigenvalues of the preconditioned
matrix from those of a matrix of dimension4n(n − 1) × 4n(n − 1):

(Z∗ ⊗ I)
(
Σ ⊗ I ⊗ I + I ⊗ Σ ⊗ I + I ⊗ I ⊗ ÂS

)−1
(W ⊗ I) .

Just as in the 2-dimensional case, applying the similarity transformation that
diagonalizesÂS breaks this eigenvalue problem into a set of smaller ones:
in this case,n problems of size4(n − 1). Using the second basis, these
problems can be further decomposed, but we will not exploit this fact in the
computations here.

4.1. Preconditioning using Neumann boundary conditions

Figure 5 shows the location of the eigenvalues for the preconditioned prob-
lem forn = 50 andn = 80. Again, the eigenvalues are all in the right half
plane and nearly outside the unit circle.

4.2. Preconditioning using Dirichlet boundary conditions

Figure 6 shows the results for a50 × 50 × 50 grid and for a80 × 80 × 80
grid. All of the eigenvalues have negative imaginary part, and eigenvalues
are closer to zero ask/n decreases.
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Fig. 5. Eigenvalues of the problem for a50 × 50 × 50 grid (125,000 unknowns, top)
and80 × 80 × 80 grid (512,000 unknowns, bottom) using the Neumann preconditioner.
Eigenvalues are displayed fork = 1 (*), k = 5 (o), k = 10 (×), andk = 15 (+)

5. Correlation of spectra and GMRES iteration behavior

Consider the preconditioned version of (3),

[AM−1] [Mu] = f.(8)
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Suppose the coefficient matrix is diagonalizable, i.e.,AM−1 = V ΛV −1. It
is well known that the GMRES algorithm produces a sequence of approxi-
mate solutionsum whose residualsrm = f − Aum satisfy

‖rm‖2 = min ‖V pm(Λ) V −1r0‖2 ,
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Table 1. Iteration counts for GMRES(20) applied to the preconditioned discrete Helmholtz
problem

Dirichlet
n

k 20 40 60 80
1 16 20 28 36
5 13 16 20 23

10 13 17 20 24
20 14 16 22 24
30 20 22 27 29
40 19 41 36 34
50 19 47 47 49

Neumann
n

k 20 40 60 80
1 6 6 5 5
5 9 9 9 9

10 13 14 14 15
20 35 36 35 34
30 51 63 64 65
40 89 82 97 97
50 125 140 150 149

where the minimum is over all polynomials of degreem such thatpm(0) =
1. Thus, the values taken on bypm at the spectrum ofAM−1 play a signif-
icant role. In this section, we explore the correlation between the spectra of
the preconditioned operatorsAM−1 and the performance of GMRES(m),
the restarted GMRES algorithm with restarts everym steps.

We first present a table showing iteration counts of GMRES(20) (restarts
every twenty steps), for a collection of three-dimensional preconditioned
discrete Helmholtz problems (8) with various values of wave numberk and
mesh sizen, and both Dirichlet and Neumann preconditioners. The test
problems were chosen so that the discrete solution has values

u(x, y, z) = ei k
2 |2x−1| (y(y − 1))2 (z(z − 1))2(9)

at mesh points(x, y, z). This function satisfies a weak formulation of equa-
tions (1)–(2) withf = 0, and it exhibits wavelike behavior with wavelength
2π/k. The stopping criterion for the iterative solver was

‖rj‖2

‖f‖2
< 10−5 ,

and the initial guess wasu0 ≡ 0. Note from Table 1 that performance as the
mesh size decreases clearly correlates with the trends observed forh → 0
in Sect. 4. That is, the Neumann preconditioner, for which the eigenvalues
appear to be bounded away from the origin, is insensitive to mesh size,
whereas the Dirichlet preconditioner, for which there are eigenvalues ap-
proaching zero withh, declines somewhat in effectiveness as the mesh is
refined. (Entries in the table above the jagged line correspond to problems
with at least ten grid points per wave.)

Next, we focus on the three valuesk = 10, 20, 30 and grid sizen = 60,
for which the iteration counts are highlighted in Table 1. Here, the perfor-
mance of the Dirichlet preconditioner degrades only slightly ask decreases,
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whereas the Neumann preconditioner is better fork = 10 but its perfor-
mance deteriorates significantly for the larger values. Figure 7 shows the
eigenvalues for these six problems, computed using the method of Sect. 4.
The six plots have the same scale. It is evident that the eigenvalues for the
Dirichlet preconditioned problem are fairly insensitive to the wave number
k, whereas the spectra for the Neumann preconditioner are spreading signif-
icantly ask increases. These results are largely consistent with the iterative
performance.

We explore these trends further in Figs. 8 and 9. Letpm now denote the
iteration polynomial generated bym steps of GMRES. It is shown in [3]
that the roots of this polynomial are the eigenvalues of the matrix(

H̃∗
m

)−1
(H∗

mHm) ,

whereHm is the rectangular upper Hessenberg matrix of dimension(m +
1) × m generated bym steps of the Arnoldi computation used for GMRES
[12] , andH̃m is the square submatrix ofHm obtained by removing the last
row. We refer to these as the (generalized) Ritz values. The graphs in Fig. 8
show the Ritz values for each of the six problems. These occur in groups
of twenty, corresponding to the sets of twenty steps of GMRES occurring
between restarts; the groups of Ritz values are differentiated using different
symbols as indicated in the caption, with◦ denoting those in the first group,
etc. The graphs in Fig. 9 show subsets of the data from Fig. 8 in more detail,
for k = 10 andk = 30, and for one other test, using GMRES(40) fork = 30
and the Neumann preconditioner.

In discussing these results, we will distinguish among three types of
eigenvalues, loosely defined as follows:

– Group 1: those that seem to lie along a smooth curve.
– Group 2: those near group 1 but not in it.
– Group 3: the remaining eigenvalues.

Fork = 10 andk = 30, the group 1 and 2 eigenvalues are shown in Fig. 9.
The number of group 3 eigenvalues increases withk but remains less than
35.

For k = 10 in Fig. 9, where both preconditioners result in very fast
convergence, there are relatively few eigenvalues in group 2. The group 1
eigenvalues are well approximated by using a small number of Ritz val-
ues. A polynomial of low degree fit to group 1 gives very small values on
all of it, and placing just a few polynomial roots within group 2 is enough
to produce small residual values. In contrast, for largerk and especially
for the Neumann preconditioner, there are significantly more eigenvalues
in group 2, and they are more widely distributed in the plane. In this case,
a polynomial of low degree fit to group 1 would have very large function
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values on the group 2 eigenvalues, and thus more of the GMRES polyno-
mial roots must be concentrated in group 2 in order to reduce the residual
significantly. Figure 8 indicates that even after multiple restarts, degree 20
is not large enough to approximate all of these group 2 eigenvalues well.
We believe these observations account for the differences in performance of
convergence of restarted GMRES in the examples under consideration.

Figures 10–12 refine these considerations by explicitly examining the
absolute values of the iteration polynomials for the casek = 30. Figures 10
and 11 show the results for the Neumann preconditioner andm = 20 and40,
respectively, and Fig. 12 shows the results for the Dirichlet preconditioner.
The left sides of the figures show the values of the polynomial on the more
than 14,000 eigenvalues in groups 1 and 2, and the right sides are for the
group 3 eigenvalues. The horizontal axes are indices of the eigenvalues,
which are sorted by increasing distance from the point(1, 0) in the complex
plane. Thus, in the left sides of the figures, eigenvalues with larger indices
tend to be those in group 2, or, for the Dirichlet preconditioner, those in
group 1 furthest from the accumulation point. Multiple eigenvalues appear
multiple times, except for the eigenvalue1, which has multiplicityn(n−2)2

and is the first eigenvalue in the list.
We first note that the extreme (group 3) eigenvalues are not significantly

affecting performance. For those that are not captured quickly by Ritz values,
the iteration polynomials are very large; consequently, the corresponding
eigenvectors cannot figure prominently in the initial residual.

In contrast, the polynomials have small values on the vast majority of
the group 1 and 2 eigenvalues. Moreover, in each of the three cases, one
GMRES(m) cycle nearly uniformly damps all of these eigenvalues, ex-
cept some of those with larger indices. In the residualrm remaining after
one cycle, the components of eigenvectors corresponding to the damped
eigenvalues are much smaller, and subsequent iteration polynomials will be
largely determined by the other eigenvalues. One consequence of this is that
the iteration polynomials generated by cycles of GMRES(m) after the first
are larger on the majority of eigenvalues than the first iteration polynomial.

The values of the iteration polynomials form = 20 are clearly much
larger for the Neumann preconditioner (Fig. 10) than for the Dirichlet pre-
conditioner (Fig. 12). We attribute this to the observations made above, that
the magnitudes and number of eigenvalues in group 2 are much larger for the
Neumann preconditioner. In contrast, degree 40 polynomials for the Neu-
mann preconditioner (Fig. 11) are comparable to the degree 20 polynomials
for the Dirichlet preconditioner (Fig. 12). This explains Fig. 13, which shows
the history of residual norms and indicates that roughly the same number
(1.8) of cycles is needed to solve this problem with these two preconditioners
and restart parameters.
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Fig. 10. Polynomial values|p20(λ)| for eigenvaluesλ of Neumann preconditioned operator,
k = 30, 60 × 60 × 60 grid
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Fig. 11. Polynomial values|p40(λ)| for eigenvaluesλ of Neumann preconditioned operator,
k = 30, 60 × 60 × 60 grid
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Fig. 12. Polynomial values|p20(λ)| for eigenvaluesλ of Dirichlet preconditioned operator,
k = 30, 60 × 60 × 60 grid
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Finally, we contrast the results presented in this paper with some exper-
iments performed previously and reported in [1]. There, we observed that
when the Dirichlet preconditioner was used to solve problems with very
smooth solutions, the sensitivity to mesh refinement (i.e., more iterations as
h decreases) was comparable to that displayed in Table 1. In contrast, when
this preconditioner was used to solve problems with anonsmoothsolution,
the sensitivity to mesh refinement was considerably less pronounced. We
have also examined the Ritz values for nonsmooth problems of this type,
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and found them to be less closely aligned with the eigenvalues of group 1,
especially those far from the accumulation point. The results of Sects. 3–4
suggest that it is these eigenvalues that are tending to zero withh, and these
observations indicate that the corresponding eigenvectors are in some sense
smooth and figure less prominently in problems with nonsmooth solutions.
For the benchmark problem (9) used here and for any fixedk, the solution
looks smooth from the vantage point of all fine enough meshes ash → 0,
so it is not surprising that performance is like that for smooth problems. On
meshes that are relatively coarse but still have several meshpoints per wave
(i.e., those just above the jagged line of Table 1), the discrete solution (9)
has a more oscillatory character. Performance in this case is indeed more
like that for nonsmooth solutions; that is, the growth in iterations as we step
down along the jagged line is slower than for very smooth solutions (cf. [1],
Tables 2–3, left).

6. Conclusions

We have viewed some preconditioned Helmholtz problems from acapac-
itance matrixviewpoint, popularized by Olof Widlund, which exploits the
structure of matrices of the form identity plus a low rank matrix. These
discrete problems are quite difficult to analyze, because the usual tools re-
lated to positive definiteness or M-matrix properties are lacking. Using the
capacitance matrix viewpoint, we have been able to explicitly calculate the
eigenvalues of 1, 2, and 3 dimensional problems by solving a set of 1-
dimensional eigenvalue problems. These calculations have revealed that the
Dirichlet preconditioned matrix has eigenvalues that approach zero as the
mesh size is decreased, while those of the Neumann preconditioned matrix
are more dispersed but bounded away from zero. We have been able to use
this insight to explain the behavior of GMRES on these problems.

Future work will extend these preconditioners to the case of non-constant
wave numberk.

Acknowledgements.We are grateful to Oliver Ernst for helpful discussions.
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