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Summary. In this work we calculate the eigenvalues obtained by precon-
ditioning the discrete Helmholtz operator with Sommerfeld-like boundary
conditions on a rectilinear domain, by a related operator with boundary con-
ditions that permit the use of fast solvers. The main innovation is that the
eigenvalues for two and three-dimensional domains can be calculated ex
actly by solving a set of one-dimensional eigenvalue problems. This permits
analysis of quite large problems. For grids fine enough to resolve the so-
lution for a given wave number, preconditioning using Neumann boundary
conditions yields eigenvalues that are uniformly bounded, located in the first
guadrant, and outside the unit circle. In contrast, Dirichlet boundary condi-
tions yield eigenvalues that approach zero as the product of wave number
with the mesh size is decreased. These eigenvalue properties yield the first
insight into the behavior of iterative methods such as GMRES applied to
these preconditioned problems.

Mathematics Subject Classification (19965N22

1. Introduction

This paper is concerned with properties of the eigenvalues of matrices arising
from discretization of the Helmholtz equation

1) —Au — k*u = f.
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This problem is of fundamental use for the models of scattering of acoustic
waves in fluids [8]. We will consider it on domain® c R%, d = 1,2, 3,
where(? is either the unit interval, square, or cube, with Sommerfeld-like
boundary conditions

(2) Uy, — iku = 0

on 9f2, whereu,, is the outward normal derivative.
Discretization of the problem (1)—(2) results in a linear system of equa-
tions

3) Au = f.

whereA is typically complex, non-Hermitian, indefinite, and in two or three
dimensions, very large and sparse. In [1], we developed a set of precondi-
tioning techniques for this problem in the three-dimensional case, and we
demonstrated their effectiveness in a collection of numerical experiments on
benchmark problems. Although the results in this work were encouraging,
the indefiniteness of the matrices together with the large size of the three-
dimensional problems make it difficult to derive an analysis that explains
the behavior of such techniques. The purpose of this paper is to introduce a
methodology for computing the eigenvalues of various preconditioned op-
erators associated with (3), and to use the computed eigenvalues to help
explain the performance of the ideas presented in [1].

The approach under consideration for preconditioning derives from per-
turbation of the boundary conditions leading4oThat is, we use a discrete
Helmholtz operator (1) but replace the Sommerfeld-like conditions (2) on
some subset of the boundary with either Dirichlet conditions (prescribed
values ofu) or Neumann conditions (prescribed values.gj. Let the re-
sulting preconditioning matrix be denotdd. One great advantage of such
preconditioners is that the preconditioning operation, i.e., the computation
of the action ofM !, can be performed using a fast direct method in time
proportional to the number of mesh points times a logarithmic factor [13].
Moreover, since the preconditioner differs from the matrix by a relatively
low-rank operator (depending only on the number of grid points on the
boundary), many of the eigenvalues of the preconditioned operator will be
identically one, and therefore we expect good performance of Krylov min-
imization or projection methods such as GMRES [12] or QMR [4].

Thus, we seek an understanding of the nonunit eigenvaluag of A.

The methodology presented here is to examine the eigenvalues of one-
dimensional versions of these preconditioned problems, and then to boot-
strap these results into expressions for eigenvalues for problems in two or
three dimensions. This technique applies in the case where both the dis-
cretization matrix and the preconditioning matrix are tensor products of

one-dimensional problems, so we consider finite difference discretizations.
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For problemsin one dimension, the difference between the discrete Sommer-
feld and perturbed operators is a matrix of rank two, and identification of the
eigenvalues of the preconditioned problem entails the (trivial) computation
of eigenvalues of @ x 2 matrix. We then show that in two and three di-
mensions, the eigenvalues of the preconditioned operators can be computed
by solving a set of smaller eigenvalue problems derived by generalizing the
approach used for one dimension. In particular, the computations entail the
solution of eigenvalue problems for matrices of size at ndst), where

n is the number of grid points in one dimension. This enables the identi-
fication of the eigenvalues of the higher-dimensional problems, a task that
would otherwise be computationally intractable for fine grids, especially in
the three dimensional case. Using these computed values, we demonstrate
a correlation between the performance of the various preconditioners as
presented in [1] and the spectral properties of the preconditioned operators.

Manteuffel and Parter [9] and Joubert, Manteuffel, Parter, and Wong [7]
have proven a very interesting series of results about problems similar to
ours. In particular, if the preconditionév! and the given operatod are
both discretizations of second-order elliptic operators, thehtrmndition
number of the preconditioned probletiM —! is bounded independent of
h if and only if M and.4 have the same boundary conditions. Similarly, the
L, condition number of\1~! A is bounded independent afif and only if
the adjoint problemg1* and.A* have the same boundary conditions. They
also show results on thié; condition number. Unfortunately, these beautiful
results do not directly yield insight into the behavior of iterative methods
such as GMRES and QMR; see, for example, [10]. The first two statements
say that the singular values dfM—! and those of\1 ! A can behave quite
differently. In contrast, the eigenvalues.4fi\i ! are the same as those of
M~1A, and the convergence properties of GMRES and QMR are largely
determined by these eigenvalues along with their eigenvectors. Hence the
need for this study. For similar results applied to first order operators, see
[5,11].

A summary of the paper is as follows. In Sects. 2, 3 and 4, we locate the
eigenvalues of the preconditioned problems in one, two and three dimen-
sions, respectively. In Sect. 5, we show how the performance of the precon-
ditioned GMRES algorithm for three-dimensional problems is correlated
with eigenvalue distributions. The final section draws some conclusions.

2. One-dimensional problems

Let A g be then xn matrix derived from finite difference approximation to (1)
and (2) usingamesh; = jh,j =0,1,...,n+1,withh =1/(n+1). We
use central differences for the second derivatives in (1), using discrete values
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u; to approximateu(z;). For the boundary conditions, we approximate
the normal derivative by one-sided first-order accurate finite differences
to obtain equations for, andu,,.1, and we then use these equations to
eliminate these values from the central differencesfatu = —«” atz;
andz,,. We thus obtain the x n matrix

[(vs —1
-1 8 -1
AS _ . . . 7
-1 6 -1
I —1 s |
where
8=2—k*h?,
1+ ikh
=2 k*h®P -
s 1+ k2h2

For this one-dimensional problem, we wish to determine the eigenvalues
and eigenvectors af/ ' Ay, where)M is a preconditioning matrix.

2.1. Preconditioning by changing the boundary conditions

Suppose we choose as our preconditioner the matrix corresponding to im-

posing different boundary conditions at the two endpoints. This yields the

matrix _ -
v —1

-1 8 -1

-1 4 -1
i 1 |
A similarity transformation that moves the first row and colummgfand

M to the last will put the troublesome part of the matrices in the bottom
right corner:

5 -1 -1
18 A
L e oy
M= 108 -1 - [03 04] ’
-1 5] 1
1M
| -1 g
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3 -1 -1
1 4 -1
e o _[ai o
o -1 /-1 — | O3 Cy
1 B -1
-1 7s
-1 Vs |

Two lemmas provide the formulas we need to obtain the eigenvalues of the
preconditioned problem.

Lemma 1. Given two matrices

. Cl 02 o Cl 02
m-lac] a-las]
where M and C are nonsingular, then
_Cl_l

_1 B
M_IA:I+|: 9128 :|[OC4—C4]EI+UV*,

S
where the Schur complement is definedbby Cy — CgCl_ICQ.
Proof. The formula is verified by direct computation

Lemma 2. If U and V' are full-rank matrices of dimension x p (p <

n), then the matrixXJV* hasn — p eigenvalues equal to zero, with right
eigenspace equal to the orthogonal complement of the column sp&Ge of
andp eigenvalues matching those of the p matrix® = V*U.

Proof. The matrixUV* is similar to the matrid/ UV *W ~! for any non-
singular matrixiV. Let
V*

W - |:V*:| )
where the columns df form an orthonormal basis for the subspace orthog-
onal to the column space &f. Clearly, then — p columns ofl” span the
null space ofp. If V = QR, where the columns af are orthonormal and
the matrixR is upper triangular, then

W= [QR™*V]

and

*117—1 7¢ 0

WUV*W ™ = [V*U ol -

This matrix clearly has rank at mogt and the block triangular form tells
us that the nonzero eigenvalues are thosé.of O
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Corollary 1. GivenM and A as in Lemma 1, the nonunit eigenvalues of
M~ A are equal tol + u wherey is an eigenvalue of = V*U =
(04 — 04)571.

Applying the first lemma to our reordered matrices yields
M YAg=14+UV*,

where

-1
U= [Zgﬂ ] , VF=1001Ix2]

HereZ = C[ ! is the inverse of the Toeplitz tridiagonal matrix withon
the main diagonal and 1 above and belowy = Cs is an(n —2) x 2 matrix
containing the last and first unit vectors,

5:(75_’7]\/[)3

and

— Zn— _ —Zn—
S = ’YMIQXQ _ ETZE — Ym n—2,n—2 n—2,1
—Z1,n—2 YM — 211

Applying the second lemma, we see tidat= §S~!, so its eigenvalues
depend only on four elements &f 211 = 2z,—2,—2 aNdz1 ,—2 = 2,—21.
Computation of these eigenvalues yieltls + ¢12, SO the eigenvalues of
the preconditioned matrix are

4) AN(AyAs) = {1+ ¢11 £ 12,1} .

This analysis requires tha¥! and C; be nonsingular, which will not
hold for certain values df andh in the one-dimensional case. For the two-
and three-dimensional problems, however, both of these matrices are always
nonsingular due to the Sommerfeld boundary conditions on at least a portion
of the boundary.

2.2. Preconditioning using Neumann boundary conditions
If we choose as our preconditioner the ma@jix= Ay corresponding to im-
posing Neumann boundary conditions at the two endpoints, approximating

these conditions with a first order difference, then

’)/M:1—k2h2.
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Figure 1 displays the nonunit eigenvalues4qf1A5 for various values ok
andn, calculated using (4) As n is increased , the eigenvalues come closer
to each other, with the one with smaller real part staying relatively stationary
near the valué and with the real part of the other one converging.to

2.3. Preconditioning using Dirichlet boundary conditions

Suppose instead that we precondition by the matrix that corresponds to
Dirichlet boundary conditions at both ends of the interval:

C 5 1
-1 8 -1

-1 3 -1
—1 B

In this case;)s = (. Using (4), we can determine the eigenvalues of the
preconditioned matrixil‘)lflg. Figure 2 displays the two non-unit eigenval-
ues for various values &fandn. Asn is doubled, the distance between these
eigenvalues and the distance to the origin are both halveldigisicreased,
the eigenvalues move away from the origin and away from each other. The
overall result is that an eigenvalue approaches zekasdecreased or is
increased.

3. Two-dimensional problems

We now consider problem (1), (2) in two spatial coordinates. In this case,
the coefficient matrix in (3) has the tensor product form

A=A @I +1® Ag
and the preconditioners have the form
M=My®I+I® Ag,

whereAy = Ag + k2h2I, My = M + k2h2I, andAg and M are as in the
one-dimensional problem. Thus, the preconditioners are discretizations of
the same differential operator but with different boundary conditions on two
of the four edges of the unit square. This approach was first developed in

1 |f central differences are used for the boundary conditions, instead of one-sided differ-
ences, then the resulting matricds; and As are of dimensior{n + 1) x (n + 1), with
yw=1- # andvs = yn — ikh. In this case, the matri® is pure imaginary, so the
real part of each eigenvalueislocalizing all eigenvalues to the right half plane.



238 H.C. Elman, D.P. O'Leary

7k X * k=1
6 o k=4
5F X k=16
ne + k=64
sk
oL (o]

*

.

ik
or X

# +
-1 Il Il Il Il Il J
0.92 0.94 0.96 0.98 1 102 1.04
el

e
7, % o
F00 k=16
6L
sk
al
3l
oL
- — g _
¢ = 00 k=p4
ik
s k=16 @
*
kess @O
Il Il Il Il Il Il Il

I I J
0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 11 115

Fig. 1. The two nonunit eigenvalues of the 1-d Sommerfeld problem preconditioned by the
1-d Neumann. The top figure shows eigenvalues for vatuesl (), k = 4 (o), k = 16 (x)

andk = 64 (4) with n = 1600. The bottom figure shows eigenvalues for values 400

(*), n = 800 (o), n = 1600 (x), n = 3200 (+), n = 6400 (O), andn = 12800 (¢) with

k = 16, 64. For each value o, the maximal nonunit eigenvalues are connected by a dashed
line and the minimal nonunit eigenvalues by a dotted line
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Fig. 2. The two nonunit eigenvalues of the 1-d Sommerfeld problem preconditioned by the
1-d Dirichlet. The top figure shows eigenvalues for valkies 1 (), k = 4 (o), k = 16 (x)

andk = 64 (4) with n = 1600. The bottom figure shows eigenvalues for values 400

(*), n = 800 (o), n = 1600 (x), n = 3200 (+), n = 6400 (O), andn = 12800 (¢) with

k = 16, 64. For each value o, the maximal nonunit eigenvalues are connected by a dashed
line and the minimal nonunit eigenvalues by a dotted line
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[2]. As above, we wish to determine the eigenvalues of the preconditioned
matrix, which now takes the form

5) (Mo®I+I®As>_1(Ao®I+I®As).

Let My, = FXF*, whereF is the matrix of eigenvectors anH is
diagonal. We simplify our matrix (5) somewhat through a similarity trans-
formation usingF' ® I to obtain

(E®I+I®As)_1 ((Z+R)®I+I®AS)
(6) :I+<2®I+I®As)_l(R®I),

whereR = F(Ag — My)F* is a rank-2 matrix:
R = 5f1fik + (’73 - an)fnf;:

= (vs — q11) ([fl fa] HED
=0GG™,

and f; is the first row of the eigenvector matrix arfd is the last. Lemma
2 tells us how the eigenvalues of the matrix in (6) can be computed from
those of a matrix of dimensio2n x 2n:
(C@I+1®As) " (R®T)
=0(XI+I®As)  (GRI)(G*®I)

AS+O’1[ -

—5 . Gal) (G el ,
As—FO’nI

so we need the eigenvalues of the x 2n matrix

AS —I—Ull -1

C=8G oI N (GoI)

As 4+ onl
S A (flg - O'jI)_l > i1 fifin (fls + O'jI) -1

z;‘:l fifin (fls + O'jf) Z?Zl J2n (AS + UjI>—1
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Now the eigendecomposition of each of the matrices in the summation is
of the form Ag + 0,1 = U(A + o;1)U~1, so each block of” can be
diagonalized by a similarity transformation involving the eigenvectors of

Ag:
Uu-t o Uo
o el
S A (At o) X > i1 finfim (A+ Ujf)l_l
Sicififin (At o)™ S5 fr (A+oD) |
and if we permute the rows and columns of this matrix by taking them in

orderl,n + 1,2,n + 2,..., the problem breaks inta eigenproblems of
dimension2 x 2 with entries

Sm tm

tm Sm |’

with . ) .
fi fi1f;
Sm= Y —— tp=y =
" kaaj " ZAmHj
7j=1 j=1
Therefore, the eigenvalues atg + ¢, m=1,...,n.

3.1. Preconditioning using Neumann boundary conditions

If we construct the preconditioning matrix using Neumann boundary con-
ditions on two sides of the domain, then multiplication by the ma#rix
corresponds to a discrete inverse cosine transform, and multiplication by
F* corresponds to a discrete cosine transform jrerl, .. ., n, the eigen-
values of)M, are

(- 1)w>2

o; =4 <sin o

and the eigenvector components are

1 — 1
fir= cos U ) ,
n/2 2n

1 2n—-1)(j— D~

fin = s o8 g LT

except thatfi; = fi, = 1/y/n. Figure 3 shows the location of the eigen-
values for the preconditioned problem for= 50 and forn = 500. These
computations were done using Matlab 4.2, since Matlab 5 does not correctly
handle Kronecker products of sparse complex matrices.
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Fig. 3. Eigenvalues of the problem for& x 50 grid (2500 unknowns, top) and00 x

500 grid (250,000 unknowns, bottom) using a preconditioner with Neumann boundary
conditions on two edges. Eigenvalues are displayed fer1 (*), k = 10 (0), k = 20 (x),
andk = 30 (+)
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Fig. 4. Eigenvalues of the problem fos8 x 50 grid (2500 unknowns, top) and @00 x 500
grid (250, 000 unknowns, bottom) using a preconditioner with Dirichlet boundary conditions
on two edges. Eigenvalues are displayedifes 1 (*), k = 10 (0), k = 20 (x), andk = 30
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We note that all of the eigenvalues are in the right half plane, and that
they remain outside the unit circle centered at the origin, except fer
50, k = 30, which has an eigenvalue9939 from the origin. Note that this
mesh size is generally considered to be too coarse for this valuesofce
it has fewer than ten grid points per wavelength; the usual rule is to keep
k < 2w /(10h) [6].

3.2. Preconditioning using Dirichlet boundary conditions

If we construct the preconditioning matrix using Dirichlet boundary condi-

tions on two sides of the domain, the situation is similar. Multiplication by

the matrixF’ corresponds to a discrete inverse sine transform, and multipli-
cation byF™ corresponds to a discrete sine transform.jFer1, ..., n, the

eigenvalues of\/, are
jm )
=4 (s
s (onglis)

and the eigenvector components are

1 .gm
fi1= sin ,
Vn+1)/2 n+1
Fn = 1 . jnm
jn =

sin :
(n+1)/2 n+l

Figure 4 shows the results fors58 x 50 grid and for a500 x 500 grid.
Note that most eigenvalues lie on a smooth curve, with an accumulation
point far from the origin and a few outliers. The curve moves away from the
origin ask increases and toward the originragcreases, and it has a slope
of about0.05%.

4. Three-dimensional problems

In three dimensions, we consider the discretized version of (1), (2) precon-
ditioned by the discretized version of the same operator but with the Som-
merfeld boundary conditions replaced by separable boundary conditions on
four faces of the unit cube. The coefficient matrix is

AyRIQI+ITQAQI+IQRI® Ag,
the preconditioner has the form

MyQRIQI+IMy@I+I®I® Ag,
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and we wish to determine the eigenvalues of the preconditioned matrix
~ ~ o -1
(Melol+Iolyeol+Iole is)

x(Ao®I®I+I®Ao®I+I®I®As>.

Again we can simplify our matrix through a similarity transformation
usingF ® F' ® I (recall thatM, = FX F* is the eigendecomposition) to
obtain

N —1
(2®I®I+I®E®I+I®I®As)
7) ><((Z+R)®I®I+I®(2+R)®I+I®I®AS)

“ —1
:I+(Z®I®I+I®E®I+I®I®As)
x(ROI+I®R)®I,

whereR = F(Ag—My)F* = §GG* isarank-2 matrix. NOWR® [+ IQ R)

is a matrix of ranki(n — 1) and can be expressed B5Z*, whereWW and

Z have4(n — 1) columns. (These columns span the row and column spaces
and can be computed by the singular value decomposition or by t&King

to have the firse(n — 1) columns of R ® I and columnd,2,n + 1,n +
2,...,(n=3)n+1,(n—3)n+2,(n—1)n+1, (n—1)n+2fromI/ @ R.) We

can now apply Lemma 2 to compute the eigenvalues of the preconditioned
matrix from those of a matrix of dimensiam(n — 1) x 4n(n — 1):

N —1
(Z* & 1) (Z®I®I+I®Z®I+I®I®AS> Wal).

Just as in the 2-dimensional case, applying the similarity transformation that
diagonalizesd g breaks this eigenvalue problem into a set of smaller ones:
in this casey problems of sizel(n — 1). Using the second basis, these
problems can be further decomposed, but we will not exploit this fact in the
computations here.

4.1. Preconditioning using Neumann boundary conditions

Figure 5 shows the location of the eigenvalues for the preconditioned prob-
lem forn = 50 andn = 80. Again, the eigenvalues are all in the right half
plane and nearly outside the unit circle.

4.2. Preconditioning using Dirichlet boundary conditions

Figure 6 shows the results for58 x 50 x 50 grid and for a80 x 80 x 80
grid. All of the eigenvalues have negative imaginary part, and eigenvalues
are closer to zero ds/n decreases.
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Fig. 5. Eigenvalues of the problem for @ x 50 x 50 grid (125,000 unknowns, top)
and80 x 80 x 80 grid (512,000 unknowns, bottom) using the Neumann preconditioner.
Eigenvalues are displayed for=1 (*), k = 5 (0), k = 10 (x), andk = 15 (+)

5. Correlation of spectra and GMRES iteration behavior
Consider the preconditioned version of (3),

®) [AM™] [Mu] = f.
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Fig. 6. Eigenvalues of the problem for @ x 50 x 50 grid (125,000 unknowns, top)
and 80 x 80 x 80 grid (512,000 unknowns, bottom) using the Dirichlet preconditioner.
Eigenvalues are displayed for= 1 (*), k = 5 (0), k = 10 (x), andk = 15 (+)

Suppose the coefficient matrix is diagonalizable, i\~ = VAV L. It
is well known that the GMRES algorithm produces a sequence of approxi-
mate solutions,,, whose residuals,, = f — Au,, satisfy

72 = min [[Vpn, (4) V™ hro]2,
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Neumann preconditoner, k=10
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Fig. 7. Eigenvalues of preconditioned three-dimensional problems,66ra60 x 60 grid



Eigenanalysis of some preconditioned Helmholtz problems
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Neumann preconditioner, k=10
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preconditioned three-dimensional problems, fé0ax 60 x 60 grid
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Fig. 9. Subsets of eigenvalues and generalized Ritz values of selected problems, for a
60 x 60 x 60 grid
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Table 1. Iteration counts for GMRES(20) applied to the preconditioned discrete Helmholtz
problem

Dirichlet Neumann
n n
k|20 40 60 80 k| 20 40 60 80
1116 20 28 36 1 6 6 5 5
5113 16 20 23 5 9 9 9 9
10 | 13 17 20 24 10 13 14 14 15
20 | 14| 16 22 24 20 35 36 35 34
30 Qm 29 30 ?M 65
40 | 19 41 36| 34 40 | 89 82 97 | 97
50 | 19 47 47| 49 50 | 125 140 150| 149

where the minimum is over all polynomials of degreesuch thap,,, (0) =

1. Thus, the values taken on py, at the spectrum ol M ~! play a signif-

icant role. In this section, we explore the correlation between the spectra of
the preconditioned operatarsM ~! and the performance of GMRES],

the restarted GMRES algorithm with restarts evergteps.

We first present a table showing iteration counts of GMRES(20) (restarts
every twenty steps), for a collection of three-dimensional preconditioned
discrete Helmholtz problems (8) with various values of wave nuralzerd
mesh sizen, and both Dirichlet and Neumann preconditioners. The test
problems were chosen so that the discrete solution has values

(9) u(@,y,2) = 221 (y(y = 1))% (2(2 — 1))?
at mesh point$z, y, z). This function satisfies a weak formulation of equa-
tions (1)—(2) withf = 0, and it exhibits wavelike behavior with wavelength
27 /k. The stopping criterion for the iterative solver was

175112
17112

and the initial guess wasg, = 0. Note from Table 1 that performance as the
mesh size decreases clearly correlates with the trends observiedfob
in Sect. 4. That is, the Neumann preconditioner, for which the eigenvalues
appear to be bounded away from the origin, is insensitive to mesh size,
whereas the Dirichlet preconditioner, for which there are eigenvalues ap-
proaching zero witth, declines somewhat in effectiveness as the mesh is
refined. (Entries in the table above the jagged line correspond to problems
with at least ten grid points per wave.)

Next, we focus on the three valuks= 10, 20, 30 and grid sizex = 60,
for which the iteration counts are highlighted in Table 1. Here, the perfor-
mance of the Dirichlet preconditioner degrades only slightly decreases,

<107°,
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whereas the Neumann preconditioner is betterkfee 10 but its perfor-
mance deteriorates significantly for the larger values. Figure 7 shows the
eigenvalues for these six problems, computed using the method of Sect. 4.
The six plots have the same scale. It is evident that the eigenvalues for the
Dirichlet preconditioned problem are fairly insensitive to the wave number
k, whereas the spectra for the Neumann preconditioner are spreading signif-
icantly ask increases. These results are largely consistent with the iterative
performance.

We explore these trends further in Figs. 8 and 9..ghow denote the
iteration polynomial generated by steps of GMRES. It is shown in [3]
that the roots of this polynomial are the eigenvalues of the matrix

() ()

whereH,, is the rectangular upper Hessenberg matrix of dimengior-
1) x m generated byn steps of the Arnoldi computation used for GMRES
[12], andH,, is the square submatrix @f,,, obtained by removing the last
row. We refer to these as the (generalized) Ritz values. The graphs in Fig. 8
show the Ritz values for each of the six problems. These occur in groups
of twenty, corresponding to the sets of twenty steps of GMRES occurring
between restarts; the groups of Ritz values are differentiated using different
symbols as indicated in the caption, witldenoting those in the first group,
etc. The graphs in Fig. 9 show subsets of the data from Fig. 8 in more detail,
for k = 10 andk = 30, and for one other test, using GMRES(40) %ot 30
and the Neumann preconditioner.

In discussing these results, we will distinguish among three types of
eigenvalues, loosely defined as follows:

— Group 1: those that seem to lie along a smooth curve.
— Group 2: those near group 1 but notin it.
— Group 3: the remaining eigenvalues.

For k = 10 andk = 30, the group 1 and 2 eigenvalues are shown in Fig. 9.
The number of group 3 eigenvalues increases Wwitut remains less than
35.

For £ = 10 in Fig.9, where both preconditioners result in very fast
convergence, there are relatively few eigenvalues in group 2. The group 1
eigenvalues are well approximated by using a small number of Ritz val-
ues. A polynomial of low degree fit to group 1 gives very small values on
all of it, and placing just a few polynomial roots within group 2 is enough
to produce small residual values. In contrast, for lafgemd especially
for the Neumann preconditioner, there are significantly more eigenvalues
in group 2, and they are more widely distributed in the plane. In this case,
a polynomial of low degree fit to group 1 would have very large function
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values on the group 2 eigenvalues, and thus more of the GMRES polyno-
mial roots must be concentrated in group 2 in order to reduce the residual
significantly. Figure 8 indicates that even after multiple restarts, degree 20
is not large enough to approximate all of these group 2 eigenvalues well.
We believe these observations account for the differences in performance of
convergence of restarted GMRES in the examples under consideration.

Figures 1012 refine these considerations by explicitly examining the
absolute values of the iteration polynomials for the dase30. Figures 10
and 11 show the results for the Neumann preconditioneragd20 and40,
respectively, and Fig. 12 shows the results for the Dirichlet preconditioner.
The left sides of the figures show the values of the polynomial on the more
than 14,000 eigenvalues in groups 1 and 2, and the right sides are for the
group 3 eigenvalues. The horizontal axes are indices of the eigenvalues,
which are sorted by increasing distance from the pdin®) in the complex
plane. Thus, in the left sides of the figures, eigenvalues with larger indices
tend to be those in group 2, or, for the Dirichlet preconditioner, those in
group 1 furthest from the accumulation point. Multiple eigenvalues appear
multiple times, except for the eigenvaluiavhich has multiplicityn (n — 2)?
and is the first eigenvalue in the list.

We first note that the extreme (group 3) eigenvalues are not significantly
affecting performance. For those that are not captured quickly by Ritz values,
the iteration polynomials are very large; consequently, the corresponding
eigenvectors cannot figure prominently in the initial residual.

In contrast, the polynomials have small values on the vast majority of
the group 1 and 2 eigenvalues. Moreover, in each of the three cases, one
GMRES(n) cycle nearly uniformly damps all of these eigenvalues, ex-
cept some of those with larger indices. In the residyakemaining after
one cycle, the components of eigenvectors corresponding to the damped
eigenvalues are much smaller, and subsequent iteration polynomials will be
largely determined by the other eigenvalues. One consequence of this is that
the iteration polynomials generated by cycles of GMREBéfter the first
are larger on the majority of eigenvalues than the first iteration polynomial.

The values of the iteration polynomials for = 20 are clearly much
larger for the Neumann preconditioner (Fig. 10) than for the Dirichlet pre-
conditioner (Fig. 12). We attribute this to the observations made above, that
the magnitudes and number of eigenvalues in group 2 are much larger for the
Neumann preconditioner. In contrast, degree 40 polynomials for the Neu-
mann preconditioner (Fig. 11) are comparable to the degree 20 polynomials
forthe Dirichlet preconditioner (Fig. 12). This explains Fig. 13, which shows
the history of residual norms and indicates that roughly the same number
(1.8) of cycles is needed to solve this problem with these two preconditioners
and restart parameters.
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Fig. 11. Polynomial valuegpso ()| for eigenvalues of Neumann preconditioned operator,
k = 30, 60 x 60 x 60 grid
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Fig. 13. Iteration counts of preconditioned restarted GMRESKeE 30, 60 x 60 x 60
grid

Finally, we contrast the results presented in this paper with some exper-
iments performed previously and reported in [1]. There, we observed that
when the Dirichlet preconditioner was used to solve problems with very
smooth solutions, the sensitivity to mesh refinement (i.e., more iterations as
h decreases) was comparable to that displayed in Table 1. In contrast, when
this preconditioner was used to solve problems wittoasmoottsolution,
the sensitivity to mesh refinement was considerably less pronounced. We
have also examined the Ritz values for nonsmooth problems of this type,
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and found them to be less closely aligned with the eigenvalues of group 1,
especially those far from the accumulation point. The results of Sects. 3—4
suggest that it is these eigenvalues that are tending to zerawatid these
observations indicate that the corresponding eigenvectors are in some sense
smooth and figure less prominently in problems with nonsmooth solutions.
For the benchmark problem (9) used here and for any fixeke solution

looks smooth from the vantage point of all fine enough meshés-as0,

so it is not surprising that performance is like that for smooth problems. On
meshes that are relatively coarse but still have several meshpoints per wave
(i.e., those just above the jagged line of Table 1), the discrete solution (9)
has a more oscillatory character. Performance in this case is indeed more
like that for nonsmooth solutions; that is, the growth in iterations as we step
down along the jagged line is slower than for very smooth solutions (cf. [1],
Tables 2-3, left).

6. Conclusions

We have viewed some preconditioned Helmholtz problems frarapac-
itance matrixviewpoint, popularized by Olof Widlund, which exploits the
structure of matrices of the form identity plus a low rank matrix. These
discrete problems are quite difficult to analyze, because the usual tools re-
lated to positive definiteness or M-matrix properties are lacking. Using the
capacitance matrix viewpoint, we have been able to explicitly calculate the
eigenvalues of 1, 2, and 3 dimensional problems by solving a set of 1-
dimensional eigenvalue problems. These calculations have revealed that the
Dirichlet preconditioned matrix has eigenvalues that approach zero as the
mesh size is decreased, while those of the Neumann preconditioned matrix
are more dispersed but bounded away from zero. We have been able to use
this insight to explain the behavior of GMRES on these problems.

Future work will extend these preconditioners to the case of non-constant
wave numbek.

AcknowledgementsWe are grateful to Oliver Ernst for helpful discussions.
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