Weighted Regularization of Maxwell
Equationsin Polyhedral Domains

Martin COSTABEL and Monique DAUGE

Abstract. We present a new method of regularizing time harmonic Maxwell equations by
a divergence part adapted to the geometry of the domain. This method appliesto polygo-
nal domains in two dimensions as well as to polyhedral domainsin three dimensions. In
the presence of reentrant corners or edges, the usual regularization is known to produce
wrong solutions due the non-density of smooth fields in the variational space. We get
rid of this undesirable effect by the introduction of special weights inside the divergence
integral. Standard finite elements can then be used for the approximation of the solution.
This method proves to be numerically efficient.

I ntroduction

We consider the solution (E, H) of the time-harmonic three-dimensional Maxwell
equationsinadomain  filled with an homogeneous medium, subject to perfect conduc-
tor boundary conditions

{curIE—iwuH:() and curlH+iweE=1J in Q

A
Exn=0 and H- n=0 on 0. (0.1)

For a divergence-free current density J, both electromagnetic fields E and H are also
divergence-free, and the choice of a variational space to set this problem in variational
formisin no way unique.

The finiteness of the electromagnetic energy requires that both the electric and the
magnetic field belong to H(curl; 2) , where

H(curl;Q) = {u € 2'(Q)° | uw e L*(Q)%, curlu € L*(Q)*}. (0.2)

For simplicity weassume i = 1, andweset f = iwpd . Inorder to obtain avariational
formulation, we can eliminate the magnetic field from equations (0.1). We obtain formally
the equation

curl curl E — W?E = f.



The“minimal” choice for the electric variational space would be
{weH(curl;Q)| uxn|,,=0 and divu=0}.

A conforming discretization would then impose the use of divergence-free elements.
A “maximal” and more widely used choice for the electric variational spaceis

H(curl; Q) = {u € H(curl ;) | wx n|,,=0}. (0.3)

The corresponding variational formulation for problem (0.1) is then

u € IO{(curI ), Yo e IO{(curI :Q), /

Curlu-CurI'v—wQu-'v:/f-'v. (0.4)
Q Q

But the associated operator w — curlcurluw — w?u is not dliptic and the equation
divu = 0 isanindependent constraint for w = 0. Thisisin relation with the fact that
the corresponding eigenvalue problem has an infinite dimensional eigenspace for w = 0
formed by al gradient fields E = grad ¢ with ¢ € (). A well-known strategy
for finite element computations of the Maxwell eigen-frequenciesis the use of “spurious-
free” elements whose classical representatives are the two families of NEDELEC’s edge
elements [27, 28]. These elements are curl conforming but not div conforming, and,
roughly speaking, they reproduce at the discrete level the splitting into a large kernel
space and a space where the lowest Maxwell eigen-frequencies are approximated [6, 5,
21, 8, 25].

There are good reasons why one may prefer a discretization of the Maxwell problem
by more standard and more widely used elements, e.g. nodal elements where the compat-
ibility conditions between neighboring elements are pointwise and scalar. A well-known
strategy consists then of regularizing the operator by adding a term containing the diver-
gence, that is, to transform it into an elliptic system. The classical way of doing this, cf
LEIs [23], and more precisely for this application HAZARD-LENOIR [20] (and also their
references), isto introduce the variational space

Xy = {u e Hcurl;Q) | divu e L}(Q)}. (0.5)

and to note that, since the solutions of (0.1) are divergence-free, the electric field E isthe
solution w of

’U,EXN, V’UEXN, /

Curlu-Cur|v+diVudin—w2u~v:/f~v. (0.6)
Q )

In any convex domain, the formulation (0.6) can be discretized by a Galerkin method
using nodal finite elements: The discrete spaces consist of functions which are piecewise
polynomia and curl and div conforming, hence continuous across the interfaces of the
mesh; therefore the discrete spaces are contained in H' ()2 . Inaconvex domain 2, this
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fact isinnocent since X coincides with Hy , the subspace of u € H'(Q2)? satisfying
the tangential boundary condition w x n = 0 on 0f2. But if the domain has reentrant
corners or edges, Hy no longer coincides with X, and even the codimension of Hy
in Xy isinfinite. And, worse, Hy isclosedin X for thetopology of thislatter space,
cf [10, 17]. Asany discrete space based on curl - div conforming elementsis contained
in Hy , this makes the approximation by such a method impossible, see [13].

The new idea that we will develop in this paper is the introduction of suitable in-
termediate spaces between the spaces (0.3) and (0.5), coupled with the corresponding
modification of the bilinear formin (0.4), so that

1. Thesubspace Hy isdense,
2. The associated operator isliptic,
3. The solution of the new problem coincides with that of (0.1).

More precisely, we are looking for spaces Y such that Hy isdensein
{weHurl;Q)| dvueY), (0.7)

and such that the new bilinear form
(u,v) — /(curl w-curlv —w?u - v) de + (divu, dive),
Q

defines an elliptic operator and a problem whose solution isthe electric field E in (0.1).
The requirement of ellipticity imposesthat Y isa L2 -type space. Sinceit is un-
derstood that H iscontained in the space (0.7), L%(©2) should be containedin Y . As,
moreover, any element in H(curl ; Q) hasitsdivergencein H='(Q2) , we should also have
theembedding Y C H~'(f2) . Therefore we will concentrate on weighted 1.2 spaces

{peli ()| weel?*Q)} (0.8)

withaweight w € (1) , positivein €2, bounded on Q —therefore the weighted space
(0.8) contains L2(£2). We will see in particular that the weight satisfying the previous
requirements 1.-3. must have an inverse w~! unbounded in the neighborhood of the
reentrant edges of (2. Thusthe partial differential operator isnot uniformly ellipticin €2,
but degenerates near non-convex edges. This unboundedness of the inverse contrastswith
regularizations used in [20] and [3, 4, 19] where a bounded weight with bounded inverse
isused. On the other hand, our choice of aweight which tendsto 0 in aneighborhood of
reentrant edges goes in the same direction as a numerical method consisting of setting the
weight to 0 in afew layers of elements around reentrant edgesand to 1 elsewhere [29].

It makes sense to consider the question also in two dimensions. The above formalism

[¢]

carries over with only minimal obvious changes. The space H(curl; (2) is then defined
using the scalar curl operator:

H(curl; Q) = {u € Z/(Q)* | we LA(Q), culu € L2(Q), u x nl,, =0},
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and the variational formulation of the 2D Maxwell problem corresponding to (0.4) is

u € IO{(curI;Q), Yv € ﬁ(curl :Q), /

Curlu-CurI'v—wQu-'u:/f-'u. (0.9)
Q Q

This problem is interesting in its own right as a model for TE modes in wave guides.
An equivalent problem arises in the study of irrotational fluidsin 2D. More importantly,
it is useful as atest case for the detailed analysis and the implementation of numerical
algorithms.

In particular, it is well known that on non-convex polygons the codimension of H y
in X, corresponds to the number of non-convex corner points, and the non-convergence
of standard conforming finite element methods based on the regularization (0.6) has been
studied in detail [13].

Our proposed new algorithm based on weighted regularizations can be very easily
implemented in two dimensions, and its convergence can be studied theoretically and
experimentally in every detail.

It can &l so be compared to other algorithmsthat exist for the 2D problem, for example
the singular function method studied in [1, 7]. Compared to this method, our weighted
regularization method seems simpler to implement, and it has the big advantage to allow
a generalization to three dimensions which does not require precise calculations of the
three-dimensional singular functions.

We organize our paper asfollows. Wefirst state the functional framework in §1, defin-
ing afamily of regularized problems (each of which corresponds to a different choice for
the space Y'), and giving criteriafor equivalence with problem (0.1), and for the density
of smooth functionsin the variational spaces. Thisrequires only weak assumptionson the
domain, viz Lipschitz regularity of the boundary. The criterion for the density of smooth
functions relies on the density of smooth functions in the domain of a Laplace operator
in specia spaces. We study this property when Y isrealized as a weighted space, first in
two-dimensional polygonal domains (§2) and then in three-dimensiona corner domains
(§3).

We obtain a criterion for the density of smooth functions when the domain of the
corresponding Laplacian can be characterized as a weighted Sobolev space (like those of
KONDRAT’EV [22] or for more general geometries those in [26, Ch.9]). We summarize
the results of the previous sections in §4, exhibiting a class of admissible weights w
providing spaces Y such that conditions 1.-3. above are satisfied. Examples of such
weights are provided by d] where d, is the distance to the set of reentrant edges and
cornersof 2 and ~ belongsto aninterval (Y, 1], Where ~,.,;, dependson the domain
Q.

Therest of the paper is devoted to an investigation of the performance of noda finite
elements associated with a variational formulation regularized by an admissible weight.
Our error estimate is simply based on the decomposition of the solution « of (0.6) into
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w + grad ¢ where w belongsto Hy and the potential  isasingular function of the
Laplace-Dirichlet problem. In §5, we give a precise characterization of the functional
propertiesof w and ¢ . Relying on this, we exhibit in §6 general sufficient conditionsfor
the convergence of finite element methods with a certain convergence rate. One of these
conditions requires that the finite element space contains “sufficiently many gradients’
to approach grad by a gradient. In §7, we show that these conditions are satisfied
by standard families of nodal finite elements satisfying the usual classical assumptions.
The error analysis requires, apart from the theoretical analysis of the corner and edge
singularities of the solution, only very standard finite element estimations, combined to
get estimates in weighted Sobolev spaces.

We end our paper by more practical results for two-dimensional domains. first we
prove that any nodal elements based on P, triangles or Q3 rectangles satisfy the gen-
era conditionsin §6. Second, we provide in §8 results of numerical experimentsin an
L-shaped domain with Q,, rectangular elements, based upon the FEM library M ELINA
developed by D. MARTIN [24]. These results clearly show that our method works as
expected, and even better since we already see correct convergence rateswith Q, rectan-
gles. Evenfor p = 1 we seem to get a convergent algorithm.

Finally, we want to emphasize that the conditions on the families of finite element
spaces that we introduce are sufficient, but (apparently) not necessary. Moreover, al-
though one condition is related to the presence of gradients in the finite element spaces,
the Galerkin method itself only uses the nodal 4° elements and not the ¢! densities
which serve in the proof of the convergence estimate. In this paper, we perform only a
few first steps of a finite element analysis. We expect that this error analysis can be ex-
tended to show higher convergence rates for refined methods, using non-uniform meshes
and/or p or h-p versionsof the finite element method.

1 Reduction toalaplacian

Inthissection, Y denotesa (separable) Hilbert space with scalar product (-, -)y, such
that
L*(Q)cY CcH Q). (1.1)

We define the corresponding “ electric regularized space” Xy [Y] by
Xy[Y] = {u e Hcurl; Q)| divu e Y}, (1.2)

with the norm

2

lull% ., = Il curlulf

+ [ diva|§, + ul;

L2(Q)3 L2(Q)3

In this section we only suppose that €2 has a Lipschitz boundary. We define the
variational formulation corresponding to each space Y and prove the equivalence with



problem (0.1) subject to the density of the range of a certain Helmholtz-type operator.
Then, applying a classical decomposition result by BIRMAN-SOLOMYAK [3], we prove
asimilar decomposition for our new variational spaces, which is then used as a basis for
the density criterion.

While we state and prove the results for the 3-dimensiona problems, they are aso
valid, with the obvious minimal changes, for the 2-dimensional problems.

l.a Equivalent problems

The variational problem associated with the space X y[Y] is:

{ u € XylY], Vo e XylY],
(1.3)

/(Curlu-curlv—w2u~v) da:—l—(diVu,din)Y:/f-vda:.
0 Q

The equival ence between problems (0.1) and (1.3) uses classical argumentsand relies
on an assumption about a Helmholtz-type operator with frequency w. In the standard
case when Y = L%(Q), this operator issimply A + w?Id . In the present more general
case, we have to define two operators:

1. The corresponding Laplace-Dirichlet operator is denoted AP"[Y] and defined as

APETY]: D(APF[Y)) = {p € IO{I(Q) | ApeY} — Y (1.4)
© — Agp.

The assumption Y € H™*(2) makes this definition natural, that is:
g=Ap = ¢pc ﬁl(Q), Vi € ﬁl(Q) : /grad<,0~gradw = —/qw.
Q Q

2. As Y iscontained in H-1(Q), and D(AP[Y]) in HY(Q), forany p € Y and
o € D(APT[Y]), the scalar product (p, ) makes sense in the duality H=*(Q) -
IT1(2) andisan extension of the L2(Q2) product. Thus by the Riesz representation
theorem there exists a bounded operator

K: D(APEY]) — Y

7 — K¢ suchthat VpeY, (p,Kp)y = (p, 9). (1.5)

Theorem 1.1 Let J € L*(Q2)% bedivergence-free: divJ = 0. Weassume w # 0.

(i) If (E,H) solves(0.1), then w = E solves (1.3).

(i) If u solves(1.3) and if the range of the operator AP*[Y]+w?K isdensein Y, then
(E,H) = (u, (iw) "' curlu) solves(0.1).



PROOF.

(i) It is standard that « = E solves problem (0.4). Since divu = 0, u belongs to
Xn[Y] too andissolution of (1.3).

(if) The only thing to be proved isthat divu = 0. We take as test function any grad ¢
with ¢ € D(AP™[Y]). We obtain

Vo € D(APTY]), —w? [ w-gradpdz + (divu, Ap), = [ f-grad e de.
Q Y Q

As there holds [, f - gradyp = — [, div f¢ (and similarly for w ), the assumption
div f =0 implies
Yo € D(APTY]),  wi(dive, )+ (diva, Ag), = 0.
This means that
Vo € D(AP'Y]), (divu,(A+ w’K)p), =0.

The assumption about the density of therange of AP*[Y]+w?K impliesthat divu = 0.
m

We will see that when Y isredlized as a weighted L? space, the condition about
the density of the range AP"[Y] + w?K is equivalent to requiring that w? is not an
eigenvalue of a certain self-adjoint partial differential operator. Moreover, in thissituation
we can prove that if the range of the operator AP"[Y] + w?K isnot dense, then there are
spurious solutions of problem (1.3), see 4.

1.b Density of smooth functions

Our criterion for the density of smooth functions in the space X y[Y] relies on the
following decomposition theorem.

Theorem 1.2 Let Y satisfy (1.1). Then any element u € Xy[Y]| can be decomposed
into a sum

u=uy+gradyp, with uo € Hy and ¢ € D(AP[Y]), (1.6)
with the estimate
ol s s + 1y + 1801 < Claslly g,
Conversely, any element of the form (1.6) belongsto X y[Y].

PROOF. Let u belongto Xy[Y]. Thedivergence divu belongsto Y. Let ¢ bethe
element of D(AP"[Y]) suchthat AP[Y] ) = divu . We have

1l 0y + 1821, < Clldivaul],
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The field v := uw — grady sdtisfies curlv = curluw and dive = 0. Therefore v
belongsto the “standard” space X = Xy[L?(Q)] with the estimate

]l < Cllull

Xy [L2(Q)] — Xn[Y]"

Then, since ) issupposed to have a Lipschitz boundary, we may use the decomposition
result of [3] for v: There exists uy € Hy and xy € APT[L?(Q2)] suchthat v = ug +
grad x , with the estimate

||u0HH1(Q)3 + HXHHI(Q) + ||AX||L2(Q) < CH’UHXN[LQ(Q)]

Setting ¢ := x + ¢, we obtain an element of Y (here we use that L2(Q2) C Y), and
there holds the estimate of the Theorem. [ |

Corollary 1.3 If theembedding of Y into H~'(Q) iscompact, then the space X [Y] is
compactly embedded in L?(9)? .

This is a consequence of the decomposition (1.6): Since Y cc H™!(Q), we dso
have D(AP"[Y]) cc H*(Q), hence grad D(APT[Y]) cc L*(9Q).

Concerning the density or the non-density of smooth functions, we obtain the funda-
mental result as an immediate corollary of the decomposition theorem:

Theorem 1.4 (i) If H2NH(Q) isdensein D(APF[Y]) for the graphnorm, then Hy
isdensein Xy[Y].
(i) H2N Q) isclosedin D(APE[Y]) if and onlyif Hy isclosedin Xy[Y].
(iii) D(AP™]Y]) iscontained in H?(Q2) if and onlyif Xy[Y] = Hy .

In the rest of the paper, werealizethe spaces Y asweighted L? spaceson (), where
theweight w isaproduct of distancesto corners and edges with different exponents.

2 Laplacian in weighted spaces on polygons

We begin with the discussion of 2-dimensional domains, because their geometry is
simpler and the corresponding weighted spaces are better known. The 2-dimensional
situation also constitutes the first step for the 3-dimensional case.

2.a Domains

We denoteby x = (x,y) the cartesian coordinates R?. Let B(x,r) denotethe ball
of center  and radius . In order to include curvilinear polygonal domains, we define
the Lipschitz 2D corner domains as follows:

These are the bounded domains  in R? or S? such that in each point a of the
boundary there exists r, > 0 and adiffeomorphism y, transforming the neighborhood



Yo = QN B(a,r,) intoaneighborhood of the corner 0 of aplane sector ', of opening

€ (0,27), a being sent into 0. We assume without restriction that, at point a,
the diffeomorphism y, isanisometric transformation. Therefore the opening w, isan
intrinsic parameter of the domain 2 .

Theset o7 of cornersof ) isthe set of points a € 02 such that the corresponding
sector I',, isnon-trivial (opening w, # 7). With each corner a , we associate local polar
coordinates such that

Iy = {(ra,ea) |74 >0, 0 <8, < wa}.

2.b Weighted Sobolev spaces

Let m be anon-negative integer and for any a € < let v, beareal number. We
denote the collection of (v4) ,c.,, by . Werecal that 7, is a neighborhood of the
vertex a which does not contain any other vertex, and we introduce a complementary
openset ¥ C Q such that no vertex a belongsto 7 and that

Q= 7/0 U (Uaed 7/“)
The space Y associated with the multi-exponent ~ is the space VQY(Q) in the scale of
the spaces V7'(€2) defined as, cf [22]
Vr(Q) = {(p e 7'(Q)| peH™(¥%) ad VaeN, |a| <m,

Y
(2.1)
Va e of, retllmoen e 12(7,) }

Here are a few standard and useful properties of these spaces. In loca polar coordinates
(ra, 8a) , the condition r2* "9 € 1.2(Q2) becomes

r(“;“’m(ra(?m)kagagoa € L3 (Ty), k+{£<m,

where ¢, istransformed from ¢ by the diffeomorphism y, (after localization). Itisun-
derstood that ¢, iswrittenin polar coordinates: ¢, = @q(ra,s) - In Euler coordinates
tq =logre and 6, andwith 04 (te,0a) := va(ra, 0a) , the above condition becomes

eOamtlla gk 5, € LA(R,H™ (0, /wa)), k< m. (2.2)
The Médllin transform of , with respectto r,

drg
AH/ A 0alTa, 0 )L

a

istherefore well-defined for Re A\ = —y,+m — 1.
The natural inclusions are, for m > 1

V2(Q) C VI(Q) (2.3)
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where v —1 meansthe collection (v, —1) ..., ,adforany v <~ (which meansthat
forany a € o7, v, <~,)andany m:

VIL(Q) C VI(Q). (2.4)

,.Yl
Poincar€’ s inequality allowsto prove that
HY(Q) ¢ VA(Q).

For any weight multi-exponent - , the subspace of V' (€2) with null traces on the bound-

ary 0Q isthe closure of €3°(€2) functionsin V(Q) and is denoted by \O/EY(Q). We
thus have . .
H'(Q) = V§(9). (2.5)

Finally, the by-product inclusion }011(9) C VY, () yields by duality
VI(Q) c H(Q). (2.6)

2.c Regularity results

Let usfirst assumethat for a fixed weight multi-exponent ~’ the function ¢ belongs
to \O/}Y,fl(Q) andissuchthat Ay belongsto V?,(€2) . Then elliptic estimates on dyadic
partitions of the sectors I', for each a € o/ alow to prove in a standard way that ¢
belongsto V2, (€2) . We note that the Mellin transform of ,, for each a € &7 isdefined
for ReA=—, + 1.

Let us assume that, additionally, Ay belongsto V?Y(Q) , With v < ~". We deduce
then directly from KONDRAT’ EV [22] that the Méllin transform of the localized function
e defines ameromorphic function onthe strip Re A € [—v,, + 1, —v, + 1] and that, if
forany a € o/ theintervas [—/ + 1, —7, + 1] do not contain any number of the form
km/wa, k € Z, k # 0, then there holds

pe VNV ().

Applying this result with 4 = 1 and ~, intheinterva (1 — 7/w,, 1] and using the
equality (2.5), the inclusion (2.6), and the uniqueness of the solution of the Dirichlet
problem with datain H=!(2) , we obtain the following result.

Theorem 2.1 For any weight multi-exponent ~ such that for every a € </ theinequal-
ity
1 —7/we < 7a <1 (2.7)

holds, the Laplace operator is an isomorphism from V2 N \0/}7_1(9) onto V3(€2). The
solution space can equivalently be written as V2 N }011(9) :
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For the intended applications, it is useful to note the following.

Proposition 2.2 For any weight multi-exponent ~ , the €>°(Q) functionswith null trace
on 00 aredensein V2N V! ,(Q).

PROOF. Letustake ¢ € V2N \0/1171(9) . In the neighborhood of any smooth point

of the boundary of €2, the approximability property is a consequence of the density of

smooth functions in standard Sobolev spaces. It remains to prove that each function ¢,

can be approximated in the sector ', by £>°(Q) functionswith null trace on dI', . By

the change of coordinates t, = logr, , thisis equivalent to prove that 4 >(Q) functions
with null traceson 6, = 0 and 6, = 7/w, are densein the space (2.2) with null traces
(m=2).

Multiplying by the exponential weight ¢(a=m+1% | thisisequivalentto provethat > (Q)
functions with null traceson 6, =0 and 0, = 7/w, aredensein

H? N (R x (0,7/wg)).

Asin theregular case, thisfact is a consequence of the standard density of smooth func-
tions and the use of alifting operator for thefirst traceson 6, =0 and 0, = 7/ws. =

2.d Simplified weighted spaces

We will now provide equivalent expressions for the weighted spaces VZ'(€2) based
on global weights instead of a partition of unity. Then we define a subclass of these
weighted spaces which we shall use in practice for our regularization method.

Let « — d(x) denote the distance function to the set of cornersof Q:

d(x) = dist(z, |, {a}). (2.8)
Sincethe corners a areisolated from each other, the function
w=[]re (2.9)
aco

isequivalent to rJ= in each neighborhood ¥, andto 1 in ¥°. We may also interpret
w asthe distance function d raised to acertain (variable) power v = y(x) . Since d is
equivalent to the product [],.., ra , theweight w in(2.9) is equivalent to

w(x) ~d2®  with y(z) =7, for z € ¥,. (2.10)
It isthen clear that the space VZ'(€2) in (2.1) can be equivalently defined as
VIHQ) = {p € Ly, ()] wd ™% € L*(Q), Va, |a] < m}. (2.11)
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A simpler class of weights w is defined if we take a unique constant value v € R
of the exponent for a certain subset <7, of cornersand 0 for the others. This ssimpli-
fication will be useful for the implementation of the weighted regularization and for the
convergence proof of the finite element method. Let .o, be a subset of o7 . We define
the global weight multi-exponent ~ by

Va € o), Ya=17, and Va e A\, v,=0. (2.12)
Then instead of (2.9), we can choose the equivalent weight
w=dj with dy(x) = dist(z, U, {a}), (2.13)

and we till have the description (2.11) of the space VZ'(€2) .

3 Laplacian in weighted spaces on polyhedra

We shall see now how the previous results in two dimensions can be extended to
three-dimensional domains. Although general definitions are more complicated dueto the
corner-edge interaction, we will see at the end of this section that a subclass of weighted
spaces can be described as simply asin (2.11) and (2.13) above.

3.a Domainsand distance functions

Wedenoteby = = (z, vy, z) thecartesian coordinatesin R? . Asin[18], thedefinition
of the classes of domains is recursive. We define the Lipschitz 3D corner domains as
bounded Lipschitz domains 2 in R?® such that in each point = of the boundary there
exists r,, > 0 and adiffeomorphism y, transforming Q2N B(«x,r,) into aneighborhood
of the corner 0 of acone I',, of theform {x € R?, z/|z| € G} with G, aLipschitz
2D corner domain of S?, x being sent into 0. Like in the two-dimensional case, we
assume that at the point x , the diffeomorphism . isanisometric transformation.

Let € bethe set of the corners ¢ of the 3D corner domain 2 ¢ R? which we define
by the requirement that for any ¢ € %, the corresponding cone I'.. isanon-trivial cone
(i.e.itisneither ahalf space nor awedge). The corresponding neighborhood Q2N B(x, r.)
isdenoted by ... Inloca spherical coordinates p. € R, , 9, € S?, thecone I, is:

Fe={(pe,¥e) | 7e >0, ¥e € Ge}
with the spherical polygonal domain G.=T.NS?. Let r. be defined as
re(x) == dist(e,x), x € Q. (3.1

Itisclear that r. isequivalentto p. intheneighborhood 7.

Let & bethe set of the (open) edges e of €): for each point = € e thelocal cone
I'y isawedge I'.(x) x R and 2 is diffeomorphic to this wedge in the neighborhood
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QN B(x,rg) = Ye(x). Here I'e(x) is a plane sector whose opening we denote by
we(x) . Likefor 2D domains, thisopening isintrinsic. Let r. bedefined as

re(x) :=dist(e,x), x € Q. (3.2

It isclear that for each « € e, inthe neighborhood 7, (x) thefunction r. isequivaent
to theradial coordinatein I'c(x) .

In order to define our weighted spaces, we need another “distance” function p. to
the edges. Let e be an edge. Typically, one out of two situationsis valid (The situation
of an edge containing exactly one corner, which is possible according to our definitions,
isleft to the reader):

1. e containsno corner, thenitisaclosed curve (e = ) and we define p. := r..

2. € contains exactly two corners ¢,c¢’ € ¥ . Then we define p. such that there
holds
Te = PeTele (3.3)

Itisclear that p. isequivalentto r./r. in ¥.,andto r. outside 7. U 7. .

Conversely, for each ¢ € %, the corners a of the spherical domain G correspond
bijectively tothe subset &, of edges e € & suchthat ¢ belongsto e. Weset a = a(e) .
The function p. isequivalent to theradia coordinate r, at the corner a(e) in G.. We
denote by . the corresponding angular coordinate 6, in G.. Then, foreach ¢ € ¥
and e € &, thethree coordinates (r., pe, V) arelocal spherical “sectorial” coordinates
in aneighborhood 7.(c) which hastheform r. < e and 9. € ¥, , where according to
the 2D definitions, ¥, isaneighborhood of the corner a . Let #.° be an open set such
that e N 7= 0 forany edge e € &. andsuchthat 7. = ¥2 U (e, Ye(c)) -

Besides the neighborhoods ¥, (c) and 7., we introduce ¥ such that 7 does
not contain any other edge than e, nor any corner and such that e is contained in 72U
(Uees ¥ e(€)) . And finally let #0 such that #© contains no edge and no corner and

such that
Q:%°U<U%°>U<U”//COU(U Ve(c))).
ecé ce? ecée

The opening angle w,(x) istill now defined for any interior point « intheedge e .
If acorner ¢ belongsto €, wedefine w.(c) astheopeningof G. in a(e) . Equivalently,
we(x) isthelimitas € — ¢ of we(x).
3.b  Weighted Sobolev spaces

Let m beanon-negativeinteger and, forany e € & andany c € ¢, let v, and .
be real numbers. We denote by ~ the collection of (ve) ocr U (Ve) oeyr - The space Y
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associated with the multi-exponent ~ isthe space VPY(Q) in the scale of spaces V?(Q)

defined as, cf [26]

VI(Q) = {(p e 7(Q) | ¢ € H"(¥°) and Ya e N, |a| < m,
Ve € &, rgetlelTmae g e 12(90),
Ve € €, raetlel=maa e 12(90),
Vee €, Ve e &, rietlolmppetle-maa, LQ(%(C))}.

(3.4)

For any corner ¢, inthe neighborhood ¥,0 the condition in spherical coordinatesis
ra T (rer ) 05, 0e € LA(YY), k1Bl < m,

where ¢, denotes the localized function. Moreover for any e € &, in the sectorial
coordinates (r., pe,Ve) the function ¢ iswritten locally as ¢.. and the condition of
integrability becomes

e LT (o0 ) (00, ) B, e € LP(Yele)), k+j+L<m.
In Euler coordinates t. = logr. and 9., the above condition for any e € &. becomes
—m+3)te ~ m—
e(Ye—m+3)t 8fc<pc,e el? (R,V,Y(C)]“(Gc)), k<m,

where ~(c) isthe collection of weight exponents (ve) ... - The Méllin transform with
respect to the variable r. isthen well defined for ReA = —vy. + m — % . The same
inclusions (2.3) and (2.4) hold in polyhedra. And we still have the embeddings (2.5) and
(2.6) too.

3.c Regularity results

Let us assumethat ¢ belongsto \O/ly_l(Q) and issuch that Ay € V2,(Q2). Asin
2D corner domains, there holds the lliptic regularity result ¢ € V?Y,(Q) .

Let assumethat, additionally, Ay € VI () with v < ~'. From thetwo dimensional
result, we obtain as a condition for the regularity of ¢ along edges that for any e € &
andany x € e theintervals [—v/, + 1, —v. + 1] do not contain any number of the form
krmjwe(x), k€ Z, k#0.

The condition for the regularity at cornersinvolvesthe eigenvalues pPr, 0 < P <
i < ..., of the Laplace-Beltrami operator on G with Dirichlet condition. We set for
any ke N, k#0

AD, = ok [l L (35)

The Mdllin transform of the localized function . defines a meromorphic function on
the strip Re A € [—7, + 3, —7. + 3] and the associated regularity condition is that the
interval [—y. + 3, —7c + 3] doesnot contain any number \D% , k€ Z, k #0.
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If the above conditions are satisfied, there holds
peVINVL_ ().
Likein the case of 2D corner domains, we deduce the following

Theorem 3.1 For any weight multi-exponent ~ satisfying

Vec & Ve ece, 1—7/w(x)<7e<1l and Vee¥d, ;- <7.<1, (36)

the Laplace operator is an isomorphismfrom V2 N \0/}7_1(9) onto V() . The space of
solutions can be equivalently written as V2 N HL(Q) . Moreover H2 N IT1() isdensein
V2O HY(Q).

3.d Global weights

Like for two dimensional domains, we provide global expressions for the weights
defining the spaces V2 (12) .

In 3D domains, asthe corners ¢ areisolated from each other, the function [, r2¢ is
equivalent to r2< in each neighborhood 7., and as p. isthe distance to edges blown up
at corners which are also isolated from each other, the function [, pZe is equivalent to
ple in each neighborhood 7. (c) . We may therefore take as a global weight

w=(TTr2) (ITex)- 37)
ce? ecs

The space V,OY(Q) can be defined equivalently as
VI(Q) = {p € Li ()] wep e LA(Q)}.

We may also obtain an expression analogous to (2.10), but it is more involved. We need
to introduce two distance functions

de(z) = dist(xz, J, {c}) and dg(x) =dist(z,|J,€) (3.8
and two exponent functions (%] and (6] on Q such that

1[€)(x) =, for x € 7. (3.9)
1[E) (@) = 7. for £ € VU U,ep Yele), 1lE)(x) =0 for z € Ve, VeeE',

where " isthe subset of corners ¢ € ¥ which do not belong no any edge.

The product [ 72 is, of course, equivalent to d%)[%] , and for each ¢ the follow-
ing equivalence holds

re [[ pe = de in Ve

ee(o@c
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We find that the weight w in (3.7) isequivalent to

We see that if for all corners and edges the exponents are equal to a fixed number §,
then we can take [¢] = ¢, moreover 7[&] = ¢ in aneighborhood of the edges, and
7[€] = 0 in aneighborhood of the subset 4" of corners which do not belong to any
edge.

Therefore the weight c_i%[(ﬂ_l[g} d%m is simply equal to d/, d2 where dy isthe
distance function to the subset ¢’ . It isthen clear that the distance function d
d(z) = dist <a: U, e} UU, E). (3.11)

is equivalent to d ds . As a consequence the space VZ'(Q2) in (3.4) is equivalently
defined as

VD) = {p € Li ()] wd7"9%p € L(Q), Va, |af <m}. (3.12)

3.e Simpleweights

For a3D corner domain €2, let &, beasubset of edgesand %, be asubset of corners
with the following compatibility condition:

If e € & isanopen curve, thenitsend pointsbelongto % . (3.13)

We define the global weight multi-exponent ~ by

Ve € 6y, ve=7, and Vee €\, 7.=0 (3.14)
Ve € &, ve=7, and Vec &\E, ve=0. '
With this choice of multi-exponent, using (3.10), we can prove that
w=d] with do(z)= dist (a: Ue{e} UU,, §>. (3.15)

Indeed, the only situation where (3.15) is not trivial iswhen x belongs to the neighbor-
hood 7. of acorner ¢ €

« If ¢ doesnot belong to any edge e € &, then v[&] = 0 in ¥, and the equivalence
of dJ with Q%M]_W} gl(}[g} in 7, isclear;

« If ¢ belongsto edge(s) e € &, then in the conical neighborhoods 7.(c) of these
edges 1[&) = v, therefore 4 ') a*) isequivalentto d} whichisitself equivalent
to d; ; outside the conical neighborhoods of these edges (but till in 7.), 7[&] = 0,

therefore isequivalentto d., whichisitself equivalentto d .
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4 Regularization with weight

We are going to realize our space Y asaspace V2 (€2) . For suitable choices of the
weight multi-exponent -, the condition of Theorem 1.4 (i) will be satisfied.

4.a Density of smooth functions for weighted regularizations
In order that the embedding (1.1) hold we must have

0<~y<1, (4.1)

thatis 0 <, <1 foral a in2D,and 0 <~. <1 fordl ¢, 0 <. <1 fordl e in
3D. If moreover condition (2.7) in 2D or condition (3.6) in 3D is satisfied for the weight
multi-exponent, then there holds for the operator AP*[Y]:

Y=VQ) — DAPHY])=Vin V. (Q)

In the sequel we will write conditions (2.7) and (3.6) in a unified way by an inequality
between two weights. Let us define the multi exponent 6° by

5" = (8a) uey R in2D,
‘ . ’ . - 4.2
P = (b (R)e) + 6= 1= mipcis 9P ==y inad. 4

Asacorollary of Theorems 2.1, 3.1 and 1.4 (i) we have

Theorem 4.1 Let ~ be aweight multi-exponent satisfying §°* < ~ and (4.1). Then for
the choice Y = VI(Q) , the space Hy isdensein Xy[Y].

4b Theoperator K

Let Y begivenby {¢ € L2 (Q)| we € L*(Q)}, with w defined in (2.9) or (3.7)

loc

with ~ satisfying (4.1). It is obvious that the operator K in (1.5) issimply given by
Ko =w .

Moreover it is possible to exhibit a self-adjoint operator A,, the spectrum of which char-
acterizesthe set of w suchthat AP"[Y] + w?K has no dense range: it sufficesto define

Ay = —K75 APPY] K77 = —w APP[Y] w.

The operator A,, is the self-adjoint realization on L?(Q2) of the operator from \'7,17(9)
onto itsdual defined by the symmetric positive bilinear form

aw(p,Q)Z/grad(wp)~9fad(w® dz, p,qe Vi(Q).
Q
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Under condition v > 6" with 6" definedin (4.2), thedomainof A, is V3 N \O/'}Y(Q) :

Thentherangeof AP*[Y]+w?K isnotdensein Y if andonly if w? isaneigenvalue
of A, . Inthissituation, problem (1.3) admits spurious solutions: It suffices to take an
eigenvector p # 0 of A, andto define w as grad(wp) in order to obtain a non-zero
solution of the homogeneous problem (1.3).

The operator A,, hasacompact inverseif and only if v < 1. Inthissituation, the
spectrum of A,, isdiscrete, formed of positive eigenvalues which accumulate at infinity.
When some of the exponents belonging to ~ are equal to 1, the operator A,, has no
more a discrete spectrum, but an essential spectrum. But still, A, is > 0. Thus, for any
choice of multi-exponent v > §°, multiplying the term (div u, divw),, in problem
(1.3) by alarge enough positive factor s, we can guarantee that the spurious eigenvalues
are avoided. In the forthcoming paper [15], we are studying this and other aspects of the
Maxwell eigenvalue problem in more detail.

5 Regularity and singularities of Maxwell solutions

We have proved in [14] that the electric parts E of solutions of problem (0.1) with
J € 12(Q)* havetwo sorts of singularities along edges and at corners:

Type 1 which are the gradients of Dirichlet singularities of the Laplace operator,

Type 2 which have the same singularity exponents as the Neumann singularities of the
L aplace operator.

Concerning the magnetic part H , the situations of Dirichlet and Neumann are inverted.

The Type 3, also present in [14], does not appear here, because divE = divH = 0.

This means that, if the condition of Theorem 1.1 (ii) isfulfilled, we have a decompo-
gition of w inthree parts '
u=wu,®+uy ®+grade. (5.1)

In order to describe the Sobolev regularity of the last two terms, we introduce the notation

H7(Q) := [ H (). (5.2)

s<o

We aso need the minimum singularity exponents for the Dirichlet and Neumann Laplace

operators: for 2D domains
m

AP — \New . — myip — (5.3)

acd Wq

and for 3D domains

. . 1
AP — min ((min min — ) , (ml? DI —)) (5.4)
vz G

ect 1€8 We(T) 2
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eu . LT : ew L
AN — min ((rergg min we(a:)> , <Igu<;1 )\121 + 5)) (5.5)
where \J" is defined asin (3.5) with pP™ replaced by p)**, the first non-zero eigen-
value of the Laplace-Beltrami operator on . with Neumann condition.

Thenin (5.1) there holds
wlt € HX(Q)",  wi™ e HV(Q), o e H(Q), (5.6)

hence grad ¢ € H""'(Q)" with n =2 or 3.

Here, of course, the regularity of ug™® is optimal, as opposed to the regularity of
the two other partsin (5.6). Indeed, the singular parts are ¥ inside 2 and are better
described using the following limits of weighted spaces: we first define

ﬂ V‘Y+m

meN

Q)= (K3 ()

¥>B

and then

In 2D, the singularities have the simple structure 2 1(6,) with smooth angular func-
tions v, and \ = km/w, . We obtain immediately

Theorem 5.1 If Q isa 2D corner domain, there holds for the spllttlng (5.1), with the
weight multi-exponents Bp;, = Byen = (Ba) ey With Gg = =T — 1

u-)a

Slng E KﬁNeu (Q)2 ar]d (’0 e KﬁDlr (Q)

In 3D, the structure of the singularities is much more involved. Using the splitting into
edge and vertex singularities of [18] and estimates along edges likein [11] we can prove

Theorem 5.2 If €2 isa 3D corner domain, with the weight multi-exponents
/BDir = ((ﬁe) ecé ( ?ur) ce%’) and /BNeu - ((53) ecs ( gleu) ce%’) where

. . 3
A W

™

Be = —min
zee We(x)

there holds for the splitting (5.1),

Slng E KﬁNeu (Q)3 ar]d (’0 e KﬁDlr (Q)
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Remark 5.3 The multi-exponents 3y, in Theorems 5.1 and 5.2 satisfy with the multi-
exponent §°" defined in (4.2),

/BDir = 5Dir - 2. [ ]

The above theorems give optimal resultsin the scale of spaces which we have defined.
In the sequel, we will only use the following corollary:

Corollary 5.4 If the condition of Theorem 1.1 (ii) is fulfilled, there holds for w
u=uo+grady with u, e H* Q)" and ¢ € K% (5.7)

with the multi-exponent 3, equal to 6°" — 2. Werecall that 6" is defined in (4.2)
and ANt in (5.5).

6 Approximation by finite elements

6.a Theprinciples

From Theorem 1.4 we know that Hy isdensein Xy[Y] for suitable choicesof Y .
From the density of standard finite element function spacesin Hy it followsthen that the
solution u of the variational problem can be approximated by a convergent sequence of
finite element Galerkin approximations w;, . In this section we obtain error estimates and
convergence rates for such finite e ement approximations.

The convergence rates we obtain are limited by the choice of the weight multi-
exponent v and by geometry dependent parameters like AP* and ANe*, cf (5.4) and
(5.5). These convergence rates could be improved by standard methods of mesh refine-
ment. But even with uniform meshes, they show — and this is confirmed by the results
of numerical computations described below — that the present method provides efficient
finite element methods for the approximation of Maxwell boundary value problems on
non smooth domains.

We compare this to the previoudly studied situations, namely

e Theregularization without weight [14, 13], where the finite element solution would
converge, but to the wrong solution, so the error would not tend to zero,

e The boundary penalization [12, 16], where atheoretical density (and hence conver-
gence) result is available, too, but without explicit error estimates, and numerical
experiments show very poor approximation results, to the extent that this method is
practically unusable.

We have found, however, that our present weighted regularization method can very well
be combined with the boundary penalization method. This might give, in some situa-
tions, a more efficient way of implementing the boundary conditions, and it gives good
numerical results.
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For the finite element approximation, we use aspace X% of H' -conforming vector-
valued finite elements with the following assumptions (see (A1) - (2A3) below)

1. X% has standard good approximation propertiesin the H! norm,
2. Thereisaspace ®" of scalar ¢ finite elements whose gradients belongto X%, .
3. ®" hasgood approximation propertiesin the weighted H* -space V2(9).

We shall show that (at least in 2D domains) these conditions are satisfied if X% isone of
the following standard (6 ) finite element spaces

e Q, elementson rectangular gridsfor p > 3,

o Q, elementson rectangles or trapezoidal quadrilateralsfor p > 5,

e [P, elements on triangular grids for p > 4 (and for p > 2 on some special
triangular grids).

From the numerical experiments it seems that any standard H' -conforming finite ele-
ments should be usable, and that for quadratic or cubic elements the results are quite good
for 2D and 3D domains.

6.b Galerkin methods

Let usfix the weight multi-exponent ~ satisfying the conditions of Theorem 4.1, i.e.
0<~<1andé"™ <~,andtake Y = V(). For any finite dimensional subspace
Xk (redlized as afinite element space) of Xy[Y], the Galerkin method associated with
the variational problem (1.3) is

(curluy, - curl v, — w?uy, - vy) de + (divay, divvy)y = / f v, de.

{ up € X};\;, Yy, € X};\;,
Q Q
(6.1)

By Céa's Lemmawe have the error estimate

H'U, - uhHXN[Y} S Ovirélxn?\’ H'U, - ’UhHXN[Y} ) (62)
where the constant C' does not depend on the subspace X% . Thus, as usual, we have to

evaluate the approximation error of the solution of problem (1.3) by the space X% .
Theidea of the error estimate is simple: From the splitting (5.7), and recalling that
isaDirichlet singularity, hence satisfies zero boundary conditions, we obtain the decom-
position of our solution « in aregular part and a gradient
u=uy+grady with wye B NHy(Q) and p €K% NHY(Q). (63

We analyze the approximation error separately for u, and for grad ¢ asfollows:
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The energy norm of any element v € X y[Y] can be estimated, given any splitting of
v into vy + grad+ with vy € Hy and ¢ € D(AP[Y]), cf (1.6), by

lolly, vy < Cllwolly + 1201 +114]l,,). (6.4

Moreover, since ~ satisfiesthe conditions of Theorem 4.1, the domain D(AP™[Y]) coin-
cides with the weighted space V?y NH'(Q) . Therefore, the energy norm (6.4) is bounded
by

19l < Clvollg + 11y )- (65)

Now we require the following assumptions on the family of finite element spaces
(X%) hesr - Weassumethat thereexists 7 € (0, 1) such that the three following assump-
tions (A1) - (A3) hold. First a (standard) global approximation property:

(A1) Yw e NHy(Q), Je(w), Yhe A, Fw,eXly,  |w—wall, < c(w)h".
Second, that the spaces X%, contain gradients
(22) Vhes#, thereexistsanon-zero space & suchthat grad ®" c X%.

And, third, that ®" has good approximation propertiesin the V?y -norm for the elements
o€ K35, NIT(O)

(A3) Ve e Ky NHY(Q), elp), Yhe A, Jpp € ", o - ullyg < ()l

With these assumptions, we realize an approximation of the solution « of problem
(1.3) using the decomposition (6.3), by the element w), + grad ¢;, of X% where w), is
the “interpolant” of w, accordingto (A1) and ¢, isthe “interpolant” of ¢ according
to (2A3) . We have

[ = (wn +grad en)ll 1y = (w0 —wa) +grad(e —en)ll 1y
and with the expression of the energy (6.5)
lw = (wn +grad on)ll 1y < Clluo —willy, + lly = ‘Pthg :
Assumptions (2(1) - (A3) yield that

lw = (wn +grad pn)ll ) < CA7

XnlY

We have obtained

Theorem 6.1 Let the multi-exponent ~ satisfy 0 < v < 1 and 6°" < ~ and set
Y =V3(Q), cf Theorem4.1. Let w* satisfy the uniqueness hypothesisof Theorem 1.1 (ii)
andfor f € L%(Q)" with div f = 0 let u bethe solution of problem (1.3). If the family
(XR) hes satisfy the approximation properties (2(1) - (23), then for the solutions u,
of the corresponding Galerkin problems (6.1) there holds the estimate

[ — ua < c(u) b (6.6)

Xn[Y]
for any h € J#, where the constant ¢(w) does not dependon .
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7 Performances of the FEM with the weighted regularization

7.a Convergencerates

We will show that the hypotheses of Theorem 6.1 are satisfied for some standard
classes of finite elements and with simplified weights ~ according to section 3.e.

Consider a family of finite element spaces X%, h € 7, on the domain Q. For
simplicity, weassumethat 2 isapolygonin R? or apolyhedronin R? that is discretized
into elements .7, :

Q=U{K| K€%} ad h=max{dian(K)| K € F,}.

We denote diam(K') by hg .

For the first approximation property (2(1), one can take any almost-affine family of
¢" elements. Here we use the definition of almost-affinein the sense of [9]. For our case,
this means that the local interpolation operator 11, on the space Py of polynomials of
the element K has the approximation property (with a constant C' independent of K ,
and |- |Hk+1(K) denoting the H**1( K') -seminorm)

Yo e H¥(K): v — xvllyy, gy < C h%|v| (7.2)

HE+1(K)
Here k£ > 1 issuch that the space Py contains the space IP’k]K of all polynomials
of degree < k and such that Iy : H*'(K) — Pk is continuous (this means that
H*(K) C ¢*, where s isthe maximal order of derivatives defining the interpolation
operator Il ).

The approximation property (1) isastandard consequence of these assumptions:

Proposition 7.1 Let X% , h € 57, be a family of vector-valued finite element spaces
whose vector componentsare 4°(Q2) and are defined by al most-affine el ements satisfying
the estimates (7.1) with k& > 1. In addition we assumethat X% C Hy:

Vo, € X%, vy xmn=0o0n 00 and Vv cH"™NHN(Q), we Hy, (7.2

where II;, is the global interpolation operator which matches the individual 11, on
each element K and each component v; . Thenfor any 7 € [0, k] thereisa constant C'
independent of A such that

Yo e H NHN(Q), v, eXi: (v , S G|

- UhHHl(Q HT+1(Q)

Remark. Alternatively, we could just have taken any (¢, m)— system Sﬁ’m(Q) in the
senseof [2) with m > 1 and ¢/ = k + 1 > 2. Since we need the element-wise error
estimate in the following less standard estimate, we preferred to write it even for thisfirst
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well-known case. In particular the assumptions (7.1)-(7.2) are satisfied for the standard
P, or Q. elementson trianglesor rectanglesforany k > 1. [

For the spaces _@", we use the same discretizaiion Z, of Q, but with different
polynomial spaces P, and interpolation operators 11, on each element. In fact, since
we need grad ®" c X% to satisfy assumption (212), we require

{ o c Q) NIY(Q) and Vo € HH N THQ), e € HH(Q), 73

@FKCPK (KE%; 2:1,,n)

We also assume the el ement-wise approximation property (®" isan amost-affine family
of €' elements) foral ¢ € H*!(K) andfor j =0,1,2:

_ Il
‘SO_HK(10|Hj(K) S Oh}jl j‘(p‘HéJA(K)a (74)

for some ¢ suchthat P, |, C Px and Il : H*"!(K) — Py iscontinuous.

With these assumptions, we obtain an approximation property in weighted Sobolev
spaces which will yield the validity of assumption (23):

Proposition 7.2 Let the multi-exponent ~ be associated with subsets <7, , or %, and
&y , of selected corners and edges with condition (3.13) according to § 3.e. Let 3 bea
multi-exponent such that

Yy-1-£<pB<~v-2
with the same integer ¢ asin (7.4). Let the family ®", h € 27, of €' finite element
spaces satisfy the compatibility condition (7.3) and the almost-affine estimate (7.4). Then
thereisa constant C., g independent of / such that

V(,O € Vg—:lerl N Hl(Q)v Ekph € q)h : H(p - (thv_zy(Q) < O’%B hTH@HVétleJrl(Q) (75)

where the real number 7 isdefined as min(y — 38) — 2,

Milge s (Ya — fa) — 2 in2D,
T = . . . . (7.6)
min (mlnce(,g(% — Be), Mingeg (Ve — ﬁe)) —2 in3D.
Remark 7.3 Theassumption v —1 - €< 3 <~ —2 implies 7 € [0,/ — 1] . [

PROOF. Let usrecall that according to (2.11) and (2.13) the space V() satisfies
loc

V() = {p € LE, ()] djd" 7?07 e L*(Q), Va, |af <2} (7.7)

where d isthe distanceto thewhole set . of cornersand edges, and d, the distanceto
the set ., of selected corners and edges. Let us define a new multi-exponent 3’ by

/6/3:’7_7'_27
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where 7 is the repetition of 7 over al corners and edges. As a consequence of the
definition (7.6) of = there holds

p<g,

which shows that the estimate (7.5) for B’ instead of 3 implies that the estimate (7.5)
holdsfor 3, too. Therefore weassumefromnowonthat 3 = 3’'. With 3 =~v—7-2,

we aso have a simple expression for the spaces Vgﬂeﬂ(ﬂ) . The shift of the multi-

exponent ~ by aconstant, viz —7 — 2 + ¢ + 1, corresponds to a factor =72 in the
weight for each derivative. Hence
Vil () = {p € LL(Q)] did 2070 € L2(Q), Va, [o| <m}. (7

loc

We choose a cutoff function y, € €>°(€2) with the properties
0<xn<1l, xpl®)=1if dlx)<2h, xp(x)=0 if d(x)>4h,
together with the estimates on its derivatives
0°Xi gy < Cah™™, Vo€ N (79)
Let ¢ belongto Vlgfeﬂ N 10{1((2) . Then ¢ = xne + (1 — xn)p and wewill choose ¢y,
asthe ®"— interpolant of (1 — x3)¢:
on =1L, ((1 = xn)p).

As (1 —xp)p € ﬁl(Q) , according to condition (7.3), ¢; belongsto IOP(Q) :
There holds

H‘p - (Pth_zy(Q) < HXhSOHV_Qy(Q) + H(l - Xh)gp - SOhHV_zy(Q)

and we estimate the two terms on the right hand side separately.

() lIxnel
On the support of y,¢, wehave d < 4h, hence

2 ol— le¥
loelhge = X [ a0 el de

o <2

< D, /Q (4R)7d* 1= 45 |0 (xup) | da

o <2

< o7 2 < 27 2
< Ch HXh(pHV%_T(Q) < Ch HXhQ‘DHVf,TZH(Q)
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Dueto (7.8) and (7.9), we havefor any m

2 al—-17— a—K K
ol @ < CX Y / 2= @2 50 2 | ] da

|a|]<m k<o

2(|lal—=7=2) 127 1,2(|k|—|e]) | 9K, 4|2
SO N[ e g gl d

|a|<m k<«

< C 220772 2\ r o2 da < Oyl .
<oy /_ a0l de < Cllell,

||<m

From the last two series of inequalities we obtain

HXh(pHng(Q) < ChTH(‘DHVfﬂlHl(Q) : (710)

(i) 1[(1 = xn)e — ol

Since ¢, = II,((1 — x1)¢) and since II, is alocal interpolant, the support of ¢,
contains only the elements K such that supp ((1 — xx)¢) N K is not empty. As the
diameter of any K islessthan h and as the distance function d is > 2h on supp(1 —
Xn) » there holds d > h on the support of ¢, . As d and d, are the distance functions
tothesets . and ., respectively, with . O .#;, thereholds dy > d, hence dy > h,
too, on the support of ¢, . Set for each element K

de =inf{d(@)| meK} ad d,=inf{d(zx)| zeK}.

As diam(K) < h, on K thefunction d(x) takesitsvauesin [d,,d, + h] and as
d > h onthesupport of ¢, , we obtain

VK, supp(en) N K #0 - dp>h and d(x)~d, on K.
There holds similarly
VK, supp(en) N K #0 - do(z) ~dyx On K.
Therefore we have the equivalence (uniformly in )
2
(1 = xn)e — ‘Ph”f/_zy(g) ~ ) A di 7211 = xa)p — wh\f{jm :
j=0 dy>h

On each element K , taking advantage of ¢, |, = Il ((1 — xa)p) , We use the almost-
affine estimate (7.4) and obtainfor j = 0,1,2

L4+1—j
‘(1 - Xh)(p - (ph’Hj(K) < ChK ]‘(1 - Xh)(p‘HHl(K)

S Oh“_l_j‘(]' - Xh)(p‘HlHl(K)
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h \{+1—j5—7 i n
< O(d ) dﬁjl Th ‘(1 - Xh)(p‘HéJrl(K) :
2K

Asd,>had/(+1—j—7>{¢—1—7 > 0,wededucefrom the previousinequality
that

+1—j—7 hT

14
(1= Xn)$ = @nlyy ) < C i (1= XR)Pl e ) -

Therefore on each element K there holds
2 2(5—2 2 T 12 20+1—7-2 2
C_i()?K d}((j )‘(1_Xh)(p_¢h’Hj(K) < Ch2 C_io:YK C_iK(Jr ) ’(1_Xh)90’H2+1(K)'

Taking the sum of these inequalitiesover dl K € .5, with d, > h and using (7.8), we
obtain finally

— — < T -
1= X2 = @l yg @y < CHTIE = x0)ehyens o

and therefore
(1= xn)e — SOhHng(Q) <Cn H@H\/gilw(g) . (7.11)

In the last inequality we used again (7.9) as before.
From (7.10) and (7.11) we obtain

I = enllya < O llellyess oy

which concludes the proof of the proposition. [

Now we arein aposition to use Theorem 6.1 in order to get estimates for the conver-
gence rates of our finite element method.

Theorem 7.4 Let the multi-exponent ~ be associated with subsets <7, , or %, and &,
of selected corners and edges with condition (3.13) according to § 3.e. WWe assume that,
cf Theorem4.1,

0<~y<1 and P < 4.

Let w? satisfy the uniqueness hypothesis of Theorem 1.1 (ii) and for f € L2(Q)" with
div f = 0 let u bethe solution of problem (1.3). Let thefinite element family X%, satisfy
conditions (7.1)-(7.2) and let there exist another family ®" satisfying grad®”" c X%
and conditions (7.3)-(7.4). Then for the solutions u; of the corresponding Galerkin
problems (6.1) there holds the error estimate

Hu _ uh“ | < Oe hmin{kz, £—1, \Neu_ ¢ min(fy—aDlr)_e} ||f||L2(Q) 7 Ve > 0. (7.12)

n

XN[Y

Werecall that 6" isdefinedin (4.2), AN in (5.5) and that min(y — 6"") istheleast
component of v — 8P, which is positive by assumption.
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PROOF. Letusfix ¢ > 0. We have to check that the approximation properties (1) -
(23) holdwith 7 = min(k, ¢ —1,7") for

7 = min (A", min(y — 5Dir)) — ¢,

and the result of Theorem 7.4 will be a consequence of Theorem 6.1.

By assumption, X% satisfies the hypotheses of Proposition 7.1. Asaconsequence, (1)
holdsfor any 7 suchthat 7 < k and 7 < ANev,

The assumption (2(2) holds by the hypotheses of Theorem 7.4.
Finally, by assumption, ®" satisfies the hypotheses of Proposition 7.2. Let ¢ € K%,.N

IOP(Q). Then ¢ € ngle +1(Q) foral B > Bp;, . Asaconsequence, the estimate (7.5)
holdsfor 7 < ¢ —1, 7 < min(y — Bp;,) — 2. But Bp;, = 6°" — 2, cf Remark 5.3.

Therefore (A3) holdsfor any 7 suchthat 7 < ¢ —1 and 7 < min(vy — §°).
The theorem is proved. [ |

7.b Concrete applications

For concrete applications, we finally exhibit families of finite element spaces X%,
that satisfy the conditions of Theorem 7.4, together with relevant choices for the multi-
exponent -y .

(i) FINITE ELEMENT SPACES. Theleading principleisfirst to choose afamily of spaces
" satisfying conditions (7.3)-(7.4) and then to determine X%, as a standard finite ele-
ment space containing grad ®" and satisfying (7.1)-(7.2). Thus for the space ®", one
can take any almost-affine ¢ finite element as described in [9]. Then X% isany space
of almost-affine ¢° elements containing all the gradients of elementsof ®” . Let usgive
examples.

We consider only the 2D case.

1. The Argyristriangle. Here .7, can beany triangle, ®" consists of polynomials of
degree < 5 oneach element, sothat for X%, we cantakethe standard P, elements
(or P, with p > 4). In(7.4) wehave { =5.

2. The Bogner-Fox-Schmit rectangle. In this case, .7;, consists of rectangles and
Px = Q3(K), the space of polynomials of partial degree < 3 in each variable. In
order to contain all their gradients, X’ can be aspace of ¥° Q, elementswith
p=3.

3. The Hsieh-Clough-Tocher triangles. Here .7}, isatriangulation consisting of “su-
pertriangles’ (triangular macroelements), each of which issubdivided into 3 trian-
gles by oneinterior node. Since the HCT functions are IP; on each subtriangle, its
gradientsare just P, , and therefore for X% we can take standard P, elementsfor
any p > 2 onsuch atriangulation.
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(i) CHOICE OF THE WEIGHT MULTI-EXPONENT. We discussfirst the choice of ~ for
a2D polygon €2 . Let usdenoteby wq > 7 itslargest non-convex openingandby w; < 7
its largest convex opening.

A. If 2 isnon-convex, we are obliged to use a weight and to take as set of selected
corners <7, at least the set of non-convex corners and define ~ so that

s
1—— <.
wo

Then the convergenceratein (7.12) is

LT T m
mm(—, vy—14—, ——1) —
Wo Wo Wi

the contribution o1 coming from the convex corners where there is no weight.
By amore clever choice of .o, and v we can obtain the (optimal) convergence rate

s

— —E&.

)
For thiswe take v = 1 and < the set of corners a such that = — 1 < wl. For
exampleif wy iscloseto 7, we obtain aconvergence rate close to 1 if we put into the
set of selected corners any corner of opening > 7 .

B. If ) isconvex, we are not obliged to put a weight and obtain the convergence rate

without weight
™

min(k‘, (-1, — —¢, 1—1—8)
w1 w1
which may be very small ( - — 1) if there are angles close to 7. Theintroduction of a

weight allows for restoring the (optimal) convergence rate

s
in(k, {—1, ——¢).
mm( , o 5)
For this we take again v = 1 and define the set o7, of selected corners as the set of
corners a suchthat - —1 < -

For a 3D polyhedron €2, the principles are the same. We have to choose as set .7
of selected edges and corners, at least the set of non-convex edges and corners. As 2
is a polyhedron, any edge is a segment the ends of which are corners. And any non-
convex edge ends in non-convex corners. Therefore the compatibility condition (3.13) is
automatically satisfied for such a choice of .. Let w, be the largest non-convex edge
opening, A" the smallest corner exponent /\D“ for non-convex corners, and w; bethe
largest convex edge opening. If Q is non- convex and if we choose as Sy the set of
non-convex edges and corners, we have the convergence rate

min(ANeu, v — 1+—, v———k/\D“r ——1)
w1
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forany v > 1—m/w, and v > 5 — AP . Theexponents AL of convex corners ¢ have
no influence because they are larger than 7/w, for any edge e suchthat ¢ € e (thisis
a consequence of the monotonicity principle for Dirichlet eigenvalues, cf [18, Ch.19)).

Thus, for abetter choice of ., andwith v = 1, we obtain the rate

. ™ i
mm()\Neu, —, %%—Ag”) — .
Wo

8 Numerical results

As an illustration of the error estimates, we present results of some finite element
computations on an L-shaped domain
Q=(0,42\ (412 CR.

Weuse Q, elementson rectangular grids, discretizing the variational form

/Curlu-curlv—l—s/ro‘diVudin—wz/u~v:/f~v (8.1)
Q Q Q Q

and subject to the boundary condition w x n = 0 on 0€2. This is the regularized
formulation with weight
w=sr", «oa=2y,

where s > 0 isaconstant and r is the distance to the reentrant corner a, = (5, 1) of
opening angle wy = 37/2.
We present results for two types of problems:
« The boundary value problem: w? = 0, f given,in Tables1 and 2,
« Theeigenvalue problem: f =0, A = w? unknown, in Tables 3, 4 and 5.

In both cases, we first illustrate our error estimates which are asymptotic in ~ by
choosing Q, elements on a sequence of uniform grids, starting with a very smple grid
containing only 3 squares which are then repeatedly divided in four. For both p = 2 and
p = 7 or 8 one can see that the computed convergence rates + are at least as high as
those predicted by our theoretical resultsin Section 7.

We then show the performance of the p version of our method on agrid with 3 layers
of geometric mesh refinement near the corner a, and Q, elementswith p=1,...,10.

In the examples shown in Tables 1 and 2, we chose the right hand side f in such a
way that the exact solution w coincides with asingular function grad Sy , where S, in
local polar coordinates is given by

2% .
S, =13 sin %9.

We show the first two singular functions & = 1,2. The obvious difference between the
two isthat grad S; ¢ H'(Q)?, so that the non-weighted regularized method (o = 0)
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does not converge, and aweight with o € [%, 2] isnecessary, whereas S, ismoreregular,
so that we do have convergence even for o = 0. We see, however, that in this case, a
weight with « > 0 improvesthe convergence, too.

2

In Table 1, we choose s = 2, and we present the quadratic error e, = Hu—uhHLQ(Q)

as well as the computed convergence rate 7 as functions of the total number of degrees
of freedom N . Notethat 7 is equivalent to the convergence rate of the L? norm /e,
with respect to A .

k=1,p=2 a=0 a=1 a=2

h | N €2 I €2 | €2 | T
1/4 42| 0.84211741 0.04235700 0.07411075

1/8 130 | 1.01358422 | —0.164 | 0.04768209 | —0.105 | 0.03777494 | 0.596
1/16 450 | 1.06201671 | —0.038 | 0.03614337 | 0.223 | 0.01707371 | 0.640
1/32 1666 | 1.06756118 | —0.004 | 0.02437231 | 0.301 | 0.00732893 | 0.646
k=2 p=2 a=0 a=1 a=2

h | N 2 I 2 | T €2 | T
1/4 42 | 0.00901950 0.00274676 0.01281581

1/8 130 | 0.00382858 | 0.758 | 0.00140259 | 0.595 | 0.00728658 | 0.500
1/16 450 | 0.00152661 | 0.740 | 0.00052674 | 0.789 | 0.00274435 | 0.786
1/32 1666 | 0.00059810 | 0.716 | 0.00017189 | 0.856 | 0.00065502 | 1.094
k=1,p="7 a=0 a=1 a=2

h | N es T €2 T €2 I
1/4 42 | 1.01609591 0.01846936 0.00760876

1/8 130 | 1.03912235 | —0.017 | 0.01316194 | 0.261 | 0.00307983 | 0.696
1/16 450 | 1.04370936 | —0.003 | 0.00875260 | 0.304 | 0.00123537 | 0.681
1/32 1666 | 1.04236404 | 0.001 | 0.00562906 | 0.324 | 0.00049364 | 0.673
k=2p=T7 a=0 a=1 a=2

h ‘ N €9 T €9 T €9 T
1/4 42 | 0.00052035 0.00011192 0.00027287

1/8 130 | 0.00020966 | 0.700 | 0.00002948 | 1.027 | 0.00004782 | 1.341
1/16 450 | 0.00008341 | 0.688 | 0.00000648 | 1.130 | 0.00000778 | 1.355
1/32 1666 | 0.00003302 | 0.680 | 0.00000125 | 1.207 | 0.00000124 | 1.349

Table 1. Boundary value problem, uniform grid
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In Table 2 we give e, on afixed (refined) grid asthe degree p varies.

k=1

k=2

N

=

a:O‘ a=1 ‘ a=2

a=0 ‘ a=1 ‘ a=2

112

1.5966

0.47592

0.042220

3.15e-03

7.57 €05

1.87e-04

390

1.4460

0.02746

0.000497

1.35e-04

1.71 e-06

1.20 e-05

836

1.4264

0.01811

0.000215

4.93 e-05

3.13 e-07

3.55 e-07

1450

1.4213

0.01307

0.000113

2.56 e-05

8.91 e-08

8.53 e-08

2232

1.4187

0.01003

0.000067

1.52 e-05

3.10 e-08

2.77e-08

3182

1.4170

0.00803

0.000044

9.88 e-06

1.27 e-08

1.09 e-08

4300

1.4158

0.00663

0.000031

6.82 e-06

5.84 e-09

4.87 e-09

9586

1.4150

0.00561

0.000023

4.93 e-06

2.96 e-09

2.43 e-09

O[O0 T =W N~

7040

1.4144

0.00483

0.000018

3.70 e-06

1.62 e-09

1.31 e-09

—_
@)

8662

1.4139

0.00422

0.000014

2.85e-06

9.37e-10

7.47 e-10

Table 2. Boundary value problem, refined grid, s = 8, quadratic L? -error
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In Tables 3, 4 and 5, we show the results of the computation of the first two Maxwell
gigenvalues A = w? on the L-shaped domain 2. We choose s = 100 to avoid the
spurious eigenvalues. The first eigenfunction isin Xy \ Hy, and therefore the first
eigenvalue cannot be approximated without weight. The second eigenfunction belongs to
H', and we see convergence for \, evenfor a = 0. With weight exponent o = 2, we
see the expected convergencerates 7 = 2/3 for thefirst eigenvalueand = = 4/3 for the

second eigenvalue.

and
N | Neumann a=0 | a=1 a=2

42| 24.13701659

120.90488226

110.46906479

49.49443834

130 | 23.81339665

102.04184498

90.48517831

33.23172507

450 | 23.69017022

98.25631602

82.71080795

27.28036540

1666 | 23.64177400

96.98393766

76.65583255

25.01965466

42 | 57.38784397

75.99447724

71.75781417

61.32884651

130 | 56.60883955

62.53207509

60.97123999

57.28067304

450 | 56.55026143

58.76614173

58.07956603

26.66672908

1666 | 56.54513337

57.40691268

57.09394908

26.56457358

42| 23.62993021

98.66470749

75.44438016

24.49393351

130 | 23.61789596

97.15288075

69.23173390

23.95780545

450 | 23.61310276

96.56438960

63.47164884

23.74642793

1666 | 23.61120066

96.33263584

58.03793226

23.66368700

)\2,])28

42 | 56.54462340

59.24751481

27.54028363

56.55419599

130 | 56.54452112

57.59166691

56.90303442

56.54622903

450 | 56.54450490

56.95618365

56.66869140

56.54478825

1666 | 56.54450235

56.70727431

96.58653566

56.54454794

Table 3. Eigenvalues, uniform grids, s = 100

In 2 dimensions, the Maxwell eigenvalues are the same as the Laplace-Neumann
eigenvalues. Therefore we show for comparison the numerical computation of the first
two Neumann eigenvalues with the same finite element method, using the standard H'*
variational formulation. For o« = 0, we compare in fact the first Neumann eigenvalue
with the second computed eigenvalue, because considered as an analytic function of «,
thisis the one that for large enough values of o will give an approximation of the first
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Neumann

Maxwell

)\1,]9

=2

a=20

a=1

a=2

|A — Anl

|A — Anl

A — Al

A — il

42

0.02232261

4.1209226

3.6789139

1.0963354

130

0.00861570

0.843

3.3219792

0.191

2.8324970

0.231

0.4075287

0.876

450

0.00339645

0.750

3.1616433

0.040

2.5032137

0.100

0.1554590

0.776

1666

0.00134663

0.707

3.1077517

0.013

2.2467554

0.083

0.0597067

0.731

)\2,]9

=2

42

0.01491466

0.3439764

0.2690502

0.0846120

130

0.00113782

2.277

0.1058913

1.043

0.0782876

1.093

0.0130193

1.657

450

0.00010186

1.944

0.0392901

0.798

0.0271478

0.853

0.0021616

1.446

1666

0.00001117

1.689

0.0152519

0.723

0.0097170

0.785

0.0003549

1.380

)\1,19

=38

0.00084498

3.1789407

2.1954444

0.0374398

130

0.00033527

0.706

3.1149073

0.016

1.9323080

0.098

0.0147321

0.713

450

0.00013226

0.691

3.0899818

0.006

1.6883397

0.100

0.0057792

0.695

1666

0.00005169

0.688

3.0801659

0.002

1.4581948

0.107

0.0022747

0.683

/\2,]?

=38

42

0.00000215

0.0478032

0.0176105

0.0001714

130

0.00000034

1.408

0.0185193

0.724

0.0063407

0.780

0.0000305

1.318

450

0.00000005

1.372

0.0072806

0.694

0.0021963

0.788

0.0000050

1.335

1666

0.00000001

1.345

0.0028786

0.679

0.0007433

0.793

0.0000008

1.338

Table 4. Eigenvalue problem, uniform grids, s = 100, errors

exact eigenvalue.

We see that our weighted regularization method with o« = 2 gives the same conver-
gence rates as for the Neumann eigenvalues, and this despite the fact that the Maxwell
eigenfunctions are one order less regular than the Neumann eigenfunctions (the former
arethe curls of the latter). In Table 5 we see that the p version on arefined grid performs
rather well even with a modest number of unknowns.




Maxwell

N |

Neumann

a=0

a=1

a=2

390

23.62073663

5 e-04

96.6129

3.09

96.6139

1.40

23.7110324

4e3

836

23.61085665

4 e-05

96.1942

3.07

95.2695

1.34

23.6452078

le3

1450

23.61036255

2e05

96.1850

3.07

51.9190

1.20

23.6280100

8 e4

2232

23.61019233

1e05

96.1839

3.07

49.3547

1.09

23.6205595

4e4

3182

23.61010647

6 e-06

96.1832

3.07

47.3127

1.00

23.6167563

3e4

4300

23.61005760

4 e-06

96.1828

3.07

45.6409

0.93

23.6146005

2e4

O | | Y = W NS

9586

23.61002750

3 e-06

96.1825

3.07

44.2418

0.87

23.6132818

le4

390

56.57346262

5 e-04

56.6162

le3

99.8606

6e2

56.6083112

led

836

56.54474445

4 e-06

56.5503

le4

56.5485

7e5

56.5448802

7e6

1450

56.54450293

2e08

56.5486

7€d

56.5471

D ed

56.5445087

le7

2232

56.54450190

5e10

56.5476

6 e-5

56.5464

3ed

56.5445037

3e8

3182

56.54450188

1e10

56.5470

4ed

56.5459

2ed

56.5445026

les8

4300

56.54450187

6ell

56.5466

4ed

96.5455

2ed

56.5445022

6 e9

||| U = W N

9586

56.54450187

Jell

56.5462

3ed

56.5453

leb

56.5445021

3e9

Table 5. Eigenvalue problem, refined grid, s = 100, eigenvalues and relative errors
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