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Abstract. We present a new method of regularizing time harmonic Maxwell equations by
a divergence part adapted to the geometry of the domain. This method applies to polygo-
nal domains in two dimensions as well as to polyhedral domains in three dimensions. In
the presence of reentrant corners or edges, the usual regularization is known to produce
wrong solutions due the non-density of smooth fields in the variational space. We get
rid of this undesirable effect by the introduction of special weights inside the divergence
integral. Standard finite elements can then be used for the approximation of the solution.
This method proves to be numerically efficient.

Introduction

We consider the solution (E,H) of the time-harmonic three-dimensional Maxwell
equations in a domain Ω filled with an homogeneous medium, subject to perfect conduc-
tor boundary conditions{

curl E − iω µH = 0 and curl H+ iω εE = J in Ω

E × n = 0 and H · n = 0 on ∂Ω .
(0.1)

For a divergence-free current density J , both electromagnetic fields E and H are also
divergence-free, and the choice of a variational space to set this problem in variational
form is in no way unique.

The finiteness of the electromagnetic energy requires that both the electric and the
magnetic field belong to H(curl ; Ω) , where

H(curl ; Ω) =
{
u ∈ D ′(Ω)3 | u ∈ L2(Ω)3, curl u ∈ L2(Ω)3

}
. (0.2)

For simplicity we assume εµ = 1 , and we set f = iωµJ . In order to obtain a variational
formulation, we can eliminate the magnetic field from equations (0.1). We obtain formally
the equation

curl curl E− ω2E = f .



The “minimal” choice for the electric variational space would be{
u ∈ H(curl ; Ω) | u × n

∣∣
∂Ω
= 0 and div u = 0

}
.

A conforming discretization would then impose the use of divergence-free elements.

A “maximal” and more widely used choice for the electric variational space is

◦
H(curl ; Ω) =

{
u ∈ H(curl ; Ω) | u × n

∣∣
∂Ω
= 0

}
. (0.3)

The corresponding variational formulation for problem (0.1) is then

u ∈ ◦
H(curl ; Ω), ∀v ∈ ◦

H(curl ; Ω),
∫

Ω

curl u · curl v − ω2 u · v =
∫

Ω

f · v . (0.4)

But the associated operator u �→ curl curl u − ω2u is not elliptic and the equation
div u = 0 is an independent constraint for ω = 0 . This is in relation with the fact that
the corresponding eigenvalue problem has an infinite dimensional eigenspace for ω = 0

formed by all gradient fields E = grad ϕ with ϕ ∈ ◦
H1(Ω) . A well-known strategy

for finite element computations of the Maxwell eigen-frequencies is the use of “spurious-
free” elements whose classical representatives are the two families of NEDELEC’s edge
elements [27, 28]. These elements are curl conforming but not div conforming, and,
roughly speaking, they reproduce at the discrete level the splitting into a large kernel
space and a space where the lowest Maxwell eigen-frequencies are approximated [6, 5,
21, 8, 25].

There are good reasons why one may prefer a discretization of the Maxwell problem
by more standard and more widely used elements, e.g. nodal elements where the compat-
ibility conditions between neighboring elements are pointwise and scalar. A well-known
strategy consists then of regularizing the operator by adding a term containing the diver-
gence, that is, to transform it into an elliptic system. The classical way of doing this, cf
LEIS [23], and more precisely for this application HAZARD-LENOIR [20] (and also their
references), is to introduce the variational space

XN :=
{
u ∈ ◦

H(curl ; Ω) | div u ∈ L2(Ω)
}
. (0.5)

and to note that, since the solutions of (0.1) are divergence-free, the electric field E is the
solution u of

u ∈ XN , ∀v ∈ XN ,

∫
Ω

curl u · curl v + div u div v − ω2 u · v =
∫

Ω

f · v . (0.6)

In any convex domain, the formulation (0.6) can be discretized by a Galerkin method
using nodal finite elements: The discrete spaces consist of functions which are piecewise
polynomial and curl and div conforming, hence continuous across the interfaces of the
mesh; therefore the discrete spaces are contained in H1(Ω)3 . In a convex domain Ω , this
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fact is innocent since XN coincides with HN , the subspace of u ∈ H1(Ω)3 satisfying
the tangential boundary condition u × n = 0 on ∂Ω . But if the domain has reentrant
corners or edges, HN no longer coincides with XN , and even the codimension of HN

in XN is infinite. And, worse, HN is closed in XN for the topology of this latter space,
cf [10, 17]. As any discrete space based on curl - div conforming elements is contained
in HN , this makes the approximation by such a method impossible, see [13].

The new idea that we will develop in this paper is the introduction of suitable in-
termediate spaces between the spaces (0.3) and (0.5), coupled with the corresponding
modification of the bilinear form in (0.4), so that

1. The subspace HN is dense,

2. The associated operator is elliptic,

3. The solution of the new problem coincides with that of (0.1).

More precisely, we are looking for spaces Y such that HN is dense in{
u ∈ ◦

H(curl ; Ω) | div u ∈ Y}
, (0.7)

and such that the new bilinear form

(u,v) �−→
∫

Ω

(curl u · curl v − ω2 u · v) dx+ 〈 div u, div v〉Y
defines an elliptic operator and a problem whose solution is the electric field E in (0.1).

The requirement of ellipticity imposes that Y is a L2 -type space. Since it is un-
derstood that HN is contained in the space (0.7), L2(Ω) should be contained in Y . As,

moreover, any element in
◦
H(curl ; Ω) has its divergence in H−1(Ω) , we should also have

the embedding Y ⊂ H−1(Ω) . Therefore we will concentrate on weighted L2 spaces{
ϕ ∈ L2

loc(Ω) | w ϕ ∈ L2(Ω)
}

(0.8)

with a weight w ∈ C ∞(Ω) , positive in Ω , bounded on Ω – therefore the weighted space
(0.8) contains L2(Ω) . We will see in particular that the weight satisfying the previous
requirements 1.-3. must have an inverse w−1 unbounded in the neighborhood of the
reentrant edges of Ω . Thus the partial differential operator is not uniformly elliptic in Ω ,
but degenerates near non-convex edges. This unboundedness of the inverse contrasts with
regularizations used in [20] and [3, 4, 19] where a bounded weight with bounded inverse
is used. On the other hand, our choice of a weight which tends to 0 in a neighborhood of
reentrant edges goes in the same direction as a numerical method consisting of setting the
weight to 0 in a few layers of elements around reentrant edges and to 1 elsewhere [29].

It makes sense to consider the question also in two dimensions. The above formalism
carries over with only minimal obvious changes. The space

◦
H(curl; Ω) is then defined

using the scalar curl operator:
◦
H(curl ; Ω) =

{
u ∈ D ′(Ω)2 | u ∈ L2(Ω)2, curl u ∈ L2(Ω), u × n

∣∣
∂Ω
= 0

}
,
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and the variational formulation of the 2D Maxwell problem corresponding to (0.4) is

u ∈ ◦
H(curl ; Ω), ∀v ∈ ◦

H(curl ; Ω),
∫

Ω

curl u · curl v − ω2 u · v =
∫

Ω

f · v . (0.9)

This problem is interesting in its own right as a model for TE modes in wave guides.
An equivalent problem arises in the study of irrotational fluids in 2D. More importantly,
it is useful as a test case for the detailed analysis and the implementation of numerical
algorithms.

In particular, it is well known that on non-convex polygons the codimension of HN

in XN corresponds to the number of non-convex corner points, and the non-convergence
of standard conforming finite element methods based on the regularization (0.6) has been
studied in detail [13].

Our proposed new algorithm based on weighted regularizations can be very easily
implemented in two dimensions, and its convergence can be studied theoretically and
experimentally in every detail.

It can also be compared to other algorithms that exist for the 2D problem, for example
the singular function method studied in [1, 7]. Compared to this method, our weighted
regularization method seems simpler to implement, and it has the big advantage to allow
a generalization to three dimensions which does not require precise calculations of the
three-dimensional singular functions.

We organize our paper as follows. We first state the functional framework in §1, defin-
ing a family of regularized problems (each of which corresponds to a different choice for
the space Y ), and giving criteria for equivalence with problem (0.1), and for the density
of smooth functions in the variational spaces. This requires only weak assumptions on the
domain, viz Lipschitz regularity of the boundary. The criterion for the density of smooth
functions relies on the density of smooth functions in the domain of a Laplace operator
in special spaces. We study this property when Y is realized as a weighted space, first in
two-dimensional polygonal domains (§2) and then in three-dimensional corner domains
(§3).

We obtain a criterion for the density of smooth functions when the domain of the
corresponding Laplacian can be characterized as a weighted Sobolev space (like those of
KONDRAT’EV [22] or for more general geometries those in [26, Ch.9]). We summarize
the results of the previous sections in §4, exhibiting a class of admissible weights w
providing spaces Y such that conditions 1.-3. above are satisfied. Examples of such
weights are provided by dγ0 where d0 is the distance to the set of reentrant edges and
corners of Ω and γ belongs to an interval (γmin, 1] , where γmin depends on the domain
Ω .

The rest of the paper is devoted to an investigation of the performance of nodal finite
elements associated with a variational formulation regularized by an admissible weight.
Our error estimate is simply based on the decomposition of the solution u of (0.6) into
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w + grad ϕ where w belongs to HN and the potential ϕ is a singular function of the
Laplace-Dirichlet problem. In §5, we give a precise characterization of the functional
properties of w and ϕ . Relying on this, we exhibit in §6 general sufficient conditions for
the convergence of finite element methods with a certain convergence rate. One of these
conditions requires that the finite element space contains “sufficiently many gradients”
to approach grad ϕ by a gradient. In §7, we show that these conditions are satisfied
by standard families of nodal finite elements satisfying the usual classical assumptions.
The error analysis requires, apart from the theoretical analysis of the corner and edge
singularities of the solution, only very standard finite element estimations, combined to
get estimates in weighted Sobolev spaces.

We end our paper by more practical results for two-dimensional domains: first we
prove that any nodal elements based on P4 triangles or Q3 rectangles satisfy the gen-
eral conditions in §6. Second, we provide in §8 results of numerical experiments in an
L-shaped domain with Qp rectangular elements, based upon the FEM library MÉLINA

developed by D. MARTIN [24]. These results clearly show that our method works as
expected, and even better since we already see correct convergence rates with Q2 rectan-
gles. Even for p = 1 we seem to get a convergent algorithm.

Finally, we want to emphasize that the conditions on the families of finite element
spaces that we introduce are sufficient, but (apparently) not necessary. Moreover, al-
though one condition is related to the presence of gradients in the finite element spaces,
the Galerkin method itself only uses the nodal C 0 elements and not the C 1 densities
which serve in the proof of the convergence estimate. In this paper, we perform only a
few first steps of a finite element analysis. We expect that this error analysis can be ex-
tended to show higher convergence rates for refined methods, using non-uniform meshes
and/or p or h - p versions of the finite element method.

1 Reduction to a Laplacian

In this section, Y denotes a (separable) Hilbert space with scalar product 〈·, ·〉Y such
that

L2(Ω) ⊂ Y ⊂ H−1(Ω). (1.1)

We define the corresponding “electric regularized space” XN [Y] by

XN [Y] =
{
u ∈ ◦

H(curl ; Ω) | div u ∈ Y}
, (1.2)

with the norm

‖u‖2

XN [Y]
= ‖ curl u‖2

L2(Ω)3
+ ‖ div u‖2

Y
+ ‖u‖2

L2(Ω)3
.

In this section we only suppose that Ω has a Lipschitz boundary. We define the
variational formulation corresponding to each space Y and prove the equivalence with
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problem (0.1) subject to the density of the range of a certain Helmholtz-type operator.
Then, applying a classical decomposition result by BIRMAN-SOLOMYAK [3], we prove
a similar decomposition for our new variational spaces, which is then used as a basis for
the density criterion.

While we state and prove the results for the 3-dimensional problems, they are also
valid, with the obvious minimal changes, for the 2-dimensional problems.

1.a Equivalent problems

The variational problem associated with the space XN [Y] is: u ∈ XN [Y], ∀v ∈ XN [Y],∫
Ω

(curl u · curl v − ω2 u · v) dx+ 〈 div u, div v〉Y =
∫

Ω

f · v dx.
(1.3)

The equivalence between problems (0.1) and (1.3) uses classical arguments and relies
on an assumption about a Helmholtz-type operator with frequency ω . In the standard
case when Y = L2(Ω) , this operator is simply ∆ + ω2Id . In the present more general
case, we have to define two operators:

1. The corresponding Laplace-Dirichlet operator is denoted ∆Dir[Y] and defined as

∆Dir[Y] : D(∆Dir[Y]) :=
{
ϕ ∈ ◦

H1(Ω) | ∆ϕ ∈ Y} −→ Y
ϕ �−→ ∆ϕ.

(1.4)

The assumption Y ⊂ H−1(Ω) makes this definition natural, that is:

q = ∆ϕ ⇐⇒ ϕ ∈ ◦
H1(Ω), ∀ψ ∈ ◦

H1(Ω) :

∫
Ω

grad ϕ · grad ψ = −
∫

Ω

q ψ.

2. As Y is contained in H−1(Ω) , and D(∆Dir[Y]) in
◦
H1(Ω) , for any p ∈ Y and

ϕ ∈ D(∆Dir[Y]) , the scalar product (p, ϕ) makes sense in the duality H−1(Ω) -
◦
H1(Ω) and is an extension of the L2(Ω) product. Thus by the Riesz representation
theorem there exists a bounded operator

K : D(∆Dir[Y]) −→ Y
ϕ �−→ Kϕ such that ∀p ∈ Y, 〈p,Kϕ〉Y = (p, ϕ).

(1.5)

Theorem 1.1 Let J ∈ L2(Ω)3 be divergence-free: div J = 0 . We assume ω �= 0 .
(i) If (E,H) solves (0.1), then u = E solves (1.3).
(ii) If u solves (1.3) and if the range of the operator ∆Dir[Y]+ω2K is dense in Y , then
(E,H) =

(
u, (iω)−1 curl u

)
solves (0.1).
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PROOF.
(i) It is standard that u = E solves problem (0.4). Since div u = 0 , u belongs to
XN [Y] too and is solution of (1.3).
(ii) The only thing to be proved is that div u = 0 . We take as test function any grad ϕ
with ϕ ∈ D(∆Dir[Y]) . We obtain

∀ϕ ∈ D(∆Dir[Y]), −ω2

∫
Ω

u · grad ϕ dx+ 〈 div u,∆ϕ〉Y =
∫

Ω

f · grad ϕ dx.

As there holds
∫
Ω

f · grad ϕ = − ∫
Ω

div f ϕ (and similarly for u ), the assumption
div f = 0 implies

∀ϕ ∈ D(∆Dir[Y]), ω2(div u , ϕ) + 〈 div u ,∆ϕ〉Y = 0.
This means that

∀ϕ ∈ D(∆Dir[Y]),
〈

div u , (∆ + ω2K)ϕ
〉
Y
= 0.

The assumption about the density of the range of ∆Dir[Y]+ω2K implies that div u = 0 .

We will see that when Y is realized as a weighted L2 space, the condition about
the density of the range ∆Dir[Y] + ω2K is equivalent to requiring that ω2 is not an
eigenvalue of a certain self-adjoint partial differential operator. Moreover, in this situation
we can prove that if the range of the operator ∆Dir[Y] +ω2K is not dense, then there are
spurious solutions of problem (1.3), see §4.

1.b Density of smooth functions

Our criterion for the density of smooth functions in the space XN [Y] relies on the
following decomposition theorem.

Theorem 1.2 Let Y satisfy (1.1). Then any element u ∈ XN [Y] can be decomposed
into a sum

u = u0 + grad ϕ, with u0 ∈ HN and ϕ ∈ D(∆Dir[Y]) , (1.6)

with the estimate

‖u0‖H1(Ω)3
+ ‖ϕ‖

H1(Ω)
+ ‖∆ϕ‖

Y
≤ C‖u‖

XN [Y]
.

Conversely, any element of the form (1.6) belongs to XN [Y] .

PROOF. Let u belong to XN [Y] . The divergence div u belongs to Y . Let ψ be the
element of D(∆Dir[Y]) such that ∆Dir[Y]ψ = div u . We have

‖ψ‖
H1(Ω)

+ ‖∆ψ‖
Y
≤ C‖ div u‖

Y
.
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The field v := u − grad ψ satisfies curl v = curl u and div v = 0 . Therefore v
belongs to the “standard” space XN = XN [L

2(Ω)] with the estimate

‖v‖
XN [L2(Ω)]

≤ C‖u‖
XN [Y]

.

Then, since Ω is supposed to have a Lipschitz boundary, we may use the decomposition
result of [3] for v : There exists u0 ∈ HN and χ ∈ ∆Dir[L2(Ω)] such that v = u0 +
grad χ , with the estimate

‖u0‖H1(Ω)3
+ ‖χ‖

H1(Ω)
+ ‖∆χ‖

L2(Ω)
≤ C‖v‖

XN [L2(Ω)]
.

Setting ϕ := χ + ψ , we obtain an element of Y (here we use that L2(Ω) ⊂ Y ), and
there holds the estimate of the Theorem.

Corollary 1.3 If the embedding of Y into H−1(Ω) is compact, then the space XN [Y] is
compactly embedded in L2(Ω)3 .

This is a consequence of the decomposition (1.6): Since Y ⊂⊂ H−1(Ω) , we also
have D(∆Dir[Y]) ⊂⊂ H1(Ω) , hence gradD(∆Dir[Y]) ⊂⊂ L2(Ω) .

Concerning the density or the non-density of smooth functions, we obtain the funda-
mental result as an immediate corollary of the decomposition theorem:

Theorem 1.4 (i) If H2∩ ◦
H1(Ω) is dense in D(∆Dir[Y]) for the graph norm, then HN

is dense in XN [Y] .

(ii) H2 ∩ ◦
H1(Ω) is closed in D(∆Dir[Y]) if and only if HN is closed in XN [Y] .

(iii) D(∆Dir[Y]) is contained in H2(Ω) if and only if XN [Y] = HN .

In the rest of the paper, we realize the spaces Y as weighted L2 spaces on Ω , where
the weight w is a product of distances to corners and edges with different exponents.

2 Laplacian in weighted spaces on polygons

We begin with the discussion of 2-dimensional domains, because their geometry is
simpler and the corresponding weighted spaces are better known. The 2-dimensional
situation also constitutes the first step for the 3-dimensional case.

2.a Domains

We denote by x = (x, y) the cartesian coordinates R2 . Let B(x, r) denote the ball
of center x and radius r . In order to include curvilinear polygonal domains, we define
the Lipschitz 2D corner domains as follows:

These are the bounded domains Ω in R2 or S2 such that in each point a of the
boundary there exists ra > 0 and a diffeomorphism χa transforming the neighborhood
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Va := Ω∩B(a, ra) into a neighborhood of the corner 0 of a plane sector Γa of opening
ωa ∈ (0, 2π) , a being sent into 0 . We assume without restriction that, at point a ,
the diffeomorphism χa is an isometric transformation. Therefore the opening ωa is an
intrinsic parameter of the domain Ω .

The set A of corners of Ω is the set of points a ∈ ∂Ω such that the corresponding
sector Γa is non-trivial (opening ωa �= π ). With each corner a , we associate local polar
coordinates such that

Γa =
{
(ra, θa) | ra > 0, 0 < θa < ωa

}
.

2.b Weighted Sobolev spaces

Let m be a non-negative integer and for any a ∈ A let γa be a real number. We
denote the collection of (γa) a∈A by γ . We recall that Va is a neighborhood of the
vertex a which does not contain any other vertex, and we introduce a complementary
open set V 0 ⊂ Ω such that no vertex a belongs to V 0 and that

Ω = V 0 ∪ (⋃
a∈A Va

)
.

The space Y associated with the multi-exponent γ is the space V0
γ(Ω) in the scale of

the spaces Vm
γ (Ω) defined as, cf [22]

Vm
γ (Ω) =

{
ϕ ∈ D ′(Ω) | ϕ ∈ Hm(V 0) and ∀α ∈ N2, |α| ≤ m,

∀a ∈ A , r
γa+|α|−m
a ∂αxϕ ∈ L2(Va)

}
.

(2.1)

Here are a few standard and useful properties of these spaces. In local polar coordinates
(ra, θa) , the condition r

γa+|α|−m
a ∂αxϕ ∈ L2(Ω) becomes

rγa−m
a (ra∂ra )

k∂	θa
ϕa ∈ L2(Γa), k + � ≤ m,

where ϕa is transformed from ϕ by the diffeomorphism χa (after localization). It is un-
derstood that ϕa is written in polar coordinates: ϕa = ϕa(ra, θa) . In Euler coordinates
ta = log ra and θa and with ϕ̃a(ta, θa) := ϕa(ra, θa) , the above condition becomes

e(γa−m+1)ta ∂kta ϕ̃a ∈ L2
(
R ,Hm−k(0, π/ωa)

)
, k ≤ m. (2.2)

The Mellin transform of ϕa with respect to ra

λ �−→
∫ ∞

0

r−λa ϕa(ra, θa)
dra

ra

is therefore well-defined for Reλ = −γa +m − 1 .

The natural inclusions are, for m ≥ 1
Vm

γ (Ω) ⊂ Vm−1
γ−1 (Ω) (2.3)
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where γ−1 means the collection (γa−1) a∈A , and for any γ ′ ≤ γ (which means that
for any a ∈ A , γ ′

a ≤ γa ) and any m :

Vm
γ ′(Ω) ⊂ Vm

γ (Ω). (2.4)

Poincaré’s inequality allows to prove that

◦
H1(Ω) ⊂ V1

0(Ω).

For any weight multi-exponent γ , the subspace of V1
γ(Ω) with null traces on the bound-

ary ∂Ω is the closure of C ∞
0 (Ω) functions in V1

γ(Ω) and is denoted by
◦
V1

γ(Ω) . We
thus have ◦

H1(Ω) =
◦
V1

0(Ω). (2.5)

Finally, the by-product inclusion
◦
H1(Ω) ⊂ V0

−1(Ω) yields by duality

V0
1(Ω) ⊂ H−1(Ω). (2.6)

2.c Regularity results

Let us first assume that for a fixed weight multi-exponent γ ′ the function ϕ belongs
to

◦
V1

γ ′−1(Ω) and is such that ∆ϕ belongs to V0
γ ′(Ω) . Then elliptic estimates on dyadic

partitions of the sectors Γa for each a ∈ A allow to prove in a standard way that ϕ
belongs to V2

γ ′(Ω) . We note that the Mellin transform of ϕa for each a ∈ A is defined
for Reλ = −γ ′

a + 1 .

Let us assume that, additionally, ∆ϕ belongs to V0
γ(Ω) , with γ < γ ′ . We deduce

then directly from KONDRAT’EV [22] that the Mellin transform of the localized function
ϕa defines a meromorphic function on the strip Reλ ∈ [−γ ′

a + 1,−γa + 1] and that, if
for any a ∈ A the intervals [−γ ′

a+1,−γa+1] do not contain any number of the form
kπ/ωa , k ∈ Z , k �= 0 , then there holds

ϕ ∈ V2
γ ∩ ◦

V1
γ−1(Ω).

Applying this result with γ ′ = 1 and γa in the interval (1 − π/ωa , 1] and using the
equality (2.5), the inclusion (2.6), and the uniqueness of the solution of the Dirichlet
problem with data in H−1(Ω) , we obtain the following result.

Theorem 2.1 For any weight multi-exponent γ such that for every a ∈ A the inequal-
ity

1− π/ωa < γa ≤ 1 (2.7)

holds, the Laplace operator is an isomorphism from V2
γ ∩ ◦

V1
γ−1(Ω) onto V0

γ(Ω) . The

solution space can equivalently be written as V2
γ ∩ ◦

H1(Ω) .
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For the intended applications, it is useful to note the following.

Proposition 2.2 For any weight multi-exponent γ , the C ∞(Ω) functions with null trace

on ∂Ω are dense in V2
γ ∩ ◦

V1
γ−1(Ω) .

PROOF. Let us take ϕ ∈ V2
γ ∩ ◦

V1
γ−1(Ω) . In the neighborhood of any smooth point

of the boundary of Ω , the approximability property is a consequence of the density of
smooth functions in standard Sobolev spaces. It remains to prove that each function ϕa

can be approximated in the sector Γa by C ∞(Ω) functions with null trace on ∂Γa . By
the change of coordinates ta = log ra , this is equivalent to prove that C ∞(Ω) functions
with null traces on θa = 0 and θa = π/ωa are dense in the space (2.2) with null traces
( m = 2 ).

Multiplying by the exponential weight e(γa−m+1)ta , this is equivalent to prove that C ∞(Ω)
functions with null traces on θa = 0 and θa = π/ωa are dense in

H2 ∩ ◦
H1

(
R × (0, π/ωa)

)
.

As in the regular case, this fact is a consequence of the standard density of smooth func-
tions and the use of a lifting operator for the first traces on θa = 0 and θa = π/ωa .

2.d Simplified weighted spaces

We will now provide equivalent expressions for the weighted spaces Vm
γ (Ω) based

on global weights instead of a partition of unity. Then we define a subclass of these
weighted spaces which we shall use in practice for our regularization method.

Let x �→ d(x) denote the distance function to the set of corners of Ω :

d(x) = dist(x,
⋃

A {a}). (2.8)

Since the corners a are isolated from each other, the function

w :=
∏
a∈A

rγa
a (2.9)

is equivalent to rγa
a in each neighborhood Va and to 1 in V 0 . We may also interpret

w as the distance function d raised to a certain (variable) power γ = γ(x) . Since d is
equivalent to the product

∏
a∈A ra , the weight w in (2.9) is equivalent to

w(x) � d γ(x) with γ(x) ≡ γa for x ∈ Va. (2.10)

It is then clear that the space Vm
γ (Ω) in (2.1) can be equivalently defined as

Vm
γ (Ω) = {ϕ ∈ L2

loc(Ω)| w d|α|−m∂αϕ ∈ L2(Ω), ∀α, |α| ≤ m}. (2.11)
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A simpler class of weights w is defined if we take a unique constant value γ ∈ R

of the exponent for a certain subset A0 of corners and 0 for the others. This simpli-
fication will be useful for the implementation of the weighted regularization and for the
convergence proof of the finite element method. Let A0 be a subset of A . We define
the global weight multi-exponent γ by

∀a ∈ A0, γa = γ, and ∀a ∈ A \A0, γa = 0. (2.12)

Then instead of (2.9), we can choose the equivalent weight

w = dγ0 with d0(x) = dist(x,
⋃

A0
{a}), (2.13)

and we still have the description (2.11) of the space Vm
γ (Ω) .

3 Laplacian in weighted spaces on polyhedra

We shall see now how the previous results in two dimensions can be extended to
three-dimensional domains. Although general definitions are more complicated due to the
corner-edge interaction, we will see at the end of this section that a subclass of weighted
spaces can be described as simply as in (2.11) and (2.13) above.

3.a Domains and distance functions

We denote by x = (x, y, z) the cartesian coordinates in R3 . As in [18], the definition
of the classes of domains is recursive. We define the Lipschitz 3D corner domains as
bounded Lipschitz domains Ω in R3 such that in each point x of the boundary there
exists rx > 0 and a diffeomorphism χx transforming Ω∩B(x, rx) into a neighborhood
of the corner 0 of a cone Γx of the form {x ∈ R3, x/|x| ∈ Gx} with Gx a Lipschitz
2D corner domain of S2 , x being sent into 0 . Like in the two-dimensional case, we
assume that at the point x , the diffeomorphism χx is an isometric transformation.

Let C be the set of the corners c of the 3D corner domain Ω ⊂ R3 which we define
by the requirement that for any c ∈ C , the corresponding cone Γc is a non-trivial cone
(i.e. it is neither a half space nor a wedge). The corresponding neighborhood Ω∩B(x, rc)
is denoted by Vc . In local spherical coordinates ρc ∈ R+ , ϑc ∈ S2 , the cone Γc is:

Γc =
{
(ρc, ϑc) | rc > 0, ϑc ∈ Gc

}
with the spherical polygonal domain Gc = Γc ∩ S2 . Let rc be defined as

rc(x) := dist(c,x), x ∈ Ω. (3.1)

It is clear that rc is equivalent to ρc in the neighborhood Vc .

Let E be the set of the (open) edges e of Ω : for each point x ∈ e the local cone
Γx is a wedge Γe(x) × R and Ω is diffeomorphic to this wedge in the neighborhood

12



Ω ∩ B(x, rx) =: Ve(x) . Here Γe(x) is a plane sector whose opening we denote by
ωe(x) . Like for 2D domains, this opening is intrinsic. Let re be defined as

re(x) := dist(e,x), x ∈ Ω. (3.2)

It is clear that for each x ∈ e , in the neighborhood Ve(x) the function re is equivalent
to the radial coordinate in Γe(x) .

In order to define our weighted spaces, we need another “distance” function ρe to
the edges. Let e be an edge. Typically, one out of two situations is valid (The situation
of an edge containing exactly one corner, which is possible according to our definitions,
is left to the reader):

1. e contains no corner, then it is a closed curve ( e = e ) and we define ρe := re .

2. e contains exactly two corners c, c ′ ∈ C . Then we define ρe such that there
holds

re = ρe rc rc′ (3.3)

It is clear that ρe is equivalent to re/rc in Vc , and to re outside Vc ∪ Vc′ .

Conversely, for each c ∈ C , the corners a of the spherical domain Gc correspond
bijectively to the subset Ec of edges e ∈ E such that c belongs to e . We set a = a(e) .
The function ρe is equivalent to the radial coordinate ra at the corner a(e) in Gc . We
denote by ϑe the corresponding angular coordinate θa in Gc . Then, for each c ∈ C
and e ∈ Ec the three coordinates (rc, ρe, ϑe) are local spherical “sectorial” coordinates
in a neighborhood Ve(c) which has the form rc < ε and ϑc ∈ Va , where according to
the 2D definitions, Va is a neighborhood of the corner a . Let V 0

c be an open set such
that e ∩ V 0

c = ∅ for any edge e ∈ Ec and such that Vc = V 0
c ∪ ( ⋃

e∈Ec
Ve(c)

)
.

Besides the neighborhoods Ve(c) and V 0
c , we introduce V 0

e such that V 0
e does

not contain any other edge than e , nor any corner and such that e is contained in V 0
e ∪(⋃

c∈e V e(c)
)

. And finally let V 0 such that V 0 contains no edge and no corner and
such that

Ω = V 0 ∪
( ⋃

e∈E

V 0
e

)
∪

( ⋃
c∈C

V 0
c ∪ ( ⋃

e∈Ec

Ve(c)
))

.

The opening angle ωe(x) is till now defined for any interior point x in the edge e .
If a corner c belongs to e , we define ωe(c) as the opening of Gc in a(e) . Equivalently,
ωe(x) is the limit as x → c of ωe(x) .

3.b Weighted Sobolev spaces

Let m be a non-negative integer and, for any e ∈ E and any c ∈ C , let γe and γc

be real numbers. We denote by γ the collection of (γe) e∈E ∪ (γc) c∈C . The space Y

13



associated with the multi-exponent γ is the space V0
γ(Ω) in the scale of spaces Vm

γ (Ω)
defined as, cf [26]

Vm
γ (Ω) =

{
ϕ ∈ D ′(Ω) | ϕ ∈ Hm(V 0) and ∀α ∈ N2, |α| ≤ m,

∀e ∈ E , r
γe+|α|−m
e ∂αxϕ ∈ L2(V 0

e ),

∀c ∈ C , r
γc+|α|−m
c ∂αxϕ ∈ L2(V 0

c ),

∀c ∈ C , ∀e ∈ Ec, r
γc+|α|−m
c ρ

γe+|α|−m
e ∂αxϕ ∈ L2(Ve(c))

}
.

(3.4)

For any corner c , in the neighborhood V 0
c the condition in spherical coordinates is

rγc−m
c (rc∂rc )

k∂βϑc
ϕc ∈ L2(V 0

c ), k + |β| ≤ m,

where ϕc denotes the localized function. Moreover for any e ∈ Ec , in the sectorial
coordinates (rc, ρe, ϑe) the function ϕ is written locally as ϕc,e and the condition of
integrability becomes

rγc−m
c ργe+k−m

e (rc∂rc)
k(ρe∂ρe )

j∂	ϑe
ϕc,e ∈ L2(Ve(c)), k + j + � ≤ m.

In Euler coordinates tc = log rc and ϑc , the above condition for any e ∈ Ec becomes

e(γc−m+ 3
2
)tc ∂ktc ϕ̃c,e ∈ L2

(
R ,Vm−k

γ(c) (Gc)
)
, k ≤ m,

where γ(c) is the collection of weight exponents (γe) e∈Ec
. The Mellin transform with

respect to the variable rc is then well defined for Reλ = −γc + m − 3
2

. The same
inclusions (2.3) and (2.4) hold in polyhedra. And we still have the embeddings (2.5) and
(2.6) too.

3.c Regularity results

Let us assume that ϕ belongs to
◦
V1

γ ′−1(Ω) and is such that ∆ϕ ∈ V0
γ ′(Ω) . As in

2D corner domains, there holds the elliptic regularity result ϕ ∈ V2
γ ′(Ω) .

Let assume that, additionally, ∆ϕ ∈ V0
γ(Ω) with γ < γ ′ . From the two dimensional

result, we obtain as a condition for the regularity of ϕ along edges that for any e ∈ E
and any x ∈ e the intervals [−γ ′

e + 1,−γe + 1] do not contain any number of the form
kπ/ωe(x) , k ∈ Z , k �= 0 .

The condition for the regularity at corners involves the eigenvalues µDir
k , 0 < µDir

1 <
µDir

2 ≤ . . . , of the Laplace-Beltrami operator on Gc with Dirichlet condition. We set for
any k ∈ N , k �= 0

λDir
c ,−+k = −1

2 −+
√

µDir
k + 1

4
. (3.5)

The Mellin transform of the localized function ϕc defines a meromorphic function on
the strip Reλ ∈ [−γ ′

c +
1
2
,−γc +

1
2
] and the associated regularity condition is that the

interval [−γ ′
c +

1
2
,−γc +

1
2
] does not contain any number λDir

c , k , k ∈ Z , k �= 0 .
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If the above conditions are satisfied, there holds

ϕ ∈ V2
γ ∩ ◦

V1
γ−1(Ω).

Like in the case of 2D corner domains, we deduce the following

Theorem 3.1 For any weight multi-exponent γ satisfying

∀e ∈ E , ∀x ∈ e, 1− π/ωe(x) < γe ≤ 1 and ∀c ∈ C , 1
2
− λDir

c,1 < γc ≤ 1, (3.6)

the Laplace operator is an isomorphism from V2
γ ∩

◦
V1

γ−1(Ω) onto V0
γ(Ω) . The space of

solutions can be equivalently written as V2
γ ∩ ◦

H1(Ω) . Moreover H2 ∩ ◦
H1(Ω) is dense in

V2
γ ∩ ◦

H1(Ω) .

3.d Global weights

Like for two dimensional domains, we provide global expressions for the weights
defining the spaces Vm

γ (Ω) .

In 3D domains, as the corners c are isolated from each other, the function
∏

c rγc
c is

equivalent to rγc
c in each neighborhood Vc , and as ρe is the distance to edges blown up

at corners which are also isolated from each other, the function
∏

e ργe
e is equivalent to

ργe
e in each neighborhood Ve(c) . We may therefore take as a global weight

w =
(∏

c∈C

rγc
c

) (∏
e∈E

ργe
e

)
. (3.7)

The space V0
γ(Ω) can be defined equivalently as

V0
γ(Ω) = {ϕ ∈ L2

loc(Ω)| w ϕ ∈ L2(Ω)}.
We may also obtain an expression analogous to (2.10), but it is more involved. We need
to introduce two distance functions

dC (x) = dist(x,
⋃

C {c}) and dE (x) = dist(x,
⋃

E e) (3.8)

and two exponent functions γ[C ] and γ[E ] on Ω such that

γ[C ](x) ≡ γc for x ∈ Vc

γ[E ](x) ≡ γe for x ∈ V 0
e ∪ ⋃

c∈e Ve(c), γ[E ](x) ≡ 0 for x ∈ Vc, ∀c ∈ C ′,
(3.9)

where C ′ is the subset of corners c ∈ C which do not belong no any edge.

The product
∏

c∈C rγc
c is, of course, equivalent to d

γ[C ]

C , and for each c the follow-
ing equivalence holds

rc

∏
e∈Ec

ρe � dE in Vc .
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We find that the weight w in (3.7) is equivalent to

w � d
γ[C ]−γ[E ]

C d
γ[E ]

E . (3.10)

We see that if for all corners and edges the exponents are equal to a fixed number δ ,
then we can take γ[C ] ≡ δ , moreover γ[E ] = δ in a neighborhood of the edges, and
γ[E ] = 0 in a neighborhood of the subset C ′ of corners which do not belong to any
edge.

Therefore the weight d
γ[C ]−γ[E ]

C d
γ[E ]

E is simply equal to d δ
C ′ d δ

E where dC ′ is the
distance function to the subset C ′ . It is then clear that the distance function d

d(x) = dist
(
x,

⋃
C{c} ∪

⋃
E e

)
. (3.11)

is equivalent to dC ′ dE . As a consequence the space Vm
γ (Ω) in (3.4) is equivalently

defined as

Vm
γ (Ω) = {ϕ ∈ L2

loc(Ω)| w d|α|−m∂αϕ ∈ L2(Ω), ∀α, |α| ≤ m}. (3.12)

3.e Simple weights

For a 3D corner domain Ω , let E0 be a subset of edges and C0 be a subset of corners
with the following compatibility condition:

If e ∈ E0 is an open curve, then its end points belong to C0 . (3.13)

We define the global weight multi-exponent γ by{
∀c ∈ C0, γc = γ, and ∀c ∈ C \C0, γc = 0

∀e ∈ E0, γe = γ, and ∀e ∈ E \E0, γe = 0.
(3.14)

With this choice of multi-exponent, using (3.10), we can prove that

w = dγ0 with d0(x) = dist
(
x,

⋃
C0
{c} ∪ ⋃

E0
e
)
. (3.15)

Indeed, the only situation where (3.15) is not trivial is when x belongs to the neighbor-
hood Vc of a corner c ∈ C0 :

• If c does not belong to any edge e ∈ E0 , then γ[E ] ≡ 0 in Vc and the equivalence

of dγ0 with d
γ[C ]−γ[E ]

C d
γ[E ]

E in Vc is clear;

• If c belongs to edge(s) e ∈ E0 , then in the conical neighborhoods Ve(c) of these

edges γ[E ] ≡ γ , therefore d
γ[C ]−γ[E ]

C d
γ[E ]

E is equivalent to d γ
E which is itself equivalent

to dγ0 ; outside the conical neighborhoods of these edges (but still in Vc ), γ[E ] ≡ 0 ,

therefore d
γ[C ]−γ[E ]

C d
γ[E ]

E is equivalent to d γ
C which is itself equivalent to dγ0 .
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4 Regularization with weight

We are going to realize our space Y as a space V0
γ(Ω) . For suitable choices of the

weight multi-exponent γ , the condition of Theorem 1.4 (i) will be satisfied.

4.a Density of smooth functions for weighted regularizations

In order that the embedding (1.1) hold we must have

0 ≤ γ ≤ 1, (4.1)

that is 0 ≤ γa ≤ 1 for all a in 2D, and 0 ≤ γc ≤ 1 for all c , 0 ≤ γe ≤ 1 for all e in
3D. If moreover condition (2.7) in 2D or condition (3.6) in 3D is satisfied for the weight
multi-exponent, then there holds for the operator ∆Dir[Y] :

Y = V0
γ(Ω) =⇒ D(∆Dir[Y]) = V2

γ ∩ ◦
V1

γ−1(Ω).

In the sequel we will write conditions (2.7) and (3.6) in a unified way by an inequality
between two weights. Let us define the multi exponent δDir by δDir = (δa)a∈A : δa = 1− π

ωa
in 2D,

δDir =
(
(δe)e∈E , (δDir

c )c∈C

)
: δe = 1−min

x∈e

π
ωe(x)

, δDir
c = 1

2
− λDir

c,1 in 3D.
(4.2)

As a corollary of Theorems 2.1, 3.1 and 1.4 (i) we have

Theorem 4.1 Let γ be a weight multi-exponent satisfying δDir < γ and (4.1). Then for
the choice Y = V0

γ(Ω) , the space HN is dense in XN [Y] .

4.b The operator K

Let Y be given by {ϕ ∈ L2
loc(Ω)| w ϕ ∈ L2(Ω)} , with w defined in (2.9) or (3.7)

with γ satisfying (4.1). It is obvious that the operator K in (1.5) is simply given by

Kϕ = w−2ϕ.

Moreover it is possible to exhibit a self-adjoint operator Aw the spectrum of which char-
acterizes the set of ω such that ∆Dir[Y] + ω2K has no dense range: it suffices to define

Aw := −K− 1
2 ∆Dir[Y]K− 1

2 = −w∆Dir[Y]w.

The operator Aw is the self-adjoint realization on L2(Ω) of the operator from
◦
V1

γ(Ω)
onto its dual defined by the symmetric positive bilinear form

aw(p, q) =

∫
Ω

grad(w p) · grad(w q) dx, p, q ∈ ◦
V1

γ(Ω).
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Under condition γ > δDir with δDir defined in (4.2), the domain of Aw is V2
2γ∩

◦
V1

γ(Ω) .

Then the range of ∆Dir[Y]+ω2K is not dense in Y if and only if ω2 is an eigenvalue
of Aw . In this situation, problem (1.3) admits spurious solutions: It suffices to take an
eigenvector p �= 0 of Aw and to define u as grad(w p) in order to obtain a non-zero
solution of the homogeneous problem (1.3).

The operator Aw has a compact inverse if and only if γ < 1 . In this situation, the
spectrum of Aw is discrete, formed of positive eigenvalues which accumulate at infinity.
When some of the exponents belonging to γ are equal to 1 , the operator Aw has no
more a discrete spectrum, but an essential spectrum. But still, Aw is > 0 . Thus, for any
choice of multi-exponent γ > δDir , multiplying the term 〈 div u, div v〉Y in problem
(1.3) by a large enough positive factor s , we can guarantee that the spurious eigenvalues
are avoided. In the forthcoming paper [15], we are studying this and other aspects of the
Maxwell eigenvalue problem in more detail.

5 Regularity and singularities of Maxwell solutions

We have proved in [14] that the electric parts E of solutions of problem (0.1) with
J ∈ L2(Ω)3 have two sorts of singularities along edges and at corners:

Type 1 which are the gradients of Dirichlet singularities of the Laplace operator,

Type 2 which have the same singularity exponents as the Neumann singularities of the
Laplace operator.

Concerning the magnetic part H , the situations of Dirichlet and Neumann are inverted.
The Type 3, also present in [14], does not appear here, because divE = div H = 0 .

This means that, if the condition of Theorem 1.1 (ii) is fulfilled, we have a decompo-
sition of u in three parts

u = ureg
0 + using

0 + grad ϕ. (5.1)

In order to describe the Sobolev regularity of the last two terms, we introduce the notation

Hσ(Ω) :=
⋂
s<σ

Hs(Ω). (5.2)

We also need the minimum singularity exponents for the Dirichlet and Neumann Laplace
operators: for 2D domains

λDir = λNeu := min
a∈A

π

ωa
(5.3)

and for 3D domains

λDir := min

((
min
e∈E

min
x∈e

π

ωe(x)

)
,

(
min
c∈C

λDir
c,1 +

1

2

))
(5.4)
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and

λNeu := min

((
min
e∈E

min
x∈e

π

ωe(x)

)
,

(
min
c∈C

λNeu
c,1 +

1

2

))
(5.5)

where λNeu
c,1 is defined as in (3.5) with µDir

1 replaced by µNeu
1 , the first non-zero eigen-

value of the Laplace-Beltrami operator on Gc with Neumann condition.

Then in (5.1) there holds

ureg
0 ∈ H2(Ω)n, using

0 ∈ H1+λNeu

(Ω)n, ϕ ∈ H1+λDir

(Ω), (5.6)

hence grad ϕ ∈ HλDir

(Ω)n with n = 2 or 3 .

Here, of course, the regularity of ureg
0 is optimal, as opposed to the regularity of

the two other parts in (5.6). Indeed, the singular parts are C ∞ inside Ω and are better
described using the following limits of weighted spaces: we first define

K∞
γ (Ω) :=

⋂
m∈N

Vm
γ+m(Ω)

and then
K∞

β (Ω) :=
⋂
γ>β

K∞
γ (Ω).

In 2D, the singularities have the simple structure rλa ψ(θa) with smooth angular func-
tions ψa and λ = kπ/ωa . We obtain immediately

Theorem 5.1 If Ω is a 2D corner domain, there holds for the splitting (5.1), with the
weight multi-exponents βDir = βNeu := (βa) a∈A with βa = − π

ωa
− 1 :

using
0 ∈ K∞

βNeu
(Ω)2 and ϕ ∈ K∞

βDir
(Ω).

In 3D, the structure of the singularities is much more involved. Using the splitting into
edge and vertex singularities of [18] and estimates along edges like in [11] we can prove

Theorem 5.2 If Ω is a 3D corner domain, with the weight multi-exponents
βDir =

(
(βe) e∈E , (βDir

c ) c∈C

)
and βNeu =

(
(βe) e∈E , (βNeu

c ) c∈C

)
where

βe = −min
x∈e

π

ωe(x)
− 1, βDir

c = −λDir
c,1 − 3

2
and βNeu

c = −λNeu
c,1 − 3

2

there holds for the splitting (5.1),

using
0 ∈ K∞

βNeu
(Ω)3 and ϕ ∈ K∞

βDir
(Ω).
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Remark 5.3 The multi-exponents βDir in Theorems 5.1 and 5.2 satisfy with the multi-
exponent δDir defined in (4.2),

βDir = δDir − 2 .

The above theorems give optimal results in the scale of spaces which we have defined.
In the sequel, we will only use the following corollary:

Corollary 5.4 If the condition of Theorem 1.1 (ii) is fulfilled, there holds for u

u = u0 + grad ϕ with u0 ∈ H1+λNeu

(Ω)n and ϕ ∈ K∞
βDir

(5.7)

with the multi-exponent βDir equal to δDir − 2 . We recall that δDir is defined in (4.2)
and λNeu in (5.5).

6 Approximation by finite elements

6.a The principles

From Theorem 1.4 we know that HN is dense in XN [Y] for suitable choices of Y .
From the density of standard finite element function spaces in HN it follows then that the
solution u of the variational problem can be approximated by a convergent sequence of
finite element Galerkin approximations uh . In this section we obtain error estimates and
convergence rates for such finite element approximations.

The convergence rates we obtain are limited by the choice of the weight multi-
exponent γ and by geometry dependent parameters like λDir and λNeu , cf (5.4) and
(5.5). These convergence rates could be improved by standard methods of mesh refine-
ment. But even with uniform meshes, they show – and this is confirmed by the results
of numerical computations described below – that the present method provides efficient
finite element methods for the approximation of Maxwell boundary value problems on
non smooth domains.

We compare this to the previously studied situations, namely

• The regularization without weight [14, 13], where the finite element solution would
converge, but to the wrong solution, so the error would not tend to zero,

• The boundary penalization [12, 16], where a theoretical density (and hence conver-
gence) result is available, too, but without explicit error estimates, and numerical
experiments show very poor approximation results, to the extent that this method is
practically unusable.

We have found, however, that our present weighted regularization method can very well
be combined with the boundary penalization method. This might give, in some situa-
tions, a more efficient way of implementing the boundary conditions, and it gives good
numerical results.
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For the finite element approximation, we use a space Xh
N of H1 -conforming vector-

valued finite elements with the following assumptions (see (A1) - (A3) below)

1. Xh
N has standard good approximation properties in the H1 norm,

2. There is a space Φh of scalar C 1 finite elements whose gradients belong to Xh
N .

3. Φh has good approximation properties in the weighted H2 -space V2
γ(Ω) .

We shall show that (at least in 2D domains) these conditions are satisfied if Xh
N is one of

the following standard ( C 0 ) finite element spaces

• Qp elements on rectangular grids for p ≥ 3 ,

• Qp elements on rectangles or trapezoidal quadrilaterals for p ≥ 5 ,

• Pp elements on triangular grids for p ≥ 4 (and for p ≥ 2 on some special
triangular grids).

From the numerical experiments it seems that any standard H1 -conforming finite ele-
ments should be usable, and that for quadratic or cubic elements the results are quite good
for 2D and 3D domains.

6.b Galerkin methods

Let us fix the weight multi-exponent γ satisfying the conditions of Theorem 4.1, i.e.
0 ≤ γ ≤ 1 and δDir < γ , and take Y = V0

γ(Ω) . For any finite dimensional subspace
Xh
N (realized as a finite element space) of XN [Y] , the Galerkin method associated with

the variational problem (1.3) is uh ∈ Xh
N , ∀vh ∈ Xh

N ,∫
Ω

(curl uh · curl vh − ω2 uh · vh) dx+ 〈 div uh, div vh〉Y =
∫

Ω

f · vh dx.

(6.1)
By Céa’s Lemma we have the error estimate

‖u − uh‖XN [Y]
≤ C min

vh∈Xh
N

‖u − vh‖XN [Y]
, (6.2)

where the constant C does not depend on the subspace Xh
N . Thus, as usual, we have to

evaluate the approximation error of the solution of problem (1.3) by the space Xh
N .

The idea of the error estimate is simple: From the splitting (5.7), and recalling that ϕ
is a Dirichlet singularity, hence satisfies zero boundary conditions, we obtain the decom-
position of our solution u in a regular part and a gradient

u = u0 + grad ϕ with u0 ∈ H1+λNeu∩HN (Ω) and ϕ ∈ K∞
βDir

∩ ◦
H1(Ω) . (6.3)

We analyze the approximation error separately for u0 and for grad ϕ as follows:
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The energy norm of any element v ∈ XN [Y] can be estimated, given any splitting of
v into v0 + grad ψ with v0 ∈ HN and ψ ∈ D(∆Dir[Y]) , cf (1.6), by

‖v‖
XN [Y]

≤ C
(‖v0‖H1 + ‖∆ψ‖

Y
+ ‖ψ‖

L2

)
. (6.4)

Moreover, since γ satisfies the conditions of Theorem 4.1, the domain D(∆Dir[Y]) coin-

cides with the weighted space V2
γ ∩

◦
H1(Ω) . Therefore, the energy norm (6.4) is bounded

by
‖v‖

XN [Y]
≤ C

(‖v0‖H1 + ‖ψ‖
V2

γ

)
. (6.5)

Now we require the following assumptions on the family of finite element spaces
(Xh

N) h∈H . We assume that there exists τ ∈ (0, 1) such that the three following assump-
tions (A1) - (A3) hold. First a (standard) global approximation property:

(A1) ∀w∈H1+λNeu∩HN (Ω), ∃c(w), ∀h∈H , ∃wh∈Xh
N , ‖w −wh‖H1 ≤ c(w)hτ .

Second, that the spaces Xh
N contain gradients

(A2) ∀h∈H , there exists a non-zero space Φh such that gradΦh ⊂ Xh
N .

And, third, that Φh has good approximation properties in the V2
γ -norm for the elements

ϕ ∈ K∞
βDir

∩ ◦
H1(Ω)

(A3) ∀ϕ ∈ K∞
βDir

∩ ◦
H1(Ω), ∃c(ϕ), ∀h∈H , ∃ϕh ∈ Φh, ‖ϕ − ϕh‖V2

γ
≤ c(ϕ)hτ .

With these assumptions, we realize an approximation of the solution u of problem
(1.3) using the decomposition (6.3), by the element wh + grad ϕh of Xh

N where wh is
the “interpolant” of u0 according to (A1) and ϕh is the “interpolant” of ϕ according
to (A3) . We have

‖u − (wh + grad ϕh)‖XN [Y]
= ‖(u0 − wh) + grad(ϕ − ϕh)‖XN [Y]

,

and with the expression of the energy (6.5)

‖u − (wh + grad ϕh)‖XN [Y]
≤ C‖u0 − wh‖H1 + ‖ϕ − ϕh‖V2

γ
.

Assumptions (A1) - (A3) yield that

‖u − (wh + grad ϕh)‖XN [Y]
≤ C hτ .

We have obtained

Theorem 6.1 Let the multi-exponent γ satisfy 0 ≤ γ ≤ 1 and δDir < γ and set
Y = V0

γ(Ω) , cf Theorem 4.1. Let ω2 satisfy the uniqueness hypothesis of Theorem 1.1 (ii)
and for f ∈ L2(Ω)n with div f = 0 let u be the solution of problem (1.3). If the family
(Xh

N) h∈H satisfy the approximation properties (A1) - (A3) , then for the solutions uh

of the corresponding Galerkin problems (6.1) there holds the estimate

‖u − uh‖XN [Y]
≤ c(u) hτ (6.6)

for any h ∈ H , where the constant c(u) does not depend on h .
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7 Performances of the FEM with the weighted regularization

7.a Convergence rates

We will show that the hypotheses of Theorem 6.1 are satisfied for some standard
classes of finite elements and with simplified weights γ according to section 3.e.

Consider a family of finite element spaces Xh
N , h ∈ H , on the domain Ω . For

simplicity, we assume that Ω is a polygon in R2 or a polyhedron in R3 that is discretized
into elements Th :

Ω =
⋃{

K | K ∈ Th

}
and h = max

{
diam(K) | K ∈ Th

}
.

We denote diam(K) by hK .

For the first approximation property (A1) , one can take any almost-affine family of
C 0 elements. Here we use the definition of almost-affine in the sense of [9]. For our case,
this means that the local interpolation operator ΠK on the space PK of polynomials of
the element K has the approximation property (with a constant C independent of K ,
and | · |

Hk+1(K)
denoting the Hk+1(K) -seminorm)

∀v ∈ Hk+1(K) : ‖v −ΠKv‖
H1(K)

≤ C hkK |v|Hk+1(K)
. (7.1)

Here k ≥ 1 is such that the space PK contains the space Pk

∣∣
K

of all polynomials
of degree ≤ k and such that ΠK : Hk+1(K) → PK is continuous (this means that
Hk+1(K) ⊂ C s , where s is the maximal order of derivatives defining the interpolation
operator ΠK ).

The approximation property (A1) is a standard consequence of these assumptions:

Proposition 7.1 Let Xh
N , h ∈ H , be a family of vector-valued finite element spaces

whose vector components are C 0(Ω) and are defined by almost-affine elements satisfying
the estimates (7.1) with k ≥ 1 . In addition we assume that Xh

N ⊂ HN :

∀vh ∈ Xh
N , vh × n = 0 on ∂Ω and ∀v ∈ Hk+1 ∩ HN(Ω), Πhv ∈ HN , (7.2)

where Πh is the global interpolation operator which matches the individual ΠK on
each element K and each component vi . Then for any τ ∈ [0, k] there is a constant Cτ

independent of h such that

∀v ∈ H1+τ ∩HN (Ω), ∃vh ∈ Xh
N : ‖v − vh‖H1(Ω)

≤ Cτ hτ‖v‖
Hτ+1(Ω)

.

Remark. Alternatively, we could just have taken any (�,m)− system S 	,m
h (Ω) in the

sense of [2] with m ≥ 1 and � = k + 1 ≥ 2 . Since we need the element-wise error
estimate in the following less standard estimate, we preferred to write it even for this first
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well-known case. In particular the assumptions (7.1)-(7.2) are satisfied for the standard
Pk or Qk elements on triangles or rectangles for any k ≥ 1 .

For the spaces Φh , we use the same discretization Th of Ω , but with different
polynomial spaces PK and interpolation operators ΠK on each element. In fact, since
we need gradΦh ⊂ Xh

N to satisfy assumption (A2) , we require{
Φh ⊂ C 1(Ω) ∩ ◦

H1(Ω) and ∀ϕ ∈ H	+1 ∩ ◦
H1(Ω), Πhϕ ∈ ◦

H1(Ω),

∂iPK ⊂ PK (K ∈ Th ; i = 1, . . . , n).
(7.3)

We also assume the element-wise approximation property (Φh is an almost-affine family
of C 1 elements) for all ϕ ∈ H	+1(K) and for j = 0, 1, 2 :

|ϕ − ΠKϕ|
Hj(K)

≤ C h	+1−j
K |ϕ|

H�+1(K)
, (7.4)

for some � such that P	

∣∣
K
⊂ PK and ΠK : H

	+1(K)→ PK is continuous.

With these assumptions, we obtain an approximation property in weighted Sobolev
spaces which will yield the validity of assumption (A3) :

Proposition 7.2 Let the multi-exponent γ be associated with subsets A0 , or C0 and
E0 , of selected corners and edges with condition (3.13) according to § 3.e. Let β be a
multi-exponent such that

γ − 1 − 
 ≤ β ≤ γ − 2

with the same integer � as in (7.4). Let the family Φh , h ∈ H , of C 1− finite element
spaces satisfy the compatibility condition (7.3) and the almost-affine estimate (7.4). Then
there is a constant Cγ,β independent of h such that

∀ϕ ∈ V	+1
β+�+1 ∩

◦
H1(Ω), ∃ϕh ∈ Φh : ‖ϕ − ϕh‖V2

γ (Ω)
≤ Cγ,β hτ‖ϕ‖

V�+1
β+�+1(Ω)

(7.5)

where the real number τ is defined as min(γ − β)− 2 ,

τ =

{
mina∈A (γa − βa)− 2 in 2D,

min
(
minc∈C (γc − βc) , mine∈E (γe − βe)

) − 2 in 3D.
(7.6)

Remark 7.3 The assumption γ − 1 − 
 ≤ β ≤ γ − 2 implies τ ∈ [0, � − 1] .

PROOF. Let us recall that according to (2.11) and (2.13) the space V2
γ(Ω) satisfies

V2
γ(Ω) = {ϕ ∈ L2

loc(Ω)| dγ0 d|α|−2∂αϕ ∈ L2(Ω), ∀α, |α| ≤ 2} (7.7)

where d is the distance to the whole set S of corners and edges, and d0 the distance to
the set S0 of selected corners and edges. Let us define a new multi-exponent β ′ by

β ′ := γ − τ − 2,
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where τ is the repetition of τ over all corners and edges. As a consequence of the
definition (7.6) of τ there holds

β ≤ β ′,

which shows that the estimate (7.5) for β ′ instead of β implies that the estimate (7.5)
holds for β , too. Therefore we assume from now on that β = β ′ . With β = γ−τ −2 ,
we also have a simple expression for the spaces V	+1

β+�+1(Ω) . The shift of the multi-
exponent γ by a constant, viz −τ − 2 + � + 1 , corresponds to a factor d−τ−2 in the
weight for each derivative. Hence

V	+1
β+�+1(Ω) = {ϕ ∈ L2

loc(Ω)| dγ0 d|α|−τ−2∂αϕ ∈ L2(Ω), ∀α, |α| ≤ m}. (7.8)

We choose a cutoff function χh ∈ C ∞(Ω) with the properties

0 ≤ χh ≤ 1, χh(x) ≡ 1 if d(x) ≤ 2h , χh(x) ≡ 0 if d(x) ≥ 4h ,

together with the estimates on its derivatives

‖∂αχh‖L∞(Ω)
≤ Cαh

−|α|, ∀α ∈ Nn. (7.9)

Let ϕ belong to V	+1
β+�+1 ∩

◦
H1(Ω) . Then ϕ = χhϕ+ (1− χh)ϕ and we will choose ϕh

as the Φh− interpolant of (1− χh)ϕ :

ϕh = Πh

(
(1− χh)ϕ

)
.

As (1− χh)ϕ ∈ ◦
H1(Ω) , according to condition (7.3), ϕh belongs to

◦
H1(Ω) .

There holds

‖ϕ − ϕh‖V2
γ (Ω)

≤ ‖χhϕ‖V2
γ (Ω)

+ ‖(1− χh)ϕ − ϕh‖V2
γ (Ω)

and we estimate the two terms on the right hand side separately.

(i) ‖χhϕ‖
On the support of χhϕ , we have d ≤ 4h , hence

‖χhϕ‖2

V2
γ (Ω)

=
∑
|α|≤2

∫
Ω

d2(|α|−2) d2γ
0 |∂α(χhϕ)|2 dx

≤
∑
|α|≤2

∫
Ω

(4h)2τd2(|α|−τ−2) d2γ
0 |∂α(χhϕ)|2 dx

≤ C h2τ‖χhϕ‖2

V2
γ−τ (Ω)

≤ C h2τ‖χhϕ‖2

V�+1
β+�+1(Ω)
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Due to (7.8) and (7.9), we have for any m

‖χhϕ‖2

Vm
β+m (Ω)

≤ C
∑
|α|≤m

∑
κ≤α

∫
Ω

d2(|α|−τ−2) d2γ
0 |∂α−κχh|2 |∂κϕ|2 dx

≤ C
∑
|α|≤m

∑
κ≤α

∫
Ω, d≤4h

d2(|α|−τ−2) d2γ
0 h2(|κ|−|α|) |∂κϕ|2 dx

≤ C
∑
|κ|≤m

∫
Ω, d≤4h

d2(|κ|−τ−2) d2γ
0 |∂κϕ|2 dx ≤ C‖ϕ‖2

Vm
β+m (Ω)

.

From the last two series of inequalities we obtain

‖χhϕ‖V2
γ (Ω)

≤ C hτ‖ϕ‖
V�+1

β+�+1(Ω)
. (7.10)

(ii) ‖(1− χh)ϕ − ϕh‖
Since ϕh = Πh

(
(1 − χh)ϕ

)
and since Πh is a local interpolant, the support of ϕh

contains only the elements K such that supp
(
(1 − χh)ϕ

) ∩ K is not empty. As the
diameter of any K is less than h and as the distance function d is ≥ 2h on supp(1−
χh) , there holds d ≥ h on the support of ϕh . As d and d0 are the distance functions
to the sets S and S0 respectively, with S ⊃ S0 , there holds d0 ≥ d , hence d0 ≥ h ,
too, on the support of ϕh . Set for each element K

dK = inf{ d(x) | x ∈ K} and d 0,K = inf{ d0(x) | x ∈ K}.
As diam(K) ≤ h , on K the function d(x) takes its values in [dK , dK + h] and as
d ≥ h on the support of ϕh , we obtain

∀K, supp(ϕh) ∩ K �= ∅ : dK ≥ h and d(x) � dK on K .

There holds similarly

∀K, supp(ϕh) ∩ K �= ∅ : d0(x) � d 0,K on K .

Therefore we have the equivalence (uniformly in h )

‖(1− χh)ϕ − ϕh‖2

V2
γ (Ω)

�
2∑

j=0

∑
dK≥h

d 2γ
0,K d

2(j−2)
K |(1− χh)ϕ − ϕh|2Hj(K)

.

On each element K , taking advantage of ϕh

∣∣
K
= ΠK

(
(1− χh)ϕ

)
, we use the almost-

affine estimate (7.4) and obtain for j = 0, 1, 2

|(1− χh)ϕ − ϕh|Hj(K)
≤ C h	+1−j

K |(1− χh)ϕ|H�+1(K)

≤ C h	+1−j |(1− χh)ϕ|H�+1(K)
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≤ C
( h

dK

)	+1−j−τ
d 	+1−j−τ
K hτ |(1− χh)ϕ|H�+1(K)

.

As dK ≥ h and �+1− j − τ ≥ �− 1− τ ≥ 0 , we deduce from the previous inequality
that

|(1− χh)ϕ − ϕh|Hj(K)
≤ C d 	+1−j−τ

K hτ |(1− χh)ϕ|H�+1(K)
.

Therefore on each element K there holds

d 2γ
0,K d

2(j−2)
K |(1− χh)ϕ − ϕh|2Hj(K)

≤ C h2τd 2γ
0,K d

2(	+1−τ−2)
K |(1− χh)ϕ|2H�+1(K)

.

Taking the sum of these inequalities over all K ∈ Th with dK ≥ h and using (7.8), we
obtain finally

‖(1− χh)ϕ − ϕh‖V2
γ (Ω)

≤ C hτ |(1− χh)ϕ|V�+1
β+�+1(Ω)

and therefore
‖(1− χh)ϕ − ϕh‖V2

γ (Ω)
≤ C hτ ‖ϕ‖

V�+1
β+�+1(Ω)

. (7.11)

In the last inequality we used again (7.9) as before.

From (7.10) and (7.11) we obtain

‖ϕ − ϕh‖V2
γ (Ω)

≤ C hτ ‖ϕ‖
V�+1

β+�+1(Ω)
,

which concludes the proof of the proposition.

Now we are in a position to use Theorem 6.1 in order to get estimates for the conver-
gence rates of our finite element method.

Theorem 7.4 Let the multi-exponent γ be associated with subsets A0 , or C0 and E0 ,
of selected corners and edges with condition (3.13) according to § 3.e. We assume that,
cf Theorem 4.1,

0 ≤ γ ≤ 1 and δDir < γ.

Let ω2 satisfy the uniqueness hypothesis of Theorem 1.1 (ii) and for f ∈ L2(Ω)n with
div f = 0 let u be the solution of problem (1.3). Let the finite element family Xh

N satisfy
conditions (7.1)-(7.2) and let there exist another family Φh satisfying gradΦh ⊂ Xh

N

and conditions (7.3)-(7.4). Then for the solutions uh of the corresponding Galerkin
problems (6.1) there holds the error estimate

‖u − uh‖XN [Y]
≤ Cε h

min{k, 	−1, λNeu− ε, min(γ− δDir)− ε} ‖f‖
L2(Ω)n , ∀ε > 0. (7.12)

We recall that δDir is defined in (4.2), λNeu in (5.5) and that min(γ − δDir) is the least
component of γ − δDir , which is positive by assumption.
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PROOF. Let us fix ε > 0 . We have to check that the approximation properties (A1) -
(A3) hold with τ = min(k, � − 1, τ ′) for

τ ′ = min
(
λNeu, min(γ − δDir)

) − ε,

and the result of Theorem 7.4 will be a consequence of Theorem 6.1.

By assumption, Xh
N satisfies the hypotheses of Proposition 7.1. As a consequence, (A1)

holds for any τ such that τ ≤ k and τ < λNeu .

The assumption (A2) holds by the hypotheses of Theorem 7.4.

Finally, by assumption, Φh satisfies the hypotheses of Proposition 7.2. Let ϕ ∈ K∞
βDir

∩
◦
H1(Ω) . Then ϕ ∈ V	+1

β+�+1(Ω) for all β > βDir . As a consequence, the estimate (7.5)
holds for τ ≤ � − 1 , τ < min(γ − βDir) − 2 . But βDir = δDir − 2 , cf Remark 5.3.
Therefore (A3) holds for any τ such that τ ≤ � − 1 and τ < min(γ − δDir) .

The theorem is proved.

7.b Concrete applications

For concrete applications, we finally exhibit families of finite element spaces Xh
N

that satisfy the conditions of Theorem 7.4, together with relevant choices for the multi-
exponent γ .

(i) FINITE ELEMENT SPACES. The leading principle is first to choose a family of spaces
Φh satisfying conditions (7.3)-(7.4) and then to determine Xh

N as a standard finite ele-
ment space containing gradΦh and satisfying (7.1)-(7.2). Thus for the space Φh , one
can take any almost-affine C 1 finite element as described in [9]. Then Xh

N is any space
of almost-affine C 0 elements containing all the gradients of elements of Φh . Let us give
examples.

We consider only the 2D case.

1. The Argyris triangle. Here Th can be any triangle, Φh consists of polynomials of
degree ≤ 5 on each element, so that for Xh

N we can take the standard P4 elements
(or Pp with p ≥ 4 ). In (7.4) we have � = 5 .

2. The Bogner-Fox-Schmit rectangle. In this case, Th consists of rectangles and
PK = Q3(K) , the space of polynomials of partial degree ≤ 3 in each variable. In
order to contain all their gradients, Xh

N can be a space of C 0 Qp elements with
p ≥ 3 .

3. The Hsieh-Clough-Tocher triangles. Here Th is a triangulation consisting of “su-
pertriangles” (triangular macroelements), each of which is subdivided into 3 trian-
gles by one interior node. Since the HCT functions are P3 on each subtriangle, its
gradients are just P2 , and therefore for Xh

N we can take standard Pp elements for
any p ≥ 2 on such a triangulation.
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(ii) CHOICE OF THE WEIGHT MULTI-EXPONENT. We discuss first the choice of γ for
a 2D polygon Ω . Let us denote by ω0 > π its largest non-convex opening and by ω1 < π
its largest convex opening.

A. If Ω is non-convex, we are obliged to use a weight and to take as set of selected
corners A0 at least the set of non-convex corners and define γ so that

1− π

ω0

< γ.

Then the convergence rate in (7.12) is

min
( π

ω0

, γ − 1 + π

ω0

,
π

ω1

− 1
)
− ε,

the contribution π
ω1

− 1 coming from the convex corners where there is no weight.
By a more clever choice of A0 and γ we can obtain the (optimal) convergence rate

π

ω0

− ε.

For this we take γ = 1 and A0 the set of corners a such that π
ωa

− 1 < π
ω0

. For
example if ω0 is close to π , we obtain a convergence rate close to 1 if we put into the
set of selected corners any corner of opening > π

2
.

B. If Ω is convex, we are not obliged to put a weight and obtain the convergence rate
without weight

min
(
k, � − 1, π

ω1
− ε,

π

ω1
− 1− ε

)
which may be very small ( π

ω1
− 1 ) if there are angles close to π . The introduction of a

weight allows for restoring the (optimal) convergence rate

min
(
k, � − 1, π

ω1

− ε
)
.

For this we take again γ = 1 and define the set A0 of selected corners as the set of
corners a such that π

ωa
− 1 < π

ω1
.

For a 3D polyhedron Ω , the principles are the same. We have to choose as set S0

of selected edges and corners, at least the set of non-convex edges and corners. As Ω
is a polyhedron, any edge is a segment the ends of which are corners. And any non-
convex edge ends in non-convex corners. Therefore the compatibility condition (3.13) is
automatically satisfied for such a choice of S0 . Let ω0 be the largest non-convex edge
opening, λDir

0 the smallest corner exponent λDir
c,1 for non-convex corners, and ω1 be the

largest convex edge opening. If Ω is non-convex and if we choose as S0 the set of
non-convex edges and corners, we have the convergence rate

min
(

λNeu , γ − 1 + π

ω0

, γ − 1
2
+ λDir

0 ,
π

ω1

− 1
)
− ε,
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for any γ > 1−π/ω0 and γ > 1
2
−λDir

0 . The exponents λDir
c,1 of convex corners c have

no influence because they are larger than π/ωe for any edge e such that c ∈ e (this is
a consequence of the monotonicity principle for Dirichlet eigenvalues, cf [18, Ch.19]).

Thus, for a better choice of S0 and with γ = 1 , we obtain the rate

min
(

λNeu ,
π

ω0
, 1

2
+ λDir

0

)
− ε.

8 Numerical results

As an illustration of the error estimates, we present results of some finite element
computations on an L-shaped domain

Ω = (0, 1
2
)2 \ (1

4
, 1

2
)2 ⊂ R2 .

We use Qp elements on rectangular grids, discretizing the variational form∫
Ω

curl u · curl v + s

∫
Ω

rα div u div v − ω2

∫
Ω

u · v =
∫

Ω

f · v (8.1)

and subject to the boundary condition u × n = 0 on ∂Ω . This is the regularized
formulation with weight

w = s rα , α = 2γ ,

where s > 0 is a constant and r is the distance to the reentrant corner a0 = (
1
4
, 1

4
) of

opening angle ω0 = 3π/2 .

We present results for two types of problems:
• The boundary value problem: ω2 = 0 , f given, in Tables 1 and 2,
• The eigenvalue problem: f = 0 , λ = ω2 unknown, in Tables 3 , 4 and 5.

In both cases, we first illustrate our error estimates which are asymptotic in h by
choosing Qp elements on a sequence of uniform grids, starting with a very simple grid
containing only 3 squares which are then repeatedly divided in four. For both p = 2 and
p = 7 or 8 one can see that the computed convergence rates τ are at least as high as
those predicted by our theoretical results in Section 7.

We then show the performance of the p version of our method on a grid with 3 layers
of geometric mesh refinement near the corner a0 and Qp elements with p = 1, . . . , 10 .

In the examples shown in Tables 1 and 2, we chose the right hand side f in such a
way that the exact solution u coincides with a singular function grad Sk , where Sk in
local polar coordinates is given by

Sk = r
2k
3 sin 2k

3
θ .

We show the first two singular functions k = 1, 2 . The obvious difference between the
two is that grad S1 �∈ H1(Ω)2 , so that the non-weighted regularized method ( α = 0 )
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does not converge, and a weight with α ∈ [ 2
3
, 2] is necessary, whereas S2 is more regular,

so that we do have convergence even for α = 0 . We see, however, that in this case, a
weight with α > 0 improves the convergence, too.

In Table 1, we choose s = 2 , and we present the quadratic error e2 = ‖u−uh‖2

L2(Ω)

as well as the computed convergence rate τ as functions of the total number of degrees
of freedom N . Note that τ is equivalent to the convergence rate of the L2 norm

√
e2

with respect to h .

k = 1, p = 2 α = 0 α = 1 α = 2

h N e2 τ e2 τ e2 τ

1/4 42 0.84211741 0.04235700 0.07411075
1/8 130 1.01358422 −0.164 0.04768209 −0.105 0.03777494 0.596
1/16 450 1.06201671 −0.038 0.03614337 0.223 0.01707371 0.640
1/32 1666 1.06756118 −0.004 0.02437231 0.301 0.00732893 0.646

k = 2, p = 2 α = 0 α = 1 α = 2

h N e2 τ e2 τ e2 τ

1/4 42 0.00901950 0.00274676 0.01281581
1/8 130 0.00382858 0.758 0.00140259 0.595 0.00728658 0.500
1/16 450 0.00152661 0.740 0.00052674 0.789 0.00274435 0.786
1/32 1666 0.00059810 0.716 0.00017189 0.856 0.00065502 1.094

k = 1, p = 7 α = 0 α = 1 α = 2

h N e2 τ e2 τ e2 τ

1/4 42 1.01609591 0.01846936 0.00760876
1/8 130 1.03912235 −0.017 0.01316194 0.261 0.00307983 0.696
1/16 450 1.04370936 −0.003 0.00875260 0.304 0.00123537 0.681
1/32 1666 1.04236404 0.001 0.00562906 0.324 0.00049364 0.673

k = 2, p = 7 α = 0 α = 1 α = 2

h N e2 τ e2 τ e2 τ

1/4 42 0.00052035 0.00011192 0.00027287
1/8 130 0.00020966 0.700 0.00002948 1.027 0.00004782 1.341
1/16 450 0.00008341 0.688 0.00000648 1.130 0.00000778 1.355
1/32 1666 0.00003302 0.680 0.00000125 1.207 0.00000124 1.349

Table 1. Boundary value problem, uniform grid
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In Table 2 we give e2 on a fixed (refined) grid as the degree p varies.

k = 1 k = 2

p N α = 0 α = 1 α = 2 α = 0 α = 1 α = 2

1 112 1.5966 0.47592 0.042220 3.15 e-03 7.57 e-05 1.87 e-04
2 390 1.4460 0.02746 0.000497 1.35 e-04 1.71 e-06 1.20 e-05
3 836 1.4264 0.01811 0.000215 4.93 e-05 3.13 e-07 3.55 e-07
4 1450 1.4213 0.01307 0.000113 2.56 e-05 8.91 e-08 8.53 e-08
5 2232 1.4187 0.01003 0.000067 1.52 e-05 3.10 e-08 2.77 e-08
6 3182 1.4170 0.00803 0.000044 9.88 e-06 1.27 e-08 1.09 e-08
7 4300 1.4158 0.00663 0.000031 6.82 e-06 5.84 e-09 4.87 e-09
8 5586 1.4150 0.00561 0.000023 4.93 e-06 2.96 e-09 2.43 e-09
9 7040 1.4144 0.00483 0.000018 3.70 e-06 1.62 e-09 1.31 e-09
10 8662 1.4139 0.00422 0.000014 2.85 e-06 9.37 e-10 7.47 e-10

Table 2. Boundary value problem, refined grid, s = 8 , quadratic L2 -error
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In Tables 3, 4 and 5, we show the results of the computation of the first two Maxwell
eigenvalues λ = ω2 on the L-shaped domain Ω . We choose s = 100 to avoid the
spurious eigenvalues. The first eigenfunction is in XN \ HN , and therefore the first
eigenvalue cannot be approximated without weight. The second eigenfunction belongs to
H1 , and we see convergence for λ2 even for α = 0 . With weight exponent α = 2 , we
see the expected convergence rates τ = 2/3 for the first eigenvalue and τ = 4/3 for the
second eigenvalue.

λ1, p = 2 Maxwell

N Neumann α = 0 α = 1 α = 2

42 24.13701659 120.90488226 110.46906479 49.49443834
130 23.81339665 102.04184498 90.48517831 33.23172507
450 23.69017022 98.25631602 82.71080795 27.28036540
1666 23.64177400 96.98393766 76.65583255 25.01965466

λ2, p = 2

42 57.38784397 75.99447724 71.75781417 61.32884651
130 56.60883955 62.53207509 60.97123999 57.28067304
450 56.55026143 58.76614173 58.07956603 56.66672908
1666 56.54513337 57.40691268 57.09394908 56.56457358

λ1, p = 8

42 23.62993021 98.66470749 75.44438016 24.49393351
130 23.61789596 97.15288075 69.23173390 23.95780545
450 23.61310276 96.56438960 63.47164884 23.74642793
1666 23.61120066 96.33263584 58.03793226 23.66368700

λ2, p = 8

42 56.54462340 59.24751481 57.54028363 56.55419599
130 56.54452112 57.59166691 56.90303442 56.54622903
450 56.54450490 56.95618365 56.66869140 56.54478825
1666 56.54450235 56.70727431 56.58653566 56.54454794

Table 3. Eigenvalues, uniform grids, s = 100

In 2 dimensions, the Maxwell eigenvalues are the same as the Laplace-Neumann
eigenvalues. Therefore we show for comparison the numerical computation of the first
two Neumann eigenvalues with the same finite element method, using the standard H 1

variational formulation. For α = 0 , we compare in fact the first Neumann eigenvalue
with the second computed eigenvalue, because considered as an analytic function of α ,
this is the one that for large enough values of α will give an approximation of the first
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Neumann Maxwell

λ1, p = 2 α = 0 α = 1 α = 2

N |λ − λh| τ |λ − λh| τ |λ − λh| τ |λ − λh| τ

42 0.02232261 4.1209226 3.6789139 1.0963354
130 0.00861570 0.843 3.3219792 0.191 2.8324970 0.231 0.4075287 0.876
450 0.00339645 0.750 3.1616433 0.040 2.5032137 0.100 0.1554590 0.776
1666 0.00134663 0.707 3.1077517 0.013 2.2467554 0.083 0.0597067 0.731

λ2, p = 2

42 0.01491466 0.3439764 0.2690502 0.0846120
130 0.00113782 2.277 0.1058913 1.043 0.0782876 1.093 0.0130193 1.657
450 0.00010186 1.944 0.0392901 0.798 0.0271478 0.853 0.0021616 1.446
1666 0.00001117 1.689 0.0152519 0.723 0.0097170 0.785 0.0003549 1.380

λ1, p = 8

42 0.00084498 3.1789407 2.1954444 0.0374398
130 0.00033527 0.706 3.1149073 0.016 1.9323080 0.098 0.0147321 0.713
450 0.00013226 0.691 3.0899818 0.006 1.6883397 0.100 0.0057792 0.695
1666 0.00005169 0.688 3.0801659 0.002 1.4581948 0.107 0.0022747 0.683

λ2, p = 8

42 0.00000215 0.0478032 0.0176105 0.0001714
130 0.00000034 1.408 0.0185193 0.724 0.0063407 0.780 0.0000305 1.318
450 0.00000005 1.372 0.0072806 0.694 0.0021963 0.788 0.0000050 1.335
1666 0.00000001 1.345 0.0028786 0.679 0.0007433 0.793 0.0000008 1.338

Table 4. Eigenvalue problem, uniform grids, s = 100 , errors

exact eigenvalue.

We see that our weighted regularization method with α = 2 gives the same conver-
gence rates as for the Neumann eigenvalues, and this despite the fact that the Maxwell
eigenfunctions are one order less regular than the Neumann eigenfunctions (the former
are the curls of the latter). In Table 5 we see that the p version on a refined grid performs
rather well even with a modest number of unknowns.
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λ1 Maxwell

p N Neumann α = 0 α = 1 α = 2

2 390 23.62073663 5 e-04 96.6129 3.09 56.6139 1.40 23.7110324 4 e-3
3 836 23.61085665 4 e-05 96.1942 3.07 55.2695 1.34 23.6452078 1 e-3
4 1450 23.61036255 2 e-05 96.1850 3.07 51.9190 1.20 23.6280100 8 e-4
5 2232 23.61019233 1 e-05 96.1839 3.07 49.3547 1.09 23.6205595 4 e-4
6 3182 23.61010647 6 e-06 96.1832 3.07 47.3127 1.00 23.6167563 3 e-4
7 4300 23.61005760 4 e-06 96.1828 3.07 45.6409 0.93 23.6146005 2 e-4
8 5586 23.61002750 3 e-06 96.1825 3.07 44.2418 0.87 23.6132818 1 e-4

λ2

2 390 56.57346262 5 e-04 56.6162 1 e-3 59.8606 6 e-2 56.6083112 1 e-3
3 836 56.54474445 4 e-06 56.5503 1 e-4 56.5485 7 e-5 56.5448802 7 e-6
4 1450 56.54450293 2 e-08 56.5486 7 e-5 56.5471 5 e-5 56.5445087 1 e-7
5 2232 56.54450190 5 e-10 56.5476 6 e-5 56.5464 3 e-5 56.5445037 3 e-8
6 3182 56.54450188 1 e-10 56.5470 4 e-5 56.5459 2 e-5 56.5445026 1 e-8
7 4300 56.54450187 6 e-11 56.5466 4 e-5 56.5455 2 e-5 56.5445022 6 e-9
8 5586 56.54450187 3 e-11 56.5462 3 e-5 56.5453 1 e-5 56.5445021 3 e-9

Table 5. Eigenvalue problem, refined grid, s = 100 , eigenvalues and relative errors
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