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ABSTRACT 
Explicit-multithreading (XMT) is a parallel programming 
approach for exploiting on-chip parallelism. XMT introduces a 
computational framework with 1) a simple programming style 
that relies on fine-grained PRAM-style algorithms; 2) hardware 
support for low-overhead parallel threads, scalable load 
balancing, and efficient synchronization. The missing link 
between the algorithmic-programming level and the architecture 
level is provided by the first prototype XMT compiler. This 
paper also takes this new opportunity to evaluate the overall 
effectiveness of the interaction between the programming model 
and the hardware, and enhance its performance where needed, 
incorporating new optimizations into the XMT compiler. We 
present a wide range of applications, which written in XMT 
obtain significant speedups relative to the best serial programs. 
We show that XMT is especially useful for more advanced 
applications with dynamic, irregular access pattern, where for 
regular computations we demonstrate performance gains that 
scale up to much higher levels than have been demonstrated 
before for on-chip systems.   
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1. INTRODUCTION 
The challenge of exploiting the large and fast growing number of 
transistors available on modern chips has motivated the 
exploration of parallel architectures. Researchers have 
considered parallelism in two main categories. The first is at an 
ultra fine-grained level, among instruction sequences. However, 

the limited amount of instruction-level parallelism (ILP) present 
in programs, and the difficulties to uncover it [12] [20] prevent 
computers from fully exploiting the available on-chip resources. 
An alternative source of parallelism is at the level of coarse-
grained multithreading, and has been traditionally expressed 
under the shared memory or the message-passing programming 
models, either directly by programmers, or with the aid of 
parallelizing compilers. 

Two interesting representative design points for multi-threaded 
single-chip architectures are: chip multiprocessors (CMP) such 
as the Stanford Hydra [11], and Simultaneous Multithreading 
(SMT) [17]. A typical CMP architecture features independent 
processing units that share an L2 cache, each executing a 
different thread. The observation that resource utilization in a 
CMP architecture is limited by the available ILP within a single 
thread, has led the SMT design to permit all threads to share the 
processor functional units, allowing to exploit ILP across 
different threads at a single cycle.  

While these new architectures have the ability to exploit fine-
grained parallelism, both CMP and SMT report difficulties to 
obtain fine-grained multi-threaded codes for today’s important 
uniprocessor programs [10]. On one hand, parallelizing 
compilers have been only partially successful at automatically 
converting serial codes. On the other hand, the programming 
models currently available to programmers were originally 
designed to target off-chip parallel architectures, and therefore 
do not fit a single-chip environment. Current CMP and SMT 
related research concentrates its effort on developing advanced 
compiler techniques for fine-grained parallelization, and support 
for speculative execution. 

XMT (explicit multi-threading) attempts to bridge the gap 
between the ultra fine-grained on-chip parallelism and the 
coarse-grained multi-threaded program by proposing a 
framework that encompasses both programming methodology 
and hardware design. XMT tries to increase available ILP using 
the  rich  knowledge  base  of  parallel  algorithms.    Relying  on  

 

 
 



parallel algorithms, rather than on a compiler, programmers 
express extremely fine-grained parallelism at the thread level.  

While some XMT architectural design aspects share motivations 
with the other proposed designs, CMP and SMT do not address 
programmability and their threading support is not targeted 
towards supporting a PRAM-style program. These projects tend 
to center their attention on multiprogramming and increasing the 
IPC (instructions per clock) rate, rather than reducing a single-
task execution time and measuring speedups relative to the serial 
program, which is the focus of XMT.  

In addition, XMT aspires to scale up to much higher levels of 
parallelism than other single-chip multithreaded architectures 
consider currently; for example, where CMP and SMT 
presentations typically discuss 4 to 8 processing units, special 
XMT hardware gadgets, such as one which allows fast parallel  
prefix-sum, allow us in this paper to examine configurations of 
up to 256 Thread Control Units (TCUs)). Tile based 
architectures, such as MIT’s Raw [22], also expect to scale to 
high levels of parallelism.  However, Raw utilizes a message-
passing model rather than the shared-memory model of XMT. In 
addition, Raw heavily relies on compiler technology to manage 
data distribution and movements between tiles. As such, it is 
much easier to program for the XMT architecture, and it is also 
expected to address a wider range of applications. 
Last point of comparison, the Tera (now Cray) Multi-Threaded 
Architecture (MTA) [1] also supports many threads on a given 
processor.  There, however, the processors switch between 
threads to hide latencies, rather than running multiple threads 
concurrently. Moreover, the MTA, like other MPP machines, is 
designed for big computations with large inputs. XMT aims to 
achieve speed-ups for smaller input computations, such as those 
in desktop applications. 

Previous papers on XMT have discussed in detail its fine-
grained SPMD multi-threaded programming model, architectural 
support for concurrently executing multiple contexts on-chip, 
and preliminary evaluation of several parallel algorithms using 
hand-coded assembly programs [18] [7]. The introduction of an 
XMT compiler, presented here, allows us to evaluate XMT for 
the first time as a complete environment (“vertical prototyping”), 
using a much larger benchmark suite (with longer codes) than 
before. Due to the rather broad nature of our work, specialized 
parts of the work – the evaluation of the XMT compiler and 
evaluation of the programming model – were published in two 
respective specialized workshops [13], [14]. This paper 
incorporates the feedback from these workshops, and is the first 
one to present the whole work, including the integrated results, 
as well as the interplay between the programming model and the 
other components of XMT (compiler and architecture). 

We begin by reviewing the XMT multi-threaded programming 
model and architecture in section 2. Section 3 presents the 
prototype XMT compiler and code generation model. We then 
describe the XMT simulator and experimental methodology in 
section 4, and evaluate the efficiency of our implementation in 
section 5. Section 6 discusses compiler optimizations to coarsen 
threads. Section 7 puts it all together by revisiting the XMT 
programming features, and evaluating to what extent the 

hardware and compiler are able to support them efficiently. 
Section 8 concludes. 

2. THE XMT FRAMEWORK  
Most of the programming effort involved in traditional parallel 
programming (domain partitioning, load balancing), is of lesser 
importance for exploiting on-chip parallelism, where parallelism 
overhead is low and memory bandwidth is high. This 
observation motivated the development of the XMT 
programming model. XMT is intended to provide a parallel 
programming model, which is 1) simpler to use, yet 2) efficiently 
exploits on-chip parallelism.  

These two goals are achieved by a number of design elements; 
The XMT architecture attempts to take advantage of the faster 
on-chip communication times to provide more uniform memory 
access latencies. In addition, a specialized hardware primitive 
(prefix-sum) exploits the high on-chip communication 
bandwidth to provide low overhead thread creation. These low 
overheads allow to efficiently support fine-grained parallelism. 
Fine granularity is in turn used to hide memory latencies, which, 
in addition to the more uniform memory accesses, supports a 
programming model where locality is less of an issue. The XMT 
hardware also supports dynamic load balancing, relieving the 
programmers of the task of assigning work to processors.  The 
programming model is simplified further by letting threads 
always run to completion without synchronization (no busy-
waits), and synchronizing accesses to shared data with a prefix-
sum instruction. All these features result in a flexible 
programming style, which encourages the development of new 
algorithms, and is expected to target a wider range of 
applications.  

2.1 XMT Programming Model 
The programming model underlying the XMT framework is an 
arbitrary CRCW (concurrent read concurrent write) SPMD 
(single program multiple data) programming model.  In the 
XMT programming model, an arbitrary number of virtual 
threads, initiated by a spawn and terminated by a join, share the 
same code.  The arbitrary CRCW aspect dictates that concurrent 
writes to the same memory location result in an arbitrary one 
committing. No assumption needs to be made beforehand about 
which will succeed.  This permits each thread to progress at its 
own speed from its initiating spawn to its terminating join, 
without ever having to wait for other threads; that is, no thread 
busy-waits for another thread. An advantage of using this easier 
to implement SPMD model is that it is also an extension of the 
classical PRAM model, for which a vast body of parallel 
algorithms is available in the literature. (Previous XMT papers 
related the relaxation in the synchrony of PRAM algorithms to 
works such as [6] on asynchronous PRAMs). 
The programming model also incorporates the prefix-sum 
statement.  The prefix-sum operates on a base variable, B, and an 
increment variable, R.  The result of a prefix-sum (similar to an 
atomic fetch-and-increment) is that B gets the value B + R, while 
the return value is the initial value of B.  The primitive is 
especially useful when several threads simultaneously perform a 
prefix-sum against a common base, because multiple prefix-sum 
operations can be combined by the hardware to form a multi-



operand prefix-sum operation.  Because each prefix-sum is 
atomic, each thread will receive a different return value.  This 
way, the parallel prefix-sum command can be used for 
implementing efficient and scalable inter-thread synchronization, 
by arbitrating an ordering between the threads. 
The XMT-C high-level language is an extension of standard C.  
A parallel region is delineated by spawn and join statements.  
Every thread executing the parallel code is assigned a unique 
thread ID, designated TID.  The spawn statement takes as 
arguments the number of threads to spawn and the ID of the first 
thread. 
Consider the following example of a small XMT-C program.  
Suppose we have an array of n integers, A, and wish to 
“compact” the array by copying all non-zero values to another 
array, B, in an arbitrary order.  The code below spawns a thread 
for each element in A.  If its element is non-zero, a thread 
performs a prefix-sum (ps in XMT-C) to get a unique index into 
B where it can place its value. 

m = 0;
spawn(n,0);

{
int TID;

if (A[TID] != 0) {
int k;
k = ps(&m,1);
B[k] = A[TID];

}
}

join();

The SpawnMT model of [18] does not allow for nested initiation 
of an arbitrary-size spawn within a parallel spawn region.  Such 
a feature, while useful, would be difficult to realize efficiently 
with hardware support. As an alternative, [19] extended the 
programming model to support a fork operation.  A thread can 
perform a fork operation to introduce a new virtual thread as 
work is discovered.  Forks must be executed one at a time by a 
single thread, but forks from multiple threads can be performed 
in parallel. The fork extension allows the programmer to 
approach many problems in a more asynchronous and dynamic 
manner. In XMT-C, fspawn is used when forking may be 
necessary, and xfork performs the fork operation. 
MIT’s Cilk [9] also provides a multi-threaded programming 
interface and execution model, however, there are two important 
differences in scope.  First, since Cilk is targeted at compatibility 
with existing SMP machines, load balancing in software was 
important. XMT provides hardware support to bind virtual 
threads to thread control units (TCUs) exactly as the TCUs 
become available. The low-overhead of XMT is designed to be 
applicable to a much broader range of applications. Second, Cilk 
presents a programming model that tries to match very closely 
standard serial programming constructs, where forking a thread 
takes the form of a function call. While XMT also bases its 
programming model on standard C, the programmer is expected 
to rethink the way parallelism is expressed. The wide-spawn 
capabilities and prefix-sum primitive are present to support the 
many algorithms targeted to the PRAM model. 

2.2 The XMT Architecture 
In an XMT machine, a thread control unit (TCU) executes an 
individual virtual thread.  Upon termination, the TCU performs a 
prefix-sum operation in order to receive a new thread ID.  The 
TCU will then emulate the thread with that ID.  All TCUs repeat 
the process until all the virtual threads have been completed. 
This functionality is enabled by support at the instruction set 
level.  With our architecture, all TCUs independently execute a 
serial program.  Each accepts the standard MIPS instructions, 
and possesses a standard set of MIPS registers locally.  The 
expanded ISA includes a set of specialized global registers, 
called prefix-sum registers (PR), and a few additional 
instructions. 
New instructions are used for thread management.  A spawn 
instruction interrupts all TCUs and broadcasts a new PC at 
which all TCUs will start.  The pinc instruction operates on the 
PR registers, and performs a parallel prefix-sum with value 1. A 
specialized global prefix-sum unit can handle multiple pinc's to 
the same PR register in parallel. Simultaneous pincs from 
different TCUs are grouped, and the prefix-sum is computed and 
broadcast back to the TCUs. This process is pipelined and 
completes within a constant number of cycles.  
The ISA also includes instructions for parallel read of a PR 
register (prefix-sum with value 0) and for initialization of a PR 
register. The psm instruction allows for communication and 
synchronization between threads.  It performs a prefix-sum 
operation with an arbitrary increment to any location in memory.  
It is an atomic operation, but due to hardware limitations, is not 
performed in parallel (i.e., concurrent psm’s will be queued). 
This is equivalent to a fetch-and-increment [8] primitive (cf.  
[2]). Additional instructions exist to support the nested forking 
mechanism [14]. 
The fundamental units of execution for the simulated machine 
are the multiple TCUs, each of which contains a separate 
execution context.  In hardware, an individual TCU basically 
consists of the fetch and decode stages of a simple pipelined 
processor. 
To increase resource utilization and to hide latencies, sets of 
TCUs are grouped together to form a cluster, quite similar in 
spirit to an SMT processor. The TCUs in a cluster share a 
common pool of functional units, as well as memory access and 
prefix-sum resources.  The clusters can be replicated repeatedly 
on a given chip.  More details about the simulated architecture is 
described elsewhere [5]. Unlike previous designs, the simulated 
architecture does not have hard-wired thread management, and 
uses a banked memory rather than a monolithic memory.   

3. THE XMT COMPILER 
Parallel execution in the XMT architecture requires handling 1) 
Transition to parallel mode- activating all the TCUs and setting 
up their environment; 2) Thread creation and termination - 
emulate the virtual threads on each TCU – obtain a thread ID for 
each, and verify that it is a valid ID (i.e., less than the spawn 
size); 3) Transition back to serial mode - detect when all threads 
have terminated, and resume serial execution. 
In first presentations of XMT, these tasks were handled entirely 
by hardware automatons.  In this paper, we present a scheme 
whereby the preceding tasks are orchestrated by compiler.  This 



choice pays off in performance and flexibility.  For example, the 
compiler is free to schedule certain operations to have a per-
TCU cost rather than a per-thread cost.  Additionally, the more 
general hardware allows for various extensions, such as different 
forking schemes, and can easily support parallelization models 
other than XMT. 
The prototype XMT compiler consists of two phases: 1) The 
front end (“Xpass”) - a source-to-source translator based on 
SUIF [21]. This phase converts the XMT code with its parallel 
constructs into regular C code with specialized assembly 
templates for run-time threading support. 2) The back end (gcc) - 
builds an executable for the C code produced by Xpass. As we 
based our simulator implementation on the SimpleScalar ISA, 
we used the version of gcc from the SimpleScalar 2.0 package – 
gcc 2.6.3.  
The general scheme used by Xpass is based on transforming 
parallel codes into parallel procedures. The compiler transforms 
the parallel region (the code in the spawn-join block) into the 
body of the procedure. When the procedure is called, the 
processing units are awakened, and each starts to execute the 
procedure body, which emulates the threads on each TCU. 
Figure 1 presents a high level example of the transformations 
performed by our compiler.  Producing this structure involves 
two tasks: 1) Outlining. Detect all parallel regions (spawn-join 
blocks) and create a function definition for each (a “spawn-
function”). Replace the spawn-join block with a call to the 
spawn-function. 2) Spawn-function transformation. Add TCU 
initialization code and thread emulation constructs to the spawn-
function. These constructs include wrapping the body of the 
spawn-join block with a loop to emulate the threads, and 
inserting assembly templates. 

4. EXPERIMENTAL METHODOLOGY 
A behavioral simulator, comparable to SimpleScalar [4], has 
been developed for an XMT architecture. For our experiments, 

we specify 8 TCUs in each cluster.  Each cluster contains 4 
integer ALUs, 2 integer multiply/divide units, 2 floating point 
ALUs, 2 floating point multiply/divide units, and 2 branch units.  
All functional unit latencies are set to the SimpleScalar sim-
outorder defaults: integer divide, multiply and ALU ops take 20, 
3 and 1 cycles respectively, floating point divide, multiply and 
ALU ops take 12, 4 and 2 cycles respectively, and square root 
takes 24 cycles. Each cluster has a L1 cache of 8 KB, and a 
shared, banked L2 cache of 1 MB.  The number of banks is 
chosen to be twice the number of clusters.  The L2 cache latency 
is 6 cycles and memory latency is 25 cycles. A penalty of 4 
cycles is charged each way for inter-cluster communication. 
Configurations are simulated with 1, 4, 16, 64, and 256 TCUs.  
(The 1 and 4 TCU configurations obviously have fewer than 8 
TCUs per cluster.) Keep in mind that these numbers indicate the 
number of simultaneous execution contexts, and do not imply 
hardware functionality equivalent to the same number of 
standard microprocessors. 
The highest-end configuration simulated uses 32 clusters.  At 
this point, connectivity to this degree has not been demonstrated 
for a single-chip system.  The interconnection implementation is 
an important element of a scalable XMT hardware architecture.  
The simulator used reflects results of VLSI experiments with a 
specific design, which are discussed in detail elsewhere [15].  
For the purposes of this paper, then, the results for the high-end 
configuration can be considered to be indicative of the potential 
for the XMT threading model to scale to high degrees of 
parallelism.  This scalability is one of the most important 
features of the methods presented here. 

5. EVALUATING THE XMT 
ENVIRONMENT 
This section evaluates the efficiency of the XMT environment by 
examining 1) the overheads that the parallel constructs incur; 2) 
memory stall behavior, 3) load balance, and 4) scalability of the 
system. We focus here on general features of our platform, 
independently of programming considerations. Programming 
issues are discussed in section 7. 

5.1 Overheads 
Setting up a parallel region and managing the threads incur an 
overhead. We can break down this cost to the following different 
elements: 1) Spawn-Setup: setting up the environment, 
broadcasting data. 2) TCU-Init: initializing the TCUs context. 3) 
Thread Overhead: emulating threads on each TCU - obtain a 
thread ID and verify that it is less than the spawn size. 4) Load 
Imbalance (Spawn-End): idling at the end of a spawn until all 
threads complete, then transitioning back to serial mode. 

We examined the costs that the different kinds of overheads 
incur, and observed several trends. Overheads are generally very 
low. This allows XMT to obtain good speedups even for very 
small problem sizes, and very fine-grained parallelism. Figure 2 
reports spawn-block overhead costs for a matrix multiplication 
program. These results, typical of XMT programs, demonstrate 
that setting up the parallel region is a cheap operation. The 
Spawn-Setup and TCU-Init overheads are in general negligible, 
and remain low under increasing problem sizes and increasing 
number of TCUs. As a result, programs that involve many 

main() {
spawn(num_threads, offset);
{

int TID;

**THREAD-CODE**
}
join();

}

Above XMT-C program is transformed to:
main() {

spawn_setup(num_threads, offset);
main_0_spawn();

}

main_0_spawn () {
int TID, maxtid, offset;
spawn_init(&max_tid, &offset);
TID = TCUID + offset;
while (TID < max_tid) {

**THREAD-CODE**

TID = get_new_tid();
};
tcu_halt_suspend();

} 
Figure 1: XMT code shape 
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5.2 Memory Stall Behavior 
An interesting factor to examine is how memory stall behavior 
scales with the number of TCUs.  We found that the ratio of time 
spent waiting on memory to time spent on processing was 
largely constant from 1 to 256 TCUs for most of the programs 
tested.  As an example, Figure 4 shows the breakdown of TCU 
time between active processing (CPU), memory stalls, and idling 
for dbtree - a program that performs a batch of indexed-tree 
searches.  As the number of TCUs increases, the memory stall 
share does not excessively increase. This can be attributed to the 
XMT architecture design, which relies on a high-bandwidth, 
scalable on-chip memory system. 
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Figure 2: spawn block overheads. 
pawns and joins still perform well. As the number of TCUs 
ncreases, the opportunity cost of idle TCUs at the end of the 
arallel region (Spawn-End) becomes more significant. Note 
owever, that these overheads amount to less than 0.01% of the 
ntire execution time of the program. 
he most dominant overhead is the one charged to thread 
reation. We therefore concentrate on optimizations that aim to 
educe this overhead (section 6).  

e also observe that the thread structure of the parallel 
lgorithm greatly affects the overhead distribution. We 
emonstrate that using two versions of dag, a program that 
omputes maximum length paths in a DAG.  A synchronous 
ersion uses frequent spawns and joins, while an asynchronous 
ersion forks new threads to explore nodes as they are 
iscovered. Figure 3 shows overhead breakdowns for both 
ersions on two different graph sizes.  As illustrated, the 
ynchronous version pays a heavy price in load imbalance.  The 
orking version is able to adapt to the unpredictable 
omputational demands and avoid these costs.  This advantage is 
vident in the speedups achieved, especially with more TCUs 
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.3 Dynamic Load Balancing 
he XMT architecture provides dynamic load balancing; newly 
reated threads are automatically assigned to TCUs without 
omplicated programmer intervention. This dynamic load 
alancing is particularly useful for handling cases where work 
artitioning is of an unpredictable nature. Figure 5 reports 
esults for the dag program running on 16 TCUs, showing 
xecution time breakdown (number of cycles) for each TCU. 
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We observe that the disparity between TCU work loads is 
relatively small considering the irregular nature of the 
computation, with large disparity between thread lengths (some 
threads terminate immediately, whereas other loop through all 
the outgoing edges of the nodes they operate on. As a result, 
thread lengths vary considerably (range from 96 to 516 cycles)). 

5.4 Scalability 
To demonstrate the scalability of XMT we present speedups of 
XMT programs relative to the best serial version, for 
applications that are considered to be relatively parallelizable: 
jacobi (a 2D PDE kernel), tomcatv (the SPEC95 mesh 
generation program), mmult (matrix multiply) and dot (dot 
product) from Livermore Loops, image convolution (from [3]), 
and two database kernels – dbscan (SQL select query on a non-
indexed relation [3]) and dbtree (indexed-tree searches, taken 
from MySQL). These programs feature regular computations 
that operate on different entries of a data structure independently 
of one another. This allows a very simple parallelization scheme 
that involves small extra overhead, where basically a thread is 
spawned for each loop iteration in the serial version. 

The results shown in figure 6 demonstrate that XMT programs 
are able to obtain good speedups, that scale up to much higher 
levels (256 TCUs) than have been demonstrated before for 
single-chip systems. Low speedups demonstrated by Tomcatv, 
are attributed to a problem size that is too small (64 columns), 
limiting the available parallelism for the scheme used. 

6. COMPILER OPTIMIZATIONS 
The XMT programming methodology encourages the 
programmer to express any parallelism, regardless of how fine-
grained it may be. The low overheads involved in emulating the 
threads allow this fine-grained parallelism to be competitive. 
However, despite the efficient implementation, extremely fine-
grained programs can benefit from coarsening, as it decreases 
the thread count, consequently reducing the overall thread 
overhead. Furthermore, thread coarsening may allow to exploit 
spatial locality, and reduce duplicate work; however, these 
opportunities occur only in regular codes, where it is also easy to 

automatically detect and optimize. By grouping consecutive 
threads, clustering exploits spatial locality, and allows the 
programmer to ignore granularity and task assignment 
considerations, which are otherwise relevant. 

The XMT compiler detects cases where the length of the thread 
is sufficiently small (such that the thread overhead constitutes a 
significant enough portion of the thread). This parameter is 
evaluated at compile time using SUIF's static performance 
estimation utility. The compiler then automatically transforms 
these spawn-blocks such that fewer but longer threads are used. 
Furthermore, our optimization takes load balance considerations 
into account by reserving unclustered-threads at the tail of the 
spawn. Tuning this value can reduce the load imbalance cost, 
however at the expense of a small increase in thread overhead. 
Therefore, two sets of threads are emulated: the first set consists 
of the coarse clustered-threads, and the second is the set of the 
remaining fine-grained unclustered-threads. 

Rather than splitting the computation to two separate spawn-
blocks (one for each set of threads), or introducing a conditional 
control to determine between the two, we use the following 
scheme: we create a single spawn block, which contains two 
separate thread emulation loops – one for the clustered-threads, 
and one for the unclustered-threads. Thus, given a fine-grained 
spawn-block of n threads, our compiler approach results in the 
following execution scheme. The execution starts with a coarse 
grained version, and then, after m out of the original n threads 
have been emulated through the coarse-grained version, the 
execution switches to a finer grained version, to finish all n 
threads. Once the XMT execution crosses a threshold, the 
SPMD code becomes the fine-grained version. So, any TCU that 
picks up virtual threads from that point on, executes directly the 
fine-grained version, rather than having each TCU refigure that 
we are in the tail case and only then jump to the code for the tail 
case. 

Figure 7 presents the overall improvement obtained by 
clustering, as percentage of the original (fine-grained) execution 
time. We report results for LU, dbscan and jacobi. Two major 
factors contribute to performance improvement: 1) Exploiting 
spatial locality: clustering reduces overall memory stall time by 
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4 256
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regular and predictable. Many scientific applications rely on this 
type of algorithm, including PDE solvers, mesh generators and 
linear algebra codes. 

The independence between the elements of computations in this 
type of program, naturally allows parallelism present across all 
elements to be exploited. In XMT, this is translated to a simple 
parallelization scheme, where a thread is spawned for each loop 
iteration. Traditional parallelization differs from XMT in having 
to first partition the domain to (coarse-grained) units of work, 
and devise a scheme that assigns these blocks of work to the 
processing units. For the simple family of algorithms discussed 
here, domain partitioning and task assignment take the form of 
scheduling loop iterations across the processors. For array based 
applications, locality considerations determine the scheduling 
scheme, whether block-wise, cyclic, or blocked-cyclic. 

The different programming style directly affects the granularity 
of the parallelism that is expressed. The XMT programs, taking 
advantage of the parallelism present to the largest degree 
possible often result in very fine-grained computations. For the 
programs we examine in this category, the typical length of a 
thread is between 3 to 6 source lines. Traditional programming 
neglects the per-entry parallelism and distributes the work in a 
coarse-grained fashion.  
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Figure 7: Impact of clustering. 
20%, 64% and 14% for LU, jacobi and dbscan, respectively. 2) 
Eliminating duplicate work: clustering can potentially incur less 
duplicate work by scheduling operations to have per-cluster cost 
rather than per-thread cost. Thus, the overall active processing 
time can be reduced. In LU and jacobi this is indeed the case; 
clustering reduces CPU time by 13% for LU, and by 21% for 
jacobi. However in dbscan clustering actually increases CPU 
time by 18%, due to the overheads that the clustering 
transformation introduces. The prefix-sum operation that the 
threads perform in dbscan inhibit the conservative compilation 
scheme from extracting computation out of the cluster loop. 
Consequently, clustering does not improve performance for 
dbscan. 

7. EVALUATING THE XMT 
PROGRAMMING MODEL 
While traditional shared memory programming consists of 
assigning as coarse-grained chunks of work to processes as 
possible, using locks and barriers for synchronization, XMT 
programs feature 1) No task assignment, 2) Fine-grained 
parallelism, and 3) No busy-wait. It remains to be examined to 
what extent this programming methodology is able to excel in an 
on-chip environment. In this section we discuss how these 
features are manifested in the programming and performance of 
two different types of computation domains - regular 
computations, and irregular dynamic computations. (Other types 
of computations, such as divide-and-conquer and sorting 
algorithms, are discussed in [14]). 

7.1 Regular Computations 
This family of algorithms encompasses any computation that 
takes the form of looping through a sequence of independent 
operations, all consisting of the same amount of work, typically 
applied to different elements of the data structure. The access 
pattern characteristic of these algorithms is therefore very 

To evaluate the effects of granularity and task assignment on 
performance we use LU, mmult, convolution and jacobi.  We 
compare (figure 8) the following versions for each: 1) “by-
entry”/”by-row”, where a thread is spawned directly for each 
entry/row. For these regular computations, the coarser by-row 
versions outperform the fine by-entry versions, demonstrating 
the need for thread coarsening for this type of applications. (The 
by-entry version of mmult and conv is already relatively coarse-
grained, which is why these programs are missing results for a 
by-row version). 2)  “trad”, where traditional style programming 
with respect to task assignment is used. Here, a thread is 
spawned for a group of rows/entries. For mmult and 
convolution, both versions achieve similar speedups. The 

 

. 
Granularity and task assignment effects in
regular computations

0

10

20

30

40

50

60

70

80

LU 128 jacobi 512 mmult 128 conv 128

program and problem size

sp
ee

du
ps

by-entry trad. by-row

Figure 8: Granularity and Task assignment



traditional mmult is able to amortize some duplicate work, while 
the “by-entry” versions of convolution LU and jacobi take the 
lead by avoiding some task assignment overhead.  

To conclude the discussion on regular computations, we discuss 
general reduction computations, as they provide a classic 
example for a case where XMT employs an entirely different 
algorithmic approach than the traditional one. We present two 
algorithms.  Both utilize a binary tree structure [19]. The first, 
propagates values up the tree in a synchronous fashion, using a 
spawn and join for each layer of the tree. Each spawn block 
consists of a thread for each node in the parent layer that applies 
the reduction operation on the two children of that node. This is 
repeated for the next level, until the root of the tree is reached. 

The second algorithm propagates values in an asynchronous 
fashion, involving only one spawn-join block within which 
threads advance without busy-waiting. This solution requires 
maintaining an additional data structure, a gatekeeper, to ensure 
that the reduction operation is applied on a node is after the 
value of both its children is ready. The computation proceeds as 
follows: after the value of a node has been computed, the thread 
performs a prefix-sum relative to the gatekeeper of that node’s 
parent. The result of the prefix-sum indicates if it was the first 
thread to do so, in which case it terminates. Otherwise it was the 
second; it proceeds to calculate the value for the parent, and 
continue. 

Our experiments show that the asynchronous algorithm is 
outperformed by the synchronous one [14] due to the amount of 
storage and extra work that it involves. Asynchronous 
algorithms are more useful for irregular computations, as we 
show next. 

7.2 Irregular, Dynamic Computations 
The algorithms we discuss here are characterized by highly 
irregular and unpredictable access patterns. Specifically, we 
consider computations that begin with a limited amount of work 
and discover additional work as they proceed. The newly 
discovered work typically requires splitting the processing to 
subtasks and combining the contribution of each as they 
complete. For example, consider rendering techniques that rely 
on ray tracing. There, primary rays fired from a viewpoint 
encounter objects, and are reflected from and refracted through 
the objects, spawning new rays. The same operations are 
performed recursively on the new rays, all contributing to the 
intensity and color of the same pixel. This pattern of 
computation is also present in applications that rely on breadth-
first-search style algorithms. 

The irregular nature of this type of algorithm makes them good 
candidates for a less synchronous parallelization scheme. This is 
the programming approach that XMT employs, using dynamic 
forking as new units of work are discovered (be it rays, graph 
nodes/edges, etc.). Traditional parallel programming, with its 
coarse-grained work decomposition and task assignment, can’t 
employ a simple static scheme as it would lead to severe load 
imbalances. Traditional parallelization techniques therefore 
require explicitly balancing processor workloads, either by 
intelligent partitioning or dynamic work stealing (such as the 
SPLASH-2 implementations for volume rendering, radiosity and 
a ray tracing [16]). 

XMT implementations take one of the following approaches: 1) 
A synchronous approach performs a spawn at each stage of the 
computation. The first spawn block creates a thread for each 
preliminary unit of work (a primary ray, a node with in-degree 0, 
etc.).  After a join, threads are spawned for newly discovered 
units of work. The process is repeated until all the work units 
(rays/nodes) are processed (“sync”). 2) Less synchronous 
approaches fork a thread for every new piece of work as it is 
discovered. Typically, only one spawn block is used. The 
granularity of the work units for which a thread is forked, varies 
between the different approaches. For example, in a breadth-first 
search, a thread can be spawned for every node (“async-node”) 
or alternatively for every out-going edge (“async-edge”) for a 
more fine-grained, less-synchronous algorithm. 

Traditional style versions are based on the “sync” version (layer 
by layer topological sort), adding the necessary task 
decomposition. In either approach taken, certain data accesses in 
this computation require synchronization. Where traditional 
programming style uses locks (“trad-lock”), XMT programs use 
the prefix-sum instead (“trad). 

We demonstrate programming tradeoffs for irregular 
applications using the dag program (figure 9). Some trends have 
been observed for the other types of computations, but are 
evident here to a greater extent: 

1. XMT programs can be much simpler, as domain 
distribution and task assignment are not needed. This is 
particularly important for dag, where devising a scheme that 
achieves good load balance may be very challenging, and 
requires substantial effort. 
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2. Reduced synchrony is often achieved at the expense of 
some additional programming effort. However, 
asynchronous programs should excel by enabling 
parallelism as soon as it is discovered (illustrated by the 
superiority of “async-edge/node” over “sync”). 

3. Traditional programming using locks and barriers can be 
supported in XMT; Programs can be implemented in XMT 
in the same way they are implemented under traditional 
parallel programming models. Furthermore, the traditional 
synchronization mechanisms can be replaced with more 
efficient and scalable XMT utilities, such as prefix-sum. 
(illustrated by the superiority of “trad” over “trad-lock”).  

4. The impact of fine-granularity on programming is more 
significant in irregular programs that have traditionally 
resisted parallel solutions due to their unpredictable access 
patterns. Algorithms for such applications can often take 
advantage of fine-grained parallelism (illustrated by the 
superiority of “async-edge” over “async-node”). 

Figure 10 shows results for other programs that have resisted 
parallel solutions due to dynamic, irregular access patterns of 
computation. 
Radix is another example of a program that is known to be very 
problematic with regard to obtaining speedups by parallelization.  
Similarly to dag, it requires a lot of all-to-all communication. 
SPLASH-2 reports very low speedups on their shared memory 
multiprocessor [23].  To maximize scalability, our 
implementation of radix uses fine-grained parallelism wherever 
possible.  This algorithm is much more work-intensive than the 
serial version, and hence does not achieve speedups for less than 
16 TCUs. 
Perimeter and treeadd, benchmarks from Olden, both involve 
traversing a tree from the root down, forking threads along the 
way, until the leaves are reached. Then, the threads work their 
way up the tree performing the fine-grained computation. 
In quicksort we use a hybrid algorithm, where we start in a 
synchronous, extremely fine-grained fashion until sufficient 
partitions have been created.  We then switch to handling all the 
partitions in parallel, in a divide-and-conquer manner. The first 
part involves a lot of spawning and joining, whereas the second 
part is a single spawn that forks threads as new partitions are 
created.   

These results demonstrate that XMT is able to obtain speedups 
for programs where traditional programming approaches have 
achieved very limited success.  

8. CONCLUSION 
XMT is a computation paradigm that spans from parallel 
algorithms, through their programming, to the hardware design. 
The compilation techniques described here offer competitive 
performance for XMT programs. Results show the XMT 
architecture generally succeeds in providing low-overhead 
parallel threads and uniform access times on-chip. However, 
compiler optimizations to cluster (coarsen) threads are still 
needed for very fine-grained threads. The prefix-sum instruction 
provides more scalable synchronization than traditional locks, 
and the flexible programming style also encourages the 
development of new algorithms to take advantage of properties 
of on-chip parallelism. The compilation scheme, combined with 
the efficient architecture and simple programming model, allow 
XMT to realize its uncompromising approach to parallelism. 
Performance gains are achieved for a wider range of problem 
sizes, granularities, and types of algorithms and computations.  
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