
Towards a First Vertical Prototyping of an Extremely
Fine-grained Parallel Programming Approach

Dorit Naishlos1 * †, Joseph Nuzman2 3 * , Chau-Wen Tseng1 3 , Uzi Vishkin2 3 4 *
1 Dept of Computer Science, University of Maryland, College Park, MD 20742

2 Dept of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742
3 University of Maryland Institute of Advanced Computer Studies, College Park, MD 20742
4 Dept of Computer Science, Technion - Israel Institute of Technology, Haifa 32000, Israel

Tel: 301-405-8010, Fax: 301-405-6707

{dorit, jnuzman, tseng, vishkin}@cs.umd.edu

* Supported by NSF grant 9820955
† Current address: IBM Research Lab in Haifa, Matam, Haifa 30195, Israel

ABSTRACT
Explicit-multithreading (XMT) is a parallel programming
approach for exploiting on-chip parallelism. XMT introduces a
computational framework with 1) a simple programming style
that relies on fine-grained PRAM-style algorithms; 2) hardware
support for low-overhead parallel threads, scalable load
balancing, and efficient synchronization. The missing link
between the algorithmic-programming level and the architecture
level is provided by the first prototype XMT compiler. This
paper also takes this new opportunity to evaluate the overall
effectiveness of the interaction between the programming model
and the hardware, and enhance its performance where needed,
incorporating new optimizations into the XMT compiler. We
present a wide range of applications, which written in XMT
obtain significant speedups relative to the best serial programs.
We show that XMT is especially useful for more advanced
applications with dynamic, irregular access pattern, where for
regular computations we demonstrate performance gains that
scale up to much higher levels than have been demonstrated
before for on-chip systems.

Keywords
Parallel programming, compilers, processor architecture.

1. INTRODUCTION
The challenge of exploiting the large and fast growing number of
transistors available on modern chips has motivated the
exploration of parallel architectures. Researchers have
considered parallelism in two main categories. The first is at an
ultra fine-grained level, among instruction sequences. However,

the limited amount of instruction-level parallelism (ILP) present
in programs, and the difficulties to uncover it [12] [20] prevent
computers from fully exploiting the available on-chip resources.
An alternative source of parallelism is at the level of coarse-
grained multithreading, and has been traditionally expressed
under the shared memory or the message-passing programming
models, either directly by programmers, or with the aid of
parallelizing compilers.

Two interesting representative design points for multi-threaded
single-chip architectures are: chip multiprocessors (CMP) such
as the Stanford Hydra [11], and Simultaneous Multithreading
(SMT) [17]. A typical CMP architecture features independent
processing units that share an L2 cache, each executing a
different thread. The observation that resource utilization in a
CMP architecture is limited by the available ILP within a single
thread, has led the SMT design to permit all threads to share the
processor functional units, allowing to exploit ILP across
different threads at a single cycle.

While these new architectures have the ability to exploit fine-
grained parallelism, both CMP and SMT report difficulties to
obtain fine-grained multi-threaded codes for today’s important
uniprocessor programs [10]. On one hand, parallelizing
compilers have been only partially successful at automatically
converting serial codes. On the other hand, the programming
models currently available to programmers were originally
designed to target off-chip parallel architectures, and therefore
do not fit a single-chip environment. Current CMP and SMT
related research concentrates its effort on developing advanced
compiler techniques for fine-grained parallelization, and support
for speculative execution.

XMT (explicit multi-threading) attempts to bridge the gap
between the ultra fine-grained on-chip parallelism and the
coarse-grained multi-threaded program by proposing a
framework that encompasses both programming methodology
and hardware design. XMT tries to increase available ILP using
the rich knowledge base of parallel algorithms. Relying on

parallel algorithms, rather than on a compiler, programmers
express extremely fine-grained parallelism at the thread level.

While some XMT architectural design aspects share motivations
with the other proposed designs, CMP and SMT do not address
programmability and their threading support is not targeted
towards supporting a PRAM-style program. These projects tend
to center their attention on multiprogramming and increasing the
IPC (instructions per clock) rate, rather than reducing a single-
task execution time and measuring speedups relative to the serial
program, which is the focus of XMT.

In addition, XMT aspires to scale up to much higher levels of
parallelism than other single-chip multithreaded architectures
consider currently; for example, where CMP and SMT
presentations typically discuss 4 to 8 processing units, special
XMT hardware gadgets, such as one which allows fast parallel
prefix-sum, allow us in this paper to examine configurations of
up to 256 Thread Control Units (TCUs)). Tile based
architectures, such as MIT’s Raw [22], also expect to scale to
high levels of parallelism. However, Raw utilizes a message-
passing model rather than the shared-memory model of XMT. In
addition, Raw heavily relies on compiler technology to manage
data distribution and movements between tiles. As such, it is
much easier to program for the XMT architecture, and it is also
expected to address a wider range of applications.
Last point of comparison, the Tera (now Cray) Multi-Threaded
Architecture (MTA) [1] also supports many threads on a given
processor. There, however, the processors switch between
threads to hide latencies, rather than running multiple threads
concurrently. Moreover, the MTA, like other MPP machines, is
designed for big computations with large inputs. XMT aims to
achieve speed-ups for smaller input computations, such as those
in desktop applications.

Previous papers on XMT have discussed in detail its fine-
grained SPMD multi-threaded programming model, architectural
support for concurrently executing multiple contexts on-chip,
and preliminary evaluation of several parallel algorithms using
hand-coded assembly programs [18] [7]. The introduction of an
XMT compiler, presented here, allows us to evaluate XMT for
the first time as a complete environment (“vertical prototyping”),
using a much larger benchmark suite (with longer codes) than
before. Due to the rather broad nature of our work, specialized
parts of the work – the evaluation of the XMT compiler and
evaluation of the programming model – were published in two
respective specialized workshops [13], [14]. This paper
incorporates the feedback from these workshops, and is the first
one to present the whole work, including the integrated results,
as well as the interplay between the programming model and the
other components of XMT (compiler and architecture).

We begin by reviewing the XMT multi-threaded programming
model and architecture in section 2. Section 3 presents the
prototype XMT compiler and code generation model. We then
describe the XMT simulator and experimental methodology in
section 4, and evaluate the efficiency of our implementation in
section 5. Section 6 discusses compiler optimizations to coarsen
threads. Section 7 puts it all together by revisiting the XMT
programming features, and evaluating to what extent the

hardware and compiler are able to support them efficiently.
Section 8 concludes.

2. THE XMT FRAMEWORK
Most of the programming effort involved in traditional parallel
programming (domain partitioning, load balancing), is of lesser
importance for exploiting on-chip parallelism, where parallelism
overhead is low and memory bandwidth is high. This
observation motivated the development of the XMT
programming model. XMT is intended to provide a parallel
programming model, which is 1) simpler to use, yet 2) efficiently
exploits on-chip parallelism.

These two goals are achieved by a number of design elements;
The XMT architecture attempts to take advantage of the faster
on-chip communication times to provide more uniform memory
access latencies. In addition, a specialized hardware primitive
(prefix-sum) exploits the high on-chip communication
bandwidth to provide low overhead thread creation. These low
overheads allow to efficiently support fine-grained parallelism.
Fine granularity is in turn used to hide memory latencies, which,
in addition to the more uniform memory accesses, supports a
programming model where locality is less of an issue. The XMT
hardware also supports dynamic load balancing, relieving the
programmers of the task of assigning work to processors. The
programming model is simplified further by letting threads
always run to completion without synchronization (no busy-
waits), and synchronizing accesses to shared data with a prefix-
sum instruction. All these features result in a flexible
programming style, which encourages the development of new
algorithms, and is expected to target a wider range of
applications.

2.1 XMT Programming Model
The programming model underlying the XMT framework is an
arbitrary CRCW (concurrent read concurrent write) SPMD
(single program multiple data) programming model. In the
XMT programming model, an arbitrary number of virtual
threads, initiated by a spawn and terminated by a join, share the
same code. The arbitrary CRCW aspect dictates that concurrent
writes to the same memory location result in an arbitrary one
committing. No assumption needs to be made beforehand about
which will succeed. This permits each thread to progress at its
own speed from its initiating spawn to its terminating join,
without ever having to wait for other threads; that is, no thread
busy-waits for another thread. An advantage of using this easier
to implement SPMD model is that it is also an extension of the
classical PRAM model, for which a vast body of parallel
algorithms is available in the literature. (Previous XMT papers
related the relaxation in the synchrony of PRAM algorithms to
works such as [6] on asynchronous PRAMs).
The programming model also incorporates the prefix-sum
statement. The prefix-sum operates on a base variable, B, and an
increment variable, R. The result of a prefix-sum (similar to an
atomic fetch-and-increment) is that B gets the value B + R, while
the return value is the initial value of B. The primitive is
especially useful when several threads simultaneously perform a
prefix-sum against a common base, because multiple prefix-sum
operations can be combined by the hardware to form a multi-

operand prefix-sum operation. Because each prefix-sum is
atomic, each thread will receive a different return value. This
way, the parallel prefix-sum command can be used for
implementing efficient and scalable inter-thread synchronization,
by arbitrating an ordering between the threads.
The XMT-C high-level language is an extension of standard C.
A parallel region is delineated by spawn and join statements.
Every thread executing the parallel code is assigned a unique
thread ID, designated TID. The spawn statement takes as
arguments the number of threads to spawn and the ID of the first
thread.
Consider the following example of a small XMT-C program.
Suppose we have an array of n integers, A, and wish to
“compact” the array by copying all non-zero values to another
array, B, in an arbitrary order. The code below spawns a thread
for each element in A. If its element is non-zero, a thread
performs a prefix-sum (ps in XMT-C) to get a unique index into
B where it can place its value.

m = 0;
spawn(n,0);

{
int TID;

if (A[TID] != 0) {
int k;
k = ps(&m,1);
B[k] = A[TID];

}
}

join();

The SpawnMT model of [18] does not allow for nested initiation
of an arbitrary-size spawn within a parallel spawn region. Such
a feature, while useful, would be difficult to realize efficiently
with hardware support. As an alternative, [19] extended the
programming model to support a fork operation. A thread can
perform a fork operation to introduce a new virtual thread as
work is discovered. Forks must be executed one at a time by a
single thread, but forks from multiple threads can be performed
in parallel. The fork extension allows the programmer to
approach many problems in a more asynchronous and dynamic
manner. In XMT-C, fspawn is used when forking may be
necessary, and xfork performs the fork operation.
MIT’s Cilk [9] also provides a multi-threaded programming
interface and execution model, however, there are two important
differences in scope. First, since Cilk is targeted at compatibility
with existing SMP machines, load balancing in software was
important. XMT provides hardware support to bind virtual
threads to thread control units (TCUs) exactly as the TCUs
become available. The low-overhead of XMT is designed to be
applicable to a much broader range of applications. Second, Cilk
presents a programming model that tries to match very closely
standard serial programming constructs, where forking a thread
takes the form of a function call. While XMT also bases its
programming model on standard C, the programmer is expected
to rethink the way parallelism is expressed. The wide-spawn
capabilities and prefix-sum primitive are present to support the
many algorithms targeted to the PRAM model.

2.2 The XMT Architecture
In an XMT machine, a thread control unit (TCU) executes an
individual virtual thread. Upon termination, the TCU performs a
prefix-sum operation in order to receive a new thread ID. The
TCU will then emulate the thread with that ID. All TCUs repeat
the process until all the virtual threads have been completed.
This functionality is enabled by support at the instruction set
level. With our architecture, all TCUs independently execute a
serial program. Each accepts the standard MIPS instructions,
and possesses a standard set of MIPS registers locally. The
expanded ISA includes a set of specialized global registers,
called prefix-sum registers (PR), and a few additional
instructions.
New instructions are used for thread management. A spawn
instruction interrupts all TCUs and broadcasts a new PC at
which all TCUs will start. The pinc instruction operates on the
PR registers, and performs a parallel prefix-sum with value 1. A
specialized global prefix-sum unit can handle multiple pinc's to
the same PR register in parallel. Simultaneous pincs from
different TCUs are grouped, and the prefix-sum is computed and
broadcast back to the TCUs. This process is pipelined and
completes within a constant number of cycles.
The ISA also includes instructions for parallel read of a PR
register (prefix-sum with value 0) and for initialization of a PR
register. The psm instruction allows for communication and
synchronization between threads. It performs a prefix-sum
operation with an arbitrary increment to any location in memory.
It is an atomic operation, but due to hardware limitations, is not
performed in parallel (i.e., concurrent psm’s will be queued).
This is equivalent to a fetch-and-increment [8] primitive (cf.
[2]). Additional instructions exist to support the nested forking
mechanism [14].
The fundamental units of execution for the simulated machine
are the multiple TCUs, each of which contains a separate
execution context. In hardware, an individual TCU basically
consists of the fetch and decode stages of a simple pipelined
processor.
To increase resource utilization and to hide latencies, sets of
TCUs are grouped together to form a cluster, quite similar in
spirit to an SMT processor. The TCUs in a cluster share a
common pool of functional units, as well as memory access and
prefix-sum resources. The clusters can be replicated repeatedly
on a given chip. More details about the simulated architecture is
described elsewhere [5]. Unlike previous designs, the simulated
architecture does not have hard-wired thread management, and
uses a banked memory rather than a monolithic memory.

3. THE XMT COMPILER
Parallel execution in the XMT architecture requires handling 1)
Transition to parallel mode- activating all the TCUs and setting
up their environment; 2) Thread creation and termination -
emulate the virtual threads on each TCU – obtain a thread ID for
each, and verify that it is a valid ID (i.e., less than the spawn
size); 3) Transition back to serial mode - detect when all threads
have terminated, and resume serial execution.
In first presentations of XMT, these tasks were handled entirely
by hardware automatons. In this paper, we present a scheme
whereby the preceding tasks are orchestrated by compiler. This

choice pays off in performance and flexibility. For example, the
compiler is free to schedule certain operations to have a per-
TCU cost rather than a per-thread cost. Additionally, the more
general hardware allows for various extensions, such as different
forking schemes, and can easily support parallelization models
other than XMT.
The prototype XMT compiler consists of two phases: 1) The
front end (“Xpass”) - a source-to-source translator based on
SUIF [21]. This phase converts the XMT code with its parallel
constructs into regular C code with specialized assembly
templates for run-time threading support. 2) The back end (gcc) -
builds an executable for the C code produced by Xpass. As we
based our simulator implementation on the SimpleScalar ISA,
we used the version of gcc from the SimpleScalar 2.0 package –
gcc 2.6.3.
The general scheme used by Xpass is based on transforming
parallel codes into parallel procedures. The compiler transforms
the parallel region (the code in the spawn-join block) into the
body of the procedure. When the procedure is called, the
processing units are awakened, and each starts to execute the
procedure body, which emulates the threads on each TCU.
Figure 1 presents a high level example of the transformations
performed by our compiler. Producing this structure involves
two tasks: 1) Outlining. Detect all parallel regions (spawn-join
blocks) and create a function definition for each (a “spawn-
function”). Replace the spawn-join block with a call to the
spawn-function. 2) Spawn-function transformation. Add TCU
initialization code and thread emulation constructs to the spawn-
function. These constructs include wrapping the body of the
spawn-join block with a loop to emulate the threads, and
inserting assembly templates.

4. EXPERIMENTAL METHODOLOGY
A behavioral simulator, comparable to SimpleScalar [4], has
been developed for an XMT architecture. For our experiments,

we specify 8 TCUs in each cluster. Each cluster contains 4
integer ALUs, 2 integer multiply/divide units, 2 floating point
ALUs, 2 floating point multiply/divide units, and 2 branch units.
All functional unit latencies are set to the SimpleScalar sim-
outorder defaults: integer divide, multiply and ALU ops take 20,
3 and 1 cycles respectively, floating point divide, multiply and
ALU ops take 12, 4 and 2 cycles respectively, and square root
takes 24 cycles. Each cluster has a L1 cache of 8 KB, and a
shared, banked L2 cache of 1 MB. The number of banks is
chosen to be twice the number of clusters. The L2 cache latency
is 6 cycles and memory latency is 25 cycles. A penalty of 4
cycles is charged each way for inter-cluster communication.
Configurations are simulated with 1, 4, 16, 64, and 256 TCUs.
(The 1 and 4 TCU configurations obviously have fewer than 8
TCUs per cluster.) Keep in mind that these numbers indicate the
number of simultaneous execution contexts, and do not imply
hardware functionality equivalent to the same number of
standard microprocessors.
The highest-end configuration simulated uses 32 clusters. At
this point, connectivity to this degree has not been demonstrated
for a single-chip system. The interconnection implementation is
an important element of a scalable XMT hardware architecture.
The simulator used reflects results of VLSI experiments with a
specific design, which are discussed in detail elsewhere [15].
For the purposes of this paper, then, the results for the high-end
configuration can be considered to be indicative of the potential
for the XMT threading model to scale to high degrees of
parallelism. This scalability is one of the most important
features of the methods presented here.

5. EVALUATING THE XMT
ENVIRONMENT
This section evaluates the efficiency of the XMT environment by
examining 1) the overheads that the parallel constructs incur; 2)
memory stall behavior, 3) load balance, and 4) scalability of the
system. We focus here on general features of our platform,
independently of programming considerations. Programming
issues are discussed in section 7.

5.1 Overheads
Setting up a parallel region and managing the threads incur an
overhead. We can break down this cost to the following different
elements: 1) Spawn-Setup: setting up the environment,
broadcasting data. 2) TCU-Init: initializing the TCUs context. 3)
Thread Overhead: emulating threads on each TCU - obtain a
thread ID and verify that it is less than the spawn size. 4) Load
Imbalance (Spawn-End): idling at the end of a spawn until all
threads complete, then transitioning back to serial mode.

We examined the costs that the different kinds of overheads
incur, and observed several trends. Overheads are generally very
low. This allows XMT to obtain good speedups even for very
small problem sizes, and very fine-grained parallelism. Figure 2
reports spawn-block overhead costs for a matrix multiplication
program. These results, typical of XMT programs, demonstrate
that setting up the parallel region is a cheap operation. The
Spawn-Setup and TCU-Init overheads are in general negligible,
and remain low under increasing problem sizes and increasing
number of TCUs. As a result, programs that involve many

main() {
spawn(num_threads, offset);
{

int TID;

THREAD-CODE
}
join();

}

Above XMT-C program is transformed to:
main() {

spawn_setup(num_threads, offset);
main_0_spawn();

}

main_0_spawn () {
int TID, maxtid, offset;
spawn_init(&max_tid, &offset);
TID = TCUID + offset;
while (TID < max_tid) {

THREAD-CODE

TID = get_new_tid();
};
tcu_halt_suspend();

}
Figure 1: XMT code shape

s
i
p
h
e
T
c
r
W
a
d
c
v
v
d
v
s
f
c
e
(

5.2 Memory Stall Behavior
An interesting factor to examine is how memory stall behavior
scales with the number of TCUs. We found that the ratio of time
spent waiting on memory to time spent on processing was
largely constant from 1 to 256 TCUs for most of the programs
tested. As an example, Figure 4 shows the breakdown of TCU
time between active processing (CPU), memory stalls, and idling
for dbtree - a program that performs a batch of indexed-tree
searches. As the number of TCUs increases, the memory stall
share does not excessively increase. This can be attributed to the
XMT architecture design, which relies on a high-bandwidth,
scalable on-chip memory system.
0
1000
2000
3000
4000
5000

cy
cl

es

spawn
setup

TCU init spawn-end

overheads

mmult, scaling of spawn overheads

1

4

16

64

256

Figure 2: spawn block overheads.
pawns and joins still perform well. As the number of TCUs
ncreases, the opportunity cost of idle TCUs at the end of the
arallel region (Spawn-End) becomes more significant. Note
owever, that these overheads amount to less than 0.01% of the
ntire execution time of the program.
he most dominant overhead is the one charged to thread
reation. We therefore concentrate on optimizations that aim to
educe this overhead (section 6).

e also observe that the thread structure of the parallel
lgorithm greatly affects the overhead distribution. We
emonstrate that using two versions of dag, a program that
omputes maximum length paths in a DAG. A synchronous
ersion uses frequent spawns and joins, while an asynchronous
ersion forks new threads to explore nodes as they are
iscovered. Figure 3 shows overhead breakdowns for both
ersions on two different graph sizes. As illustrated, the
ynchronous version pays a heavy price in load imbalance. The
orking version is able to adapt to the unpredictable
omputational demands and avoid these costs. This advantage is
vident in the speedups achieved, especially with more TCUs
figure 9). 5

T
c
c
b
p
r
e

DAG: async/sync, Overheads (64 tcus)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

async
100

sync async
1024

sync

problem size

%
 o

f e
xe

cu
tio

n
tim

e

spawn setup TCU init
wait for tid thread overhead
load imbalance

Figure 3: Fork versus synchronous programming

256

le

.
Time Breakdown, dbtree

0%

20%

40%

60%

80%

100%

1 4 16 64
tcus

%
 o

f e
xe

cu
tio

n
tim

e

cpu memory id

Figure 4: Memory stall behavior, dbtree
.3 Dynamic Load Balancing
he XMT architecture provides dynamic load balancing; newly
reated threads are automatically assigned to TCUs without
omplicated programmer intervention. This dynamic load
alancing is particularly useful for handling cases where work
artitioning is of an unpredictable nature. Figure 5 reports
esults for the dag program running on 16 TCUs, showing
xecution time breakdown (number of cycles) for each TCU.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

end of
spawn

thread
total

init

setup

Figure 5: Load Balance in dag.

We observe that the disparity between TCU work loads is
relatively small considering the irregular nature of the
computation, with large disparity between thread lengths (some
threads terminate immediately, whereas other loop through all
the outgoing edges of the nodes they operate on. As a result,
thread lengths vary considerably (range from 96 to 516 cycles)).

5.4 Scalability
To demonstrate the scalability of XMT we present speedups of
XMT programs relative to the best serial version, for
applications that are considered to be relatively parallelizable:
jacobi (a 2D PDE kernel), tomcatv (the SPEC95 mesh
generation program), mmult (matrix multiply) and dot (dot
product) from Livermore Loops, image convolution (from [3]),
and two database kernels – dbscan (SQL select query on a non-
indexed relation [3]) and dbtree (indexed-tree searches, taken
from MySQL). These programs feature regular computations
that operate on different entries of a data structure independently
of one another. This allows a very simple parallelization scheme
that involves small extra overhead, where basically a thread is
spawned for each loop iteration in the serial version.

The results shown in figure 6 demonstrate that XMT programs
are able to obtain good speedups, that scale up to much higher
levels (256 TCUs) than have been demonstrated before for
single-chip systems. Low speedups demonstrated by Tomcatv,
are attributed to a problem size that is too small (64 columns),
limiting the available parallelism for the scheme used.

6. COMPILER OPTIMIZATIONS
The XMT programming methodology encourages the
programmer to express any parallelism, regardless of how fine-
grained it may be. The low overheads involved in emulating the
threads allow this fine-grained parallelism to be competitive.
However, despite the efficient implementation, extremely fine-
grained programs can benefit from coarsening, as it decreases
the thread count, consequently reducing the overall thread
overhead. Furthermore, thread coarsening may allow to exploit
spatial locality, and reduce duplicate work; however, these
opportunities occur only in regular codes, where it is also easy to

automatically detect and optimize. By grouping consecutive
threads, clustering exploits spatial locality, and allows the
programmer to ignore granularity and task assignment
considerations, which are otherwise relevant.

The XMT compiler detects cases where the length of the thread
is sufficiently small (such that the thread overhead constitutes a
significant enough portion of the thread). This parameter is
evaluated at compile time using SUIF's static performance
estimation utility. The compiler then automatically transforms
these spawn-blocks such that fewer but longer threads are used.
Furthermore, our optimization takes load balance considerations
into account by reserving unclustered-threads at the tail of the
spawn. Tuning this value can reduce the load imbalance cost,
however at the expense of a small increase in thread overhead.
Therefore, two sets of threads are emulated: the first set consists
of the coarse clustered-threads, and the second is the set of the
remaining fine-grained unclustered-threads.

Rather than splitting the computation to two separate spawn-
blocks (one for each set of threads), or introducing a conditional
control to determine between the two, we use the following
scheme: we create a single spawn block, which contains two
separate thread emulation loops – one for the clustered-threads,
and one for the unclustered-threads. Thus, given a fine-grained
spawn-block of n threads, our compiler approach results in the
following execution scheme. The execution starts with a coarse
grained version, and then, after m out of the original n threads
have been emulated through the coarse-grained version, the
execution switches to a finer grained version, to finish all n
threads. Once the XMT execution crosses a threshold, the
SPMD code becomes the fine-grained version. So, any TCU that
picks up virtual threads from that point on, executes directly the
fine-grained version, rather than having each TCU refigure that
we are in the tail case and only then jump to the code for the tail
case.

Figure 7 presents the overall improvement obtained by
clustering, as percentage of the original (fine-grained) execution
time. We report results for LU, dbscan and jacobi. Two major
factors contribute to performance improvement: 1) Exploiting
spatial locality: clustering reduces overall memory stall time by

dbscan dbtree convolution

4 256

Speedups

0

50

100

150

200

250

jacobi tomcatv mmult dot

sp
ee

du
p

ov
er

 b
es

t s
er

ia
l

1 4 16 6

Figure 6: Scaling of speedups

regular and predictable. Many scientific applications rely on this
type of algorithm, including PDE solvers, mesh generators and
linear algebra codes.

The independence between the elements of computations in this
type of program, naturally allows parallelism present across all
elements to be exploited. In XMT, this is translated to a simple
parallelization scheme, where a thread is spawned for each loop
iteration. Traditional parallelization differs from XMT in having
to first partition the domain to (coarse-grained) units of work,
and devise a scheme that assigns these blocks of work to the
processing units. For the simple family of algorithms discussed
here, domain partitioning and task assignment take the form of
scheduling loop iterations across the processors. For array based
applications, locality considerations determine the scheduling
scheme, whether block-wise, cyclic, or blocked-cyclic.

The different programming style directly affects the granularity
of the parallelism that is expressed. The XMT programs, taking
advantage of the parallelism present to the largest degree
possible often result in very fine-grained computations. For the
programs we examine in this category, the typical length of a
thread is between 3 to 6 source lines. Traditional programming
neglects the per-entry parallelism and distributes the work in a
coarse-grained fashion.
% improvement due to clustering

12.12%

35.24%

0.20%
0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

LU jacobi dbscan

Figure 7: Impact of clustering.
20%, 64% and 14% for LU, jacobi and dbscan, respectively. 2)
Eliminating duplicate work: clustering can potentially incur less
duplicate work by scheduling operations to have per-cluster cost
rather than per-thread cost. Thus, the overall active processing
time can be reduced. In LU and jacobi this is indeed the case;
clustering reduces CPU time by 13% for LU, and by 21% for
jacobi. However in dbscan clustering actually increases CPU
time by 18%, due to the overheads that the clustering
transformation introduces. The prefix-sum operation that the
threads perform in dbscan inhibit the conservative compilation
scheme from extracting computation out of the cluster loop.
Consequently, clustering does not improve performance for
dbscan.

7. EVALUATING THE XMT
PROGRAMMING MODEL
While traditional shared memory programming consists of
assigning as coarse-grained chunks of work to processes as
possible, using locks and barriers for synchronization, XMT
programs feature 1) No task assignment, 2) Fine-grained
parallelism, and 3) No busy-wait. It remains to be examined to
what extent this programming methodology is able to excel in an
on-chip environment. In this section we discuss how these
features are manifested in the programming and performance of
two different types of computation domains - regular
computations, and irregular dynamic computations. (Other types
of computations, such as divide-and-conquer and sorting
algorithms, are discussed in [14]).

7.1 Regular Computations
This family of algorithms encompasses any computation that
takes the form of looping through a sequence of independent
operations, all consisting of the same amount of work, typically
applied to different elements of the data structure. The access
pattern characteristic of these algorithms is therefore very

To evaluate the effects of granularity and task assignment on
performance we use LU, mmult, convolution and jacobi. We
compare (figure 8) the following versions for each: 1) “by-
entry”/”by-row”, where a thread is spawned directly for each
entry/row. For these regular computations, the coarser by-row
versions outperform the fine by-entry versions, demonstrating
the need for thread coarsening for this type of applications. (The
by-entry version of mmult and conv is already relatively coarse-
grained, which is why these programs are missing results for a
by-row version). 2) “trad”, where traditional style programming
with respect to task assignment is used. Here, a thread is
spawned for a group of rows/entries. For mmult and
convolution, both versions achieve similar speedups. The

.
Granularity and task assignment effects in
regular computations

0

10

20

30

40

50

60

70

80

LU 128 jacobi 512 mmult 128 conv 128

program and problem size

sp
ee

du
ps

by-entry trad. by-row

Figure 8: Granularity and Task assignment

traditional mmult is able to amortize some duplicate work, while
the “by-entry” versions of convolution LU and jacobi take the
lead by avoiding some task assignment overhead.

To conclude the discussion on regular computations, we discuss
general reduction computations, as they provide a classic
example for a case where XMT employs an entirely different
algorithmic approach than the traditional one. We present two
algorithms. Both utilize a binary tree structure [19]. The first,
propagates values up the tree in a synchronous fashion, using a
spawn and join for each layer of the tree. Each spawn block
consists of a thread for each node in the parent layer that applies
the reduction operation on the two children of that node. This is
repeated for the next level, until the root of the tree is reached.

The second algorithm propagates values in an asynchronous
fashion, involving only one spawn-join block within which
threads advance without busy-waiting. This solution requires
maintaining an additional data structure, a gatekeeper, to ensure
that the reduction operation is applied on a node is after the
value of both its children is ready. The computation proceeds as
follows: after the value of a node has been computed, the thread
performs a prefix-sum relative to the gatekeeper of that node’s
parent. The result of the prefix-sum indicates if it was the first
thread to do so, in which case it terminates. Otherwise it was the
second; it proceeds to calculate the value for the parent, and
continue.

Our experiments show that the asynchronous algorithm is
outperformed by the synchronous one [14] due to the amount of
storage and extra work that it involves. Asynchronous
algorithms are more useful for irregular computations, as we
show next.

7.2 Irregular, Dynamic Computations
The algorithms we discuss here are characterized by highly
irregular and unpredictable access patterns. Specifically, we
consider computations that begin with a limited amount of work
and discover additional work as they proceed. The newly
discovered work typically requires splitting the processing to
subtasks and combining the contribution of each as they
complete. For example, consider rendering techniques that rely
on ray tracing. There, primary rays fired from a viewpoint
encounter objects, and are reflected from and refracted through
the objects, spawning new rays. The same operations are
performed recursively on the new rays, all contributing to the
intensity and color of the same pixel. This pattern of
computation is also present in applications that rely on breadth-
first-search style algorithms.

The irregular nature of this type of algorithm makes them good
candidates for a less synchronous parallelization scheme. This is
the programming approach that XMT employs, using dynamic
forking as new units of work are discovered (be it rays, graph
nodes/edges, etc.). Traditional parallel programming, with its
coarse-grained work decomposition and task assignment, can’t
employ a simple static scheme as it would lead to severe load
imbalances. Traditional parallelization techniques therefore
require explicitly balancing processor workloads, either by
intelligent partitioning or dynamic work stealing (such as the
SPLASH-2 implementations for volume rendering, radiosity and
a ray tracing [16]).

XMT implementations take one of the following approaches: 1)
A synchronous approach performs a spawn at each stage of the
computation. The first spawn block creates a thread for each
preliminary unit of work (a primary ray, a node with in-degree 0,
etc.). After a join, threads are spawned for newly discovered
units of work. The process is repeated until all the work units
(rays/nodes) are processed (“sync”). 2) Less synchronous
approaches fork a thread for every new piece of work as it is
discovered. Typically, only one spawn block is used. The
granularity of the work units for which a thread is forked, varies
between the different approaches. For example, in a breadth-first
search, a thread can be spawned for every node (“async-node”)
or alternatively for every out-going edge (“async-edge”) for a
more fine-grained, less-synchronous algorithm.

Traditional style versions are based on the “sync” version (layer
by layer topological sort), adding the necessary task
decomposition. In either approach taken, certain data accesses in
this computation require synchronization. Where traditional
programming style uses locks (“trad-lock”), XMT programs use
the prefix-sum instead (“trad).

We demonstrate programming tradeoffs for irregular
applications using the dag program (figure 9). Some trends have
been observed for the other types of computations, but are
evident here to a greater extent:

1. XMT programs can be much simpler, as domain
distribution and task assignment are not needed. This is
particularly important for dag, where devising a scheme that
achieves good load balance may be very challenging, and
requires substantial effort.

DAG100

0

1

2

3

4

5

6

1 4 16 64 256

tcus

Sp
ee

du
p

async edge
async node
sync
trad.
trad. Lock

Figure 9 - Synchronization Options in dag
(100 nodes, 473 edges)

2. Reduced synchrony is often achieved at the expense of
some additional programming effort. However,
asynchronous programs should excel by enabling
parallelism as soon as it is discovered (illustrated by the
superiority of “async-edge/node” over “sync”).

3. Traditional programming using locks and barriers can be
supported in XMT; Programs can be implemented in XMT
in the same way they are implemented under traditional
parallel programming models. Furthermore, the traditional
synchronization mechanisms can be replaced with more
efficient and scalable XMT utilities, such as prefix-sum.
(illustrated by the superiority of “trad” over “trad-lock”).

4. The impact of fine-granularity on programming is more
significant in irregular programs that have traditionally
resisted parallel solutions due to their unpredictable access
patterns. Algorithms for such applications can often take
advantage of fine-grained parallelism (illustrated by the
superiority of “async-edge” over “async-node”).

Figure 10 shows results for other programs that have resisted
parallel solutions due to dynamic, irregular access patterns of
computation.
Radix is another example of a program that is known to be very
problematic with regard to obtaining speedups by parallelization.
Similarly to dag, it requires a lot of all-to-all communication.
SPLASH-2 reports very low speedups on their shared memory
multiprocessor [23]. To maximize scalability, our
implementation of radix uses fine-grained parallelism wherever
possible. This algorithm is much more work-intensive than the
serial version, and hence does not achieve speedups for less than
16 TCUs.
Perimeter and treeadd, benchmarks from Olden, both involve
traversing a tree from the root down, forking threads along the
way, until the leaves are reached. Then, the threads work their
way up the tree performing the fine-grained computation.
In quicksort we use a hybrid algorithm, where we start in a
synchronous, extremely fine-grained fashion until sufficient
partitions have been created. We then switch to handling all the
partitions in parallel, in a divide-and-conquer manner. The first
part involves a lot of spawning and joining, whereas the second
part is a single spawn that forks threads as new partitions are
created.

These results demonstrate that XMT is able to obtain speedups
for programs where traditional programming approaches have
achieved very limited success.

8. CONCLUSION
XMT is a computation paradigm that spans from parallel
algorithms, through their programming, to the hardware design.
The compilation techniques described here offer competitive
performance for XMT programs. Results show the XMT
architecture generally succeeds in providing low-overhead
parallel threads and uniform access times on-chip. However,
compiler optimizations to cluster (coarsen) threads are still
needed for very fine-grained threads. The prefix-sum instruction
provides more scalable synchronization than traditional locks,
and the flexible programming style also encourages the
development of new algorithms to take advantage of properties
of on-chip parallelism. The compilation scheme, combined with
the efficient architecture and simple programming model, allow
XMT to realize its uncompromising approach to parallelism.
Performance gains are achieved for a wider range of problem
sizes, granularities, and types of algorithms and computations.

9. ACKNOWLEDGEMENT
Help by Yosi Ben-Asher and the hosting of D. Naishlos by the
IBM Haifa Research Lab in January 2000 are gratefully
acknowledged.

10. REFERENCES
[1] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A.

Porterfield, and B. Smith, “The Tera Computer System,”
Proc. International Conference on Supercomputing, 1990.

[2] G.S. Almasi A. Gottlieb. Highly Parallel Computing,
Second Edition. Benjamin/Cummings, 1994.

[3] A. Acharya, M. Uysal, J. Saltz. Active Disks: Programming
Model, Algorithms, and Evaluation. Proc. ASPLOS’98,
October 1998.

[4] D. Burger and T. M. Austin, “The SimpleScalar Tool Set,
Version 2.0,” Tech. Report CS-1342, University of
Wisconsin-Madison, June 1997.

[5] E. Berkovich, J. Nuzman, M. Franklin, B. Jacob, U.
Vishkin, "XMT-M: A scalable decentralized processor,"

reeadd dag

.
0

20

40

60

80

100

120

140

perim eter quicksort radix t

sp
ee

du
p

ov
er

 b
es

t s
er

ia
l

Figure 10: Speedups for irregular applications

UMIACS TR 99-55, September 1999.

[6] R. Cole and O. Zajicek, “The APRAM: incorporating
asynchrony into the PRAM model,” Proc. 1st ACM-SPAA,
pp. 169-178, 1989.

[7] S. Dascal and U. Vishkin, “Experiments with List Ranking
on Explicit Multi-Threaded (XMT) Instruction
Parallelism,” Proc. 3rd Workshop on Algorithms
Engineering (WAE-99), July 1999, London, U.K. To
appear in ACM Journal of Experimental Algorithmics.

[8] E. Freudenthal and A. Gottlieb, “Process Coordination with
Fetch-and-Increment,” Proc. Fourth International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-IV), 1991.

[9] M. Frigo, C. Leiserson, K. Randall, "The Implementation of
the Cilk-5 Multi-threaded Language," Proc. of the 1998
ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), 1998.

[10] L. Hammond, B. a. Hubbert, M. Siu, M.k. Prabhu, M.
Chen, K. Olukotun, “The Stanford Hydra CMP,” IEEE
MICRO magazine, March-April 2000, pp. 71-84.

[11] L. Hammond, B. Nayfeh, and K. Olukotun, ”A Single-Chip
Multiprocessor,” IEEE Computer, Vol. 30, pp. 79-85,
September 1997.

[12] M. S. Lam, R. P. Wilson, “Limits of Control Flow on
Parallelism,” Proceeding of the 19th International
Symposium on Computer Architecture (ISCA), May 1992,
pages 19-21.

[13] D. Naishlos, J. Nuzman, C.-W. Tseng, and U. Vishkin,
"Evaluating Multi-threading in the Prototype XMT
Environment," In Proc. 4th Workshop on Multi-Threaded
Execution, Architecture and Compliation (MTEAC2000),
December 2000. Best Paper Award.

[14] D. Naishlos, J. Nuzman, C.-W. Tseng, and U. Vishkin,
"Evaluating the XMT Parallel Programming Model,” To
appear in Proc. of the 6th Workshop on High-Level Parallel

Programming Models and Supportive Environments (HIPS-
6), April 2001.

[15] J. Nuzman, Masters thesis, University of Maryland,
Department of Electrical and Computer Engineering, 2001.
In preparation.

[16] J. P. Singh, A. Gupta, M. Levoy, “Parallel Visualization
Algorithms: Performance and Architectural Implications,”
IEEE Computer 27(7):45-55, July 1994.

[17] D. M. Tullsen, S. J. Eggers, H. M. Levy, “Simultaneous
Multithreading: Maximizing On-Chip Parallelism,” In Proc.
of the 22nd Annual International Symposium on Computer
Architecture, Santa Margherita Ligure, Italy, June 1995.

[18] U. Vishkin, S. Dascal, E. Berkovich, and J. Nuzman,
“Explicit Multi-threaded (XMT) Bridging Models for
Instruction Parallelism,” Proc. 10th ACM Symposium on
Parallel Algorithms and Architectures (SPAA), pp. 140-
151, 1998.

[19] U. Vishkin, "A No-Busy-Wait Balanced Tree Parallel
Algorithmic Paradigm," Proc. 12th ACM Symposium on
Parallel Algorithms and Architectures (SPAA), 2000.

[20] D. W. Wall, “Limits of Instruction-Level Parallelism,”
DEC-WRL Research Report 93/6, Nov. 1993.

[21] R. Wilson et al, “SUIF: An Infrastructure for Research on
Parallelizing and Optimizing Compilers,” ACM SIGPLAN
Notices, v. 29, n. 12, pp. 31-37, December 1994.

[22] E. Waingold, M. Tayor, D. Srikrishna, V. Sarkar, W. Lee,
V. Lee, J. Kim, M. Frank, P. Finch, R. Barua, J. Babb, S.
Amarasinghe, and A. Agarwal, ”Baring It All to Software:
Raw Machines,” IEEE Computer, Vol. 30, pp. 86-93,
September 1997.

[23] S. Woo, M. Ohara, E. Torrie, J. Singh, A. Gupta, “The
SPLASH-2 Programs: Characterization and Methodological
Considerations,” Proc. of the 22nd Annual International
Symposium on computer Architecture, pp. 24-36, June
1999.

	INTRODUCTION
	THE XMT FRAMEWORK
	XMT Programming Model
	The XMT Architecture

	THE XMT COMPILER
	EXPERIMENTAL METHODOLOGY
	EVALUATING THE XMT ENVIRONMENT
	Overheads
	Memory Stall Behavior
	Dynamic Load Balancing
	Scalability

	COMPILER OPTIMIZATIONS
	EVALUATING THE XMT PROGRAMMING MODEL
	Regular Computations
	Irregular, Dynamic Computations

	CONCLUSION
	ACKNOWLEDGEMENT
	REFERENCES

