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Abstract

We prove that the existential theory of equations with normalized rational con-
straints in a fixed graph product of finite monoids, free monoids, and free groups
is PSPACE-complete. Under certain restrictions this result also holds if the graph
product is part of the input. As the second main result we prove that the positive
theory of equations with recognizable constraints in graph products of finite and free
groups is decidable.

1 Introduction

Since the seminal work of Makanin [25] on equations in free monoids, the decidability of
various theories of equations in different monoids and groups has been studied, and several
new decidability and complexity results have been shown. Let us mention here the results
of [37, 40] for free monoids, [7, 18, 26, 27] for free groups, [10] for free partially commutative
monoids (trace monoids), [11] for free partially commutative groups (graph groups), [9] for
plain groups (free products of finite and free groups), and [39] for torsion-free hyperbolic
groups.

In this paper we continue this stream of research. We will present two main results.
The first one concerns existential theories of equations. We start with the definition of a
class of monoids, which are constructed from finite monoids, free monoids, and free groups
using the graph product construction, which is a well-known construction in mathematics,
see e.g. [17, 20] This class of graph products strictly covers the classes mentioned above
up to the class torsion-free hyperbolic groups, which is in some sense orthogonal to the
classes considered here. We prove that for such a graph product the existential theory of
equations can be decided in PSPACE. It becomes PSPACE-complete if we switch to the
theory of equations with constraints. These constraints are taken from a class of sets, called



normalized rational sets, which (in general) lies strictly between the class of recognizable
and rational sets. Furthermore under certain restrictions our PSPACE upper-bound holds
also in the case that (a suitable description of) the graph product is part of the input.

Our second main result concerns positive theories of equations. We prove that if we
restrict our class of graph products to groups, then for each group from the resulting
class the positive theory of equations with recognizable constraints for the variables is
decidable. Under certain restrictions we obtain an elementary upper bound. This result
extends the well-known result of Makanin for free groups [26, 27] to graph products of free
and finite groups, which include in particular free partially commutative groups (graph
groups), see [13], and plain groups, see [19]. The technical part relies on a generalization
of the techniques introduced by Merzlyakov for free groups [31].

We assume some basic familiarity with monoid presentations, see e.g. [23] and compu-
tational complexity, see e.g. [36].

2 Monoids with involution

An involution on a set is a mapping ~ such that @ = a for all elements a. For an involution
on a monoid we demand in addition that both ab = b@ and 1T = 1, where 1 is the neutral
element of the monoid. Taking the inverse in a group is an example of an involution.
Another example is the lifting of an involution =~ : A — A to the free monoid A* defined
by a1 ---a, =@, ---a, for a; € A.

Throughout the paper we consider finitely generated monoids, only. Thus, every monoid
M is given together with a presentation m : I'* — M, where I' is a finite alphabet and
7 is a surjective monoid homomorphism. Furthermore, we denote by Z(M) a submonoid
of M such that an involution ~ : Z(M) — Z(M) is defined on it. We require that there
is a subalphabet A C TI' together with an involution = : A — A (there will be no risk
to confuse the involution ~ : A — A with the involution ~ : Z(M) — Z(M)) such that
=Y (Z(M)) = A* and 7(@) = 7(u) for all u € A*. In many cases we choose Z(M) to be
the submonoid of elements having left- and right-inverses, i.e., Z(M) is the group of units
of M, but this is not necessarily the case, for instance for M = I'* we take Z(M) = A*.

We assume that the alphabet I' is endowed with a linear order <, which is lifted to I'*
by ordering I'* length-lexicographically: u < v for u,v € I'* if either |u| < |v] or |u| = |v|
and u is lexicographical less then v (with respect to the order < on I'). For x € M we
denote by lInf(z) the smallest word in 7—!(z) with respect to <. If we want to emphasize
that llnf is considered as a mapping from M to I'*, we write llnfy/(z) instead of llnf(x). A
subset L C M is called

e recognizable if 7=1(L) C I'* is regular,
e normalized rational if llnf(L) C T'* is regular, and

e rational if L = (L") for some regular language L' C T'*.



The corresponding classes are denoted by REC(M), NRAT(M), and RAT(M), respec-
tively. The classes REC(M) and RAT(M) are classical, see e.g. [4]. Their definitions do
not depend on 7 as can be seen easily. Since we deal with finitely generated monoids only,
we have REC(M) C NRAT(M) C RAT(M). Moreover, REC(M) is a Boolean algebra,
but for instance RAT(N x {a, b}*) is not a Boolean algebra, since it is not closed under in-
tersection, see e.g. [12, Example 6.1.16]. For NRAT(M) we can state the following lemma.
The proof is easy and therefore omitted.

Proposition 1. The class of normalized rational languages NRAT (M) is a Boolean algebra
if and only if the set of length-lexicographic normal forms lnf(M) is regular (i.e., M €
NRAT(M)).

In all cases we are going to consider, NRAT(M) will be a Boolean algebra.

Let us end this section with the discussion of some special cases which are of interest for
us. For a free monoid M we have REC(M) = NRAT(M) = RAT(M) by Kleene’s Theorem.
If M is an infinite group then REC(M) C NRAT(M), since every finite subset of M is
normalized rational but not recognizable, see e.g. [4]. For a free group M, lInf(M) is the set
of freely reduced words, and we have NRAT(M) = RAT(M) by a result due to Benois [2].
For a free partially commutative monoid (trace monoid) we have REC(M) = NRAT(M)
(this is Ochmanski’s Theorem [35]) but NRAT(M) C RAT(M) as soon as M is not free.
In fact the rational subset (1,1)* is not recognizable in N x N. Finally for the group Z x Z,
we have REC(M) C NRAT(M) C RAT(M).

3 Graph products

Let (V, E) be a finite undirected graph with vertex set V and edge set E C (}). Every
node n € V is labeled with a monoid M,, which is either a free monoid, a free group, or a
finite monoid. In fact, it is enough (and convenient) to assume that M,, is either isomorphic

to N or to Z, or M, is finite. The graph product defined by (V, E) is the quotient monoid
P = (xpevMyp)/{uv =vu | Im,n €V :m#n,(m,n) & E,u € My, v € M,},

where *,cy M, denotes the free product of the monoids M,,, n € V. Thus, commutation
is only allowed between elements that belong to different and non-adjacent monoids. We
have defined graph products only where each component is either a free monoid or a free
group or a finite monoid. Graph products in a more general setting are investigated in
[41, 17, 20]. If all M, are equal to N, then we obtain free partially commutative monoids
(trace monoids) [6, 30]. If all M, are equal to Z, we obtain free partially commutative
groups, which are also known as graph groups [13]. Free groups and free commutative
groups arise as the extreme cases. If £ = (‘2/) and all M,, are groups, then we obtain plain

groups in the sense of Haring-Smith [19].



3.1 Free partially commutative monoids with involution

As already mentioned, free partially commutative monoids (trace monoids) arise as a spe-
cial case of graph products. It is convenient to specify a trace monoid by a dependence
relation on an alphabet I', which is a reflexive and symmetric relation D C I' x I'. The
independence relation corresponding to I is the complementary relation I = (I' x I')\D.
The pair (I, D) (resp. (I',I)) is called a dependence alphabet (resp. an independence al-
phabet). Given a dependence alphabet (I', D), we define the free partially commutative
monoid (trace monoid) M = M(I', D) as the quotient monoid I'*/{ab = ba | (a,b) € I}.
Extreme cases are free monoids (if D = I' x I') and and free commutative monoids (if
D =1dr = {(a,a) | a € T}). An element of M, i.e., an equivalence class of words, is
called a trace. Let 7: I — M be the canonical morphism, mapping a word s € I'* to the
trace 7(s) that contains s. The neutral element of M is the empty trace 7(e) which will
be denoted by 1. Let ¢ = 7(s) € M be a trace. The length of ¢ is |t| = |s|. Furthermore,
we define alph(t) = alph(s), where alph(s) C I' is the set of symbols occuring in the word
s. For two traces t,u € M we write (¢,u) € I if alph(¢) x alph(u) C I.

By definition, L € REC(M) if and only if 77!(L) C I'* is regular. As already mentioned
in Section 2, for a trace monoid M we have REC(M) = NRAT(M) by Ochmanski’s The-
orem [35] but NRAT(M) C RAT(M) as soon as M is not free. In particular, NRAT(M)
is a Boolean algebra. Moreover NRAT(M) = REC(M) is also closed under concatenation
and connected Kleene stars, see [12] for definitions.

Given A C I' with an involution ~ : A — A, we say that ~ is compatible with D C I"'x T’
if for all @ € ', b € A we have (a,b) € D if and only if (a,b) € D. If this holds, then the
lifting = : A* — A* as defined in Section 2 satisfies 7(u) = 7(v) if and only if 7(2) = 7(v)
for all u,v € A*. Thus, we may consider ~ also as a partially defined involution on M with
domain A* € REC(M), and we call (M[,™) a trace monoid with involution.

A suitable visualization of a trace is given by its dependence graph which is a node
labeled acyclic graph. Let t = 7(a;---a,) € M, a; € T'. Define the dependence graph
Dy = (V,—, ) of t as the node-labeled graph, consisting of the node set V = {1,...,m},
the edge set —= {(i,7) | ¢ < j,(a;,a;) € D}, and the labeling function A defined by
A(7) = a;. Tt is easy to see that up to isomorphism another word representing ¢ yields the
same dependence graph. The transitive reflexive closure = of the edge relation defines
a partial order on V. Given a subset U C V of the nodes such that j € U whenever
i = j 5 kand ik € U, it is easy to see that the restricted dependence graph D,y is
itself a dependence graph, i.e., D[y is isomorpic to D,, for some trace u. In this case, we
say that U is an occurrence of the trace u in ¢.

As a consequence of the representation of traces by dependence graphs, one obtains
Levi’s Lemma for traces, see e.g. [12, p 74] which is one of the fundamental facts in trace
theory. The formal statement is as follows.

Lemma 2. Let uq,...,Un,v1,...,0, € M. Then ujug -+ Uy = v109 -+ - vy, if and only if
there exist w;j; € M (1 <i<m,1<j<mn) such that

® U = W Wi Wiy for every 1 <i<m,
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® U =W jWy W  for every 1 < j<mn, and
o (wij,wre) €I if1<i<k<mandl<l<j<n.

The situation in the lemma will be visualized by a diagram of the following kind. The i-th
column corresponds to u;, the j—th row corresponds to v; and the intersection of the i-th
column and the j—th row represents w; ;. Furthermore w;; and wy  are independent if one
of them is right-above the other one.

Un wl,n w2,n w3,n .. wm,n
Vg || W13 | W23 | W33 | --- | W3
Vo || W12 | Wo2 | W32 | -.. | Wp2
V1 || Wi | W21 | W31 | --- | Wm,1

H (51 ‘ (%) ‘ Us ‘ R ‘ Um ‘

3.2 Trace rewriting systems

Another important tool in this paper are trace rewriting systems, which generalize semi-
Thue systems [5, 21] from words to traces. Formally, a trace rewriting system over M =
M(T, D) is a finite subset S € M x M. Analogously to semi-Thue systems, the one-
step rewrite relation -5 C M x M of a trace rewriting system S is defined by s —g t if
s =ufvand t = urwv for some (£,r) € S and u,v € M. Its transitive reflexive closure
is 5. Let RED(S) = {ufv | u,v € M, 3r : (£,r) € S} be the set of reducible traces
and IRR(S) = M\RED(S) be the set of irreducible traces. Due to the closure properties
of REC(M), both RED(S) and IRR(S) are recognizable. The trace rewriting system S is
called length-reducing if (£,7) € S implies |¢| > |r|. Finally, S is called confluent, if for all
s,t,u € M with s 5g t and s —g u there exists v € M with ¢t =g v and u —g v. If S is
length-reducing, then by Newman’s Lemma [34] confluence is equivalent to local confluence,
ie., if s =gt and s —g u, then there exists v € M with t =g v and u —g v. In general, it
is undecidable whether a finite length-reducing trace rewriting system is confluent, see [33].
This is in sharp contrast to semi-Thue systems, and makes confluence proofs challenging.
However, if S is length-reducing and confluent, then still for every s € M there exists a
unique ¢ € IRR(S) with s g t.

3.3 The trace monoid underlying a graph product

For our further considerations, graph products are best described in terms of an underlying
trace monoid with involution. Let P be a graph product, specified by a graph (V, E'), where
each node n € V is labeled with a monoid M,,, which is either finite, or N, or Z. Let Z(M,,)
be the subgroup of units of M,, i.e., Z(M,) = {a € M,, | b : ab = ba = 1in M, }. If
M, =N, then we let T, = {a,} and A, = 0. If M,, = Z, then we let T',, = A, = {a,,a,}.
Finally, if M,, is finite, then we let I';, = M,\{1} and A, = Z(M,)\{1}. Thus, for each



n € V we have a canonical presentation 7, : ', — M,. Moreover, m,*(Z(M,)) = A}. For
M,, = Nor M,, = Z this is clear, for a finite M,, note that if uv € Z(M,,), then u,v € Z(M,),
too. We may assume that the alphabets I',, are pairwise disjoint. Let I' = |J,\, I'n and
A = U,ev An. Hence, the 7,, n € V, can be extended to a presentation 7 : I'* — P such
that 71 (Z(P)) = A*, where Z(P) is the group of units of P. Furthermore, there is a natural
involution ~ on A, which has fixed points as soon as some finite M,, contains an element of
order two. We define a dependence relation D C I' xI' by D = U, yeputa, (I'm X ). Let
I be the corresponding independence relation. The basic reference monoid for the further
consideration is the trace monoid M = M(I', D). Since ~ : A — A is compatible with D,
we can lift 7 : A* — A* to a partially defined involution on A* € REC(M). We say that
(M, ™) is the trace monoid with involution underlying P. We now define a trace rewriting
system S by

S ={(a@,1) |a € A} U{(ab,c) | In €V :a,b,c € Ty, ab=cin M,}.

Then P can be defined as the quotient monoid P = M/{¢ = r | (¢{,r) € S}. Clearly
P =T*/({ab = ba | (a,b) € I} U{f = r | ({,r) € S}). Furthermore, the canonical
homomorphism 7 : ['* — P factorizes as m = 7o, where 7 : ['* - M and ¢y : M — P.
Elements of both M and P will be represented as words from I'*. It will be always clear from
the context, whether an element of I'*, M, or P, respectively, is denoted. The following
proposition will be important for the further investigation.

Proposition 3. The trace rewriting system S is confluent.

Proof. We use Lemma 2.3. from [24]." According to this lemma it suffices to consider
for all rules (ab,d), (bc,e) € S and all traces w € M such that (b,w) € I the following
situation: dwc g+ abwc = awbc —g awe. We have to show that there exists s € M such
that dwe >g s and awe —»g s. Note that a,b,c € T, for some n € V. Since (b,w) € I,
also each of the traces a,c,d, and e is independent from w. Thus, it suffices to show that
dc 5g s and ae g s for some s (then also dwe = wde =g ws and awe = wae g ws).
But this is easy. Let us consider for instance the case that b =a,d =1, and e € I',,. Thus,
ac =e, i.e., c = ae in M,, and (ae, c) is a rule of S. Hence, we can choose s = c. O

Since S is also length-reducing, Proposition 3 implies:

Corollary 4. For each x € P the set ¢~ (x) C M contains a unique shortest trace, which
will be denoted by p(x) € M NIRR(S).

Since llnfp : P — I'* factorizes as llnfp = p o linfy;, Ochmanski’s Theorem implies that
lnfp(L) C I'™* is regular if and only if y(L) € REC(M). Thus, we obtain:

Corollary 5. We have L € NRAT(P) if and only if u(L) € REC(M) if and only if
71 (u(L)) € REC(T™).

1One can argue also directly by an application of Lemma 2 similarly to the proof of Lemma 25.



In particular, we see that NRAT(P) does not depend on the linear order < chosen for
['. Tt depends on the canonical homomorphism 7 : I'* — P, only. Furthermore, since
u(P) =IRR(S) € REC(M) we have P € NRAT(P). Thus, Lemma 1 implies:

Corollary 6. The class NRAT(P) is an effective Boolean algebra.

The following diagram shows all relevant mappings, introduced so far. Surjective homo-
morphisms are indicated by —»-arrows, whereas <—-arrows indicate injective mappings.
The diagram is commutative for all paths which do not finish by an injection.

I y M
fm
{ %
P

1In:
u
linfp

4 Theories of equations with constraints

Let M be a monoid as in Section 2 and let C be a family of subsets of M such that
I(M) € C. Let Q be a set of variables and Q = {X | X € Q} a disjoint copy of . An
equation is a pair (U, V) with U,V € (TUQUQ)*, it is written as U = V. A constraint is
an expression of the form X € L with X € QUQ and L € C. Equations and constraints are
called atomic formulae. From these we construct first-order formulae using conjunctions,
disjunctions, negations, and universal and existential quantifications over variables from (2.
A first-order sentence is a first-order formula without free variables, where a quantification
over X € € binds both X and X. We impose the syntactical restriction that whenever we
use a variable X €  in a first-order sentence, then the quantification over X is implicitly
restricted to Z(M). For instance VX : XX = 1 is interpreted as VX € Z(M) : XX = 1.
Given 7 : I* — M, Z(M), the involution ~ : Z(M) — Z(M), and a first-order sentence
¢, we can evaluate ¢ over M in the obvious way with the restriction that if a variable X
evaluates to « € M, then X must evaluate to Z. The theory of equations with constraints
in C, briefly Th(M,C), denotes the set of all first-order sentences that are true in M.
A well-known example of a decidable theory of equations is Presburger Arithmetic [38].
Translated into our framework, the results of [16] give us the following:

Proposition 7. The theories Th(N¥, RAT(N¥)) and Th(ZF, RAT(Z*)) are decidable in
doubly exponential space.

Remark 8. Precise complezity bounds can be derived from the results in [3], which show
that the theories in Proposition 7 are complete for doubly exponential alternating time with
only a linear number of alternations.



Note that RAT(NF) and RAT(Z*) are the classes of semilinear sets in N* and Z*, respec-
tively. The following result can be easily deduced from Proposition 7 since the free product
Z)27 % Z)2Z of two copies of Z /27 is isomorphic to the semi-direct product of Z by Z/2Z.

Corollary 9. For M = 7./27.+«7. /27, the theory Th(M,RAT(M)) is elementary decidable.

Proof. Let M = Z/2Z x /27 be given by the generators a,b and the defining relations
a? = b* = 1. Every x € M can be represented uniquely as = = (ab)’a’ where i € Z
and j € {0,1} (note that (ab)™* = ba in M). The subgroup K of M generated by ab is
isomorphic to Z. Furthermore let () ~ Z/27Z be the subgroup of M generated by a. It
is easy to see that M is the semidirect product of K by @, thus M ~ Z x Z/2Z. An
isomorphism ¢ : M — Z % Z/27Z can be defined by o((ab)ia’) = (4,7), where i € Z
and j € {0,1}. In the following let o(z) = (ng,a;). Thus, zy = z in M if and only
if n, = ny + (—1)*ny, A ay + a, = a, mod 2. Furthermore, it is easy to see that if
L € RAT(M), then o(L) = Sy x {0} U S; x {1} where Sp,S; C Z are semilinear sets
that can be constructed inductively from a rational expression for L, with at most an
exponential size increase.

Now given a first-order sentence ¢ we replace every quantification 34X by dny €
Z \ 4y eqo,y (similarly for V-quantifications). Using standard methods, see e.g. [7], we
may assume that all equalities U = V' are triangulated, i.e., |U| = 2,|V| = 1. An equation
AB = C, where A, B,C € QUQU{a, b}, is replaced by (n¢ = na+(—1)*2ng A ax+ap = ac
mod 2), where n4,a, are either new variables (if A € QUQ) or integer constants, similarly
for B and C. A constraint X € L with L € RAT(M) is replaced by (nx € Sy A ax =
0) V (nx € S1 A ax =1) where o(L) = Sy x {0} US; x {1}. Occurrences of the variables
n¥ and ax for X € Q can be replaced by (—1)%*!.nx and 1 — ayx, respectively. Finally
by substituting for the variables ax the values 0 and 1 we obtain a Presburger formula.
Now the corollary follows from Proposition 7. O

The positive theory of equations with constraints in C is the set of all sentences in Th(M, C)
that do not use negations. The existential theory of equations with constraints in C is the set
of all sentences in Th(M, C) that are in prenex normal form without universal quantifiers.

In this paper we will be interested in existential and positive theories of graph products.
Constraints will be taken from the class NRAT(P) or REC(P). Note that Z(P) € REC(P)
since 77! (Z(P)) = A* is regular. Since we will also deal with complexity issues, we have to
define the input length of a formula. A constraint X € L with L € NRAT(P) is represented
by some finite non-deterministic automaton that accepts 7 *(u(L)) € REC(I'*). For a
recognizable constraint X € L € REC(P) it will be more convenient, to represent it by
by some finite non-deterministic automaton that accepts 7—!(L) € REC(I'*). Using these
representations, we assume some standard binary coding of formulae. The input length of
a formula is the length of this coding. In order to obtain existing results for free monoids
as special cases, we will put a description of the graph product P into the input, too.
This description contains the adjacency matrix of (V, E), and for each node either the
multiplication table of M, if M, is finite or a bit indicating whether M,, = N or M,, = Z.



5 Existential theories

The main result of this section is that the existential theory of equations with constraints
in NRAT(P) is decidable in PSPACE. First, we will recall some results from [11] concerning
existential theories of equations in trace monoids with involution. Based on these results,
we will prove our main result in Section 5.2.

5.1 Existential theories of equations in trace monoids

All our decidability results will be based on the main result from [11]. In order to state
this result, we have to introduce the following graph theoretical concept: Let (V, E) be a
finite graph. A complete clan in (V, F) is a maximal clique A C V in (V, E) such that for
alla,b € Aand c€ V\ A, (a,c) € F if and only if (b,c) € E. The set of complete clans in
(V, E) is easily seen to be a partition of V. A complete clan A is called thin, if there are
a € A and b € V\A such that (a,b) ¢ E. The number of complete thin clans in (V, E) is
denoted by ¢(V, E), it is obviously at most |V|. Moreover, ¢(V, E) # 1, and ¢(V, E) = 0 if
and only if (V, E) is a complete graph. Now we can state the main result from [11].

Theorem 10. For every k > 0, the following problem is in PSPACE:

INPUT: A dependence alphabet (T', D) with ¢(T', D) < k, a partially defined involution
: A = A, A C T, which is compatible with D, and an ezistential sentence ¢ with
constraints in REC(M (T, D)).

QUESTION: Is ¢ true in the trace monoid with involution (M(T, D),™)?
If ¢(T', D) is not bounded by a constant, then this problem is in EXPSPACE.

A few remarks should be made on Theorem 10. First, in [11] this result is only stated for
a completely defined involution ~: I' — I'. But if ~ is only defined on A C I', then we can
introduce a new dummy symbol @ for every a € I'\A and add for every variable X the
recognizable constraint X € I'*. Second, the uniform EXPSPACE upper bound for the
case that ¢(I', D) is not bounded by a constant is not explicitly stated in the preliminary
version [11], but it can be easily derived from the proof in [11] and will appear in the full
version of [11]. Finally, Theorem 10 cannot be extended to the case of rational constraints:
For M = {a,b}* x{c, d}* it is undecidable whether L; "L, = ) for given L,, L, € RAT(M),
see [1]. A further investigation leads to the following characterization of Muscholl, see [32,
Prop. 2.9.2, Prop. 2.9.3].

Proposition 11. Let M be a trace monoid. Then the existential theory of equations with
constraints in RAT(M) is decidable, if and only if M is a free product of free commutative
monoids, i.e., M =+ N* forn k; € N,

5.2 Existential theories of equations in graph products

In this section we prove that for a graph product P as considered in Section 3 the existential
theory of equations with constraints in NRAT(P) is decidable. The main reduction step is
based on the following theorem:



Theorem 12. For every k > 0 there is a polynomial time algorithm such that:

e The input consists of a graph product P, specified by a graph (V, E) with ¢(V,E) < k,
and an existential sentence ¢ with constraints in NRAT(P).

e On a given input (P, @), the algorithm produces an existential sentence ¢' with con-
straints in REC(M) such that ¢ holds in P if and only if ¢' holds in (M, ™), the trace
monoid with involution underlying P.

Let us fix for the rest of this section a graph product P, specified by a graph (V, E), where
every node n € V is labeled by a monoid M,,, which is either finite, or N, or Z. Let (M, ™),
I D, I, =701, and S have the same meaning as in Section 3.3.

The next lemma is the main technical tool for proving Theorem 12. First we need
some further definitions concerning traces. The set F C IRR(S) C M consists of all
traces a;---an, a; € I', such that (a;,a;) € I if i # j. Thus, traces in F correspond to
independence cliques of (I', I). Note that if u € F, then the length of u is at most |I'|. More
precisely, |u| < ¢(V, E)+1, thus | F| < [T|<V:E)+1 We identify u € F with the set of symbols
that occur in u. For s € M the set of maximal symbols max(s) ={a €' | 3t €M : s = ta}
of s and the set of minimal symbols min(s) = {a € T'| 3t € M : s = at} of s belong to F.

Lemma 13. Let z,y,z € IRR(S) C M. Then zy g z if and only if there exist p, s, t,w €
IRR(S) and u,v € F such that

wv Sgw, x=sup, y=pvt, z=swt. (1)

Note that since u,v € F, there exist only finitely many possibilities for w in (1). Hence,

the existential quantification over all u, v, and w can be replaced by a finite disjunction of
size |T[2(V-E)+2,

Proof of Lemma 13. Let z,y,z € IRR(S). If (1) from Lemma 13 holds, then zy —g 2z
follows immediately. Now assume that zy —g z. We can choose p € M of maximal length
such that ¢ = 2'p and y = py’. Let u = max(¢') € F, v = min(y’) € F, and uv Sg w €
IRR(S). Hence, z = sup, y = pvt, and xy —g swt. Note that p, s, t,u,v € IRR(S). Due
to the choice of p, only rules of the form (ab,c) € S, where a € u, b € v, and a,b,c € T,
for some finite monoid M,,, can be applied to the trace uv. In particular, if (d, w) € I for
d € T, then also (d,u) € I. We claim that swt € IRR(S) which implies z = swt. Assume
that there exist a left-hand side ab of a rule in S and traces ¢,r such that swt = qabr.

By Lemma 2 we obtain up to symmetry one of the following two diagrams (recall that
s,w,t € IRR(S)).

T || sy | wy |ty | S2 | wa | t2
ab|la | 1 | b ab|la| b |1
q s1 | w |t q $1|wr |t

[s]wlt] [s]wlt]
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Let n € V such that a,b € T',,. Let us first consider the left diagram. Since (a,w;) € I,
(b, wy) € I, and w = wywsy, we obtain (a,w) € I and thus (a,u) € I. Furthermore from the
diagram we obtain (b, s3) € I. Thus, (a,ss) € I which implies a € max(s). Together with
(a,u) € I it follows that a € max(su) = u which contradicts (a,u) € I. Now let us consider
the right diagram. Again we have a € max(s). Furthermore, since b € min(w) N[, there
are two possibilities: Either there exists d € uNI'y or b € v and (b,u) € I. If d € uNTy,
then su would contain the factor ad, which contradicts x = sup € IRR(S). If b € v and
(b,u) € I, then (a,u) € I, which implies a € max(su) = u, again a contradiction. O

Proof of Theorem 12. Let us fix k£ > 0. Let P be a graph product, specified by a graph
(V, E) with ¢(V, E) < k. Furthermore let ¢ be an existentially quantified Boolean com-
bination of equations and constraints in NRAT(PP). In a first step, we may push nega-
tions to the level of atomic subformulae. An inequality U # V may be replaced by
X, Y : X =U ANY =V A X #Y, where X,Y are new variables. Moreover, the
existential quantification over X and Y can be shifted to the topmost level of ¢. Thus
we may assume that all inequalities in ¢ are of the form X # Y for variables X,Y.
Using standard methods, see e.g. [7], we may assume that all equalities U = V are tri-
angulated, ie., |U| = 2,|V| = 1. Next we will move from the graph product P to its
underlying trace monoid with involution (M, ™). Note that ¢(I', D) = ¢(V, E) < k, where
M = M(I, D). We replace syntactically every subformula U = V (resp. X € L) by
»(U) =¥ (V) (resp. X € u(L)) and add the negated recognizable constraint X ¢ RED(S)
for every variable X.2 We obtain an existential sentence, which evaluates to true in (M, )
if and only if ¢ evaluates to true in P. Note also that the automaton used to specify
(L) is the same as the one for L (recall that L € NRAT(PP) is represented by a finite
non-deterministic automaton for 7='(x(L))). It remains to eliminate all occurrences of 1
from (in)equalities. Since I' C TRR(S) and S is confluent, we can replace an equation
Y(AB) =4(C) (A,B,C eTUQUQ) by AB 5 C, which by Lemma 13 is equivalent to

3X,Y, Z : \V A=XuZ N B=2vY A C = XuwY. (2)
u,weF,
uv->5 we IRR(S)

Since |F| < |T[¥*1, this is a formula of polynomial size. Finally, due to the constraints
X,Y ¢ RED(S), an inequaility (X) # ¥(Y) is equivalent to X # Y. O

Corollary 14. The following problem is PSPACE-complete for every k > 0:

INPUT: A graph product P, specified by a graph (V, E) with ¢(V, E) < k and an exis-
tential sentence ¢ with constraints in NRAT(P).

QUESTION: Does ¢ belong to Th(P, NRAT(P)) ¢
If ¢(V, E) is not bounded by a constant, then this problem is in EXPSPACE.

20f course this constraint is equivalent to X € IRR(S), but we prefer the negated constraint X ¢
RED(S), since an automaton for 7 !(RED(S)) can be easily constructed in polynomial time. More
precisely 71 (RED(S)) is the union of all sets [*al(a)*bI'™*, where ab is a left-hand side of S and I(a) =
{ceT| (a,c) € I} =I(b).

11



c(V, E) fixed ¢(V, E) variable
no constraints PSPACE EXPSPACE
REC(P) PSPACE-complete EXPSPACE
NRAT(P) PSPACE-complete EXPSPACE
RAT(P) undecidable undecidable

Table 1: Results for existential theories

Proof. PSPACE-hardness follows from the fact that for {a,b}* the existential theory of
equations with constraints in REC({a, b}*) is PSPACE-hard, see [22, Lem. 3.2.3] and [37,
Thm. 1]. Membership in PSPACE (resp. EXPSPACE) follows from Theorem 10 and
Theorem 12 (recall that ¢(V, E) = ¢(I', D), where (M(I', D),”) is the trace monoid with
involution underlying PP). O

Remark 15. Corollary 14 encompasses corresponding statements from [7, 9, 10, 11, 18,
25, 26, 37].

Table 1 summarizes our results for existential theories.

6 Positive theories of equations in graph products

The aim of this section is to prove our second main result, namely that the positive theory
of equations with recognizable constraints is decidable, in case the graph product is a group.
In order to emphasize the fact that we deal from now on with groups only, we denote this
graph product by the symbol G. Let G be specified by the graph (V, E), where every node
n € V is labeled with a group G,,, which is either finite or Z. Let (M, ) be the underlying
trace monoid with involution, where M = M(T', D). Note that the involution ™ : M — M
is completely defined, since all elements in [" have inverses. Finally, let I C I'xI', 7 = 701,
and S C M x M have the same meaning as in Section 3.3. All these data will be fixed for
the rest of this section.

We will consider positive sentences with equations and constraints from REC(G). Our
aim is to decide whether such a sentence holds in G. First, in Section 6.1 we will show that
we can restrict the graph product G to some particular type. In a second step, we show in
Section 6.2 that for such a restricted graph product, the positive theory with constraints in
REC(G) can be reduced to the existential theory with constraints in NRAT(G'), where the
graph product G’ is derived from G. This second step in inspired by techniques of Makanin
and Merzlyakov [27, 31] developed for free groups. The proof of the main technical lemma
is shifted into Section 6.3.

12



6.1 Simplifying the graph (V| F)

In a first step we may assume that no finite group G, n € V, is a direct product of
two finite non-trivial groups, since otherwise we could replace n by two non-connected
nodes. In particular, if G, is not Z/27Z, then there must exist a € ', such that a # @ in G.
Next, assume that the graph (V, E) consists of two non-empty disjoint components (V;, E})
and (Va, E»), which define graph products G; and Gy, respectively. Then G = G; x Go.
Furthermore by Mezei’s Theorem, see e.g. [4], every L € REC(G) is effectively a finite
union of sets of the form L; x L, with L; € REC(G;). Thus, we may apply the following
Proposition 16, which is a decomposition lemma in the style of the Feferman Vaught
Theorem [15].

Proposition 16. Let M; and M, be monoids with classes C; C 2M1 and Cy C 2M2. Let C
be a class of subsets of My x My such that each L € C is effectively a finite union of sets
of the form Ly X Ly with Ly € C1 and Ly € Co. If both theories Th(My,Cq) and Th(Ms, Cs)
are decidable, then Th(M; x M,,C) is decidable, too. Furthermore, the same implication
also holds for positive theories.

Proof. Since M = M; x M, is generated by I', we may assume that I' is the disjoint union of
I'y and I'y, where M; is generated by I';. Let ¢ be a formula with free variables whose atomic
subformulae are all of the form U = V with U,V € (TUQUQ)*, or X € L, where X € QUQ
and L € C. Now for each X € QU Q that appears in ¢ let X; and X, be new variables.
Furthermore, for a € I" and i € {1,2} let a; = a if @ € T'; and a; = 1 otherwise. Then we
replace each quantification 3X (resp. VX) in ¢ by 3X;, X, (resp. VX, X5). Furthermore
each equation U = V is replaced by the conjunction U; = V; A Uy = V5, where U; and V;
result from U and V, respectively, by replacing every occurrence of X € QU (resp. a € I)
by X; (resp. a;). Finally given a constraint X € L in ¢, where L = (J! | L; 1 x L;5 with
L;y € Cy and L;» € Cy, we replace this constraint by \/;_ (X1 € L1 A Xy € L;5). Let us
call the resulting formula ¢. If we let the variables with index i € {1,2} only range over
M;, then in the case that ¢ is a sentence, the truth value of (;Aﬁ and ¢ are the same. We claim
that ¢ is logically equivalent to a formula of the form Vs, (051 A 0j2), where for i € {1,2}
the formula 6;; only contains variables with index 7. Note that this proves the proposition.

The claim above can be shown by induction on the quantlﬁer rank of ¢. The case that ¢
is quantifier free is clear. Assume that ¢ = 3X x. Hence, ¢ is of the form ¢ = 3X;, X, %

By induction we can assume that x is logically equivalent to a formula \/ ],1(03 1A 0j2),

where for i € {1,2} the formula 6;; only contains variables with index ¢. Thus, 3X}, Xz X
is equivalent to \/;"_I(HX 101 A 3X5 6,5). In the case of a universal quantification we can
conclude s1m11arly, but we first have to transform the formula /7", 6;1 A0; into a formula

of the form AJ", 0, V 0}, where ¢} ; only contains variables with index i. This is of course
possible with a possible exponential size increase. Finally note that the construction above
does not introduce negations and thus can be also used for positive formulae. O

Hence, in the sequel we may assume that the graph (V, E) is connected. Furthermore,
since by Proposition 7 the (positive) theory of equations with rational constraints in Z is
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decidable and the same holds for finite monoids for trivial reasons, we may assume that
|V| > 1. By Corollary 9 we can also exclude the case that V' contains exactly two adjacent
nodes which are both labeled by Z/27Z. Thus, we may assume that either the graph (V, F)
contains a path consisting of three different nodes or one of the groups labeling the nodes
has a generator x € I with T # z. Hence, there exist three different generators a,b,c, € I’
such that a and b belong to different and E-adjacent nodes from V', b and ¢ also belong to
different and E-adjacent nodes from V', and finally a and c either belong to different nodes
from V or a # @ = c in G. In particular (a,b), (b,c) € D, i.e., the dependency between a,
b, and ¢ being used is
a—b—c.

In the sequel, a, b, and ¢ will always refer to these symbols.

6.2 Reducing to the existential theory

Our strategy for proving the decidability of the positive theory of G is based on [27, 31], but
the presence of partial commutation and recognizable constraints makes the construction
more involved: Given a positive sentence @, which is interpreted over G, we construct
an ezistential sentence 0', which is interpreted over a free product G' = G x F' of G and
a free group F, such that # is true in G if and only if § is true in G'. This allows us
to apply Corollary 14 on the decidability of the existential theory of a graph product.
Roughly speaking, #' results from # by replacing the universally quantified variables by the
generators of F'.

For the following consideration it is convenient to assume that a recognizable lan-
guage L is represented by a homomorphism to a finite group instead of an automaton for
771(L): Recall that L € REC(G) if and only if there exists a surjective homomorphism
p: G — H onto a finite group H such that L = p~'(p(L)), see e.g. [4]. Moreover,
given a non-deterministic automaton for 7=!(L) with n states, we can construct such a
homomorphism p : G — H with |H| < 2" [29]. Finally, given a Boolean combination ¢
of word equations and recognizable constraints X; € Ly,..., X, € L,, we first construct
homomorphisms p; : G — H; such that L; = p; ' (p;(L;)). Let H = [1;-, H; and define
p(x) = (p1(z),...,pn(x)) for z € G. Note that the size of H can be bounded exponen-
tially in the size of the description of ¢. Now we can replace the constraints X; € L; by
constraints of the form p(X;) = h for h € H. Moreover, the number of these constraints
is also bounded exponentially in the size of the description of ¢. Let us fix a surjective
homomorphism p : G — H for the rest of this section and assume that all recognizable
constraints in our initial positive formula are given in the form p(X) = h for h € H.

For a finite set K of new constants, K NT = (), let K = {k | kK € K} be a disjoint copy

of K. Define an involution ~: KUK — KUK by k = k. Let
FK)=(KUK)*/{kk=kk=1|k € K}

be the free group generated by K. Instead of F'({k}) we write F'(k). In the following we also
have to deal with formulae, where the constraints are given by different extensions of our
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basic homomorphism p : G — H. For this we introduce the following notation: Let G be an
arbitrary finitely generated group, and let o : G — H be a group homomorphism to some
finite group H. Let K = {ki,...,k,} and hy,...,h, € H. Then gy} : G+ F(K) — H

denotes the extension of p, defined by QZIIIZ’; (ki) = h;. Similarly, if ¢ is some Boolean
combination of word equations and constraints of the form o(X) = h, then ¢ﬁi’;’; denotes

the formula that results from ¢ by replacing every constraint o(X) = h by g',?l',i:‘z (X)=h.

Let us now fix a formula3
0(Z) = VX13Y:---VX,3Y, 0(Xe, ..., X, Y4, ..., Y0, Z),

where ¢ is a positive Boolean formula with constraints of the form p(X) = h. Choose for
every universally quantified variable X; in § a new constant k; and let K = {ky,...,k,}.
The following theorem yields the reduction from the positive to the existential theory.

Theorem 17. Let H(Z) = VX,3Y;---VX,3Y, ¢(X1,...,XH,Y1,...,YH,Z) be as above.
For all Z € G we have 0(Z) in G if and only if

o (b ks Y, Yo, B)
/\ JY; - - - /\ Y, A /\ Y€ Gx F({ki,...,k}) in G x F(K).

hi€H hn€H .
1<i<n

Proof. We prove the theorem by induction on n. The case n = 0 is clear. If n > 0, then
inductively we can assume that for all 1,3, Z € G we have

VXQHYé L VXnE]Yn ¢($1,X2, ‘e ,Xn,yl,YVQ, . ,Yn,,%) in G

if and only if

K2,k .
¢h2,...,h:;(x17 kQa ey kna Y1, }/27 ceey Yna Z)

A e N\ L N YieGxF({k,....k})

hocH hn€H
? " 2<i<n

is true in G x F'({ka, ..., k,}). Thus, for all Z € G we have
VX3V - VXY (X1 X Vi, Yy 2) in G
if and only if

R (X, by by Vi -, Vi, 2)
A /\ Y; € G F({ky,..., ki})

1<i<n

VX; €G3y \ M- A\ I

ho€H hn€H

3In the following symbols with a tilde like & will denote sequences of arbitrary length over some set,
which will be always clear form the context. If say & = (21,...,%,), then Z € Ameansx; € 4,...,z, € A.
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is true in G x F'({ks,...,k,}). Note that if we transform this formula into prenex normal
form, in the resulting positive formula the constraints are given by different extensions of
the homomorphism p. Since p is surjective, we can replace the universal quantifier VX; € G
by An,en VX € p~*(h1). Hence, by the following Lemmata 19 and 20 this formula is true
in G x F({ks,...,k,}) if and only if

k1,k2,....k -
¢h1,h2 ]—,Zb(klak%"wkna}/b'"7Yn7z)

.....

hi€H ho€H hn€H 1<i<n

is true in G x F'({ka,...,ky}) * F(k1) = G x F(K). The first one, Lemma 19, is only valid
for positive sentences, but has a quite simple proof, whereas Lemma 20 holds for arbitrary
formulae, but its proof is quite involved. O

Since G * F'({k1,...,ki}) € NRAT(G % F(K)), Corollary 14 and Theorem 17 immediately
imply:

Corollary 18. The following problem is decidable.

INPUT: A graph product G which is a group and a positive sentence ¢ with constraints
in REC(G).

QUESTION: Does ¢ belong to Th(G,REC(G))?

Concerning the complexity, it can be shown that our proof of Corollary 18 gives us a
non-elementary algorithm due to the construction in our proof of Proposition 16. If we
restrict to connected graphs (V, F), then we obtain an elementary algorithm due to the
upper complexity bounds in Proposition 7 and Corollary 9.

Note that Corollary 18 cannot be extended to the full class of graph products considered
in Section 3: Already for a free monoid {a,b}* the positive V3*-theory of equations is
undecidable [14, 28]. Similarly, Corollary 18 cannot be extended to the case of normalized
rational constraints, since {ai, as}* € NRAT(F') for the free group F' generated by a; and
9.

For our further considerations let us introduce a few abbreviations. For a set K of new
constants, KNI =0, let @ = G * F(K). Let k ¢ ' UK be a further constant. Let us
fix subsets K; C K (1 <i<m) and let G; = G x F(K;) C G'. Finally fix h € H and a
sequence Z = (z1,...,2,) of elements z; € G.

Lemma 19. Let ¢(X,Y7,..., Yy, Z) be a positive Boolean formula such that all constraints
have the form p'(Y) = g, where g € H and p' : G — H is an extensions of p: G — H
(different constraints may be given by different g and p'). If

IV, Y f (B Y, Y B) A\ Yi€GixF(k) in G« F(k),
1<i<m

then
VX €GNp (k) V1., Y (X, Vi, ., Y, 2) A N Yi€G inG.

1<i<m
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Proof. 1f

IV, Yt Rk Ve, Y ) A\ Yi€GixF(k) in G F(k),

1<i<m

then there are t; € G; x F(k), 1 <14 < m, such that ¢f(k,ty,..., tn,2) is true in G' x F (k).
Now choose an arbitrary s € G N p~!(h) and define a homomorphism o : G’ * F(k) — G
by o(k) = s and o(z) = z for x € G'. Since p(s) = h, o(Z) = Z, and ¢ is positive, the
statement ¢(s,0(t1),...,0(tm), Z) is true in G'. Thus, we obtain

VX €Gnpl(h)IVi,... . Y 6(X, V1, . Vi, 2) A\ Yi€G inG.

1<i<m
0

Note that the assertion of Lemma 19 does not hold in general, if ¢ involves negations.
For example VX : X # 1 is false, but £ # 1 is true. On the other hand, the converse
implication of Lemma 19 is true for arbitrary formulae:

Lemma 20. Let ¢(X,Y1,..., Y, Z) be a (not necessarily positive) Boolean formula such
that all constraints have the form p'(Y) = g, where g € H and p' : G' — H is an extensions
of p: G — H (different constraints may be given by different g and p'). If

VX €Gnp '(h) Iy, . Y1 d(X,Y1,..., Y 2) A\ Yi€G in@,

1<i<m

then
AV, Y s Rk Ve, Y ) A\ Yi€GixF(k) in G « F(k).

1<i<m

The statement of Lemma 20 will be shown by a reduction to the underlying trace monoid
with involution. For this, we need the following Lemma 21. Its proof is the main technical
difficulty and shifted to the next section. Let (M’ ™) (resp. (M, )) be the trace monoid
with involution underlying G' (resp. G;). Thus, M C M; = M * (K; U K;)* C M’ =
M * (K UK)*. Let @ = (wy,...,w,), where w; = u(z;) € IRR(S) C M is the irreducible
trace representing z; € G. Let ' = S U {(a@, 1), (@a,1) | « € K}, which is the trace
rewriting system over M’ presenting G, and let S = S’ U {(kk, 1), (kk,1)}, which is the
system over M’ x{k, k} presenting G’ * (k). In the following, we identify a homomorphism
PG — H with ¢/ op : M' - H, where ¢/ : G — M’ is canonical. Moreover, for
p M’ — H, we denote with p'¥ : M’ {k, k}* — H the extension of p/ : M’ — H, defined
by #/h(k) = h and pi(k) = h™".

Lemma 21. Let x(X,Y4,...,Ym, Z) be a (not necessarily positive) Boolean formula such
that all constraints have the form p'(Y) = g, where g € H and p' : M" — H is an extensions
of p:M — H. If

VX € IRR(S) N p~ () A3, ..., Y € IRR(S) : (X, V4,..., Y, ) A N\ YieM,,

1<i<m
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in (M',7), then there exist s1, sy € IRR(S) CM such that p(s1)hp(s2) = h and

vy, ..., Y, € IRR(S)) : xF(s1ksa, Vi, ..., Yo, @) A Y, e M, « {k, k}
k h

1<i<m
in (M’ {k,k}*,7).
Proof of Lemma 20 using Lemma 21. Assume that

VX eGnp '(h) IWr,....Ym: $(X,Y1,..., Y, 2) A\ Yi€G inG.

1<i<m

Completely analogous to the proof of Theorem 12 we can first switch to the underlying
trace monoid with involution (M',”). Note that this procedure introduces existentially
quantified variables (Y below), only, and that VX € G N p~'(h) has to be replaced by
VX € IRR(S) N p~1(h). We obtain a sentence of the form

VX € IRR(S)Np~'(h) AV3,..., Y, Y € IRR(S') : x(X,V1,..., Vi, V) A N\ Vi €M,
1<i<m

which evaluates to true in (M’, 7). Thus, by Lemma 21 there exist s;,s, € IRR(S) C M

such that p(s1)hp(s2) = h and

AV, ., Vi, V € IRR(SE) < Xf(s1kso, Vi, ., Vi, Vo) A N\ Vi€ M+ {k, &}

1<i<m

is true in (M’ x {k, k}*,7). Since in this sentence all variables are restricted to irreducible
traces from IRR(S}) and also s1ksqe, w € IRR(S}), it is also true in G' * F'(k). Thus,

IV, Yo, Vo X (sikse, Ve, Y, YV 2) A\ Y5 € Gy + F(k) (3)
1<i<m

in G'*F (k). Let us define a group homomorphism o : G'«F (k) — G'«xF(k) by o(k) = $1k3S,
and o(x) = z for x € G'. First, note that o is injective (the homomorphism defined by
o(k) = s1kso defines an inverse). Thus, the truth value of all equations is preserved by
o. Moreover, p(si)hp(sy) = h and hence, p'¥(51k3;) = p(s1) "hp(sy)™' = h for every
extension p’ of p. Thus, all recognizable constraints are also preserved by o. Finally,
o(s1ksy) = $151kSeso = k. Applying o to (3) and using o(s1ksy) = k yields

Y, Y, Y o xf (B Y2, Y Y 2) A\ Yi€Gx F(k)
1<i<m
in G' * F(k). But then also
IV, Yt Rk Ve, Y ) A\ Y€ Gk F(k)
1<i<m

in G' * F(k), where ¢ is the initial Boolean formula. For this note that if the formula (2)
on page 11 holds in G’ * F'(k), then also AB = C in G’ x F(k). O
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6.3 Proof of Lemma 21

Recall that M C M; C M', h € H, and @ = (wy,...,w,) with w; € IRR(S) C M
are already fixed. Let x(X,Yi,...,Y,,, Z) be an arbitrary Boolean formula such that all
constraints have the form p'(Y) = g, where ¢ € H and p' : M’ — H is an extensions
of p : M — H. We may assume that all equations in y have the form AB = C for
ABCeQUQUIUKUK. Let W = {wy,wy,...,w,,w,} and let d be the number of
equations in x. Choose A such that |H| divides A — 1 and A\ > 2d + 1.

We start with the definition of some specific traces. A chain is an irreducible trace
ai---a, € IRR(S) C M, where ay,...,a, € I' and (a;,a;41) € D for 1 <i<n-—1. In
particular, its dependence graph induces a linear order. Recall that at the end of Section 6.1
we have fixed three different symbols a, b, c € I with (a,b), (b,c) € D.

Lemma 22. There ezists a trace £ € M such that p(¢) = h, alph({) =T, min(¢) = b, and
max (/) = a.

Proof. First, for every x € T" we construct a trace ¢, € IRR(S) with min(¢,) = =, max(t,) =
Z, and p(ty) = 1. If a, b, and ¢ belong to pairwise different alphabets I',, then ¢, =
a1+ 2y (ba) (cb) 7, - T, T, where zx1---x,b is a chain, which exists since (V, E)
is connected. On the other hand, if @ # @ = ¢, then choose a chain zz;---z,a and
define s, =z, ---x, (aba)‘H| Tp---Z1 7. If a belongs to a group isomorphic to Z, then
sz € IRR(S) and we can define ¢, = s,. On the other hand, if a belongs to a finite group,
then, since a # @, we have a> = a’ € I' in G. Then in G the element s, is equal to
zx1-1pa(ba) "t baz, - T, T € IRR(S) and we can choose the latter trace for t,.
Now we construct ¢ as follows:

e Select a trace s = byby - - - b, € IRR(S), b; € T, such that p(b; - - - by) = h.

o Let uy,...,us+1 € M be chains, visiting all symbols from I', such that the trace
buybyugby - - - ugbyugi1a is also a chain (these u; must exist).

o If u; =cy---c, with ¢; € I', then define v; =%, ---1,.

e Finally let £ = 231010202 - - - V404V 44114.
The construction implies that ¢ has indeed the desired properties. O

For the rest of the section let £ € M be some trace satisfying the properties from the
previous lemma. In the following R = (ro,...,7,) denotes a system of A + 1 traces r; €
{(ba) 1 (bc)lH1}* € M, where |r;| = 2n|H| for some n large enough. The value of n will
be made more precise later. Note that the traces r; are chains with p(r;) = 1 and that
there are 27*+1) such systems R. We say that the trace ¢ € {a,b,c}* C M appears twice
in R if one of the following three conditions holds:

e There exist 7,5 € {0,..., A}, i # j, such that r; contains a factor, which is equal to
t, and 7; contains a factor which is equal to ¢ or .
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e There exists i € {0,..., A} such that r; contains both factors ¢ and ¢.

e There exists i € {0,..., A} such that r; contains a factor ¢ twice, i.e., r; = ujtv; =
Uotve and uy # us.

We say that R has enough randomness if no trace ¢t with |¢t| > MZJ =n|H| — ‘Zﬂ appears

twice in R. Note that this implies in particular that the chains r¢,7g, ..., 7\, Ty are pairwise
different. Moreover, if r;0r; = urv with r € {r,,7,}, then eitheru =1and r, =rorv =1
and r; = r, i.e., r cannot be properly contained in r;¢r;.

The following lemma can be derived by standard techniques that random strings are
incompressible, the formal proof is therefore omitted. The idea is that if a long factor
appears twice in R, then the description of R can be compressed to less than n(A+1) bits.
Note that the chains r; behave like words.

Lemma 23. There exists ny (depending only on A and |H|) such that for all n > ng there
exists a system R = (rq,...,7)), 1 € {(ba) ™! (bc)#'}", having enough randomness.

Remark 24. Later, we will use R to construct a trace s, which can be replaced by the trace
s1ksg in Lemma 21. An explicit construction of s without using the notion of randomness
is given in [8].

Let us fix a system R = (rq,...,7)), ri—1 € {(ba)", (bc)#}", having enough randomness
such that furthermore 4n|H| + |[¢| > |w| for all w € W. For every 1 < i < )\ define the
length-reducing trace rewriting system

Ry = {(rici€ri, rii ki), (Fi b7y, Tk Tin) }

We consider R; as a trace rewriting system over the trace monoid M’ * {k, k}*. Note that
w € IRR(R;) for all w € W by the choice of n.

Lemma 25. Every trace rewriting system R; is confluent.

Proof. Assume that s —g, ¢t and s —g, u. Assume that ¢ (resp. u) results from s by
an application of the rule (r;_1¢r;, 7;_1kr;), the other two cases can be dealt analogously.
Thus, there exist traces ti, o, 11, and uy such that

S = tl(ri—l E’f’i)tQ = ul(ri—l ETZ’)’U/Q and t= tl(ri—l k’ri)tQ, u = ul(’rz’—l k 7'1')1,[,2.

Now we apply Lemma 2 to the identity ¢;(r;_1 £7;)ta = uq(r;_1 £7;)us. Since non-empty
prefixes (resp. suffixes) of r;_; (resp. r;) are dependent and ¢ is dependent from every
non-empty trace, we obtain up to symmetry one of the following two diagrams:

Ug 1 So 1o Ug 1 1 Ua
i1 lr || 1 | sy by | 1 ric1lr; || 1 s So
Uy t 81 1 Uy t s1 v

ty | i lry | Lo by | rii b |
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In the first case we must have s; = 1 = sy and thus ¢; = uq, t3 = ug, t = u. In the second
case we may assume that s; # 1 # so, since otherwise we obtain a special case of the first
diagram. Furthermore, if s = 1, then t =g, t1 7,1 kr;v 71 k71 U9 4 u. Thus, assume
that also s # 1. Since ss; = r; 1 £r; = s; s and R has enough randomness, there exist
traces p and ¢ such that s; =7, 1€p, so=qlr;, 7, =ps, r; 1 =sq (and |s| < n|H| — %')
Since (v, s) € I, we obtain

t=ti(ricikrite = tiriikpsvqlr;us
= tiri1kpvsqlr;us
—r, tiTic1kpvsqkriug
= tirii1kpsvqgkr;uy
ri— tiriifpsvqgkriug

= tirialpvsqkrius =ui(ri_1 kr)us = u.
]

The previous lemma implies that for every 1 < ¢ < ) and every trace s there exists a
unique normal form r;(s) such that s <, k;(s) € IRR(R;). Moreover, x;(w) = w for all
wewWw.

For the next lemma, let us consider a pair of traces (u,v) € M’ x M’ and ¢t € M'. We
say that (u,v) splits ¢, if there exists an occurrence of ¢ in the trace u v, which is neither
contained in the prefix » nor in the suffix v of the trace uv.

Lemma 26. Every (u,v) € M’ x M’ splits at most two traces from {r;_ Lr;, T {T;_1 |
1<i <A

Proof. Assume that (u,v) splits three traces from {r;_; £r;, 7 7= | 1 < i < A}, say
Ti1 Lr; for i = iy, 9, 13 pairwise different (other cases can be dealt analogously). Denote by
t the projection of the trace t € M’ to the alphabet {a, b, c}. Then we obtain factorizations

(u V) = U0 = u; T 1€r, v; for i = iy,1iy, i3, where u;, v; are traces over {a,b,c} such that
lus| < || < |u;iri_1 £7;]. But then there must be i,7 € {i1, 42,43}, i # j, such that either
r;—1 or 7; is properly contained in 7"]-_12 rj. Since R has enough randomness, this is not
possible. O

It is easy to see that if (u,v) does neither split r; ; £7; nor 7; £7; 1, then k;(u)k;(v) =
ki(uv). Since moreover k;(x) = k;(y) implies x = y, we obtain the following lemma (recall
that A > 2d + 1, where d is the number of equations in ).

Lemma 27. Let zj,yj,2; € M' for 1 < j < d. Then there exists 1 < i < X\ such that for
all 1 < 5 < d, we have z;y; = z; if and only if k;(x;)ki(y;) = Ki(2;).

Finally the following lemma follows immediately from the fact that p(¢) = h.

Lemma 28. Let p' : M/ — H be an extension of p: M — H. Then p'(t) = p'¥(ki(t)) for
every trace t € M' and every 1 <i < \.
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Now we are able to prove Lemma 21. Assume that

VX € IRR(S) N p~'(h) Y4, ..., Y € IRR(S) : x(X, Y4, ..., Yo, ) A\ YieM;

is true in (M’,7), Let s = ro€ry£---ry_1 €7y € IRR(S) C M. Since |H| is a divisor of
A —1 and p(r;) = 1, we have p(s) = p(¢*) = h* = h. Thus, there exist traces ty,...,t, €
IRR(S") N M; with x(s,t1,...,tm, @) in (M',”). By Lemma 27 and Lemma 28 there
exists 1 < j < X such that x¥(k;(s), k;(t1), - - -, Kj(tm), @) in (M’ * {k,k}*,7) (recall that
k;j(w) = w for all w € W). Note that we can write x;(s) = s1 k s2 for s1,s, € IRR(S) C M
such that p(s;)hp(s2) = h. Thus

V3, ..., Y € IRR(S}) : XE(s1k82, Y1, Yo, @) A J\ Vi € M+ {k, &}
1<i<m
is true in (M’ * {k,k}*,7).
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