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Abstract

This paper is concerned with the design of online scheduling algorithms that
exploit extra resources. In particular, it studies how to make use of multiple proces-
sors to counteract the lack of future information in online deadline scheduling. Our
results extend the previous work that are primarily based on using a faster proces-
sor to obtain a performance guarantee. The challenge arises from the fact that jobs
are sequential in nature and cannot be executed on more than one processor at the
same time. Thus, a faster processor can speed up a job while multiple unit-speed
processors cannot.

1 Introduction

Online algorithms for scheduling jobs with deadlines on a processor have been studied
extensively in the literature. A typical example is the earliest deadline first (EDF) algo-
rithm, which has been widely used in many real-time systems (see [19] for a survey). For
scheduling underloaded systems, EDF is optimal, i.e., whenever there exists a schedule
meeting the deadlines of all jobs released, EDF can always do so [7]. However, when the
system is possibly overloaded, no algorithm has a worst-case performance guarantee in
the sense that the performance cannot match or be competitive against the offline adver-
sary [2]. In recent years, a plausible approach to achieving better performance guarantee
for online scheduling (without restricting the inputs) is to allow the online scheduler to
use a faster processor than the offline adversary [3,5,8,11,15,17]. Intuitively, we use a
faster processor to compensate the online scheduler for the lack of future information. The
key question is whether a moderate amount of extra speed can lead to satisfactory com-
petitiveness. Kalyanasundaram and Pruhs [11] were the first to exploit a faster processor
to derive an online algorithm whose competitive ratio is bounded by a constant. Subse-
quently, it has been shown that even a 1-competitive algorithm can be constructed [16].

*A preliminary version of this paper appeared in the Proceedings of the 14th ACM Annual Symposium
on Parallel Algorithms and Architectures, 2002.
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An alternative to using a faster processor is exploiting multiple unit-speed processors.
Note that a job, in general, is not parallelizable and cannot be executed by more than
one processor at a time. While a faster processor can speed up a job, multiple unit-speed
processors cannot. In other words, we cannot use m unit-speed processors to simulate an
m-times faster processor, yet the reverse is possible (using time-sharing). In this paper we
show in the affirmative that multiple unit-speed processors can be used to counteract the
lack of future information. The number of processors required for a 1-competitive deadline
scheduling algorithm is of the same order of magnitude as the extra speed requirement
given in the previous work. Our new result holds whether job migration among processors
is allowed or not. Details are as follows.

Problem definition: We study the following scheduling problem on a processor,
which is known as the firm-deadline scheduling problem in the literature. Jobs are released
at unpredictable times, each being sequential in nature (i.e., cannot be executed by more
than one processor at a time) and independent from others. The processing time, deadline,
and value of a job are known when the job is released. Deadlines are firm in the sense that
completing a job after its deadline gives no value. A scheduler aims to maximize the total
value of jobs that are completed by their deadlines. Preemption is allowed at no cost, and
a preempted job can be resumed at the point of preemption on any processor. We consider
both settings where job migration is allowed at no cost and disallowed, respectively. In
general, a system may be overloaded in the sense that there is no schedule meeting the
deadlines of all jobs released. For more details of firm-deadline scheduling, one can refer
to [19].

The value of a job reflects its importance and is not necessarily related to the processing
time. The value density of a job is defined to be its value divided by its processing time,
and the importance ratio k of a system is the ratio of the largest possible value density to
the smallest possible one. When k£ = 1, it means that every job has a value proportional
to its computation time.

We analyze the performance of online algorithms with respect to their competitiveness
(see, e.g., [4,18]). For any ¢ > 1, an online algorithm A is said to be c-competitive if for
any job sequence, A guarantees to obtain at least a factor 1/c of the total value obtained
by any offline algorithm. When ¢ = 1, A guarantees to match the value obtained by any
offline algorithm.

Previous work: The early work of Dertouzos [7] showed that for underloaded sys-
tems, the Earliest Deadline First (EDF) strategy is 1-competitive. But in general, no
O(1)-competitive firm-deadline scheduler exists; indeed, the best possible competitive ra-
tio is (14 +/k)? (Baruah et al. [2], Koren and Shasha [14]). To obtain better performance
guarantees, one can allow online schedulers to use a faster processor. Specifically, one com-
pares an online scheduler that is given a faster processor but has no knowledge about the
future against an offline scheduler that uses only a unit-speed processor but has complete
information about the jobs. For the firm-deadline scheduling problem, Kalyanasundaram
and Pruhs [11] showed that the competitive ratio can be improved from (1 + V&)? to a
constant if the online scheduler is given a slightly faster processor (e.g., 31.9 with a double-
speed processor); more recently, Lam and To [16] gave an algorithm that is 1-competitive



using a processor of 4 [log k| times faster.

This paper investigates online algorithms that use multiple unit-speed processors in-
stead of a faster processor to counteract the lack of future information. We say that an
algorithm A is m-processor c-competitive if A using m unit-speed processors can obtain
at least a fraction 1/c of the value obtained by any offline algorithm using one unit-speed
processor. It was not known before how to exploit multiple unit-speed processors (instead
of a faster processor) to derive an O(1)- or 1-competitive algorithm. Nevertheless, there
are two previous results for restricted cases. Baruah [1] considered jobs with uniform
value density (i.e., & = 1) and gave an m-processor m/(m — 1)-competitive algorithm
(note that without extra resources, the best competitive ratio is 4). If the concern is to
maximize the total number of job completions, Kalyanasundaram and Pruhs [9] gave a
two-processor O(1)-competitive algorithm. *

Summary of results: In this paper we resolve in the affirmative that using only extra
processors can give a l-competitive algorithm for the firm deadline scheduling problem.
Assuming that migration is allowed, we give a two-processor 1-competitive algorithm for
k = 1, and a 4 [logk]-processor 1-competitive algorithm for general k. The processor
bound is asymptotically tight as it is relatively easy to show that any m-processor 1-
competitive algorithm requires m > |logk| (see the Appendix). T Eliminating migration
via more processors has been an interesting problem even in the offline setting (e.g.,
[10,12]). In this paper, we show that when migration is not allowed, a 1-competitive
algorithm can still be attained with a slight increase in the number of processors — three
processors for k = 1 and 6 [log k| processors for general k.*

Organization of the paper: The remainder of this paper is organized as follows.
Section 2 shows a new way to enhance EDF for the case when £ = 1, obtaining a
two-processor 1-competitive algorithm called EDF-Plus. Section 3 extends EDF-Plus
to handle the cases for general k. The |logk]| processor lower bound is given in Sec-
tion 4.2. Section 4 gives a non-migratory version of EDF-Plus, which is three-processor
1-competitive for k£ = 1 and 6 [log k|-processor 1-competitive for general k.

Notations: Throughout this paper, we denote the release time, processing time, dead-
line, and value of a job .J as r(J),p(J),d(J), and v(J), respectively. For any set S of jobs,
p(S) denotes the total processing time of the jobs in §. For a system with importance
ratio k, we assume that all jobs have their value densities normalized to the range [1, k].
Furthermore, we assume that jobs have distinct release times and deadlines (ties can be

*The past few years have also witnessed the application of extra-resource analysis to other difficult
online scheduling problems. In particular, for multi-processor scheduling in the underloaded setting,
Phillips et al. [17] have shown that using two times faster processors or log A times more processors can
lead to optimal online scheduling, where A is the ratio of the processing time of the longest job to that of
the shortest job. Note that job values are not a concern in this context as in the underloaded setting, it
is always feasible to schedule all jobs by their deadlines and an optimal online scheduling must complete
all jobs.

TRecently Chrobak et al. [6] have independently obtained a similar lower bound.

tFollowing previous work, this paper assumes that the importance ratio k is known in advance. Such
an assumption can actually be removed by allocating processors on a needed basis (see, e.g., [17]); our
algorithms remain valid, with the processor complexity increasing by an additive constant (precisely, the
[log k] factor increases to ([logk] + 1)).



broken using their identification numbers).

All algorithms in this paper are based on EDF', which refers to the strategy of schedul-
ing the job with the earliest deadline. Note that the current job will be preempted when
a new job with an earlier deadline is released. EDF is often supplemented with some
kind of admission control to avoid excessive preemption when the system is overloaded.
Below EDF-Ac denotes EDF enhanced with the following simple form of admission con-
trol: Upon release, a job must pass a test to get admitted for EDF scheduling. The test
simply checks whether the new job together with the previously admitted jobs can all
be completed by their deadlines using (plain) EDF. EDF-Ac is 1-competitive using a
4 [log k| times faster processor [16].

2 The EDF-Plus algorithm

In this section we discuss a new algorithm called EDF-Plus which is two-processor 1-
competitive for scheduling jobs with value density equal to one. It is known that EDF
(and EDF-Ac) is one-processor 1-competitive for underloaded systems [7]. Yet this is
not true for overloaded systems. Intuitively, it is too difficult for EDF and EDF-Ac to
select the right jobs so as to maximize the overall processing time. For example, EDF-
Ac can make a mistake in rejecting a long job due to the earlier admission of a shorter
job with tight deadline. We improve EDF-Ac based on a simple idea. When EDF-Ac
mistakenly rejects a job, we give the job a second chance by scheduling it on another
processor temporarily; after a while, the remaining processing time will get smaller and
hopefully, the job can get admitted by EDF-Ac. Thus, the enhanced EDF-Ac will be
more productive.

The above observation leads us to design an algorithm using two processors, denoted
M, and M, (the subscripts carry the meaning that these two processors select jobs with
earliest deadlines and largest processing times). M, schedules jobs using EDF-Ac. Once
M, admits a job, the job is guaranteed to be completed. A rejected job is considered
by M, immediately. M, aims at deferring the time EDF-Plus discards some jobs by
temporarily scheduling them. The job in M, will repeatedly attempt to migrate to M,
by going through the admission control of M, whenever M, completes a job. This makes
EDF-Plus inherently migratory. Note that at any time, there may be more than one job
rejected by M.. Yet M, needs to schedule only one using some simple greedy strategy.
Below we give two such strategies, both attempt to capture the currently biggest job in
accordance to a certain definition.

e maximum processing time: A/, works on a job as soon as it is rejected by M.
In case there are more than one such job, M, works on the one with the longest
processing time and discards all other jobs.

e zero slack time: A/, works on a rejected job only when the job has zero slack time
(i.e., deadline = current time + processing time); in case there is more than one
such job, preference will be given to the one with the latest deadline.



(1)  Initialization: Q «+ 0

)

(3)  When job J is released:

(4) if M, can complete all jobs in Q U {J} using EDF
(5) Q+ QU{J}

(6) M, runs the job with the earliest deadline job in @
(7) else if M, is idle or p(J) > p(Jus, ), where Jy, is the job running in M,
(8) Ju, is discarded and M), runs .J

9) else

(10) J is discarded

(11)

(12)  When M, completes job J:

(13 Qe Q- {J):

(14) let Jpz, be the job running in M);

(15) if M, can complete all jobs in Q U {Jaz,} using EDF
(16) Q<+~ QU{J,} // M, becomes idle

(17) M, runs the job with the earliest deadline in @

Algorithm 1: The EDF-Plus algorithm

The first strategy gives us an extra property which is useful in extending the algorithm
for general £ in the migratory setting, while the second strategy favors the non-migratory
setting in Section 4. In the following we only prove the correctness of EDF-Plus based
on the first strategy. The details of EDF-Plus are shown in Algorithm 1. It makes use
of a queue called @ to store all admitted jobs to be completed by M,. The life cycle of a
job is depicted in the following figure.

J is released

Can J
be admitted
by M,?

Schedule J
in M,

by EDF-Ac

A

J is completed

M, completes a job

and can now admit .J

Is M,

idling or running

J is
Schedule .J completed
in M,

Remove J

a shorter job
than J?

J is preempted
by a longer job

Discard J




Theorem 1. For scheduling jobs with uniform value density, EDF-Plus is two-processor
L-competitive (against one-processor offline schedulers).

In the remainder of this section, we prove Theorem 1 by contradiction. Assume that
EDF-Plus is not 1-competitive for some job sequence. Let Z be such a sequence containing
the fewest jobs. Without loss of generality, we assume the release time of the first job is 0.
In Lemma 1, we establish that M, is busy over exactly one continuous period in the course
of scheduling Z. Then in Lemma 2, we show an interesting property of the job J, in Z that
has the latest deadline. Based on these lemmas, we can argue that the total processing
time of jobs completed by M, is more than d(.J;) (see Lemma 3). Note that jobs of Z
can only be scheduled within the period [0,d(J;)]. Thus, an offline algorithm, using one
processor, obtains a total value (processing time) of at most d(.J;). This contradicts that
EDF-Plus is not optimal for Z and Theorem 1 is proved.

Fact 1. At any time, if M, is idle, then Q) is empty and M, is idle.

Lemma 1. In the course of scheduling T by EDF-Plus, M, is busy over exactly one
continuous period.

Proof. Assume that M, is busy over two or more disjoint periods. Let t, be the start
time of the last busy period. By Fact 1, both M, and M, are idle immediately before ¢,.
Therefore, if we partition Z into two parts, one for jobs with release time before ¢, and
one for the rest, and schedule them using EDF-Plus separately, the schedule produced is
not changed. Since EDF-Plus is not 1-competitive for input Z, at least one of the two
parts gives a job sequence where EDF-Plus is not 1-competitive. This contradicts the
assumption that Z is the smallest counterexample. O

We need the following notion to analyze .J;, the job with the latest deadline.

Definition 1. Consider any time ¢ when M, (in general, any processor using EDF for
admission control) fails to admit a job .J. That is, if M, uses EDF to schedule .J together
with the jobs admitted before ¢, then some job .J, (which could be .J itself) will miss its
deadline. Such a job .J, is said to repudiate J at t.

Fact 2. A job can repudiate itself as well as jobs with earlier deadlines, but it cannot
repudiate jobs with later deadlines.

Lemma 2. In the course of scheduling T by EDF-Plus, there is at least one time when
Jy repudiates itself or another job.

Proof. Suppose to the contrary that .J, never repudiates any job including itself. Then,
when J; is considered by M, at its release time, no job could repudiate .J, as J, does not
repudiates itself and any other job has a deadline earlier than d(Jy). Thus, J; must be
admitted by M,. Consider any moment after .J; is admitted. Any newly released job, if
rejected by M., must be repudiated by a job other than .J,. Recall that A, is running
EDF-Ac and J;, has the latest deadline. If we remove .J, from Z, M, will not admit
more jobs and EDF-Plus loses exactly the processing time of .J,. On the other hand, the



optimal offline algorithm loses at most the processing time of .J,. Thus, Z — {.J,} is a job
sequence for which EDF-Plus is not 1-competitive. This contradicts the assumption that
T is the smallest counterexample. O

Lemma 3. The value obtained by EDF-Plus in scheduling T is more than d(Jy).

Proof. By Lemma 2, J, repudiates some job .J at some time t, where r(.J,) <t < d(.Jy).
Thus M, must be busy at time ¢. Furthermore, by Lemma 1, M, is busy throughout
the period [0,¢]. By the definition of repudiation, at time ¢, using EDF to schedule the
jobs currently found in () and J will cause J, to miss its deadline. In other words, M,
is committed to process admitted jobs up to a time later than d(.J,) — p(.J), attaining a
total value of more than d(Jy) — p(J).

Next, we show that J or another even longer job that has not yet been admitted by
M, will be completed by EDF-Plus. After M, rejects .J at time ¢, there are three possible
scenarios: (1) J is scheduled to completion on M,; (2) J is scheduled on M, and later
migrates to M,; or (3) J is discarded before its deadline by A, due to the presence of
another rejected job with longer processing time. In the last case, EDF-Plus guarantees
that a rejected job with longer processing time will eventually be completed. The value
obtained in scheduling rejected jobs is at least p(J).

Therefore, the total value obtained by EDF-Plus in scheduling Z is more than d(.J;) —
p(J) +p(J) = d(Je). 0

3 Non-uniform value densities

In this section, we first present an algorithm called EDF-MSp which is 4-processor 1-
competitive for scheduling jobs with importance ratio at most 2. Then we show that for
jobs with importance ratio at most k£ (> 2), a simple extension of EDF-MSp can give
a 4 [log k]-processor 1-competitive algorithm. EDF-MSp uses four processors, which are
divided into two bands, each containing two processors. When a job is released, it is first
considered by Band 1, which is running EDF-Plus. If Band 1 discards the job (at line 8
or line 10 in Algorithm 1), the job is passed to Band 2, which runs a different algorithm
to be described later.

For any job sequence Z, let A; and O be the sets of jobs completed by EDF-Plus and
an optimal offline algorithm OPT, respectively. Recall that EDF-Plus guarantees that
p(A1) > p(0), ie., p(A;—0O) > p(O—A;). Though jobs in O — A; may have higher value,
the importance ratio is at most two and ||O — A, ||, the total value of O — A;, is at most
2p(O—A;). EDF-MSp is 1-competitive if the Band 2 processors can complete a subset A
of jobs discarded by EDF-Plus with sufficient processing time, say, p(As) > p(O — A;).
Then we can conclude that ||A;]| + ||Az|] > ||O|]. Yet to achieve such a lower bound on
p(Az) seems to be very difficult. (This is mainly due to the fact that some jobs are not
passed to Band 2 immediately upon their release.) In fact, our algorithm takes advantage
of a less demanding requirement, namely, p(Az) > p(O'), where O' = O — A; — A,.

Lemma 4. Suppose p(Az) > p(O'). Then [[A]l + [|Az| = [[O]].

7



Initialization:
Q +— 0 // A jobis kept in Q" until its slack time is zero.

When job J is passed to band 2:
if M, isidle or r(J) < r(Jpz) where Jyy, is the job running in M,
Q + Q" U{Jm,};
M, runs J
else

Q' QU{J}

When M, completes job J:
if Q' # 0
Q'+ Q' — {J'} where J' is chosen arbitrarily from Q';
M, runs J'
else if M, is working on a job Jy,
M, runs Jy;, // Mg becomes idle

When job J € Q' has zero slack time:
Q'+ Q —{J}
if My is idle or d(J) > d(Jp,) where Jyz, is the job running in My
Mg runs J; Jy, is discarded
else
J 1s discarded

- e e e e e e —

Algorithm 2: MSp — the algorithm for Band 2.

Proof. Let S = A;NO and S = A, N O. Note that O' = O =& — S, and ||O|| =
|Si]| + ||S2]] + ||O']]. Furthermore, let A} = A; — &, and let A, = Ay — S,. Since
p(A1) = p(O), we have p(A}) = p(Ar) —p(S1) = p(O) —p(S1) = p(O') +p(Sz). Moreover,
p(Az) > p(O') and thus p(A)) = p(Az) — p(S2) > p(O') — p(S2). In summary, we have
ﬁgh'l)er(Aé) > 2p(0') = ||O'[]. Therefore, ||Ay[|+ [ Azll > |||+ 1S2]| +p(AL) +p(A3) >

. U

Below we show an algorithm called MSp for Band 2 which satisfies the requirement
that p(Ay) > p(O’). Then by Lemma 4, we can conclude that EDF-MSp is 4-processor
1-competitive.

First of all, we note that a job .J passed to MSp is discarded by EDF-Plus either at
r(J) or strictly after r(.J). For the latter case, the definition of EDF-Plus gives us the
following property.

Fact 3. If a job J is discarded by EDF-Plus at time ¢ > r(.J), it has been running on M,
during [r(J), t].

Denote the two processors of MSp as M, and M, (the subscripts carry the meaning
that these processors select jobs based on release times and deadlines, respectively). De-
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tails of MSp are shown in Algorithm 2. Intuitively, for every job .J discarded by Band 1,
we hope that either J is completed in Band 2, or M, is busy during the entire period
(r(J),d(J)]. M, attempts to schedule and complete any job discarded by Band 1. How-
ever, to guarantee productivity as much as possible, a discarded job from Band 1 with
an earlier release time can preempt the current job in M,. On the other hand, for any
job J that is not scheduled by M,, we give J a second chance by scheduling it in M},
temporarily and .J may migrate to M, whenever M, becomes idle. This keeps M, busy as
long as possible. M, uses the zero slack time strategy, i.e., My runs a job J only when J’s
slack time is zero; ties are broken using the latest deadline. Intuitively, such a strategy
allows M, to retain a job (for future migration) as long as possible. Similar to the two
processors of EDF-Plus, M, and M, have the following relationship.

Fact 4. At any time, if M, is idle, then @' is empty and M, is idle.

The crux of the analysis of Band 2 is captured by the following lemma and theorem.
Recall that with respect to a given job sequence Z, we denote the set of jobs completed
by Band 1 and Band 2 as A; and Ay, respectively. Let Z' be the set of jobs not completed
by EDF-MSp (i.e., Z' =T — A; — Ay). We need the following notion of span.

Definition 2. The span of a job .J is the period [r(.J),d(J)], and the span of a set S of
jobs is the union of the spans of all the jobs in S. (E.g., the union of the spans [3, 6] and
5, 8] is [3,8].) Furthermore, let sp(S) be the total time included in the span of S.

Definition 3. At any time ¢, EDF-MSp is said to be productive on A, if a job J € A,
is running on one of the four processors of EDF-MSp.

Lemma 5. Let J be any job discarded by EDF-MSp. Then EDF-MSp is productive on
Ay throughout the span of J, i.e., [r(J),d(J)].

Before giving a proof, we note that Lemma 5 can easily lead to the conclusion that
that EDF-MSp is a four-processor 1-competitive algorithm. See the following corollary
and theorem.

Corollary 1. (i) p(As) > sp(T'); (ii) p(Asz) > p(O').

Proof. Statement (i): p(As) is at least the total time during which EDF-MSp is produc-
tive on A,. Lemma 5 ensures that for any job J € Z', EDF-MSp is productive on A,
during the span of J. In other words, EDF-MSp is productive on A, during the span of
T'. Therefore, p(Asz) > sp(T').

Statement (ii): By Theorem 1, p(Ay) > sp(Z'). As O' CT', we have sp(Z') > sp(O').
Since OPT schedules at most one job at a time, it follows that p(O') < sp(Q'). In
summary, p(As) > sp(Z') > sp(O') > p(O"). O

By Lemma 4, we can further conclude that ||A;|| + || A2|| > ||O]|. Thus, we have the
following theorem.

Theorem 2. For scheduling jobs with value densities in the range [1,2], EDF-Plus is
4 [log k|-processor 1-competitive (against one-processor offline schedulers).

9



The rest of this section is devoted to proving Lemma 5.

Lemma 6. Let J be a job passed to Band 2 at time t > r(J). Then any job J' with
r(J") < r(J) (i.e., released no later than J), if passed to Band 2, must be passed on or
before r(.J).

Proof. The lemma is trivial if J' is passed to Band 2 at r(J'). It remains to consider
the case where J' is passed to Band 2 at time ¢ > r(J'). By Fact 3, M, schedules .J
during the entire nonempty interval [r(.J),t], and M, also schedules .J" during the entire
interval [r(J'),t']. Note that these two intervals cannot overlap. Since r(J') < r(J),
[r(J'),t'] must precede [r(.J),t] and thus, t' < r(J). O

Lemma 7. At any time, if M, is busy, then EDF-MSp is productive on As,.

Proof. Consider any time ¢; when M, runs a job J. The lemma holds if J is completed
on M,. It remains to consider the case that .J is preempted by another job .J' passed to
Band 2 at time ¢ty > t;. By definition of MSp, r(J') < r(J). We want to show that .J'
is in Ay. Note that r(J') < r(J) < t; < ty. By Fact 3, J' is running on M, during the
period [r(J'), t2]. By Lemma 6, all jobs passed to Band 2 after to > r(.J') are released later
than .J'. Therefore, J' cannot be preempted by these jobs and can run up to completion
on M,. Thus, J' is in Ay and EDF-MSp is productive on Ay during [r(J'), 2] and in
particular at time ;. O

Proof of Lemma 5. By Lemma 7, it suffices to show that M, is busy during the span of .J.
We divide the span into at most three periods and argue M, is busy in each period.

e Consider the period from r(.J) to the time ¢, when J is passed to Band 2. Suppose
t, > r(J). Assume, for the sake of contradiction, that M, is idle at a certain time
t € [r(J),t,). Then all jobs passed to Band 2 before ¢ were completed or discarded
by t; otherwise M, would schedule one at ¢. In other words, any job J' found in
Band 2 after time ¢ must be passed to Band 2 at time after ¢ > r(.J). By Lemma 6,
if J# J', then r(J') > r(J). When J is passed to Band 2 at t,, it can preempt the
job currently in M, (if exist) and will not be preempted afterward. Therefore, .J
can run up to completion on M,., contradicting that .J is discarded by EDF-MSp.

e As J is discarded eventually, it must have been put into )’. Consider the period
from ¢, to the last time ¢, when J is removed from Q' for consideration of M . At
any time within this period, J is in Q)" or is processed by M, or M,. In both cases,
M, cannot be idle because of Fact 4 (i.e., J is eligible for scheduling on M,).

e At time t,, My attempts to schedule .J. Recall that J is discarded by EDF-MSp.
J must be preempted before its deadline. By definition of M, this must be due to
a job .J' with a later deadline. Note that .J' may possibly be further preempted or
migrated to M,. In all cases, at any time within the period [ts, d(.J)], there is at
least one job with deadline on or after d(J) scheduled by either M, or My. In the
latter case, by Fact 4, M, must be busy with some other job. O
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Arbitrary importance ratio

EDF-MSp can serve as building block for handling importance ratio of any £ > 1.

Theorem 3. For scheduling jobs with value densities in the range [1,k] where k > 1,
there ezists a 4 [logk|-processor 1-competitive algorithm (against one-processor offline
schedulers).

Proof. Consider the following 4 [log k|-processor algorithm. Partition the jobs into [log k|
groups, where the i*" group contains all the jobs with value density in the range [21~1, 27].
Each group is given four processors executing EDF-MSp independently. Within each
group, the value densities differ by at most a factor of 2, so the four processors match
the value obtained by any offline algorithm for jobs of this group. Therefore, the 4 [log k]
processors together can match the value obtained by any offline algorithm for jobs with
value densities in [1, k]. O

4 Non-migratory scheduling

In this section we discuss a non-migratory algorithm N-EDF-Plus(n), which is parameter-
ized by an integer n > 1. We first show that N-EDF-Plus(1) is 3-processor 1-competitive
for scheduling jobs with uniform value density (i.e., K = 1). Then we show that N-EDF-
Plus(2) is 6-processor 1-competitive for scheduling jobs with importance ratio at most 2.
Using the technique in Theorem 3, we can make use of N-EDF-Plus(2) to construct a
6 [log k]-processor 1-competitive algorithm for scheduling jobs with importance ratio at
most k, where k& > 2.

N-EDF-Plus(n) uses 3n processors, denoted Me;, Md;, and Mu; where 1 < i < 7.
N-EDF-Plus(n) works as follows. Each Me; is using EDF-Ac with its own queue. When
a job J is released, it will be admitted by any one of the Me;’s if possible. If .J is rejected
by all Me;’s, it is put into a common pool shared by all other processors. Whenever an
Md; is idle, it removes the job with the latest deadline from the pool and works on it until
it is completed.

If a job J in the pool has never been picked by an Md;, its slack time will become
zero and it is then said to be urgent. In this case, we will try to retain J in the pool by
scheduling it on any available Mu; temporarily. I.e., each Mu; is using the zero slack time
strategy and a job J running on an Mu; will migrate to an Md, once Md; completes a
job and J has the latest deadline among all jobs currently in the pool. At any time, up
to 1 urgent jobs in the pool are processed by the Mu;’s; preference is given to those with
latest deadlines (and the remaining ones are removed from the pool as they will miss their
deadlines). Details of N-EDF-Plus(n) is depicted in Algorithm 3.

Notice that N-EDF-Plus(n) involves job migrations from Mu;’s to Md,’s. Yet these
2n processors, unlike Me;’s, do not commit to any jobs that have been partially executed.
Migrating a job from an Mu; to an Md; can be avoided by switching the role of the two
processors. Thus, N-EDF-Plus(n) is non-migratory in nature.
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Initialization: P < ()

When job J is released:
if some Me; can admit J
Me; admits J to its EDF queue
Me; schedules the job with the earliest deadline in its EDF queue
else if some Md; is idling
Md; runs J
else
P+ PU{J}

When Me; completes a job J:
Me; removes J from its EDF queue
Me; schedules the job with the earliest deadline in its EDF queue, if any

When Md; completes a job:
if P#£0
Let J be the job in P with the latest deadline
P« P—{J} //if some Mu;j is running J, it becomes idle
Md; runs J

When J € P becomes urgent (slack time becomes zero):
if some Mu; is idling
Mu; runs J  // J remains in P
else
Let J' be the urgent job other than J in P with the earliest deadline
Let Mu; be the processor running .J’
// Mu; exists; otherwise J' would miss its deadline
if d(J) > d(J')
P« P —{J'}; Muj runs J
else
P+ P-{J}

Algorithm 3: The N-EDF-Plus(n) algorithm
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4.1 Analysis of N-EDF-Plus(1)

First, we focus on the case where 7 = 1. As there is only one processor of each type, we
omit the subscript ¢ and use the notations Me, Md, and Mu. Intuitively, N-EDF-Plus(1)
uses two processors Me and Md to simulate the processor M, of EDF-Plus so as to avoid
any job migration to Me.

N-EDF-Plus has the property that a job, once started in Me or Md, will eventually
be completed. We define the safe processing time produced by N-EDF-Plus(1) to be
the total length of the busy periods of Me and the busy periods of Md. Then the total
processing time of jobs N-EDF-Plus(1) completes is at least the safe processing time. The
result that N-EDF-Plus(1) is 1-competitive is based on the following theorem.

Theorem 4. For scheduling any job set T with uniform value density, the safe processing
time produced by N-EDF-Plus(1) is no less than the total processing time of the jobs
completed by an optimal offline algorithm using one processor.

The proof of Theorem 4 is analogous to the proof of EDF-Plus being 1-competitive.
Assume on the contrary that Theorem 4 fails for some job sequences. Let Z be such a
sequence with the fewest jobs. We suppose the first job is released at time 0. At any
time, if Me or Md is busy, we say that N-EDF-Plus(1) is busy. Note that by definition,
whenever Mu is busy, Md and thus N-EDF-Plus(1) are also busy. The following two
lemmas are analogous to Lemmas 1 and 2 and their proofs are omitted.

Lemma 8. In the course of scheduling T, N-EDF-Plus(1) is busy over ezactly one con-
tinuous period.

Lemma 9. There exists a moment when J;, the latest deadline job in I, repudiates some
job in Me.

Based on the above two lemmas, we can prove that N-EDF-Plus(1) can complete jobs
with a total time at least d(.J;) (see Lemma 10). Jobs in Z can only be processed within
the period [0, d(J;)] and therefore any offline algorithm, using one processor, can obtain a
value at most d(.J;). This contradicts N-EDF-Plus(1) is not 1-competitive for Z, and we
complete the proof of Theorem 4.

Lemma 10. The safe processing time is at least d(Jy).

Proof. By Lemma 9, J, repudiates some job J. Since Me only considers a job at its
release time, this must happen at r(J), and Me must be busy at r(J). By Lemma 8,
N-EDF-Plus(1) is busy during the period [0,7(.J)]. Thus, the safe processing time up to
r(J) is at least r(.J).

Now we examine the situation at r(.J). Since J, repudiates .J, using EDF to schedule
the jobs currently found in the queue of Me and J causes J; to miss its deadline. Thus,
Me must have committed to process admitted jobs up to a time later than d(J;) — p(J),
and Me is busy over the period [r(.J),d(J;) — p(J)].

After Me rejects J, .J will either be scheduled to completion by Md or Mu, or be
discarded. For the former case, J cannot be completed earlier than r(.J) + p(.J), so Md
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must be busy during the period [r(.J),r(J) + p(J)]. For the latter case, let ¢t > r(.J) be
the time when J is discarded. During [r(.J),t], Md is busy. At time ¢, Mu is running a
job with deadline later than d(.J), which implies Md must be busy until d(.J). Hence Md
is busy during the whole span of J.

In summary, after r(.J), Me is busy for a period of at least d(.J;) — p(J) — r(J), and
Md is busy for a period of at least p(.J). Therefore, the safe processing time after r(.J) is
at least d(.J;) — r(.J), and the overall safe processing time is at least d(.J;). O

4.2 Analysis of N-EDF-Plus(2)

Next, we show that N-EDF-Plus(2) is a 6-processor 1-competitive algorithm for schedul-
ing jobs with importance ratio at most 2. The basic idea of N-EDF-Plus(2) is similar to
EDF-MSp — Whenever a job J fails to complete, N-EDF-Plus(2), at any time during
the span of J, must have scheduled two jobs that can produce useful work.

Consider any sequence Z of jobs. Let A and O be the set of jobs completed by N-
EDF-Plus(2) and an optimal offline algorithm respectively. Let O, = O — A. For the
purpose of analysis, we consider Me; and Md,; together, and compare the jobs completed
by them against O. Similarly, we consider Mes and Mds together. Precisely, we partition
A into five groups:

e A;: the set of jobs not in @ and completed in either Me; or Md,.

e 3y: the set of jobs in O and completed in either Me; or Md,.

e A,: the set of jobs not in O and completed in either Mes or Md,.

e B5: the set of jobs in O and completed in either Mey or Md,.

e U: the set of jobs completed in either Mu; or Mus.
Note that A = A UB; UA; UB, UU, while O C O, UB; UB,UU. We show the following.
Lemma 11. (i) p(A;) > p(O,); and (ii) p(Az2) > p(O,).

Once we establish Lemma 11, we can conclude that N-EDF-Plus(2) is 1-competitive.
Theorem 5. ||A|| > ||O]].
Proof. By Lemma 11, p(A1) + p(Az) > p(O,) + p(Os) > [|O,]], so

Al = p(Ar) + p(Az2) + (| Bi]| + [ Ba|| + [[UA]]
> [|Ool| + (| Bl + [|1Ba]] + [|U]]
> o] . O
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It remains to prove Lemma 11. As the two parts are symmetric, we only show the
proof of p(A;) > p(O,). Intuitively, we analyze the behavior of N-EDF-Plus(1) for the
set of jobs 7' = A; U By U O,, and show that it is very similar to the schedule produced
by N-EDF-Plus(2) for Z. Then we make use of a result in the last section to show that
p(A1) > p(O,). Precisely, Lemma 12 shows that the scheduling of Me and Md in N-
EDF-Plus(1) with Z' as input is exactly the same as the scheduling of Me; and Md; in
N-EDF-Plus(2) with Z as input. This means that the set of jobs that have ever been
processed (and thus completed) by Me and Md in N-EDF-Plus(1) is exactly A; UB;. The
safe processing time of N-EDF-Plus(1) (i.e., the total amount of time when Me and Md
are busy) is at most p(A;) +p(B;). By Theorem 4, the safe processing time is at least the
total processing time of jobs that an optimal offline algorithm can obtain from scheduling
T'. Note that the latter is at least p(B;) + p(O,). Thus, p(A1) + p(B1) > p(B1) + p(O,)
and Lemma 11(i) follows.

Lemma 12. Consider the schedules produced when N-EDF-Plus(1) schedules I', and
when N-EDF-Plus(2) schedules I. At any time, (i) the job scheduled by Me in N-EDF-
Plus(1) is ezactly the same as the job scheduled by Mey in N-EDF-Plus(2); and (ii) the
job scheduled by Md in N-EDF-Plus(1) is ezactly the same as the job scheduled by Md,
in N-EDF-Plus(2).

The remainder of the section proves Lemma 12. We first show Lemma 12(i) by proving
a stronger version of it.

Lemma 13. At any time, the EDF queues of Me and Me; contain exactly the same set
of jobs.

Proof. We prove Lemma 13 by induction on the release time of jobs in Z. Assume that
the EDF queues of Me and Me; are exactly the same at any time from time 0 to the time
just before the release of a job J € Z. As Me and Me; use the same strategy to schedule
jobs in their queues, their schedule have been exactly the same just before J is released.
Let X be the set of jobs in these two queues just before J is released. If J is not in 7, it
is rejected by both Me; and Md;. Furthermore, .J is not released to N-EDF-Plus(1) and
cannot be accepted by Me either. If .J is in Z', the acceptance of .J into the EDF queues
of Me and Me; both depend only on whether X U{.J} can be scheduled using EDF. Thus,
Me and Me; make the same decision and their EDF queues remain the same immediately
after J is released. O

We prove the second part of Lemma 12 by contradiction. Let ¢, be the first time when
the jobs scheduled by Md and Md, are different. By definition, just before t,, both Md
and Md, are either idle or working on the same job, say J. The next lemma shows that
in the latter case, both Md and Md; must complete J exactly at ¢,. That means, at ¢,,
either one of Md and Md; schedules a new job and the other is idle, or these processors
schedule different new jobs.

Lemma 14. If Md and Md, are working on a job .J just before t,, then both Md and Md,
complete J at t,.
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Proof. Both Md and Md; never preempt jobs. If they both schedule .J prior to ¢,, one of
them, say Md, must complete J at t,. If Md has completed .J by itself (i.e., without using
Mu), Md;, which has worked on J for the same amount of time as Md, also completes .J
at t,. Otherwise, J has been an urgent job from the viewpoint of Md and t, = d(J). Md,
must complete J at t,. O

Proof of Lemma 12 (ii). As explained above, at time t,, one of Md and Md; schedules a
new job, and the other is either idle or schedules a different new job. Below we further
argue that if Md schedules a new job J, at t,, then Md; must schedule .J, or a job with a
later deadline (see Lemma 15). The reverse can also be proven (see Lemma 16). In other
words, the jobs scheduled by Md and Md; at t, have the same deadline. As the deadline
of a job is assumed to be unique, we conclude that Md and Md, schedule the same job at
to. This contradicts the definition of ¢,, and Lemma 12 (ii) follows. O

Lemma 15. Suppose Md, schedules a new job .J, at t,. Then Md at t, cannot idle or
schedule a job with a deadline earlier than d(.J,).

Proof. Note that Me; does not admit .J,. By Lemma 13, when N-EDF-Plus(1) schedules
I', J, is also not admitted by Me. Thus, N-EDF-Plus(1) must have put .J, into its common
pool. Suppose for the sake of contradiction that at t,, Md either idles or schedules a job
with an earlier deadline. Then N-EDF-Plus(1) must have removed J, from its pool at
some time ¢t < t,. This can happen only if J, is an urgent job at ¢ and there is another
urgent job J" with d(J') > d(.J,). J' cannot be picked up by Md before t, (otherwise Md
will be kept busy beyond t,, contradicting Lemma 14). .J' could also be removed from
the pool before ¢, if there is another urgent job with an even later deadline. Nevertheless,
during the interval [t,t,], the pool always contains an urgent job with a deadline later
than d(J,). N-EDF-Plus(1) at ¢, could schedule a job with deadline at least d(.J,) on Md.
A contradiction occurs. ]

Lemma 16. Suppose Md schedules a new job J, at t,. Then Md, at t, cannot idle or
schedule a job with a deadline earlier than d(J,).

Proof. Note that upon release, .J, is not admitted into the EDF queue of Me and thus of
Me, . Furthermore, since J, isin Z' = A;UB;UQ,, J,, when scheduled by N-EDF-Plus(2),
is also not admitted by Mey and must be put into the common pool of N-EDF-Plus(2).
Suppose for the sake of contradiction that Md, at t, idles or schedules a job with a deadline
before d(.J,). Then J, must have been removed from the pool at some time ¢t < t,. As J,,
being in Z', cannot be picked up by Mdsy, we can deduce that when .J, is removed from
the pool at ¢, J, must be urgent and the pool contains two other urgent jobs both with
a deadline beyond d(.J,). Each of these two urgent jobs may be subsequently replaced by
another urgent job with an even later deadline, and so on. Nevertheless, from ¢ onwards
till ¢,, the pool contains two such urgent jobs until Md; or Md, schedules any one of them.
Note that Md; cannot schedule any such urgent job before t, (otherwise, Md; will be kept
busy beyond d(.J,) > t,, contradicting Lemma 14). Md, can schedule at most one of the
two urgent jobs before ¢, and then keeps on working on it beyond ¢,. Thus, at t,, the

16



pool contains at least one urgent job whose deadline is at least d(.J,) and N-EDF-Plus(2)
could schedule this job on Md;. A contradiction occurs. O
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Appendix: Lower bound

In this section we show a lower bound on the number of extra processors required by
an online algorithm so as to be 1-competitive against any offline algorithm using one
processor. Some techniques used in the proof are inspired by Koren and Shasha’s lower
bound result on the competitive ratio of multi-processor scheduling algorithms using no
additional resources [13].

Theorem 6. For scheduling jobs with importance ratio k, there is no m-processor 1-
competitive algorithm (against one-processor offline schedulers) for all m < |logk].

Let A be an algorithm using m processors, where 1 < m < |logk]|. To ease our
discussion, let ¢ = 1/2mk. Below we describe an adversary which constructs an input
sequence to make A perform poorly. The adversary divides the time into a number of
stages. At the beginning of each stage, a fixed set of jobs is released. To ensure that
the offline algorithm outperforms A, the adversary controls the number of stages and the
time to start each stage.

In each stage, the following m + 1 jobs are released. All jobs have zero slack time, i.e.,
their deadlines are exactly the start time of the stage plus their processing time.
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Job category | Value density Processing time Value
0 1 1 1
1 2 € 2e
2 22 g2 (2¢)?
m 2m em (2e)™

Note that a job of higher category has higher value density, but much smaller process-
ing time, leading to a much smaller value. The importance ratio of the job set is 2™ < k.
Since all jobs are tight, if a job is not chosen to be scheduled immediately upon release, it
will miss its deadline. Intuitively, it is desirable to schedule jobs of higher value density,
so as to get a larger value in a short time. However, doing so risks idling for most of the
time if the next stage does not start early enough. With only m processors, A is forced
to abandon at least one of the m + 1 jobs immediately after it is released. A suffers if the
next stage starts exactly at the deadline of that job, since the jobs of lower categories are
of much less value density, while the jobs of higher categories are too short to contribute
significant value. We show that in such a case, the sum of values obtained by all the m
processors is still less than the value that can be obtained by an offline algorithm. The
adversary can thus stop after a sufficiently large number of stages, when it is known that
A cannot match the optimal offline algorithm with the value obtained after the last stage.

We begin by defining when each stage starts. Stage 1 starts at time 0. Immediately
after a stage starts, say at time ¢, the adversary examines the jobs that A chooses for
scheduling. Note that there may be more than one job of each category, since a job

may need multiple stages to complete. For i = {0,1,...,m}, let n; be the number of
jobs of category i or below scheduled by A. For convenience, we define n_; = 0. The
adversary finds the minimum number a € {0,1,...,m} such that n, < «. This number

is well defined, since n,, < m. Note that n,_1 > a — 1, so the number of scheduled
jobs of category a is n, —no,_1 < 1, i.e., zero. The adversary declares the stage ends at
t+ e, i.e., the deadline of the category « job released in the stage. The next stage starts
immediately, unless the adversary decides to stop.

Fact 5. During a stage, an offline algorithm can obtain a value of (2)*, by scheduling
the category a job in its only processor.

Lemma 17. During a stage, A obtains at most a value of (25)* —e®/2.

Proof. We separately analyze the value A obtains for jobs in categories above and below «
(recall that no job of category « is scheduled). Let us first consider jobs of categories v+ 1
and above. Since these jobs have deadlines earlier than the category « job, their value is
obtained completely during the stage. As we have discussed, jobs of higher category are
of less value, so the value of each job is at most (2¢)**L. With m processors, A schedules
no more than m such jobs, resulting in a total value of at most m(2e)**! < m2me**t! <
mk(e®/2mk) = /2.

Next, we consider jobs of categories & — 1 and below. These jobs may not necessarily
be completed within the stage, and we count only the value associated with the work
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done in the stage. By the definition of «, the number of jobs of category 7 to a — 1
is ng —nj 1 < a— (i —1), i.e,, at most @ — i. Thus the total value density is no
more than the case when there is one job of each category, with the total value density
14+2+---+2%1=2*—1. The value obtained by A is thus no more than (2% — 1)z,
Lemma 17 results immediately by summing the above two parts. O

Note that in each stage, A lags behind the offline algorithm for an additional amount
£*/2 > €™/2 of value. So if there are m |2/¢™ + 1] stages, A lags behind the offline
algorithm by more than m in value. After the last stage, A can complete no more than
m jobs, each job has a value of no more than 1. The offline algorithm thus obtains more
value than A, completing the proof of Theorem 6.
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