On-line Stream Merging with Max Span
and Min Coverage

Wun-Tat Chan* Tak-Wah Lam' Hing-Fung Ting’* Prudence W.H. Wong'
November 25, 2003

Abstract

This paper introduces the notions of span and coverage for analyzing the perfor-
mance of on-line algorithms for stream merging. It is shown that these two notions
can solely determine the competitive ratio of any such algorithm. Furthermore,
we devise a simple greedy algorithm that attains the ideal span and coverage, thus
giving a better performance guarantee than existing algorithms. The new notions
also allow us to obtain a tighter analysis of existing algorithms.

1 Introduction

A typical problem encountered in video-on-demand (VOD) systems is that many re-
quests for a particular popular video are received over a short period of time (say, Friday
evening). If a dedicated video stream is used to serve each request, the total bandwidth
requirement for the server is enormous. To reduce the bandwidth requirement without
sacrificing the response time, a popular approach is to merge streams initiated at different
times (see e.g., [1,3-5,8-15]).

Stream merging is based on a multicasting architecture and assumes that each client
has extra bandwidth to receive data from two streams simultaneously. In such a system,
a stream can run in two different states: normal state and exceptional state. A new
stream Y is initially in normal state and all its clients receive one unit of data from
Y in every time unit for immediate playback. Some time later, ¥ may change to the
exceptional state and all its clients receive, in every time unit, one unit of data from Y
and one unit of data from an earlier stream X (say, initiated A time units before V).
When Y7’s clients have buffered enough data from X (i.e., A units), they can synchronize
with the playback of X and can switch to X. At this time, Y can terminate and it is said

*Department of Computing, Hong Kong Polytechnic University, Hong Kong,
cswtchan@comp.polyu.edu.hk

fDepartment of Computer Science, University of Hong Kong, Hong Kong,
{twlam hfting, whwong}@cs.hku.hk

!This research was supported in part by Hong Kong RGC Grant HKU7045/02E.

to merge with X. Note that stream merging reduces the total bandwidth requirement.
In general, a VOD system may not allow each client to receive up to one extra unit of
data per time unit; in this paper a VOD system is characterized by an integer parameter
A > 1, which means that a client can receive a total of 1 + 1/\ units of data per time
unit.

To support stream merging effectively, we need an on-line algorithm to decide how
streams merge with each other. The performance of such an on-line algorithm can be
measured rigorously using the competitive ratio, i.e., the worst-case ratio between its total
bandwidth and the total bandwidth used in an optimal schedule. The literature contains
a number of on-line stream merging algorithms, e.g., the greedy algorithm [3] (also called
nearest-fit), the Dynamic Fibonacci tree algorithm [3], the connector algorithm [7], and
the a-dyadic algorithm [9]. The greedy heuristic is attractive because of its simplicity
and ease of implementation; a stream simply merges with the nearest possible stream.
Unfortunately, it has been shown to be Q(n/logn)-competitive, where n is the total
number of requests [3]. The other three algorithms provide much better performance
guarantee; in particular, the connector algorithm and the a-dyadic algorithm are known
to be 3-competitive [6,7]. Yet these algorithms are much more complicated than the
greedy algorithm. The Dynamic Fibonacci tree algorithm is based on a data structure
called Fibonacci merge tree, the connector algorithm needs to pre-compute a special
reference tree to guide the on-line algorithm, and the a-dyadic algorithm is recursive in
nature.

In reality, it might make more sense for a stream merging algorithm to minimize the
maximum bandwidth over time instead of the total bandwidth [2]. In [6], we consider
the special case where the extra bandwidth parameter \ is equal to one (i.e., a client can
receive 1 unit of normal data and 1 unit of extra data in one time unit) and show that
with respect to the maximum bandwidth, the connector algorithm is 4-competitive and
the a-dyadic algorithm is 4-competitive when « is chosen to be 1.5. Empirical studies
indeed confirm that the connector algorithm and the a-dyadic algorithm do have very
similar performance under different measurements [2, 16].

In this paper, we attempt to improve the analysis of existing algorithms and design
a new algorithm with a better competitive ratio. With a deeper thought, we also want
to identify the key elements in designing a good stream merging algorithm and explain
why the connector algorithm and the dyadic algorithm have similar performance.

When designing a stream merging algorithm, there are two conflicting concerns in
determining how long a stream should run before it merges. Obviously, we want to
merge a stream with an earlier stream early enough so as to minimize the bandwidth
requirement. Yet we also want a stream to run long enough so that more streams initiated
later can merge with it. Good algorithms such as the connector algorithm and the a-
dyadic algorithm must be able to balance these two concerns properly. In this paper we
show how these two concerns can be measured rigorously and more importantly, can be
used to determine the competitive ratio of an algorithm. More precisely, we introduce the
notions of span factor and coverage factor, and show that if a stream merging algorithm
has a span factor at most s and a coverage factor at least c, then it is K, -competitive

‘ H Connector algorithm ‘ Dyadic algorithm ‘ Our greedy algorithm ‘

)) 3 2
maximum bandwidth (4 when A = 1) (4 when A = 1) 2
3 2.5
total bandwidth 2.5
(3) (3)

Table 1: Competitive ratios of different algorithms. The values enclosed are the previ-
ously best results. Unless otherwise specified, the ratios are valid for all possible A > 1.

with respect to the maximum bandwidth and (K, + 135)-competitive with respect to

the total bandwidth, where K., = 1 + max { [log, . 11’;—2?1, [logH% 11241 } Note that

K attains the smallest value of 2 when s =1 and ¢ = A/(1 + \).

Another contribution of this paper is a simple greedy algorithm that guarantees the
ideal span factor and coverage factor, i.e., 1 and A\/(1 + \), respectively (or in general,
given any number s, guarantees a span factor at most s and a coverage factor at least
sA/(1+ X)). In other words, this greedy algorithm is 2-competitive with respect to the
maximum bandwidth, and 2.5-competitive with respect to the total bandwidth. This
result improves existing work regarding the competitiveness and generality.

The notions of span and coverage factors also help us obtain a tighter analysis of
the existing algorithms. For the connector algorithm, we find that the span factor is
at most 1142 and the coverage factor is at least 1/2; thus, the connector algorithm is
3-competitive with respect to either the maximum or the total bandwidth. The a-dyadic

algorithm has a better performance, its span factor is at most (o — 1)% and coverage
factor at least a — 1. When « is chosen as 111—25‘, the competitive ratio is exactly 2 and

2.5 with respect to the maximum and the total bandwidth, respectively. See Table 1 for
a summary.

The technique used in this paper is drastically different from the so-called “schedules-
sandwiching” technique used in our previous work to analyze the connector and a-dyadic
algorithms. A basic step of the schedules-sandwiching technique is to “enlarge” the on-
line schedule to make it more regular for comparison with an optimal schedule. The
disadvantage is that the enlarged schedule may increase the bandwidth requirement.
Another major reason for not using this technique in this paper is that we have no idea
how the actual on-line schedules look like (since our analysis is based on any schedule
satisfying the bounds on the span factor and coverage factor). Our analysis is based on
a more generic argument which makes use of some deeper structural properties that are
guaranteed by the span and coverage bound.

Our paper is organized as follows. In Section 2, we introduce a formal model on
stream merging. In Section 3, we define the notions of max span and min coverage
of a merging schedule and we show a simple greedy algorithm that always constructs
schedules with some given span and coverage. In Section 4, we describe a geometric
representation of schedules. We give the competitiveness analysis in Section 5. Note

that our algorithm, as well as existing algorithms, only consider request sequences that
are compact (to be defined later). In Section 6, we show that if we have an algorithm
with a good competitive ratio for compact sequences, we have an algorithm with good
competitive ratio for general sequences.

2 The model

In a VOD system, a server and a set of clients are connected through a network. We
focus on scheduling of one particular popular video, which is ¢ units of length. Let A
be a fixed positive integer. We assume that each client can receive up to 1 + 1/ units
of video in one unit of time from possibly two streams, and each client can buffer up to
¢/(1+ X) units of the video. At any time, a client may request for the video and a new
stream is initiated to serve it immediately.

A stream has two states: normal and exceptional. Initially, a stream, say Y, is in the
normal state and all of its clients will receive one unit of video from Y in one time unit.
At any time, Y may change to the exceptional state. Once in the exceptional state, Y is
coupled with an earlier stream X and Y'’s clients will receive, in one time unit, a total of
14 1/) units of video from Y and X. Y remains in the exceptional state until it merges
with X, i.e., Y terminates and all its clients switch to listen to X and become X’s clients.
Intuitively, Y merges with X only when the clients of Y have received the same amount
of data as clients of X. This condition for a merging to occur can be formally stated as
follows [7]:

Condition 1. Suppose that X and Y are two streams initiated at time tx and ty, re-
spectively, where tx < ty. If Y merges with X, then

e Y runs in exceptional state for exactly Aty —tx) time units and its clients receive
an extra of (ty — tx) units of video from X; and

e if Y remains in normal state for T time units, i.e., it merges X at time ty + 7 +
Mty —tx), then X must be in normal state at time ty + 7+ Aty —tx) (which can
be rewritten as tx + 7+ (1 + A)(ty — tx)).

Consider a set of request sequences. The stream merging problem is to find a schedule
to determine, for every stream multicasted by the system, how long the stream should be
in normal and exceptional states and which stream it should merge with. The objective is
to minimize either the maximum bandwidth, which is the maximum number of streams
running at any time, or the total bandwidth, which is the total duration of all the
streams. We say that an on-line stream merging algorithm A is c-competitive with
respect to maximum bandwidth (resp. total bandwidth) if A will always produce a
schedule with maximum bandwidth (resp. total bandwidth) at most ¢ times that of an
optimal schedule. Given any schedule S, let 1load(S,t), the load of S at any time ¢, be
the number of streams running at t. The maximum and total bandwidth is equal to
>, load(S,t) and max; load(S,t), respectively.

Consider a request sequence R = (t1, s, ... ,t,), where each t; denotes the i-th arrival
time. We say that R is compact if t, — t; < £/(1 + A) (recall that ¢ is the length of the
video). A key property of compact sequences is that except for the stream for the first
request, which must be a full stream, streams initiated for any other requests can merge
with an earlier stream. Note that all previous works first focus on scheduling compact
sequences. This is because results on compact sequences can usually be extended easily
to general sequences. The following two lemmas capture such generalization for the case
of maximum bandwidth and total bandwidth, respectively.

Lemma 1. [6] Assume that A = 1. Let ¢ be a positive number. Suppose that A is an
on-line stream merging algorithm such that given any compact sequence C', A produces a
schedule S with 1oad(S,t) < cload(T,t) for any schedule T for C and any time t. Then,
we can construct from A a stream merqging algorithm that is c-competitive with respect to
mazimum bandwidth for any general request sequence.

Lemma 1 can also be generalized for arbitrary A. For the sake of completeness, we
give the proof in Section 6.

Lemma 2. [7] Let ¢ be a positive number. Suppose that A is an on-line stream merging
algorithm such that given any compact sequence C', A produces a schedule S for C' with
load(S,t) < cload(T,t) for any schedule T for C' and any time t. Then, we can construct
from A a stream merging algorithm that is max{3, c}-competitive with respect to total
bandwidth for any general request sequence.

Note that the best on-line algorithm obtained by the technique of Lemma 2 is no
better than 3-competitive for general sequences. In Section 6, we give a more elaborate
analysis and show that a special class of algorithms for compact sequences, when adapted
to general sequences, can circumvent the barrier of 3 and achieve a competitive ratio of
2.5.

In the rest of the paper (except Section 6), we assume that the input sequence is
compact, and consider only schedules in which there is only one full stream (i.e., the first
stream) and all other streams will eventually merge with some earlier streams.

3 Span and coverage

In this section, we define two measures of a schedule §, namely, the maximum span and
minimum coverage, which can capture the load of §. Then we devise a simple greedy
on-line algorithm that can construct schedules with desired bounds on the span and
coverage.

First, we define the span factor and coverage factor of any stream X € S that is not
a full stream, i.e., X will change to exceptional state to merge with an earlier stream.
Suppose that X is initiated at time ¢y, and it runs in normal state and exceptional state
for 7, and 7, time units, respectively.

The span factor S£(X) of X is defined to be the ratio 7, /7.

To define the coverage factor of X, we need an additional definition. For any time
t > tx, we say that X covers t if the following is true: if we initiate a stream at ¢ and
let it change immediately to exceptional state, it can merge with X; by Condition 1, it
is equivalent to say that X is still in normal state at time tx + (1 + \)(t — tx). Let

® toarent De the initiation time of the stream with which X merges;

® lpefore b€ the initiation time of the stream immediately before X (i.e., the latest
time before ¢x at which there is a stream initiated);

® tniss be the first time after £y such that there is a stream initiated at t,;s, and X
does not cover tpyss (We set tis = 0o if there is no such stream after X).

The coverage factor C£(X) of X is defined to be the ratio of the length of the two intervals
[tbeforeytmiss] and [tparent7tbefore]> i-e-7

Cf(X) _ |[tbef0rea tmiss”

B | [tparenta tbefore] |

where |I| denotes the length of the interval I. To understand the meaning of C£(X),
note that |[tbef0rea tmiss]l = |[tbef0re; tX” + |[tXa tmiss”a and X covers any time in [tXa 2fmiss]
at which there is a stream initiated. Thus, a large C£(X) means that if X is scheduled
to merge a stream initiated much earlier than tpefore (i-€., if |£parent, toefore]| is large), then
either [thefore, x| is already large, or the interval [tx, tmiss| covered by X is large.

The minimum coverage of S is the minimum of C£(X), and the mazimum span of S
is the maximum of Sf(X), over all streams X € S that are not full streams.

We say that a schedule is (¢, s)-bounded if its minimum coverage is at least ¢ and
maximum span is at most s. In Section 5, we analyze the competitiveness of (c, s)-
bounded schedules. In the rest of this section, we focus on the construction of schedules
with desired bounds on the span and coverage factors. In particular, we devise, for
any s > 0, an on-line algorithm G, which, given any request sequence, always returns a
schedule for the sequence that is (H%\S, s)-bounded.

Roughly speaking, G, is just a greedy algorithm with some slight modification. It still
schedules a stream to merge with the nearest stream that it can merge with. However, a
stream will not change to exceptional state immediately after it is initiated. Instead, it
will first run in normal state so that some later streams can merge with it and terminate
earlier. The interesting part is to decide how long a stream should run in normal state
so that its span and coverage factors will be within the bounds. The algorithm shown
below can actually determine the lifespan of every stream at the time it is initiated. See
the details below.

Let 6 = 1—|—1;_—i‘s)\' For any time interval [x,y], we say that a time ¢ € [z,y] is a 0-
checkpoint for [z,y] if t = x + 6°(y — x) for some integer ¢ > 0. Consider any stream X.
Suppose that X is initiated at time tx. Our algorithm G schedules X as follows:

e If X is the first stream, then it is a full stream.

e Otherwise, let T be the latest stream that covers ty. (Note that W exists because
the first stream must cover ty.) X will merge with W. Let ¢,aent be the initiation
time of W, t.s the largest possible time covered by W, and t a d-checkpoint of
[tparent tiast] immediately after ¢x. X runs in normal state for (1 + \)(t — tx) time
units and in exceptional state for A(tx — tparent) time units. In other words, X runs
in normal state long enough to cover t.

Note that we can determine W, £,aent and 1,s¢ when we schedule X' because we know
the lifespan of all streams before X. Furthermore, X can merge with W successfully
because of the fact that W covers t),5; implies that W is still in normal state at

tparent + (1 + /\) (tlast - tparent) Z tparent + (1 +)\) (t - tparent)7

which is equal to tx + (1 4+ A)(t —tx) + A(tx — tparent), the time when X terminates. The
following theorem characterizes the schedules constructed by G;.

Theorem 3. Any schedule S constructed by G is (1%\8, s)-bounded.

Proof. Consider any stream X € S that is not a full stream. Suppose that X is initiated
at time ?x, and it merges with an earlier stream W initiated at time #,apent. Let fhefore
be the initiation time of the stream immediately before X, and %,,;ss be the smallest time
such that there is a stream initiated at tnis and X does not cover t,;s. Recall that
CE(X) = (tmiss — tbefore)/ (Tbefore — tparent)- We derive its lower bound as follows.

Let t,5¢ be the largest time covered by W. Let I = [tparent, tiast], and tp = tparent +
SFHI| and ¢, = tparens + 0°|I| be the two d-checkpoints for I that embrace ty, i.e. t, <
tx < t,.

Note that (1) ¢, is X’s next d-checkpoint and by construction, X covers ¢, and (2)
by definition, X does not cover t,,;; thus, we have t, < t. We claim that tpefore < 1.
Otherwise, the stream W’ initiated at tperore Will cover ¢,, its next d-checkpoint; this
implies that W' also covers tx, and by the greedy nature of Gy, X will merge with W'
instead of the earlier stream W. In summary, we have

tparent S 2fbefore < té < tX S tr < tmiss-

Recall that ¢ty = tparens + 0“7 I| and thus 61| = 5 — tparent > Thefore — Lparens- Finally,
it can be verified that

1—6_ 1—-90
tmiss — tbefore > tr — Thefore = tr — tg = T(SZ+1|I| > S (tbefore - tparent)

and thus Cf (X) = (tmiss - tbefore)/(tbefore - tparent) > 15—6 = H_L)\S-

Now, we consider Sf(X). Let 7, and 7, be the duration of X in normal and exceptional
state, respectively. According to the algorithm, 7, = (1 + \)(¢, —tx), which is no greater
than (1+\) (¢, —t,) = (1+) (0'[I| — 6" I|), and T, = A(tx — tparent), Which is no smaller

than A(t; — tparent) = A0 |I]. Hence,

T_n<(1+>\)6i|l|(1—6)_1—61+>_
Te — N6+ 5N

Sf(X) = S.

7

In summary, for any stream X € S that is not a full stream, we have shown that

Cf(X) > 1%\5 and Sf(X) < s. The theorem follows. d

Notice that the best choice of s is 1 for dense sequences (there is a request arriving at
every time unit). In this case, G; is (1%\, 1)-bounded.

Remarks: As we mentioned in Section 1, we can bound the span and coverage of the
a-dyadic algorithm [9] and the connector algorithm [7]. Below we describe how a dyadic
schedule looks like and show that its span factor is at most (o — 1)% and its coverage
factor at least o — 1. The dyadic algorithm decides a schedule recursively. Assume that
there is a request X, arriving at t;, and a stream is initiated for it. Consider a set S
of requests that arrive in the interval (tg,?;]. Let X be the earliest request in S that
arrives after tg 4+ (t; — t9)/a, and Y be the last request in S. Suppose X and Y arrive
at tx and ty, respectively. According to the a-dyadic algorithm, a stream is scheduled
for X that runs in normal state for (1 + \)(ty — tx) time units and then in exceptional
state for \(tx — o) time units before merging with the stream for Xy. For those requests
arriving in (to, [to + (t1 — to)/cr|], as well as those in (tyx, t1], they are handled recursively

(there is no request in interval (|t + (t1 — to) /], tx)). Notice that

LNy —tx) _ A+ = (o + (0 —T)/@))
Atx —to) = Mo+ (tr — to)/a) — to)

The inequality holds because ty < t1, and ty > to+ (t1 — tg) /. On the other hand,

|[tx s tmiss] | t1 — (to + (t1 — to) /)
X 2 o (h —fo)/all = toT (b —t)/a -t

Therefore, the span factor and the coverage factor of the a-dyadic algorithm is at most

(a — 1)42 and at least o — 1, respectively. The connector algorithm admits a weaker

bounds on the span and coverage. One can also derive directly from the definition of
the connector algorithm that the span and coverage is at most %M and at least 1/2,

)
respectively.

1+ A
= (a—1)—=.

se() = .

=a—1.

4 (Geometric representation of schedules

Our competitive analysis is based on a geometric representation of schedules introduced
in [7] and a generalization of the notion of timeline introduced in [6] to arbitrary A. This
paper further introduce the concept of no waste schedules for analyzing the maximum
load of any schedule. In the geometric representation, the streams are represented by
some rectilinear lines on the plane. These lines are arranged in such a way that the
load of the schedule at any time ¢ is equal to the number of intersections between these
rectilinear lines and some particular line £;. Thus, the representation enables us to
reduce our problem of estimating the load to the combinatorial problem of estimating
the number of intersections among some particular lines.

The geometric representation of a schedule § is constructed as follows. Let X € S be
a stream initiated at time ty. Suppose that it runs in normal state and exceptional state

o
(J

Figure 1: A schedule for streams X, Y, U, V and W, initiated at time 0,1, 2, 3, and 5,
respectively.

for 7, and 7, time units, respectively. Then, starting from the point (tx,tx), we draw
a crook C(X) on the plane, which is a right-going horizontal line of length 7,,/(1 + \)
followed by a down-going vertical line of length 7. /\.

An important property of this representation is that if a stream X merges with
a stream Y, then C(X) must terminate at some point on C(Y') (see [7] for a proof).
Furthermore, note that all crooks start on the line y = x, and a full stream is a horizontal
line terminating at (¢; + £/(1 + A),t1), where ¢; is the initiation time of the stream.
(Recall that ¢ is the length of the video.) Together with our assumption that the input
is compact and that the first stream is the only full stream in the schedule, we observe
that the geometric representation has the following property.

If we put a node at each endpoint of a crook, the crooks in the representation
form a tree in which all the leaves are on the line y = z, and the root
is at (t; +£/(1 + A),t1) where ¢; is the initiation time of the first stream.
Furthermore, the path from a leaf to the root is a monotonic rectilinear path
in which every horizontal segment is right-going and every vertical segment
is down-going.

See Figure 1 for an example. Now, we explain how to find the load of & from this
representation.

Lemma 4. For any stream X, it is still running at time t if and only if its crook C(X)
passes through some point (a,b) satisfying (1 + N)a — \b = t.

Proof. Let tx be the initiation time of X. Thus, C(X) starts at (¢tx,tx). First, suppose
that C(X) passes through some (a,b) with ¢ = (1 + A)a — Ab. Then it has a horizontal
segment and a vertical segment of length at least a — tx, and tx — b, respectively. This
implies that X runs in normal state and exceptional state for at least (1+ \)(a—tx) and
Aty — b) time units, respectively, and thus it is still running at time tx + (1 4+ \)(a —
tx)+Mtx —b) = (1+Na— b=t

Now, suppose that X is still running at . Assume first that X is in normal state
at ¢t. By construction, the horizontal segment of C(X) passes through the point (tx +
(t—tx)/(1+N),tx). Let a =tx + (t —tx)/(1 + N), and b = ty, it can be verified that
(1 4+ A)a — Ab is equal to t. The other case where X is in exceptional state at ¢ can be
proved similarly. O

Note that the set of points (a,b) with t = (1 + A\)a — Ab forms the line £; : y = ((1 +
A)/A)x—t/A. Thus, for any stream X, X is still running at ¢ if and only if C(X) intersects
this timeline £;. Let S N L; denote the set of intersections between the crooks in S and
L;. We have the following important corollary.

Corollary 5. |S N L;| equals to 1oad(S,t), the load of S at t.

We derive an upper bound on |[S N £;| in Section 5. In the rest of this section, we
introduce the concept of no waste schedules, which simplifies our competitive analysis by
avoiding pathological instances of representation. We say that the schedule S is no waste
if for any stream X € S that is not a full stream, it satisfies the following two properties.

e No waste in normal state: X changes to exceptional state as soon as there are
no later streams merging with it. (The stream U in Figure 1 does not have this
property; it should have changed to exceptional state immediately after W merges
with it.)

e No waste in exceptional state: When X changes to exceptional state, it will decide
to merge with the nearest stream that it can merge so as to be in the exceptional
state the least amount of time. (The stream V in Figure 1 does not have this
property; it should have merged with U instead of Y".)

Note that all known competitive algorithms guarantee no waste in exceptional state.
Furthermore, the 2-dyadic and the a-dyadic algorithms also guarantee no waste in nor-
mal state, but this is not true for the connector algorithm and our greedy algorithm
Gs. However, by applying a technique of Coffman et al. [9], we can modify these two
algorithms such that they construct on-line schedules that satisfy the two “no waste”
properties while still maintaining the max span and min coverage bounds. The idea is
roughly as follows. To be no waste in normal state, a stream X can run in exceptional
state whenever possible, and if some later stream decides to merge with it, X can easily
correct its mistake by discarding the extra data in its buffer and running as if it is still
in normal state. We refer to [9] for more details.

Now, we prove some structural properties on no waste schedules. We say a point (¢, t)
is a request point if at time ¢ there is a request. Thus, a stream is initiated at every
request point. For any point p = (z,y), let above(p) and left(p) denote the point (z,x)
and (y,y), respectively. (Note that above(p) and left(p) are just the points on the line
y = x that are directly above and to the left of p, respectively.) Given any crook C, let
h(C) and v(C) denote respectively the horizontal and vertical segments of C. We say that
a crook C is in the shadow of another crook C' if C is lying completely above h(C').

10

- : - e
checdepfonids Ll R e vl
o (asty) . 7 o7
U g AT LU gl L DU AP VAR SU
4 (a,b) = (a,ty) 4 : I :
7 o : IR . .
7 7 s N 7 N
5 RI5S LT SPITIPE RPN SRR RIS e RERRRE ¢
7 7 . 7 . N . .
X & ® X & ® X o9

(a:)\"“”(b')"‘ &
Figure 2: Proof of the properties on no waste schedule.

Lemma 6. Suppose that the schedule S is no waste. Then its representation has the
following properties.

1. No two crooks cross each other.

2. If a crook C covers a request point (t,t), then the crook for (t,t) is in the shadow
of C.

3. Let p be a point on some crook C. If p is on h(C), then left(p) is a request point.
If p is on v(C), then above(p) is a request point.

Proof. For the first property, suppose that there are streams U and Y, initiated at ¢ and
ty, where their crooks C(U) and C(Y") cross each other. Then, the vertical segment of
one of them, say C(U), must intersect the horizontal segment of the other, i.e., C(Y'), at
some point (a,b). See Figure 2(a). Note that the length of v(C(U)) is greater than ty — b
and thus U runs in exceptional state for more than A(ty — b) = A(ty — ty) time units,
which is the time U needs to be in exceptional state if it merges with Y instead. This
implies that U is not “no waste” in exceptional state and contradicts our assumption
that S is no waste.

Now, we prove the second property. Suppose that the crook C(Y’) covers the request
point (t,t), but the crook C(U) at (t,t) is not in the shadow of C(Y). See Figure 2(b).
From the first property that we have proved above, there are no crooks that cross h(C(U))
and terminate on C(Y'). This implies that Y can change to exceptional state at the earlier
time ty + (1 + \)(ty — ty) and thus Y is not no waste in normal state; a contradiction.

For the third property, consider any point p on some crook C. If p is on its horizontal
segment h(C), then by construction, left(p) is a request point. Suppose that p is on
the vertical segment v(C). If above(p) is not a request point, then the top crook in the
stack of crooks above p is not no waste in normal state (e.g., C(V) in Figure 2(c)); a
contradiction. O

11

5 The competitiveness of (¢, s)-bounded schedules

In this section, we analyze the competitiveness of a (¢, s)-bounded no waste schedule S.
Recall that load(S,t), the load of S at ¢ is equal to [SNL,|. In Section 5.1, we introduce
a counting argument that relates load(S,t) to the load of an optimal schedule. We
complete the analysis in Section 5.2.

5.1 A counting argument for bounding |S N £;|

Let O be any schedule serving the same sequence of requests served by S. Now, we
bound |S N L] in terms of |O N L.

Note that the representation of both § and O has their root r at (t1,¢ + £/(1+ X)),
where ¢; is the initiation time of the first stream. In our argument, we associate every
point p € S N L; with a unique point ¢ € O N L, as follows.

Suppose that p is on the crook C. By Lemma 6 Property 3, we conclude that if p
is on the horizontal line of C, then left(p) is a request point; otherwise, above(p) is a
request point. Let u be this request point. Since p is on L£;, v and the root r are on the
different sides of £; and this implies that the path from u to r in the optimal schedule O
must intersect £; at some unique point ¢. Thus, ¢ € O N L;. We associate p with this q.

For ease of future reference, we say that ¢ is the boss of p, and p is turned to be a
slave of ¢ through u. Figure 3 gives an example. Now, we are ready to relate |S N L]
and |O N Ly|. Consider the following table Tso, in which there are |S N £;| rows and
|O N L] columns. The rows of Tsp are labeled by the points in SN L;, and the columns
by those in O N L;. Every row has a single entry equal to 1, and all the other entries are
equal to 0. More precisely, for a row p, we have

1, if g is the boss of p;

(1)

0, otherwise.

Tsolp,q] = {

Let N be the total number of 1’s in Tisp. Obviously |S N L;| = N. In the next section,
we show that if S is (¢, s)-bounded, we can derive an upper bound K, on the number
of 1’s in every column of Tsp. Then, we have

ISAL| =N < K.,|ON L. (2)

5.2 Finding the upper bound K,

Suppose that S is (¢, s)-bounded. Consider any column ¢ of Tsp. Denoted by Slave(q)
the set of all slaves of ¢q. By definition, the total number of 1’s in column ¢ is equal to
|Slave(q)|. Below, we derive an upper bound on |Slave(q)|.

Given any two points u and v, let wv denote the line segment joining v and v, and
let ||uw|| be the length of ww. For the sake of simplicity, we let ¢, = above(q) and

12

Figure 3: The position of the boss of p. The dotted line is the path in O from above(p)
to 7.

q = left(q). Let g, be the intersection point of £, and the horizontal line passing
through ¢,. Let ¢, be the intersection point of £; and the vertical line passing through
q; (see Figure 4). Below, we give two easy lemmas that are useful in our analysis.

Lemma 7. We have ||Goq| = [|@ll, 17l = 25 @all and @@l = 22|74l

Proof. Note that ¢, is on the line y = x, and ¢ and ¢, are on the line £; : y = ((1 +
A)/A)z — t/A. The lemma follows from simple calculation from analytic geometry. [

Lemma 8. Consider any point p € Slave(q). Suppose that p is turned to be a slave of
q through the point u. Then u must lie on the segment qq,.

Proof. By definition, the path 7 from u to the root of O passes through ¢. Since 7 is a
right- and down-going monotonic rectilinear line, it cannot pass through ¢ if u is outside

Qi9a- O

Now, we are ready to estimate |[Slave(q)|. As a warm-up, we first consider a special but
important case, namely when ¢ = A\/(1+) and s = 1.
Let A be the set of points in Slave(q) that are on or above ¢, and B = Slave(q) — A.

Lemma 9. Suppose that S is (c, s)-bounded with ¢ = A/(1 +) and s = 1. If |A| > 2
then we can conclude |A| =2 and |B| = 0.

Proof. Suppose that |A| > 2. Let p be the highest point in A. Recall that p is some point
in 8§ N L;, and thus must lie on a crook C in §. Note that p must lie on the horizontal
segment h(C) of C (otherwise, p is on v(C) and by definition, p is turned to be a slave
of ¢ through above(p), which lies outside §;q,; this is impossible because of Lemma 8).
Thus, ||A(C)]| > ||aan|| (see Figure 4). Since S is (¢, s)-bounded, it can be verified that

|R(C)|| < 1255 |lv(C)||. Together with Lemma 7, we have

11+ A 14+ A
[o(©)ll > ~—2Iihe) | >

Tar|l = 17a4]|-

13

: A
: : Ll :
Wl i S|

Figure 4: The position of the points in Slave(q).

Now consider the other point p’ € A that is immediately below p on L£;. Suppose
that p’ is on the crook C' in 8. Note that C' covers left(p), and since S is no waste,
by Lemma 6 Property 2, C is in the shadow of C'. Tt follows that A(C) and h(C’) must
be at least ||v(C)|| > ||.q|| apart. This is only possible when left(p) and left(p') are
at the two endpoints of §;q, (Lemma 8 asserts that they cannot lie outside g;q,). Thus,
there are no other points on @, that are in Slave(q), and together with Lemma 8, we
can conclude that |A| = 2,|B| = 0. O

Lemma 10. Suppose that S is (¢, s)-bounded with ¢ = \/(1 + X) and s =1. If |B| > 2,
then we can conclude that |B| =2 and |A| = 0.

Proof. Suppose that |B| > 2. Let w be the lowest point in B, and C,, be the crook in &
on which w lies. Using an argument similar to the one we use in Lemma 9, we can show
that w, = above(w) is a request point. Let w, = (fbefores thefore) fOr SOMe tpefore. Let X
be the stream in & that is initiated immediately after tperore. Suppose that X merges
with a stream initiated at time tpapent- Since S is no waste, we have (1) all crooks above
h(Cy) are in the shadow of C,, and (2) no crooks can cross v(C,). This implies that C(X)
can only terminate on some horizontal line below w, and it follows that

tparent < thefore — ||waw||-

Let ;s be the smallest time such that there is a stream initiated at t,;s and X does
not cover tpyiss. Since S is (¢, s)-bounded, we have

tmiss 2 tbefore + C(tbefore - tparent) > tbefore + C”wawH-

We claim that tpefore + ¢|[Waw]|| > tq, where ¢, = (t4,t,). Then, we have t.;s5 > ¢, and
thus there are only two crooks starting in the line segment §q,, namely C, and C(X),
that can intersect £;. As we assume |B| > 2, we conclude |B| = 2 and |A| = 0.

14

To prove our claim, let w, be the intersection point of £; and the horizontal line that
passes through w,. We have tyefore 4 ¢|[Wa]| = thefore + 1)\HwawH = thefore + ||[Wa Wy || > tq-
Note that the second equality follows from simple calculatlon from analytic geometry. [J

We immediately have the following theorem and corollary.

Theorem 11. Suppose that S is (¢, s)-bounded with ¢ = \/(1 + X\) and s = 1. Then for
any time t, |S N Ly < 2|0 N Ly.

Proof. Consider any column ¢ of Tso. The number of 1’s in this column equals [Slave(q)],
which, by Lemmas 9 and 10, is no greater than 2. Together with Inequality (2), the
theorem follows. O

The following corollary, which follows directly from Theorems 3 and 11, gives the first
on-line algorithm for stream merging which is 2-competitive.

Corollary 12. The on-line algorithm G, with s = 1 is 2-competitive.

The following theorem states our result for the general case.

[ESY)
(¢, s)-bounded. Then we have for any time t, |S N Ly < K. 5|O N Ly.

Theorem 13. Let K., = 1 4+ max { [log, ., H21], ﬂogH% ﬂ]} Suppose that S is

Proof. The proof is a direct generalization of that of Theorem 11. We still need to bound
|A| and |B|. For |A|, since we have a different span factor, a crook may be shorter and
thus there may be more crooks stacking above ¢; hence we may have a larger |A|. For
|B|, if the coverage factor is different, then the crooks may be closer and thus there may
be more points falling into B. However, using a very similar analysis, we can show that
the worst case is when either all points fall in A or all points fall in B and |Slave(q)]| is
upper bounded by the constant K ;.

We now explain briefly why |Slave(q)| is upper bounded by K., for the worst case
that all points fall in A. The case that all points fall in B is similar. Suppose there
are r points in A, lying on crooks C;, Cy, ..., C, such that C; is above C;;;. Using
similar notations in the proof of Lemma 9, we know that ||v(Cy)|| > 1,1*’\ IIh(C1)||. Then
[A(C2)[| = [Ih(C)I] + (€]l = (1 + ¢ 1+A)IIh(Cl)II and [[v(C)[| = (552)IA(C)I >
(1£2)(1 + 1H2)||n(Cy)]|. Similarly, we can show that for 1 < i < 7,

11+ A 11+ A

ol > G2)(1+ ——2)h(e)l|

On the other hand,

14+ A
> @)l < Nzl < ——Ih(CD]l-

1<2<r

Combining the two inequalities, we have [Slave(q)| = < ﬂogH% L22], O

15

6 Reduction from general to compact sequence

In this section, we are going to elaborate the discussion in Section 2 that if we have
an on-line algorithm that performs well for compact sequences, then we can construct
another on-line algorithm that performs well for general sequences. By Corollary 12, in
the case of compact sequences, our greedy algorithm G, always produces a schedule in
which the load at any time is at most twice of the load of the optimal schedule. Then,
by Lemma 1, when A\ = 1, G, is 2-competitive with respect to maximum bandwidth for
general sequences. By Lemma 2, for arbitrary A > 1, G, is 3-competitive with respect
to total bandwidth for general sequences. Below we will generalize Lemma 1 so that
for arbitrary A > 1, G, is 2-competitive with respect to maximum bandwidth for general
sequences (see Lemma 14). Furthermore, we will show in Lemma 16 that a special class of
algorithms (including G,) are 2.5-competitive with respect to total bandwidth for general
sequences.

First of all, we describe how to handle a given general sequence based on an on-
line algorithm for compact sequence. We divide any general sequence R into maximal
and non-overlapping compact sequences Cy,Cs, ... ,C,,, and then find a schedule S; for
each C;. Then the schedule for R is the union of these schedules S;. Note that the
geometric representation of S; forms a tree. Thus, the geometric representation of the
schedule for R forms a forest where all the leaves lie on the line y = x and all roots lie
on the line y = x — £/(1 4+ A). The following lemma is a generalization of Lemma 1 for
arbitrary A > 1.

Lemma 14. Consider any A > 1. Let ¢ be a positive number. Suppose that A is an
on-line stream merging algorithm such that given any compact sequence C, A always
produces a schedule S for C with load(S,t) < cload(T,t) for any schedule T for C
and any time t. Then, we can construct from A a stream merging algorithm that s
c-competitive with respect to maximum bandwidth for any general request sequence.

Proof. Before getting into the analysis, we give some definition. Consider any compact
sequence C' = (t,ts,... ,t;). Note that the geometric representation of a schedule for C
forms a tree in which all the leaves are on the line y = z and its root is at (t;+£/(1+A), t1).
In other words, the representation must lie on the triangle A bounded by the three points
(t1,t1), (b1 +4/(1 4+ X),t1) and (¢, +£/(1+ N),t1 + £/(1 + X)). We call this triangle A
the bounding triangle of C.

Let R be any general sequence. Suppose that R can be divided into m maximal and
non-overlapping compact sequences Cy, Cs, ..., Cy,. Let S; be the schedule (and its
representation) constructed by the algorithm A for C;, and P be the union of these S;.
Let O be an optimal schedule for R. First, we associate O with a set of m schedules,
one for each compact sequence and then we use these schedules to relate the load of P
and O. Let AA; be the bounding triangle of C;. Denote by Z; the portion of O that lies
in the interior of A;. Let T; be the tree comprising the lines in Z; together with the
bottom and right boundary of A;. Observe that T; corresponds to a schedule for C;, and
load(7;,t) < load(Z;,t)+2. Now, we relate Load(O,t) and load(S;,t) through these T;.

16

From the assumption of the lemma, we have load(S;,t) < cload(7;,t). We claim
that there are at most (14+X) T3’s, say T;,, T;,, . . . , Tj,,,, such that load(7;,t) # 0. Then,
load(Pt) = Y7 o, 102d(Sit) < €37 ey, L0ad(Ti 1)< 30 oy 2 (Load(Z;;, 1) + 2)
< cload(0,t) + 2¢(1 + A), and the lemma follows.

To prove the claim, consider the smallest 7 such that load(7;,t) # 0. Suppose that
the first request in C; arrives at ¢;. Note that all streams scheduled by T; terminate before
t; + ¢ and to contribute some load at ¢, we must have ¢t < ¢; +/¢. On the other hand, since
Cy,C,...,C, are maximal and non-overlapping compact sequences, the arrival times
of the first request of any two consecutive C; and Cj;; differ by more than ¢/(1 +).
This implies that for all j > 7+ 1 + A, all streams scheduled by Tj run after ¢; + ¢, and
thus after t. Hence, only T;,T;.1,... ,T;1x can have positive load at . O

Corollary 15. The on-line algorithm G, with s = 1 is 2-competitive with respect to
mazimum bandwidth for general sequences.

Recall that K. is the competitive ratio of an algorithm which always produces (c, s)-
bounded schedules in the case of compact sequences. The next lemma is an improvement
of Lemma 2 with respect to total bandwidth.

Lemma 16. Suppose that A is an on-line stream merging algorithm such that given any
compact sequence C', A always produces a (c, s)-bounded schedule for C with s < (1+).
Then, we can construct from A a stream merging algorithm that is (K.s + 1/(1 4+ A))-
competitive with respect to total bandwidth for any general request sequence.

Proof. Suppose that the general request sequence R is divided into m maximal and non-
overlapping compact sequences C1,Cy, ... ,Cp. Let S; be the (¢, s)-bounded schedule
constructed by the algorithm A for C;. Let S = J;~, Si- Let O be an optimal schedule
for R. For any time ¢, the table Tsp is constructed in the same way as the case for
compact sequence. However, in this case it is not necessary that all rows have a single
entry equal to 1. There may be some rows that have all entries equal to 0. Let W)
denote the set of rows in Tssp that have all entries equal to 0 and W} denote the set of
rows in Tse that have a single entry equal to 1. A row in W) corresponds to the case
that L; intersects some point p in § but £; does not intersect any point in the path
from u = {above(p),left(p)} in O. Note that W2 U W} = SN L;. Theorem 13 can be
rephrased to |[W}| < K, ,|ON L for any time . We thus obtain the following inequality.

> W] < K. - (total bandwidth used in O). (3)
t

We claim that

1
Z WP < e (total bandwidth used in O). (4)
t
With Inequalities (3) and (4), we obtain the stated competitive ratio of (K. s+1/(1+\)).

17

We prove the claim of Inequality (4). The case that there is a row in W having all
entries 0 must happen at time A\/(1 4+ \) units after the request arrives at u because
even if the path from u in O is composed of only exceptional state, it runs for at least
M/(1+ A) time units. In S, only a full stream runs for more than A¢/(1+ A) time units
in normal state. For any other stream in &, if the stream runs in normal state for more
than A¢/(1 + \) time units, with span factor less than or equal to (1 +), the stream
must also run in exceptional state for more than A¢/(1+ A\)? time units. Hence, the total
number of video units received will be more than ¢, which is a contradiction. For each
of the full streams in S, suppose that v is the request point, the case that there is a row
in W having all entries 0 only happens at time A\//(1+) unit after the request arrives
at v. Hence, the full stream contributes at most £ — A¢/(1 + \) points in [J, W). Since
R consists of m compact sequences, there are exactly m full streams in §. Therefore,
S WP <m(€—MNJ(1+ X)) =ml/(1+ N). As R consists of m compact sequences, O
must consist of at least m full streams and hence the total bandwidth of O is at least
ml. As a result, we have >, |IW?| < 1/(1+ \) times the total bandwidth of O. O

Corollary 17. The on-line algorithm Gy with s = 1 is 2.5-competitive with respect to
total bandwidth for general sequence.

Proof. Notice that K, s = 2 for G5 with s = 1; and 1/(1+) < 1/2. Thus, by Lemma 16,
the corollary follows. O

References

[1] C. C. Aggarwal, J. L. Wolf, and P. S. Yu. On optimal piggyback merging policies
for video-on-demand systems. In Proceedings of ACM Sigmetrics Conference, pages
200-209, 1996.

[2] A. Bar-Noy, J. Goshi, R. E. Ladner, and K. Tam. Comparison of stream merg-
ing algorithms for media-on-demand. In Proceedings of Conference on Multimedia
Computing and Networking, pages 115-129, 2002.

[3] A. Bar-Noy and R. E. Ladner. Competitive on-line stream merging algorithms for
media-on-demand. In Proceedings of the Twelfth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 364-373, 2001.

[4] Y. Cai, K. A. Hua, and K. Vu. Optimizing patching performance. In Proceedings of
Conference on Multimedia Computing and Networking, pages 204-215, 1999.

[5] S. W. Carter and D. D. E. Long. Improving bandwidth efficiency of video-on-
demand. Computer Networks, 31(1-2):99-111, 1999.

[6] W. T. Chan, T. W. Lam, H. F. Ting, and P. W. H. Wong. Competitive analysis
of on-line stream merging algorithms. In Proceedings of the Twenty-Seventh Annual

International Symposium on Mathematical Foundations of Computer Science, pages
188-200, 2002.

18

7]

[10]

[11]

[12]

[13]

[14]

[16]

W. T. Chan, T. W. Lam, H. F. Ting, and P. W. H. Wong. A unified analysis of hot
video schedulers. In Proceedings of the Thirty-Fourth Annual ACM Symposium on
Theory of Computing, pages 179188, 2002.

W. T. Chan, T. W. Lam, H. F. Ting, and P. W. H. Wong. On-line stream merging
in a general setting. Theoretical Computer Science, 296(1):27-46, 2003.

E. Coffman, P. Jelenkovic, and P. Momcilovic. The dyadic stream merging algorithm.
Journal of Algorithms, 43(1):120-137, 2002.

D. Eager, M. Vernon, and J. Zahorjan. Bandwidth skimming: A technique for cost-
effective video-on-demand. In Proceedings of Conference on Multimedia Computing
and Networking, pages 206-215, 2000.

D. Eager, M. Vernon, and J. Zahorjan. Minimizing bandwidth requirements for
on-demand data delivery. IEEE Transactions on Knowledge and Data Engineering,
13(5):742-757, 2001.

L. Golubchik, J. C. S. Lui, and R. R. Muntz. Adaptive piggybacking: A novel
technique for data sharing in video-on-demand storage servers. ACM Journal of
Multimedia Systems, 4(3):140-155, 1996.

K. A. Hua, Y. Cai, and S. Sheu. Patching: A multicast technique for true video-
on-demand services. In Proceedings of the Sixzth ACM International Conference on
Multimedia, pages 191-200, 1998.

S. W. Lau, J. C. S. Lui, and L. Golubchik. Merging video streams in a multimedia
storage server: Complexity and heuristics. ACM Journal of Multimedia Systems,
6(1):29-42, 1998.

S. Sen, L. Gao, J. Rexford, and D. Towsley. Optimal patching schemes for effi-
cient multimedia streaming. In Proceedings of the Ninth International Workshop on
Network and Operating Systems Support for Digital Audio and Video, pages 44-55,
1999.

P. W. H. Wong. On-line Scheduling of Video Streams. PhD thesis, The University
of Hong Kong, 2002.

19

