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DISTRIBUTION OF ADDITIVE FUNCTIONS WITH RESPECT TO

NUMERATION SYSTEMS ON REGULAR LANGUAGES

PETER J. GRABNER† AND MICHEL RIGO

Abstract. We study the distribution of values of additive functions related to numera-
tion systems defined via regular languages.

1. Introduction

Additive numeration systems and the corresponding additive arithmetic functions have
been studied from various points of view since the seminal papers of H. Delange [7, 8], where
such functions were investigated for the usual k-adic numeration system. Later more exotic
systems of numeration, such as general linear numeration systems [16, 17], especially such
systems defined by linear recurring sequences were considered. Different aspects of such
representations of the integers were studied: dynamics of corresponding adding machine
(“odometer”) [18], topological dynamics of the odometer [1], asymptotic properties of
summatory functions of additive functions such as the “sum-of-digits” function [11, 12,
15, 20, 21], local and global versions of central limit theorems for the values of additive
functions [9, 10, 13], existence of distribution functions of additive functions [2].

In [22] numeration systems based on regular languages have been introduced. Let L be
a regular language on the ordered alphabet Σ, then L is equipped with the genealogical
ordering defined in Section 2. The positive integer n is then represented as the n+1-st word
in L with respect to this ordering. The usual k-adic numeration systems, recursion based
numeration systems as studied in [10, 21], and numeration systems related to substitutions
on finite alphabets (cf. [11, 13]) are all special cases of this general concept. The notion of
the “odometer” has been extended to this type of numeration system in [4].

In the present paper we continue investigations initiated in [19], where the asymptotic
behaviour of summatory functions of additive functions was studied. We will analyze the
distribution of the values of additive functions related to regular languages. In particular,
our results can be used to derive information on the distribution of the letters in a given
regular language. Precise results (local and global limit theorems) of that type for languages
with primitive adjacency matrix have been obtained in [5]. It will turn out that in general
there is no central limit theorem for the values of such additive functions, which is in
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striking contrast to the usual situation (cf. [10, 13]). We make precise the conditions for
such a limit theorem to hold.

2. Preliminaries

Let Σ be a finite alphabet. The free monoid generated by Σ with identity ε is Σ∗. If w is
a word over Σ, |w| denotes its length. We assume that the reader is familiar with classical
notions of formal languages theory like (minimal) automaton or regular language (see for
instance [14]).

Describing an infinite regular language L over a totally ordered alphabet (Σ, <) with
respect to the genealogical ordering (cf. [25]) gives a one-to-one and onto increasing map-
ping between N and L. If w is the n-th word of the genealogically ordered language L ,
n ∈ N \ {0}, then we denote by val : L → N the application mapping w onto n − 1. The
integer val(w) is said to be the numerical value of w. So each non-negative integer n is
represented by a unique word val−1(n) ∈ L and this leads to the notion of numeration

system on a regular language. These systems have been introduced in [22] and generalize
classical numeration systems like the k-adic systems, the Fibonacci system and the linear
numeration systems whose characteristic polynomial is the minimal polynomial of a Pisot
number (for the properties of these latter systems we refer to [6]).

In this paper, L always refers to an infinite regular language having ML = (Q, Σ, s, δ, F )
as trimmed minimal automaton (to obtain unambiguous constructions, we only consider
minimal automata; in order to relate the size of the language with the eigenvalues of the
incidence matrix, we assume the automaton to be trimmed) and we represent integers
using the numeration system built upon L for a given ordering of the alphabet. We often
write q.w as a shorthand for δ(q, w), q ∈ Q, w ∈ Σ∗. Recall that ML is said to be trimmed

if it is accessible, i.e., for all q ∈ Q, there exists w ∈ Σ∗ such that s.w = q and coaccessible,
i.e., for all q ∈ Q, there exists w ∈ Σ∗ such that q.w ∈ F . The incidence matrix A of ML
is defined by Ap,q = #{σ ∈ Σ | p.σ = q}.

For each state q ∈ Q, we define the language

Lq = {w ∈ Σ∗ | δ(q, w) ∈ F}

of the words accepted by ML from q. In particular, L = Ls. Since Lq is a regular language,
it can be genealogically ordered and this leads to a new numeration system on Lq where
the function mapping the words of Lq onto their corresponding numerical value is simply
denoted valq : Lq → N. In particular, vals = val. (If Lq is finite then the domain of valq is
finite and its image is restricted to {0, . . . , #Lq − 1}.)

For each state q ∈ Q, we define two functions uq(n) and vq(n) counting the number of
words in Lq respectively of length n and of length less or equal to n,

uq(n) = #(Lq ∩ Σn) and vq(n) = #(Lq ∩ Σ≤n).

Using the definition of the genealogical ordering, a formula for computing numerical
values can be derived.
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Lemma 1. [22] If σy belongs to Lq, y ∈ Σ+ = Σ∗ \ {ε}, σ ∈ Σ then

valq(σy) = valq.σ(y) + vq(|y|)− vq.σ(|y| − 1) +
∑

σ′<σ

uq.σ′(|y|).

Iterating this formula and reordering the summands we obtain a formula analogous to
the classical decomposition of an integer in the k-adic system. Here the powers of k are
replaced by the different sequences uq(n)’s. Let w = w1 · · ·wn ∈ L, we have

(2.1) val(w) =
∑

q∈Q

|w|
∑

i=1

βq,i(w)uq(|w| − i)

where

(2.2) βq,i(w) := #{σ < wi | s.w1 · · ·wi−1σ = q} + δq,s for i = 1, . . . , |w|
Observe that these coefficients are bounded :

0 ≤
∑

q∈Q

βq,i(w) ≤ #Σ.

In the following we will shortly discuss how to decompose the automaton ML into
irreducible components. We will follow the description given in [23, § 4.4]. We say that
two states p and q communicate, if there exist words w1, w2 ∈ Σ∗ such that p.w1 = q
and q.w2 = p. Clearly, this defines an equivalence relation on Q. The equivalence classes
are called communicating classes. The automaton ML induces a graph GL on the set
of communicating classes in the following way: let C1 and C2 be classes, then there is an
oriented edge C1 → C2, if there exist states q1 ∈ C1 and q2 ∈ C2 and a word w ∈ Σ+ such that
q1.w = q2. This graph does not contain oriented cycles. Furthermore, there exist classes,
which have no outgoing edges. Because, if every class were to have an outgoing edge then
we would obtain an oriented cycle. Such classes will be called sink classes. Proceeding as
in [23] the communicating classes and the corresponding states can be ordered in such a
way that the incidence matrix A of ML has a block triangular form

A =









A1 ∗ ∗ . . . ∗
0 A2 ∗ . . . ∗
0 0 A3 . . . ∗
...

...
...

. . .
...

0 0 0 . . . Ak









,

where the matrices Ai are irreducible and ∗ stands for possibly non-zero matrices. From
now on we will assume that the following hypothesis holds for the language L.

Hypothesis 1. The adjacency matrices Ai of the communicating classes are all primitive.

Remark 1. Recall that a nonnegative square matrix M is primitive if there exists an
integer n such that Mn > 0 (the inequality being interpreted element-wise). In this case,
the Perron-Frobenius theorem holds and M has a unique dominating real eigenvalue λM

referred as the Perron-Frobenius eigenvalue of M (cf. [26]).
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We will also make use of the same assumption as in [19]

Hypothesis 2. The language L is exponential and the adjacency matrix of ML has one
dominating eigenvalue λ > 1. Otherwise stated, us(n) = P (n)λn +o(λn) with P a non-zero
polynomial.

Taking these two hypotheses into account, a communicating class will be said to be
essential if its Perron-Frobenius eigenvalue is equal to the dominating eigenvalue λ of L.

A function f : Σ∗ → R is called completely additive, if

f(w) =
k∑

ℓ=1

f(σℓ)

holds for any word w = σ1σ2 · · ·σk ∈ Σ∗. For a fixed language L we write f(n) for
f(val−1(n)). In [19] the summatory function

∑

n<N

f(n)

was studied.

3. Automata and matrices

In this section, our aim is to define a matrix Ã related to ML. We will refer to Ã as the
extended adjacency matrix of L. At the end of the section, the reader can find an explicit
example of the construction of Ã.

Consider the graph GL defined in Section 2. Let us denote by Cs the communicating
class containing the initial state s of ML. We say that a communicating class C is final if
a final state of ML belongs to C. Due to the minimality of the trimmed automaton ML,
it is clear that each sink class is final.

Since, GL does not contain any oriented cycle, the number Np of paths in GL starting in
Cs and ending in a sink class is finite. Let pj be the jth path of this kind, 1 ≤ j ≤ Np,

pj : Cj,1 = Cs → Cj,2 → · · · → Cj,ℓj
.

Let Sj ⊆ {1, . . . , ℓj} be the set of indices defined by

i ∈ Sj ⇔ Cj,i is final.

In particular, ℓj belongs to Sj . For each i ∈ Sj , we consider the sub-path

pj,i : Cj,1 → · · · → Cj,i

of length i − 1 of the path pj . In particular, pj = pj,ℓj
.

Remark 2. Considering this construction for all the possible values of j, at the end of the
process, it is possible to obtain multiple copies of the same path, i.e., namely one could
possibly find j 6= j′ such that pj,i = pj′,i. Indeed, assume for instance that we have an
automaton ML leading to four communicating classes Ci, i = 1, . . . , 4, all being final with
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C1 = Cs and such that C1 → C2, C2 → C3 and C2 → C4. The sink classes are C3 and C4.
With our notation Np = 2, S1 = S2 = {1, 2, 3} and we obtain the paths

p1,1 : C1, p1,2 : C1 → C2, p1,3 : C1 → C2 → C3

and

p2,1 : C1, p2,2 : C1 → C2, p2,3 : C1 → C2 → C4.

Here, we have p1,1 = p2,1 and p1,2 = p2,2. For counting reasons, we do not want to repeat
the same path more than once and we will therefore modify the sets Sj’s accordingly. In
this particular example, one can take S1 = {1, 2, 3} and S2 = {3}. In what follows, we will
always make this assumption and we still write Sj for the new restricted sets of indices.

In the statement of our theorems, we will attach a particular importance to paths of a
special form: a path pj,i is said to be essential if it contains a maximal number of essential
classes.

For j ∈ {1, . . . , Np} and i ∈ Sj , let Ej,i be the adjacency matrix of the sub-automaton of
ML restricted to the states belonging to the classes Cj,1, . . . , Cj,i. Proceeding as in Section
2, we order the communicating classes and the corresponding states with respect to the
order induced by the path pj,i. Therefore the matrix Ej,i has again a block triangular form.

Definition 1. The extended adjacency matrix of ML is a block diagonal matrix Ã whose
diagonal blocks are exactly the Ej,i’s for all j ∈ {1, . . . , Np} and i ∈ Sj .

Remark 3. The entries of Ã correspond to states of ML and it is clear that a single
state can be associated to more than one element of Ã. For instance, the initial state s
appears in every path and therefore at least one entry of every matrix Ej,i corresponds to
s. Conversely, any state q corresponds to at most one entry in Ej,i.

Assume that Ã has the form

Ã = diag
(
E1,i1,1 , . . . , E1,i1,n1

, . . . , Et,it,1, . . . , Et,it,nt

)
,

where each Ek,ℓ is a square block triangular matrix. Corresponding to this matrix Ã, we
define for each q ∈ Q an horizontal vector

V1,q =
(

v
(q)
1,i1,1

, . . . , v
(q)
1,i1,n1

, . . . , v
(q)
t,it,1

, . . . , v
(q)
t,it,nt

)

where v
(q)
k,ℓ has the same dimension as the corresponding Ek,ℓ. This is a null vector if q does

not correspond to any entry of Ek,ℓ. Otherwise, v
(q)
k,ℓ contains exactly a one in the position

corresponding to q in the matrix Ek,ℓ. We also define a vertical vector V2 having the same
structure

V T
2 =

(
r1,i1,1 , . . . , r1,i1,n1

, . . . , rt,it,1, . . . , rt,it,nt

)

where rk,ℓ is defined in the following way. From the above discussion, Ek,ℓ comes from
a path pk,ℓ : Ck,1 → · · · → Ck,ℓ. All the components of rk,ℓ corresponding to final states
appearing in Ck,ℓ are set to one. The other entries are set to zero.
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Remark 4. For all q ∈ Q and n ∈ N, we have

(3.1) V1,q(Ã)nV2 = uq(n).

Indeed, v
(q)
k,ℓ(Ek,ℓ)

n(rk,ℓ)
T counts the number of paths of length n starting in q and ending

in a final state of Ck,ℓ. By definition of V1,q, V2 and Ã, each path of length n from q to a
final state is counted exactly once.

Remark 5. For any path pj,i : Cj,1 → Cj,2 → · · · → Cj,i in the graph GL connecting
communicating classes, the number Wj,i(n) of words of length n corresponding to this
path can be expressed in terms of the dominating eigenvalues αk of the components Cj,k

(k = 1, . . . , i). Since the number of words of length n originating from the component Cj,k

is ∼ Ckα
n
k we have

Wj,i(n) ∼ Cj,1 · · ·Cj,i

∑

k1+···+ki=n

αk1
1 · · ·αki

i .

Let θ = max(α1, . . . , αi) be the dominating eigenvalue of the path and assume that it
occurs for d components. Then

Wj,i(n) ≍ nd−1θn.

From this it follows that Jordan-decomposition of the corresponding matrix Ej,i contains
a Jordan block of size d for the eigenvalue θ. In particular, if an essential path contains m
essential classes then us(n) ≍ nm−1λn.

Example 1. Consider the language L over the alphabet {a, b, c} having the automaton
depicted in Figure 1 as trimmed minimal automaton (the initial state is indicated by an
unlabelled arrow and the final states are represented with double circles). We have five

1 2 3 4 5 6

7 8

b b a

a

a

b

a

b

a

a

c
b

b

b

Figure 1. A trimmed minimal automaton.

communicating classes partitioning the set of states: C1 = {1, 2}, C2 = {3, 4}, C3 = {5, 6},
C4 = {7} and C5 = {8} where C3, C5 are the sink classes and C2, C3, C5 are the final ones.



DISTRIBUTION OF ADDITIVE FUNCTIONS. . . 7

We have to consider exactly three paths, p1,2 : C1 → C2, p1,3 : C1 → C2 → C3 and
p2,4 : C1 → C2 → C4 → C5. The matrices corresponding to these paths are

E1,2 =







1 1 0 0
1 0 1 0
0 0 0 1
0 0 1 1







, E1,3 =










1 1 0 0 0 0
1 0 1 0 0 0
0 0 0 1 0 0
0 0 1 1 1 0
0 0 0 0 0 1
0 0 0 0 1 1










, E2,4 =










1 1 0 0 0 0
1 0 1 0 0 0
0 0 0 1 1 0
0 0 1 1 0 0
0 0 0 0 0 1
0 0 0 0 0 1










.

These are the adjacency matrices (with block triangular form) of the sub-automata having
respectively {1, 2, 3, 4}, {1, . . . , 6} and {1, 2, 3, 4, 7, 8} as set of states. The extended adja-
cency matrix of L is the block diagonal matrix Ã having E1,2, E1,3 and E2,4 as diagonal
blocks. The corresponding vectors V1,q’s are given by

V1,1 =
(

1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
)

V1,2 =
(

0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0
)

...
V1,8 =

(
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

)

and the vector V2 by

V T
2 =

(
0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1

)
.

Notice that the 7th component of V2 corresponding to the state 3 is set to zero because for
the ith components (i = 5, . . . , 10) we have to consider the final states appearing only in
C3. (These components of V2 correspond to the path p1,3.)

Let λ = 1+
√

5
2

be the dominating eigenvalue of L. The three components Ci (i = 1, 2, 3)
are essential, i.e., they all have λ as dominating eigenvalue. Consequently, the path p1,3

is essential. Using the same reasoning as in Remark 5, the number of words of length n
starting in 1 and ending in 3 (resp. in 5, 8) is of order nλn (resp. n2λn, nλn). In the
Jordan-decomposition of E1,2 (resp. E1,3, E2,4) appears exactly one Jordan block of size 2
(resp. 3, 2) for the eigenvalue λ.

4. Multiplicative functions

In the course of our discussion of the distribution behaviour of additive functions we will
make use of multiplicative functions. A function g : L → C is called multiplicative, if

g(w1w2 . . . wk) = g(w1) · · · g(wk)

holds for any word w1w2 . . . wk ∈ L.

Lemma 2. Let g : L → C be a multiplicative function on the language L. Then the

following formula holds for W = W1W2 . . .Wn

(4.1)
∑

w<W
w∈L

g(w) =
∑

q∈Q

|W |
∑

k=1

γq,k(W )Gq(|W | − k),
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where

Gq(ℓ) :=
∑

w∈Lq

|w|=ℓ

g(w)

and

γq,k(W ) := g(W1) · · · g(Wk−1)
∑

σ<Wk
s.W1...Wk−1σ=q

g(σ) + δq,s.

Proof. The proof is similar to the proof of (2.1) given in [22]. For the sake of completeness,
we recall the details

∑

w<W
w∈L

g(w) =
∑

|w|<|W |
w∈L

g(w) +
∑

|w|=|W |
w<W,w∈L

g(w)

=

|W |−1
∑

k=0

Gs(k) +

|W |
∑

k=1

∑

σ<Wk

∑

|w|=|W |−k
w∈Ls.W1...Wk−1σ

g(W1 . . .Wk−1σw)

=

|W |−1
∑

k=0

Gs(k) +

|W |
∑

k=1

g(W1) · · · g(Wk−1)
∑

σ<Wk

g(σ)
∑

|w|=|W |−k
w∈Ls.W1...Wk−1σ

g(w)

︸ ︷︷ ︸

=Gs.W1...Wk−1σ(|W |−k)

where we have used the multiplicativity of g in the last line. The conclusion follows from
the definition of γq,k. �

The function Gq(ℓ) can be given in terms of a matrix product similar to the formula (3.1)
given for uq(ℓ) in Section 3: let Bp,q =

∑

p.σ=q g(σ), then

Gq(n) = (BnV )q

where V is vertical vector such that Vq = 1 if and only if q ∈ F .
Clearly, for an additive function f , g(w, t) = exp(itf(w)) is a multiplicative function.
We apply the same construction as in Section 3 to the matrix B associated to the

multiplicative function exp(itf(w)) to obtain the matrix B̃(t). For t = 0 the occurring

matrix is the extended adjacency matrix Ã from Section 3. Since all the diagonal blocks of
Ã have a dominating eigenvalue and all the coefficients of B depend on t holomorphically,
there corresponds a function λk(t) to every component Ck of the automaton such that
λk(0) = λk (the Perron-Frobenius eigenvalue of the component), cf. [3]. Furthermore, we
have |λk(t)| ≤ λk(0) for t ∈ R with equality for t = 0.

Let TJT−1 be the Jordan-decomposition of Ã. Then there exist matrices T (t) and J(t) in
some open interval I around 0 such that T (0) = T , J(0) = J , and B̃(t) = T (t)J(t)T (t)−1.
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Furthermore, the matrix function J(t) has the same block structure as J , i.e., the block






λ 1 0 . . . 0
0 λ 1 . . . 0
...

...
. . .

...
0 0 . . . λ







of J corresponds to a block

Jj(t) =








λk1,j
(t) 1 0 . . . 0

0 λk2,j
(t) 1 . . . 0

...
...

. . .
...

0 0 . . . λkℓj,j
(t)








of J(t). Then

(4.2) Gq(n, t) = V1,qB̃(t)nV2

and it remains to study the powers of Jj(t).
There are three different cases for the behaviour of the powers of Jj(t) depending on the

power series expansions of the corresponding eigenvalues around t = 0. Let Jj(t) have the
diagonal entries µ1(t), . . . , µℓ(t) and define a1, . . . , aℓ and b1, . . . , bℓ by

µm(t) = λ exp

(

iamt − bm
t2

2
+ O(t3)

)

.

First notice that an easy induction shows that for any r, s such that 1 ≤ r < s ≤ ℓ

(Jj(t)
n)r,s =

∑

αr+···+αs=n−s+r
αm≥0

µr(t)
αr · · ·µs(t)

αs

case 1: Not all am’s are equal: in this case we consider the matrices Jj(t/n)n. By
definition we have

(Jj(t/n)n)1,ℓ = λn−ℓ+1nℓ−1
∑

α1+···+αℓ=n−ℓ+1
αm≥0

exp

(

it

ℓ∑

m=1

αm

n
am + O

(
t2

n

))

n−(ℓ−1).

The sum can be interpreted as a Riemann sum for the integral

P1(a1, . . . , aℓ, t) =

∫

· · ·
∫

x1+···+xℓ−1≤1
xm≥0

exp

(

it

(
ℓ−1∑

m=1

amxm + aℓ(1 − x1 − · · · − xℓ−1)

))

dx1 · · · dxℓ−1.

Since the integrand is differentiable with respect to all its variables, the difference
between the Riemann sum and the integral is O(1/n). Thus we have

(4.3) (Jj(t/n)n)1,ℓ = λn−ℓ+1nℓ−1

(

P1(a1, . . . , aℓ, t) + O
(

t2

n

))

.
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From this and (4.2) we get Gq(n, t/n) = uq(n)Cq(t) + O(t2uq(n)n−1), where Cq is
a linear combination of functions P1.

case 2: a1 = · · · = aℓ = a, but not all bm’s are equal: in this case we consider
Jj(t/

√
n)n and proceed as in the first case to obtain

(4.4)
(
Jj(t/

√
n)n
)

1,ℓ
= λn−ℓ+1nℓ−1eiat

√
n

(

P2(b1, . . . , bℓ, t) + O
(

t3√
n

))

,

where

P2(b1, . . . , bℓ, t) =

∫

· · ·
∫

x1+···+xℓ−1≤1
xm≥0

exp

(

−t2

2

(
ℓ−1∑

m=1

bmxm + bℓ(1 − x1 − · · · − xℓ−1)

))

dx1 · · · dxℓ−1.

From this we get Gq(n, t/n) = uq(n)eiat + O(t2uq(n)n−1) and Gq(n, t/
√

n) =

uq(n)eiat
√

nDq(t) + O(t3uq(n)n− 1
2 ), where Dq is a linear combination of functions

P2.
case 3: a1 = · · · = aℓ = a and b1 = · · · = bℓ = b: again we consider Jj(t/

√
n)n and

obtain

(4.5)
(
Jj(t/

√
n)n
)

1,ℓ
= λn−ℓ+1nℓ−1eiat

√
ne−

b
2
t2
(

1 + O
(

t3√
n

))

.

From this we get Gq(n, t/
√

n) = eiat
√

ne−
b
2
t2uq(n) + O(t3uq(n)n− 1

2 ).

5. Distribution of additive functions

Theorem 1. Let L be a regular language given by its trimmed minimal automaton ML.

Assume further that all its communicating classes are primitive and that the adjacency

matrix of ML has a unique dominant eigenvalue λ. Let f : L → R be an additive function

and define λk(t) as the continuous function giving the eigenvalue of the marked adjacency

matrix B̃ introduced in Section 4 and corresponding to the blocks arising from essential

paths. Define real numbers a1, . . . , aℓ by λm(t) = λ exp(iamt + O(t2)). If not all am’s are

equal then

lim
n→∞

1

us(n)
# {w ∈ L | |w| = n, f(w) < nx} = F (x)

exists for all x ∈ R with the possible exception of finitely many points.

Remark 6. Theorem 1 explains why in general the asymptotic main term of
∑

w<W,w∈L f(w)

involves a fluctuating function (cf. [19, Theorem 1]).

Theorem 2. Under the hypotheses of Theorem 1 define real numbers b1, . . . , bℓ by λm(t) =

λ exp(iamt − bm
t2

2
+ O(t3)) and assume that a1 = · · · = aℓ = a but not all bm’s are equal.

Then

lim
val(W )→∞

1

|W | val(W )

∑

w<W
w∈L

f(w)
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exists and equals a. Furthermore,

lim
n→∞

1

us(n)
#
{
w ∈ L | |w| = n, f(w) − na < x

√
n
}

= G(x)

exists for all x ∈ R. The function G(x) is infinitely differentiable.

Remark 7. Theorem 2 gives a more transparent and less technical condition for the
existence of an asymptotic formula for

∑

w<W f(w) than in [19, Corollary 3].

Theorem 3. Under the hypotheses of Theorem 2 assume that a1 = · · · = aℓ = a and

b1 = · · · = bℓ = b. Then

lim
val(W )→∞

1

val(W )
#
{

w ∈ L | w < W, f(w) − na < x
√

b|W |
}

= Φ(x),

where Φ(x) = 1√
2π

∫ x

−∞ e−t2/2 dt is the normal distribution function.

Proof of Theorem 1. The hypothesis of Theorem 1 are exactly covered by the situation of
case 1 in Section 4. Thus we have

lim
n→∞

1

us(n)

∑

w∈L
|w|=n

exp

(

it
f(w)

n

)

= Cs(t),

where Cs(t) is a linear combination of functions of the form P1(a1, . . . , aℓ, t). Since P1 is
continuous at t = 0 Levy’s continuity theorem (cf. [24]) implies the assertion. �

Proof of Theorem 2. The hypothesis of Theorem 2 are exactly covered by the situation of
case 2 in Section 4. From (4.1) applied to the function g(w) = exp(itf(w)/|W |) and the
asymptotic expression for Gq(k) derived after (4.4) we get

∑

w<W
w∈L

eit
f(w)
|W | =

|W |
∑

k=1

∑

q∈Q

γq,k

(

W,
t

|W |

)

Gq

(

|W | − k,
t

|W |

)

= eita val(W ) + O(t val(W )/|W |) + O(t2 val(W )),

where we have used that γq,k(W, t
|W |) = βq,k(W ) + O(t/|W |) and the expansion for Gq(k).

Differentiating with respect to t and setting t = 0 gives the first assertion.
The proof of the second assertion runs along the same lines as the proof of Theorem 1.

The differentiability of the function G(x) follows from the fact that P2(b1, . . . , bℓ, t) decays
like exp(−Ct2) for |t| → ∞. �

Proof of Theorem 3. The hypothesis of Theorem 3 are exactly covered by the situation of
case 3 in Section 4. An argument similar to the proof of the first assertion of Theorem 2
yields

lim
val(W )→∞

1

val(W )

∑

w<W
w∈L

exp

(

it
f(w) − a|W |
√

b|W |

)

= e−
t2

2 ,

which again by Levy’s continuity theorem (cf. [24]) implies the assertion. �
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6. Examples

In this section we exhibit a number of examples which show that our theorems cannot
be improved. We will always assume that the occurring letters are ordered alphabetically.

Example 2. Let L = {a, b}∗ ∪ {c, d}∗ and f(a) = f(c) = 1, f(b) = −1, f(d) = 0. Then
the corresponding matrix B is of the form

B =





0 2 cos t 1 + eit

0 2 cos t 0
0 0 1 + eit





so, λ1(t) = 2 exp(− t2

2
+ O(t3)) and λ2(t) = 2 exp(i t

2
− t2

8
+ O(t3)). Notice that for n > 0,

us(n) = 2n+1 and #{w ∈ L | w < cn} = 1 +
∑n−1

k=1 us(k) + 2n = 3 · 2n − 1. We have

lim
n→∞

1

2n+1
# {w ∈ L | |w| = n, f(w) < nx} =







0 for x < 0
1
2

for 0 < x < 1
2

1 for x > 1
2
.

Furthermore,

lim
n→∞

1

3 · 2n
#{w < cn | f(w) < nx} =







0 for x < 0
2
3

for 0 < x < 1
2

1 for x > 1
2
,

which shows that
1

val(W )
#{w ∈ L | w < W, f(w) < |W |x}

does not converge for val(W ) → ∞.

Example 3. Consider again L = {a, b}∗∪{c, d}∗ but f(a) = −f(b) = 1, f(c) = −f(d) = 2.
Then the corresponding matrix B is of the form

B =





0 2 cos t 2 cos 2t
0 2 cos t 0
0 0 2 cos 2t





so, λ1(t) = 2 exp(− t2

2
+ O(t3)) and λ2(t) = 2 exp(−2t2 + O(t3)). We have

lim
val(W )→∞

1

|W | val(W )

∑

w<W
w∈L

f(w) = 0

and

lim
n→∞

1

2n+1
#{w ∈ L | |w| = n, f(w) < x

√
n} =

1

2
(Φ(x) + Φ(x/2)) .

Furthermore,

lim
n→∞

1

n2n
#{w ∈ L | w < cn, f(w) < x

√
n} =

1

3
(2Φ(x) + Φ(x/2)) ,
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which shows that

1

val(W )
#{w ∈ L | w < W, f(w) − a|W | < x

√

|W |}

does not converge for val(W ) → ∞.
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