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Universitätstr. 6, CH-8092 Zürich, Switzerland
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Abstract. A set of n independent jobs is to be scheduled without preemption
on m identical parallel machines. For each job j , a diffuse adversary chooses the
distribution Fj of the random processing time Pj from a certain class of distributions
Fj . The scheduler is given the expectation µj = E[Pj ], but the actual duration is
not known in advance. A positive weight wj is associated with each job j and all
jobs are ready for execution at time zero. The scheduler determines a list of the jobs,
which is then scheduled in a non-preemptive manner. The objective is to minimise
the total weighted completion time

∑
j wj Cj . The performance of an algorithm is

measured with respect to the expected competitive ratio maxF∈F E[
∑

j wj Cj/OPT],
where Cj denotes the completion time of job j and OPT the offline optimum value.

We show a general bound on the expected competitive ratio for list scheduling
algorithms, which holds for a class of so-called new-better-than-used processing
time distributions. This class includes, among others, the exponential distribution.

As a special case, we consider the popular rule weighted shortest expected
processing time first (WSEPT) in which jobs are processed according to the non-
decreasing µj/wj ratio. We show that it achieves E[WSEPT/OPT] ≤ 3 − 1/m for
exponential distributed processing times.

1. Introduction

Scheduling problems are very well studied combinatorial optimisation problems. Among
others, the following completion time scheduling problem and its variants have attracted
much attention. A set of jobs is to be processed on a set of machines. The objective
function is to minimise the total weighed completion time

∑
j wj Cj , where Cj denotes

the time when job j is finished and wj denotes a weight associated with job j .
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In this paper we consider the expected competitive ratio of scheduling algorithms
for stochastic variants of the problem. This measure is defined as the expectation (taken
over all instances) of the objective-value achieved by an algorithm on a certain instance
related to the optimum value of the same instance. One property of this measure is that
it favours algorithms that perform well on “many” instances.

Previous Work. The deterministic version of the completion time scheduling problem
has been studied intensively since the 1950s. For the weighted single-machine problem
Smith [27] proved optimality of the so-called weighted shortest processing time first
(WSPT) rule: schedule the jobs in order of the non-decreasing processing time and
weight ratio. For the unweighted problem, i.e., all weights are equal to one, with m
identical parallel machines, the optimality of the shortest processing time first (SPT)
strategy was shown by Conway et al. [5].

In contrast, Bruno and Sethi [2] showed that the weighted problem with m parallel
machines is alreadyNP-hard in the ordinary sense for constant m. However, Sahni [22]
proved that it admits a fully polynomial time approximation scheme (FPTAS). If the
number of machines is considered as part of the input, Lageweg and Lenstra [14] estab-
lished that the weighted problem isNP-hard in the strong sense (see also problem SS13
of [7]). An exact algorithm was given by Sahni [22]. Skutella and Woeginger [26] found a
polynomial time approximation scheme (PTAS). Kawaguchi and Kyan [12] established
that WSPT achieves 1

2 (1+
√

2) approximation ratio. Besides that, several constant factor
approximations are known for variants of the problem, see, e.g., [16], [17], [24], [10],
and [25].

Evidently, this problem was studied extensively from the worst-case perspective.
However, a drawback of this approach is that it may be overly pessimistic: a scheduling
algorithm with bad worst-case behaviour may perform rather well in practical appli-
cations. A natural step to overcome this problem is to consider stochastic scheduling,
i.e., to interpret input data as random variables and to measure the performance of an
algorithm ALG by its expected objective-value E[ALG].

In stochastic completion time scheduling, the scheduler is given the weight and
expected processing time for each job and the objective function is to minimise the
expected total weighted completion time E[

∑
j wj Cj ]. Hence, an algorithm MIN is con-

sidered optimal with respect to that measure if it minimises the expected total weighted
completion time over all algorithms.

Models that areNP-hard in a deterministic setting sometimes allow a simple priority
rule to be optimal for the probabilistic counterpart. For example, the rule shortest expected
processing time first (SEPT), i.e., schedule jobs in order of non-decreasing expected
processing times, is known to be optimal for many variants, see, e.g., [21], [29], [3],
[11], and [28]. Moreover, for the weighted single-machine problem, the rule weighted
shortest expected processing time first (WSEPT) is optimal [18]. WSEPT schedules the
jobs in non-decreasing order of the expected processing time over weight ratio.

In their work Möhring et al. [15] proved very general bounds on LP-based algorithms
for many stochastic completion time scheduling problems. Their method is based on LP-
relaxations of a deterministic problem, where an optimum solution to this LP yields a
lower bound for E[MIN]. In addition, this solution also yields a priority rule which can
be shown to be only a constant factor larger than E[MIN] (with mild assumptions on
processing time distributions). Also additional constraints, e.g., release dates can be
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handled with minor modifications to the LP. One of the main results is that for m parallel
machines,

E[WSEPT]

E[MIN]
≤ 2− 1

m

holds if processing times are drawn from distributions that are new-better-than-used in
expectation (NBUE).

One property of the performance measure E[ALG] is that instances x with small
value ALG(x) tend to be neglected since they contribute little to the overall expected
value. Hence, in this measure, algorithms are preferred that perform well on instances
x with large optimum value OPT(x). It depends on the application if such behaviour is
desireable, but if one is interested in algorithms that perform well on “many” instances,
this measure may seem inappropriate.

Let ALG(x) denote the objective-value achieved by a certain algorithm and let OPT(x)
be the optimum value on instance x , then E[ALG/OPT] defines the expected competitive
ratio, where the expectation is taken over all instances.

Regarding the above drawback, the measure E[ALG/OPT] seems to be interesting
for the following intuition. The ratio ALG(x)/OPT(x) relates the value of the objective
function achieved by some algorithm ALG to the optimum OPT on the instance x . Thus,
the algorithm is considered to perform well on instances that yield a small ratio, and bad
on instances with a large ratio. Hence, if for “most” instances a small ratio is attained,
the “few” instances with a large ratio will not increase the expectation drastically. See
also [23] for a discussion.

Despite the vast literature on stochastic scheduling problems, it seems that the
expected competitive ratio has only been considered in a paper by Coffman and Gilbert
[4] and in the recent work of Scharbrodt et al. [23].

In [23] the unweighted completion time problem on parallel machines is considered
for the SEPT rule. The main result is that the SEPT algorithm yields

E

[
SEPT

OPT

]
= O(1)

for identical parallel machines under relatively weak assumptions on job processing time
distributions. Here SEPT denotes the objective-value achieved by the SEPT algorithm and
OPT the objective-value of an optimum offline algorithm, i.e., an algorithm that is given
the actual realisations of processing times. The general approach is to partition the
probability space according to a series of “bad events”. These events yield a series of
bounds that give an estimate for the probability of “larger” values of SEPT/OPT.

In this paper we consider the weighted version of the completion time scheduling
problem, prove a general bound on the expected competitive ratio, and analyse the
WSEPT algorithm.

Model, Problem Definition, and Notation. Consider a set J = {1, 2, . . . , n} of n inde-
pendent jobs that have to be scheduled non-preemptively on a set M = {1, 2, . . . ,m} of
m identical parallel machines. For each job j , a so-called diffuse adversary (see [13])
chooses the distribution Fj of the random processing time Pj ≥ 0 out of a certain class
of distributions Fj . We assume that the processing times Pj are stochastically indepen-
dent. The scheduler is given the expectation µj = E[Pj ] of each job j , but the actual
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realisation pj is only learned upon job completion. A positive weight wj is associated
with each job j ∈ J and all jobs are ready for execution at time zero. Every machine
can process at most one job at a time. Each job can be executed by any of the machines,
but preemption and delays are not permitted. The completion time Cj of a job j ∈ J is
the latest point in time, such that a machine is busy processing the job.

In list scheduling, jobs are processed one-by-one according to a priority list. A so-
called online list scheduling algorithm is given weight wj and mean µj for all j ∈ J
and, based on that information, deterministically constructs a permutation π of J . This
list π is then scheduled according to the following policy: whenever a machine is idle
and the list is not empty, the job at the head of the list is removed and processed non-
preemptively and without delay on the idle machine (with least index). Notice that the
actual realisations of processing times are learned only upon job completion, i.e., the
list is constructed offline, while the schedule is constructed online.

Once a realisation p = (p1, p2, . . . , pn) of job processing times is fixed, this policy
yields a realisation of the random variable TWC(π) = ∑

j∈J wj Cj , which denotes the
total weighted completion time for list π . Thus, for any realisation of job processing
times, an offline optimum list π∗ is defined by

OPT(p) = TWC(π∗) = min{TWC(π): π is a permutation of J }. (1)

This yields the random variable OPT of the minimum value of the objective function for the
random processing time vector P = (P1, P2, . . . , Pn). Let ALG be an online list schedul-
ing algorithm and let π denote the list produced by ALG on inputµ = (µ1, µ2, . . . , µn)

and w = (w1, w2, . . . , wn). We define the random variable ALG = TWC(π) as the total
weighted completion time achieved by the algorithm ALG. It is important to note that
any online list scheduling algorithm deterministically constructs one fixed list for all
realisations, while the optimum list may be different for each realisation.

For any algorithm ALG, the ratio ALG/OPT defines a random variable that measures
the relative performance of that algorithm compared with the offline optimum. We may
thus define the expected competitive ratio of an algorithm ALG by

R(ALG,F) = max

{
E

[
ALG

OPT

]
: F ∈ F

}
,

where the job processing time distributions F = (F1, F2, . . . , Fn) are chosen by a
diffuse adversary from a class of distributions F = (F1,F2, . . . ,Fn). The objective is
to minimise the expected competitive ratio, and thus an algorithm is called competitive
optimal if it yields this minimum over all algorithms.

In the standard classification scheme by Graham et al. [9] our completion time
scheduling problem is denoted

P | Pj ∼ Fj (µj ) ∈ Fj |
∑

j

wj Cj .

The performance of an algorithm is measured in terms of expected competitive ratio
R(ALG,F).

This model can be seen as a hybrid between stochastic scheduling models and
competitive analysis, since it comprises important aspects of them both.
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In competitive analysis (see [1] for an introduction) the input for an algorithm
becomes available only gradually and usually driven by an adversary. The competitive
ratio is defined by the objective-value of a certain algorithm on a worst-case input
compared with the offline-optimum, i.e., an optimum algorithm that sees the whole
input in advance. An unrestricted adversary is usually considered overly powerful. One
approach to limit its power is the diffuse adversary model introduced by Koutsoupias
and Papadimitriou [13], where the adversary is allowed to choose the distribution of
the input out of a certain class of distributions. As is done in competitive analysis, our
model relates the performance of an algorithm to the offline optimum on each instance.
However, rather than taking the maximum value of that ratio, we take the average over
all instances weighted with a distribution specified by a diffuse adversary.

The similarities to classical stochastic scheduling are that processing times are drawn
from a probability distribution, and that the number n of jobs, their weights w and most
importantly their expected durations µ are known. The most important difference is that
in stochastic scheduling the optimum is usually not defined as the offline optimum, but as
an algorithm that, givenw andµ only, minimises the expected total weighted completion
time.

Results. We introduce the class of distributions that are new-better-than-used in expec-
tation relative to a function h (NBUEh). The NBUEOPT class comprises the exponential,
geometric, and uniform distribution.

We allow the adversary to choose NBUEOPT processing time distributions and derive
bounds to online list scheduling algorithms for the problem

P | Pj ∼ F(µj ) ∈ NBUEOPT |
∑

j

wj Cj ,

where the performance of an algorithm is measured in terms of expected competitive
ratio R(ALG,NBUEOPT).

Our analysis depends on a quantity α which is an upper bound of the probability
that any pair of jobs is in the wrong order in a list of a certain online list algorithm ALG,
compared with an optimum list. We would also like to point out that our analysis is
significantly simpler compared with [23].

Theorem 3.2 states that R(ALG,NBUEOPT) ≤ 1/(1− α) holds for the single-
machine case. In Corollary 3.7 we show that R(ALG,NBUEOPT) ≤ 1/(1− α)+1−1/m
holds for m identical parallel machines.

These results reflect well the intuition that an algorithm should perform better, the
smaller its probability of sequencing jobs in the wrong order.

As an important special case, Corollary 3.8 yields E[WSEPT/OPT] ≤ 3 − 1/m for
the WSEPT algorithm with m identical parallel machines and exponential distributed
processing times. Simulations empirically demonstrate tightness of this bound.

2. New-Better-Than-Used Distributions

In this section we define a class of processing time distributions from which the dif-
fuse adversary is allowed to choose. However, we first discuss the class of distributions
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that are new-better-than-used in expectation (NBUE). The concept of NBUE random
variables is well known in reliability theory [8], where it is considered as a relatively
weak assumption. NBUE distributions are typically used to model the aging of system
components, but have also proved useful in the context of stochastic scheduling. For the
problem P |√Var[Pj ] ≤ E[Pj ] |E[

∑
j wj Cj ] the bound E[WSEPT] ≤ (2− 1/m)E[MIN]

of Möhring et al. [15] holds for NBUE processing time distributions as an important spe-
cial case. In addition, Pinedo and Weber [19] give bounds for shop scheduling problems
assuming NBUE processing time distributions.

A random variable X ≥ 0 is NBUE if E[X − t | X ≥ t] ≤ E[X ] holds for all
t ≥ 0, see, e.g., [8]. Examples of NBUE distributions are uniform, exponential, Erlang,
geometric, and Weibull distribution (with shape parameter at least one).

Let X denote a random variable taking values in a set V ⊂ R+0 and let h(x) > 0 be a
real-valued function defined on V . The random variable X ≥ 0 is new-better-than-used
in expectation relative to h (NBUEh) if

E

[
X − t

h(X)

∣∣∣∣ X ≥ t

]
≤ E

[
X

h(X)

]
(2)

holds for all t ∈ V , provided these expectations exist.
It is natural to extend the concept of NBUEh distributions to functions h that have

more than one variable. Let X denote a random variable taking values in a set V ⊂ R+0 ,
let y ∈ W ⊂ Rk for k ∈ N, and let h(x, y) > 0 be a real-valued function defined on
(V,W ). The random variable X ≥ 0 is NBUEh if

E

[
X − t

h(X, y)

∣∣∣∣ X ≥ t

]
≤ E

[
X

h(X, y)

]
(3)

holds for all t ∈ V and all y ∈ W , provided these expectations exist.
In what follows, the distribution function of a random variable X , is denoted by

FX (t) = Pr[X ≤ t] and let fX (t) = (d/dt)FX (t) denote its density. For any event A, let
FX |A(t) = Pr[X ≤ t | A] and fX |A(t) = (d/dt)FX |A(t) be the conditional distribution,
and the conditional density of X given A, respectively. Now we establish several general
properties of NBUEh distributions.

Lemma 2.1. Let X be NBUEh and let Y be a random vector taking values in W
independently of X , then

E

[
X − t

h(X, Y )

∣∣∣∣ X ≥ t

]
≤ E

[
X

h(X, Y )

]
.

Proof. Since X is NBUEh (3) yields

E

[
X − t

h(X, Y )

∣∣∣∣ X ≥ t

]
=

∫
y∈W

E

[
X − t

h(X, y)

∣∣∣∣ X ≥ t

]
fY (y) dy

≤
∫

y∈W
E

[
X

h(X, y)

]
fY (y)dy = E

[
X

h(X, Y )

]
,

which completes the proof.
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Lemma 2.2. Let X be NBUEh , α > 0, and let Y be a random vector taking values in
W independently of X , then

E

[
αX − t

h(X, Y )

∣∣∣∣ αX ≥ t

]
≤ E

[
αX

h(X, Y )

]

holds for all t ∈ V .

Proof. Let y ∈ W be fixed. As X is NBUEh one obtains that

E

[
αX − t

h(X, y)

∣∣∣∣ αX ≥ t

]
= αE

[
X − t/α

h(X, y)

∣∣∣∣ X ≥ t

α

]

≤ αE
[

X

h(X, y)

]
= E

[
αX

h(X, y)

]

for all t ≥ 0. Taking the expectation of Y as in Lemma 2.1 completes the proof.

Lemma 2.3. Let X be NBUEh , let Y be a random vector taking values in W indepen-
dently of X , and let g(y) be a function defined on W taking values in V , then

E

[
X − g(Y )

h(X, Y )

∣∣∣∣ X ≥ g(Y )

]
≤ E

[
X

h(X, Y )

]
.

Proof. Since (3) holds for all t ∈ V it holds especially for t = g(y). Repeating the
proof of Lemma 2.1 with this choice yields the claim.

The next lemmas show that exponential, geometric, and uniform distributed random
variables are NBUEh if h is a non-decreasing function in x , i.e., h(x + t, y) ≥ h(x, y)
for all x, y and t ≥ 0. We use X ∼ Uni(a, b), X ∼ Exp(λ), and X ∼ Geo(p) to
denote that the distribution of the random variable X is uniform in [a, b], exponential
with parameter λ, and geometric with probability p, respectively.

Lemma 2.4. If X ∼ Exp(λ) and h(x, y) > 0 is non-decreasing in x , then X is NBUEh .

Proof. For all s ≥ 0 we have fX |X≥t (t + s) = fX (s) since X has memoryless density
fX . As h is non-decreasing in x it holds that h(t+s, y) ≥ h(s, y) for t ≥ 0. We therefore
obtain

E

[
X − t

h(X, y)

∣∣∣∣ X ≥ t

]
=

∫ ∞
x=t

x − t

h(x, y)
fX |X≥t (x) dx

=
∫ ∞

s=0

t + s − t

h(t + s, y)
fX |X≥t (t + s) ds

≤
∫ ∞

s=0

s

h(s, y)
fX (s) ds = E

[
X

h(X, y)

]
,

which proves the lemma.
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Lemma 2.5. If X ∼ Geo(p) and h(x, y) > 0 is non-decreasing in x , then X is NBUEh .

Proof. The proof for the exponential distribution analogously carries over to the geo-
metric distribution.

Lemma 2.6. If X ∼ Uni(a, b) where 0 ≤ a < b and h(x, y) > 0 is non-decreasing
in x , then X is NBUEh .

Proof. We want to show that

E

[
X − t

h(X, y)

∣∣∣∣ X ≥ t

]
≤ E

[
X

h(X, y)

]

for all t ∈ V = [a, b) and y ∈ W . Let the random variable T ∼ Uni(a, b) be independent
of X . Let t ∈ [a, b) be arbitrary but fixed, and introduce the (dependent) random variable
S = ((b − t)/(b − a))(T − a) with distribution S ∼ Uni(0, b − t). Observe that for
t ≤ x ≤ b we have Pr[X ≤ x | X ≥ t] = (x − t)/(b − t) = Pr[S ≤ x − t] and thus
fX |X≥t (x) = 1/(b − t) = fS(x − t). Therefore

E

[
X − t

h(X, y)

∣∣∣∣ X ≥ t

]
=

∫ b

x=t

x − t

h(x, y)

1

b − t
dx

=
∫ b−t

s=0

s

h(s + t, y)

1

b − t
ds = E

[
S

h(S + t, y)

]
.

With a ≥ 0 and (b − t)/(b − a) ≤ 1 we have S ≤ T . A simple calculation shows that
since T < b and a ≤ t we have T ≤ ((b − t)/(b − a))(T − a) + t = S + t . Hence,
since h is non-decreasing we find h(S + t, y) ≥ h(T, y) > 0 and we have

E

[
S

h(S + t, y)

]
≤ E

[
T

h(T, y)

]
= E

[
X

h(X, y)

]
,

which completes the proof since X and T are identically distributed.

3. Weighted Completion Time Scheduling

Recall that the random variable OPT measures the value of the offline optimum of our
problem. If we interpret OPT as a real-valued function defined on the set of processing
time vectors, then NBUEOPT induces a class of distributions. In particular, we allow the
diffuse adversary to choose NBUEOPT processing time distributions in the following
way: all jobs fall into the same class, e.g., they are all exponential distributed, but the
parameter, and thus the mean µj of each individual job j , is arbitrary. We denote this
degree of freedom by Pj ∼ F(µj ) ∈ NBUEOPT. Hence we consider the problem

P | Pj ∼ F(µj ) ∈ NBUEOPT |
∑

j

wj Cj
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for online list scheduling against a diffuse adversary. The performance of an algorithm
is measured with respect to the expected competitive ratio R(ALG,NBUEOPT). In Sec-
tion 3.1 the single-machine case is studied, and the results are generalised to identical
parallel machines in Section 3.2.

For all j, k ∈ J , we define the indicator variable Mj,k for the event that the jobs j
and k are scheduled on the same machine. It is easily observed that for any list π and
job j the random completion time satisfies Cj =

∑
k≤π j Pk Mj,k , where k ≤π j denotes

that job k is not after job j in the list π .

3.1. Single-Machine Scheduling

A list π is called a weighted shortest processing time first (WSPT) list (also known as
Smith’s ratio rule [18]) if the jobs are in non-decreasing order of processing time and
weight ratio, i.e.,

pj

wj
≤ pk

wk
for j ≤π k. (4)

It is a well-known fact in scheduling theory, see, e.g., [27], [18], that WSPT char-
acterises the offline optimum for single-machine scheduling.

Bounding the Expected Competitve Ratio. Recall that Mj,k takes the value one if jobs
j and k are scheduled on the same machine, which is trivially true in single-machine
scheduling. Thus, TWC(π) can be rearranged to the more convenient form

TWC(π) =
∑
j∈J

wj Cj =
∑
j∈J

wj

∑
k≤π j

Pk Mj,k =
∑
j∈J

Pj

∑
k≥π j

wk .

We define the random variable
j,k = wk Pj−wj Pk for all j, k ∈ J and the indicator
variable

X j,k =
{

1, if 
j,k ≥ 0 and k >π j,
0, otherwise,

for any fixed list π . The intuition behind X j,k is that the variable takes the value one if
the jobs j and k are scheduled in the wrong order in a list produced by an algorithm,
compared with an optimum list. 
j,k measures the change of TWC if two consecutive
jobs j and k within a list are swapped.

The random variable OPT is defined as the value of the offline optimum and TWC(π)

as the total weighted completion time of list π . The following relationship between
the random variables OPT, TWC(π), 
j,k , and X j,k is one of the key connexions of our
analysis.

Theorem 3.1. For any list π it holds that

TWC(π) = OPT+
∑
j∈J

∑
k≥π j


j,k X j,k .
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Proof. We prove that the claim holds for every realisation p = (p1, p2, . . . , pn) of
processing times and weights w = (w1, w2, . . . , wn). Define

yj,k(π) =
{

1, k >π j,
0, otherwise,

where π is an arbitrary list. We use yj,k = yj,k(π) and y∗j,k = yj,k(π
∗) as shorthand,

where π∗ is an optimum list for the outcome p.
Observe that xj,k = 1 if and only if yj,k = 1, and y∗j,k = 0. To see this recall that

y∗j,k = 0, i.e., k ≤π∗ j implies pk/wk ≤ pj/wj and hence δj,k ≥ 0. Further note that for
j �= k we have yj,k = 1− yk, j and y∗j,k = 1− y∗k, j .

For every list π it holds that

TWC(π) =
∑
j∈J

∑
k≥π j

wk pj =
∑
j∈J

∑
k∈J

wk pj yj,k(π)+
∑
j∈J

wj pj ,

as already observed by Potts [20]. Now we calculate

TWC(π)− TWC(π∗)=
∑
j∈J

∑
k∈J

wk pj (yj,k − y∗j,k)

=
∑
j∈J

∑
k>π j

(wk pj (yj,k − y∗j,k)+ wj pk(yk, j − y∗k, j ))

=
∑
j∈J

∑
k>π j

(wk pj (yj,k−y∗j,k)−wj pk((1−yk, j )−(1−y∗k, j )))

=
∑
j∈J

∑
k>π j

(wk pj (yj,k − y∗j,k)− wj pk(yj,k − y∗j,k))

=
∑
j∈J

∑
k>π j

(wk pj − wj pk)(yj,k − y∗j,k)

=
∑
j∈J

∑
k>π j

δj,k(1− y∗j,k) =
∑
j∈J

∑
k≥π j

δj,k xj,k

and the proof is complete.

We are now in a position to prove our main result which is stated as follows.

Theorem 3.2. Let ALG be any online list scheduling algorithm for

1 | Pj ∼ F(µj ) ∈ NBUEOPT |
∑

j

wj Cj .

If Pr[X j,k = 1] ≤ α < 1 holds for all j ≤π k in all ALG lists π , then

R(ALG,NBUEOPT) ≤ 1

1− α .
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Proof. Let π denote the fixed ALG list for expected processing times µ and weights
w. By Lemmas 2.3 and 2.2 we have that for k >π j ,

E

[

j,k

OPT

∣∣∣∣ X j,k = 1

]
= E

[
wk Pj − wj Pk

OPT

∣∣∣∣ wk Pj ≥ wj Pk

]

≤ E
[
wk Pj

OPT

]
(5)

holds for all NBUEOPT processing time distributions. Theorem 3.1 and linearity of
expectation establish

E

[
ALG

OPT

]
= E

[
OPT+∑

j∈J

∑
k≥π j 
j,k X j,k

OPT

]

= 1+
∑
j∈J

∑
k≥π j

E

[

j,k X j,k

OPT

]
.

By conditioning on X j,k = 1, application of (5), and by Pr[X j,k = 1] ≤ α for all j ≤π k
we obtain

E

[
ALG

OPT

]
= 1+

∑
j∈J

∑
k≥π j

Pr[X j,k = 1]E

[

j,k

OPT

∣∣∣∣ X j,k = 1

]

≤ 1+ α
(∑

j∈J

∑
k≥π j

E

[
wk Pj

OPT

])
= 1+ αE

[
ALG

OPT

]
.

Finally, rearranging the inequality and α < 1 completes the proof.

Analysis of the WSEPT Algorithm. Now we consider the popular WSEPT list schedul-
ing algorithm, and calculate the expected competitve ratio for exponential distributed job
processing times, i.e., the adversary commits to exponential distribution. In applications,
processing times are often modelled by exponential distributed random variables. Hence
this special case is rather important.

A list π is a WSEPT list, if scheduling is done according to a non-decreasing
expected processing time and weight ratio, i.e.,

µj

wj
≤ µk

wk
for j ≤π k. (6)

The random variable WSEPT = TWC(π) defines the total weighted completion time for
WSEPT lists π . Notice that WSEPT is an online list scheduling algorithm since its lists
are determined with the knowledge of the weights and expected processing times, rather
than their realisations.
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Corollary 3.3. The WSEPT algorithm for the stochastic scheduling problem 1 | Pj ∼
Exp(µ−1

j ) |
∑

j wj Cj yields

E

[
WSEPT

OPT

]
≤ 2.

Proof. Observe that the function OPT(p) is non-decreasing in p. Hence, by Lemma 2.4,
exponential distributed random variables are NBUEOPT. It is thus sufficient to prove
Pr[X j,k = 1] ≤ 1

2 for j ≤π k in all WSEPT lists π . As wk Pj ∼ Exp((wkµj )
−1) and

wj Pk ∼ Exp((wjµk)
−1) we have

Pr[X j,k = 1] = Pr[
j,k > 0] = Pr[wk Pj > wj Pk]

=
∫ ∞

t=0

e−t/wjµk

wjµk

∫ ∞
s=t

e−s/wkµj

wkµj
ds dt = wkµj

wkµj + wjµk
≤ 1

2

because j ≤π k implies wkµj ≤ wjµk by the WSEPT ordering (6). Application of
Theorem 3.2 completes the proof.

In order to examplify the theoretical result obtained in Corollary 3.3, experiments
were run by simulating exponential distributed processing times. The proof of Corol-
lary 3.3 indicates that maximum values of E[WSEPT/OPT] are to be expected if wkµj =
wjµk holds for all j ≤π k. Hence we have chosen µj = wj = 1 and simulated the
problem

1 | Pj ∼ Exp(1) |
∑

j

Cj .

Experiments were run on the instances

n = 2, 3, 4, 5, 10, 20, 30, 40, 50, 100, 200, 300, 400, 500, 1000,

where for each n the simulation was repeated 1000 times.
Table 1 depicts the results, where Rmin denotes the minimum ratio WSEPT/OPT

measured, Rmax the maximum, and Ravg the average over the number of repetitions,
respectively.

3.2. Scheduling Identical Parallel Machines

Now we generalise our results to online list scheduling on m identical parallel
machines.

Let ALG(�) and OPT(�) denote the objective values achieved by the algorithm ALG
and the offline optimum, respectively, on � identical parallel machines. Moreover, the
completion time vector for a list π on � identical parallel machines is denoted by C (�).

Lemmas 3.4 and 3.5 are due to Eastman et al. [6] and reduce parallel-machine
scheduling to single-machine scheduling. We have included the short proofs for the sake
of completeness. The method has also proved useful in previous work, see, e.g., [10],
[15], and [16].
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Table 1. Experimental results.

n Rmin Ravg Rmax

2 1.0000 1.2131 1.9974
3 1.0000 1.3692 2.8146
4 1.0000 1.4648 3.3045
5 1.0000 1.5390 3.9426

10 1.0336 1.7269 4.2513
20 1.1991 1.8531 3.4000
30 1.2338 1.8978 2.9656
40 1.4090 1.9235 3.3859
50 1.4407 1.9344 3.0831

100 1.5965 1.9606 2.6208
200 1.6982 1.9759 2.4156
300 1.7274 1.9866 2.2881
400 1.7896 1.9908 2.3472
500 1.8147 1.9919 2.2538

1000 1.8721 1.9962 2.1644

Lemma 3.4. Let π be any job list for non-preemptive list scheduling and let P be
processing times, then

C (m)
j ≤ 1

m
C (1)

j +
(

1− 1

m

)
Pj .

Proof. Without loss of generality, π = (1, 2, . . . , n), let j ∈ J and define Jj =
{1, 2, . . . , j}. The jobs in Jj−1 are started before job j , and j starts as soon as a machine
becomes available.

Consider the schedule induced by Jj−1 in which all jobs prior to j are scheduled.
Since the schedule does not involve idle time and j is scheduled on machine i with the
least total processing time so far, j is started prior to the average total processing time
per machine, i.e.,

s(m)j =
∑

k≤π j−1

pkmi,k ≤ 1

m

∑
k≤π j−1

pk = 1

m
s(1)j .

Now

c(m)j = s(m)j + pj ≤ 1

m
s(1)j + pj = 1

m
c(1)j +

(
1− 1

m

)
pj

completes the proof.

Lemma 3.5. For the scheduling problem P | | ∑j wj Cj it holds that

OPT(m) ≥ 1

m
OPT(1).
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Proof. Let π∗ denote the optimum list for the processing times p on m machines
(which need not be the optimum list for one machine). The corresponding completion
time vectors are denoted by c(m) = c(π∗)(m) and c(1) = c(π∗)(1), respectively. Without
loss of generality, the jobs are indexed such that c(m)1 ≤ c(m)2 ≤ . . . ≤ c(m)n holds.
Consider the schedule induced by the subset Jj = {1, 2, . . . , j}. Since j is the job in
Jj to be completed last, the machine i on which it is scheduled is the one with the
maximum total processing time in the schedule. Because machine i has at least average
total processing time, it holds that

c(m)j =
∑

k≤π∗ j

pkmi,k ≥ 1

m

∑
k≤π∗ j

pk = 1

m
c(1)j .

As π∗ is the optimum list for p on m machines, and since this list may be used for
single-machine scheduling, we have

OPT(p)(m) =
∑
j∈J

wj c
(m)
j ≥

1

m

∑
j∈J

wj c
(1)
j ≥

1

m
OPT(p)(1),

which completes the proof.

Theorem 3.6. Let ALG be any online list scheduling algorithm for

P | Pj ∼ Stoch(µj ) |
∑

j

wj Cj ,

then

E

[
ALG(m)

OPT(m)

]
≤ E

[
ALG(1)

OPT(1)

]
+ 1− 1

m
.

Proof. Lemmas 3.4 and 3.5 establish

C (m)
j

OPT(m)
≤ C (1)

j

mOPT(m)
+

(
1− 1

m

)
Pj

OPT(m)
≤ C (1)

j

OPT(1)
+

(
1− 1

m

)
Pj

OPT(m)
.

Thus we have∑
j∈J wj C

(m)
j

OPT(m)
≤

∑
j∈J wj C

(1)
j

OPT(1)
+

(
1− 1

m

) ∑
j∈J wj Pj

OPT(m)

≤
∑

j∈J wj C
(1)
j

OPT(1)
+ 1− 1

m

by OPT(m) ≥∑
j∈J wj Pj . Taking expectations completes the proof.
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Corollary 3.7. Let ALG be any online list scheduling algorithm for

P | Pj ∼ F(µj ) ∈ NBUEOPT |
∑

j

wj Cj .

If Pr[X j,k = 1] ≤ α < 1 holds for all j ≤π k in all ALG lists π , then

R(ALG,NBUEOPT) ≤ 1

1− α + 1− 1

m
.

Corollary 3.8. The WSEPT algorithm for the stochastic scheduling problem P | Pj ∼
Exp(µ−1

j ) |
∑

j wj Cj yields

E

[
WSEPT

OPT

]
≤ 3− 1

m
.
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