
DOI: 10.1007/s00224-006-1337-4

Theory Comput. Systems 41, 3–32 (2007) Theory of
Computing

Systems
© 2007 Springer Science+Business Media, Inc.

A Thread Algebra with Multi-Level Strategic Interleaving

J. A. Bergstra1,2 and C. A. Middelburg1,3

1Programming Research Group, University of Amsterdam,
P.O. Box 41882, 1009 DB Amsterdam, The Netherlands
{J.A.Bergstra,C.A.Middelburg}@uva.nl

2Department of Philosophy, Utrecht University,
P.O. Box 80126, 3508 TC Utrecht, The Netherlands

3Computing Science Department, Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Abstract. In a previous paper we developed an algebraic theory about threads and
a form of concurrency where some deterministic interleaving strategy determines
how threads that exist concurrently are interleaved. The interleaving of different
threads constitutes a multi-thread. Several multi-threads may exist concurrently on
a single host in a network, several host behaviours may exist concurrently in a
single network on the internet, etc. In the current paper we assume that the above-
mentioned kind of interleaving is also present at those other levels. We extend the
theory developed so far with features to cover the multi-level case. We employ
the resulting theory to develop a simplified, formal representation schema of the
design of systems that consist of several multi-threaded programs on various hosts
in different networks and to verify a property of all systems designed according to
that schema.

1. Introduction

A thread is the behaviour of a deterministic sequential program under execution. Multi-
threading refers to the concurrent existence of several threads in a program under exe-
cution. Multi-threading is the dominant form of concurrency provided by recent object-
oriented programming languages such as Java [10] and C# [11]. In the case of multi-
threading, some deterministic interleaving strategy determines how threads that exist
concurrently are interleaved.

4 J. A. Bergstra and C. A. Middelburg

Arbitrary interleaving, on which theories about concurrent processes such as ACP [5]
are based, does not provide an appropriate abstraction when dealing with multi-threading:
it happens that interleaving of certain threads leads to deadlock with a particular deter-
ministic interleaving strategy whereas arbitrary interleaving would not lead to deadlock,
and vice versa. In [7] we introduced a number of plausible deterministic interleaving
strategies for multi-threading. We also proposed to use the phrase strategic interleav-
ing for the more constrained form of interleaving obtained by using such a strategy. In
order to deal with strategic interleaving, we assumed that a collection of threads to be
interleaved takes the form of a sequence, called a thread vector.

Strategic interleaving of a thread vector constitutes a multi-thread. In conventional
operating system jargon, a multi-thread is called a process. Several multi-threads may
exist concurrently on the same machine. Multi-processing refers to the concurrent exis-
tence of several multi-threads on a machine. Such machines may be hosts in a network,
and several host behaviours may exist concurrently in the same network, and so on and
so forth. We assume that strategic interleaving is also present at those other levels.

In the current paper we extend the theory developed so far with features to cover
multi-level strategic interleaving. An axiomatic description of the features concerned,
as well as a structural operational semantics, is provided. There is a dependence on the
interleaving strategy considered. We extend the theory only for the simplest case, to wit
cyclic interleaving. Cyclic interleaving basically operates as follows: at each stage of the
interleaving, the first thread in the thread vector gets a turn to perform a step and then
becomes the last one while all others move one position. Other plausible interleaving
strategies are treated in [7]. They can also be adapted to the setting of multi-level strategic
interleaving.

Threads proceed by performing steps, called basic actions in what follows, in a
sequential fashion. Each basic action performed by a thread is taken as a command to be
processed by a service offered by the execution environment of the thread. The processing
of a command may involve a change of state of the service concerned. At completion
of the processing of the command, the service concerned produces a reply value which
is returned to the thread. In this paper we introduce thread-service composition, which
allows for certain basic actions performed by a thread to be processed by a certain service.
This is needed if certain basic actions are performed by the thread only for the sake of
getting reply values returned by a certain service and that way having itself affected by
that service. In such cases the service concerned has an auxiliary nature in the sense that
it forms part of the system under consideration.

We demonstrate that the theory developed in this paper may be of use by employing
it to develop a simplified, formal representation schema of the design of systems that
consist of several multi-threaded programs on various hosts in different networks and to
verify a property of all systems designed according to that schema. We propose to use
the term formal design prototype for such a schema. The verified property is laid down
in a simulation theorem, which states that, if a finite thread that forms part of a system
designed according to the presented schema does not make use of the services that form
part of the system, then that thread is simulated by the system. In other words, the thread
is not really affected by the system.

Setting up a framework in which formal design prototypes for systems that consist of
several multi-threaded programs on various hosts in different networks can be developed

A Thread Algebra with Multi-Level Strategic Interleaving 5

and general properties of systems designed according to those formal design prototypes
can be verified is one of the objectives with which we developed the theory presented in
this paper.

The main assumption made in the theory presented in this paper is that strategic
interleaving is present at all levels of such systems. This is a drastic simplification,
as a result of which intuition may break down. We believe however that some such
simplification is needed to obtain a manageable theory about the behaviour of such
systems—and that the resulting theory will sometimes be adequate and sometimes be
inadequate.

Moreover, cyclic interleaving is a simplification of the interleaving strategies actually
used for multi-threading. Because of the complexity of those strategies, we consider a
simplification like this one desirable to start with. It leads to an approximation which is
sufficient in the case where the property laid down in the simulation theorem mentioned
above is verified. The essential point turns out to be that the interleaving strategy used at
each level is fair, i.e. that there will always come a next turn for all active threads, multi-
threads, etc. The simulation theorem goes through for all fair interleaving strategies: the
proof only depends on the use of multi-level cyclic interleaving in the part where in point
of fact its fairness is shown.

Thread algebra with multi-level strategic interleaving is a design on top of BPPA
(Basic Polarized Process Algebra) [6], [3]. BPPA is far less general than ACP-style
process algebras and its design focuses on the semantics of deterministic sequential
programs. The semantics of a deterministic sequential program is supposed to be a
polarized process. The idea is that a polarized process may occur in two roles: the role
of a client and the role of a server. In the former role, basic actions performed by the
polarized process are requests upon which a reply is expected. In the latter role, basic
actions performed by the polarized process are offers to serve a request and to return a
reply. The distinction between these roles is relevant in case BPPA is extended with a
mechanism for client–server interaction, as in [4]. However, BPPA deals with polarized
processes that occur in the role of a client only. In thread algebra, threads are regarded
as polarized processes that occur in the role of a client only.

The structure of this paper is as follows. After a review of BPPA (Section 2), we
extend it to a basic thread algebra with cyclic interleaving, but without any feature for
multi-level strategic interleaving (Section 3). Next, we extend this basic thread algebra
with thread-service composition (Section 4) and other features for multi-level strategic
interleaving (Section 5). Following this, we discuss how delayed processing and ex-
ception handling can be expressed (Section 6) and give a formal representation schema
of the design of systems that consist of several multi-threaded programs on various
hosts in different networks (Section 7). Finally, we make some concluding remarks
(Section 8).

2. Basic Polarized Process Algebra

In this section we review BPPA (Basic Polarized Process Algebra), a form of process
algebra which is tailored to the description of the behaviour of deterministic sequential
programs under execution.

6 J. A. Bergstra and C. A. Middelburg

Table 1. Axiom of BPPA.

x � tau � y = x � tau � x T1

In BPPA it is assumed that there is a fixed but arbitrary finite set of basic actions
A with tau �∈ A. We write Atau for A ∪ {tau}. BPPA has the following constants and
operators:

– the deadlock constant D;
– the termination constant S;
– for each a ∈ Atau, a binary postconditional composition operator � a � .

We use infix notation for postconditional composition. We introduce action prefixing as
an abbreviation: a ◦ p, where p is a term of BPPA, abbreviates p � a � p.

The intuition is that each basic action performed by a polarized process is taken as
a command to be processed by the execution environment of the polarized process. The
processing of a command may involve a change of state of the execution environment.
At completion of the processing of the command, the execution environment produces a
reply value. This reply is either T or F and is returned to the polarized process concerned.
Let p and q be closed terms of BPPA. Then p� a �q will proceed as p if the processing
of a leads to the reply T (called a positive reply), and it will proceed as q if the processing
of a leads to the reply F (called a negative reply). If the reply is used to indicate whether
the processing was successful, a useful convention is to indicate successful processing
by the reply T and unsuccessful processing by the reply F. The action tau plays a special
role. Its execution will never change any state and always produces a positive reply.

BPPA has only one axiom. This axiom is given in Table 1. Using the abbreviation
introduced above, axiom T1 can be written as follows: x � tau � y = tau ◦ x .

A system of recursion equations over BPPA is a set of equations E = {X = tX | X ∈
V }where V is a set of variables and each tX is a term of BPPA that only contains variables
from V . We write V(E) for the set of all variables that occur on the left-hand side of an
equation in E . Let t be a term of BPPA containing a variable X . Then an occurrence of
X in t is guarded if t has a subterm of the form t ′ � a � t ′′ containing this occurrence
of X . A system of recursion equations E is guarded if all occurrences of variables in
the right-hand sides of its equations are guarded or it can be rewritten to such a system
of recursion equations using the equations of E . Following [3], a CPO structure can be
imposed on the domain of the projective limit model of BPPA. Then guarded recursion
equations represent continuous operators having least fixed points. These matters will
not be repeated here, taking for granted that guarded systems of recursion equations have
unique solutions.

We extend BPPA with guarded recursion by adding constants for solutions of
guarded systems of recursion equations and axioms concerning these additional con-
stants. For each guarded system of recursion equations E and each X ∈ V(E), we add
a constant standing for the unique solution of E for X to the constants of BPPA. The
constant standing for the unique solution of E for X is denoted by 〈X |E〉. Moreover, we
use the following notation. Let t be a term of BPPA and let E be a guarded system of
recursion equations. Then we write 〈t |E〉 for t with, for all X ∈ V(E), all occurrences of

A Thread Algebra with Multi-Level Strategic Interleaving 7

Table 2. Axioms for guarded recursion.

〈X |E〉 = 〈tX |E〉 if X = tX ∈ E RDP
E ⇒ X = 〈X |E〉 if X ∈ V(E) RSP

X in t replaced by 〈X |E〉. We add the axioms for guarded recursion given in Table 2 to
the axioms of BPPA. In this table, X , tX and E stand for an arbitrary variable, an arbitrary
term of BPPA and an arbitrary guarded system of recursion equations, respectively. Side
conditions are added to restrict the variables, terms and guarded systems of recursion
equations for which X , tX and E stand. The additional axioms for guarded recursion
are known as the recursive definition principle (RDP) and the recursive specification
principle (RSP). The equations 〈X |E〉 = 〈tX |E〉 for a fixed E express that the constants
〈X |E〉 make up a solution of E . The conditional equations E ⇒ X = 〈X |E〉 express
that this solution is the only one.

Remark 1. Let E and E ′ be two guarded systems of recursion equations over BPPA
with V(E) = V(E ′), where E ′ is E rewritten using the equations of E . Then, by RDP,
〈X |E〉 = 〈X |E ′〉 for all X ∈ V(E). This can be regarded as a justification of the definition
of a guarded system of recursion equations. Moreover, it shows that no generality is lost
if we assume in proofs that all occurrences of variables in the right-hand sides of the
equations in a guarded system of recursion equations are guarded.

Henceforth, we will write BPPA(A) for BPPA with the set of basic actions A fixed
to be the set A, and BPPA(A) + REC for BPPA(A) extended with the constants for
solutions of guarded systems of recursion equations over BPPA(A) and the axioms RDP
and RSP from Table 2.

The projective limit characterization of process equivalence on polarized processes
is based on the notion of a finite approximation of depth n. When for all n these approx-
imations are identical for two given polarized processes, both processes are considered
identical. This is expressed by the infinitary conditional equation AIP (Approximation
Induction Principle) given in Table 3. Following [6], which in fact uses the notation of [5],
approximation of depth n is phrased in terms of a unary projection operator πn(). The
projection operators are defined inductively by means of axioms P0–P3 given in Table 3.
In this table and all subsequent tables with axioms in which a occurs, a stands for an
arbitrary action from Atau. It happens that RSP follows from AIP.

Theorem 1 (RSP follows from AIP). Let E be a guarded system of recursion equa-
tions, and let X ∈ V(E). Then it follows from AIP that E ⇒ X = 〈X |E〉.

Table 3. Approximation induction principle.

π0(x) = D P0
πn+1(S) = S P1
πn+1(D) = D P2
πn+1(x � a � y) = πn(x)� a � πn(y) P3
(∧n≥0πn(x) = πn(y)) ⇒ x = y AIP

8 J. A. Bergstra and C. A. Middelburg

Proof. Without loss of generality, we may assume that all occurrences of variables in
the right-hand sides of the equations in E are guarded (see Remark 1). After replacing
n times (n ≥ 0) all occurrences of all X ∈ V(E) in the right-hand sides of the equations
in E by the right-hand side of the equation for X in E , all occurrences of variables in the
right-hand sides of the equations are at least at depth n + 1. We write En for the guarded
system of recursion equations obtained in this way, and we write tn

X for the right-hand
side of the equation for X in En . Because all occurrences of variables in tn

X are at least at
depth n + 1, πn(tn

X) is a closed term. Now assume E and take an arbitrary n ≥ 0. Then
En and in particular X = tn

X . From this, it follows immediately that πn(X) = πn(tn
X).

Hence, E ⇒ πn(X) = πn(tn
X). From this, and the fact that πn(tn

X) equals a closed term,
it follows by RDP that also πn(〈X |E〉) = πn(tn

X). Hence, πn(X) = πn(〈X |E〉). From
this, it follows by AIP that X = 〈X |E〉.

As mentioned above, the behaviour of a polarized process depends upon its execu-
tion environment. Each basic action performed by the polarized process is taken as a
command to be processed by the execution environment. At any stage, the commands
that the execution environment can accept depend only on its history, i.e. the sequence of
commands processed before and the sequence of replies produced for those commands.
When the execution environment accepts a command, it will produce a positive reply
or a negative reply. Whether the reply is positive or negative usually depends on the
execution history. However, it may also depend on external conditions.

In the structural operational semantics, we represent an execution environment by
a function ρ: (A× {T, F})∗ → P(A × {T, F}) that satisfies the following condition:
(a, b) �∈ ρ(α)⇒ ρ(α� 〈(a, b)〉) = ∅ for all a ∈ A, b ∈ {T, F} and α ∈ (A× {T, F})∗.1

We write E for the set of all those functions. Given an execution environment ρ ∈ E
and a basic action a ∈ A, the derived execution environment of ρ after processing a
with a positive reply, written (∂+/∂a)ρ, is defined by (∂+/∂a)ρ(α) = ρ(〈(a, T)〉� α);
and likewise the derived execution environment of ρ after processing a with a negative
reply, written (∂−/∂a)ρ, is defined by (∂−/∂a)ρ(α) = ρ(〈(a, F)〉� α).

The following transition relations on closed terms of BPPA are used in the structural
operational semantics of BPPA:

– a binary relation 〈 , ρ〉 a−→ 〈 , ρ ′〉 for each a ∈ Atau and ρ, ρ ′ ∈ E ;
– a unary relation ↓;
– a unary relation ↑;
– a unary relation �.

The four kinds of transition relations are called the action step, termination, deadlock
and termination or deadlock relations, respectively. They can be explained as follows:

– 〈p, ρ〉 a−→ 〈p′, ρ ′〉: in execution environment ρ, process p can perform action a
and after that proceed as process p′ in execution environment ρ ′;

– p ↓: process p cannot but terminate successfully;
– p ↑: process p cannot but become inactive;
– p �: process p cannot but terminate successfully or become inactive.

1 We write 〈 〉 for the empty sequence, 〈d〉 for the sequence having d as sole element, and α� β for the
concatenation of sequences α and β. We assume that the identities α� 〈 〉 = 〈 〉� α = α hold.

A Thread Algebra with Multi-Level Strategic Interleaving 9

Table 4. Transition rules of BPPA.

S↓ D↑ 〈x � tau � y, ρ〉 tau−→ 〈x, ρ〉

〈x � a � y, ρ〉 a−→ 〈x, (∂+/∂a)ρ〉
(a, T) ∈ ρ(〈 〉)

〈x � a � y, ρ〉 a−→ 〈y, (∂−/∂a)ρ〉
(a, F) ∈ ρ(〈 〉)

x ↓
x �

x ↑
x �

The termination or deadlock relation is an auxiliary relation needed when we extend
BPPA in Section 3.

The structural operational semantics of BPPA is described by the transition rules
given in Table 4. In this table and all subsequent tables with transition rules in which a
occurs, a stands for an arbitrary action from Atau. The transition rules for the constants
for solutions of guarded systems of recursion equations over BPPA are given in Table 5.
In this table, X , tX and E stand for an arbitrary variable, an arbitrary term of BPPA and an
arbitrary guarded system of recursion equations over BPPA, respectively. The transition
rules for projection are given in Table 6.

Bisimulation equivalence is defined as follows. A bisimulation is a symmetric binary
relation B on closed terms of BPPA such that for all closed terms p and q:

– if B(p, q) and 〈p, ρ〉 a−→ 〈p′, ρ ′〉, then there is a q ′ such that 〈q, ρ〉 a−→ 〈q ′, ρ ′〉
and B(p′, q ′);

– if B(p, q) and p ↓, then q ↓;
– if B(p, q) and p ↑, then q ↑.

Two closed terms p and q are bisimulation equivalent, written p ↔ q, if there exists a
bisimulation B such that B(p, q).

Bisimulation equivalence is a congruence with respect to the postconditional com-
position operators and the projection operators. This follows immediately from the fact
that the transition rules for these operators are in the path format (see e.g. [2]). The
axioms given in Tables 1–3 are sound with respect to bisimulation equivalence.

3. A Basic Thread Algebra with Foci and Methods

In this section we introduce a thread algebra that deals with single-level strategic in-
terleaving. Features for multi-level strategic interleaving will be added in subsequent
sections. The thread algebra introduced in this section is an extension of BPPA. In [6]
it has been outlined how and why polarized processes are a natural candidate for the
specification of the semantics of deterministic sequential programs. Assuming that a
thread is a process representing a deterministic sequential program under execution, it
is reasonable to view all polarized processes as threads.

Table 5. Transition rules for guarded recursion.

〈〈t |E〉, ρ〉 a−→ 〈x ′, ρ′〉
〈〈X |E〉, ρ〉 a−→ 〈x ′, ρ′〉

X = t ∈ E
〈t |E〉 ↓
〈X |E〉 ↓ X = t ∈ E

〈t |E〉 ↑
〈X |E〉 ↑ X = t ∈ E

10 J. A. Bergstra and C. A. Middelburg

Table 6. Transition rules for projection.

〈x, ρ〉 a−→ 〈x ′, ρ′〉
〈πn+1(x), ρ〉 a−→ 〈πn(x ′), ρ′〉

x ↓
πn+1(x)↓

x ↑
πn+1(x)↑ π0(x)↑

In order to deal with strategic interleaving, it is assumed that a collection of threads to
be interleaved takes the form of a sequence, called a thread vector. Strategic interleaving
operators turn a thread vector of arbitrary length into a single thread. This single thread
obtained via a strategic interleaving operator is also called a multi-thread. Formally,
however both threads and multi-threads are polarized processes.

In this paper we only cover the simplest interleaving strategy, namely cyclic inter-
leaving. Cyclic interleaving basically operates as follows: at each stage of the interleav-
ing, the first thread in the thread vector gets a turn to perform a basic action and then the
thread vector undergoes cyclic permutation. We mean by cyclic permutation of a thread
vector that the first thread in the thread vector becomes the last one and all others move
one position to the left. If one thread in the thread vector deadlocks, the whole does not
deadlock till all others have terminated or deadlocked. An important property of cyclic
interleaving is that it is fair, i.e. there will always come a next turn for all active threads.

Other plausible interleaving strategies are treated in [7]. They can also be adapted
to the features for multi-level level strategic interleaving that will be introduced in the
current paper. The strategic interleaving operator for cyclic interleaving is denoted by
‖(). In [7] it was denoted by ‖csi() to distinguish it from other strategic interleaving
operators.

It is assumed that there is a fixed but arbitrary finite set of foci F and a fixed
but arbitrary finite set of methods M. For the set of basic actions A, we take the set
FM = { f.m | f ∈ F,m ∈ M}. Each focus plays the role of a name of a service
provided by the execution environment that can be requested to process a command.
Each method plays the role of a command proper. Performing a basic action f.m is taken
as making a request to the service named f to process the command m.

The axioms for cyclic interleaving are given in Table 7. In this table and all subse-
quent tables with axioms or transition rules in which f and m occur, f and m stand for
an arbitrary focus from F and an arbitrary method fromM, respectively. In CSI3 the
auxiliary deadlock at termination operator SD() is used. This operator turns termination
into deadlock. Its axioms appear in Table 8.

Henceforth, we will write TAfm for BPPA(FM) extended with the strategic inter-
leaving operator for cyclic interleaving, the deadlock at termination operator, and the
axioms from Tables 7 and 8.

Table 7. Axioms for cyclic interleaving.

‖(〈 〉) = S CSI1
‖(〈S〉� α) = ‖(α) CSI2
‖(〈D〉� α) = SD(‖(α)) CSI3
‖(〈tau ◦ x〉� α) = tau ◦ ‖(α� 〈x〉) CSI4
‖(〈x � f.m � y〉� α) = ‖(α� 〈x〉)� f.m � ‖(α� 〈y〉) CSI5

A Thread Algebra with Multi-Level Strategic Interleaving 11

Table 8. Axioms for deadlock at termination.

SD(S) = D S2D1
SD(D) = D S2D2
SD(tau ◦ x) = tau ◦ SD(x) S2D3
SD(x � f.m � y) = SD(x)� f.m � SD(y) S2D4

Example 1. The following equation is easily derivable from the axioms of TAfm:

‖(〈)〉v(f ′
1.m

′
1 ◦ S) f1.m1(f ′′

1 .m
′′
1 ◦ S)

� 〈(f ′
2.m

′
2 ◦ S)� f2.m2 � (f ′′

2 .m
′′
2 ◦ S)〉

= ((f ′
1.m

′
1 ◦ f ′

2.m
′
2 ◦ S)� f2.m2 � (f ′

1.m
′
1 ◦ f ′′

2 .m
′′
2 ◦ S))

� f1.m1 � ((f ′′
1 .m

′′
1 ◦ f ′

2.m
′
2 ◦ S)� f2.m2 � (f ′′

1 .m
′′
1 ◦ f ′′

2 .m
′′
2 ◦ S)).

This equation shows clearly that the two threads (f ′
1.m

′
1 ◦ S) � f1.m1 � (f ′′

1 .m
′′
1 ◦ S)

and (f ′2.m
′
2 ◦ S) � f2.m2 � (f ′′

2 .m
′′
2 ◦ S) are interleaved in a cyclic manner: first the

first thread performs f1.m1, next the second thread performs f2.m2, next the first thread
performs f ′

1.m
′
1 or f ′′

1 .m
′′
1 depending upon the reply on f1.m1, next the second thread

performs f ′
2.m

′
2 or f ′′

2 .m
′′
2 depending upon the reply on f2.m2.

We can prove that each closed term of TAfm can be reduced to a closed term of
BPPA(FM).

Theorem 2 (Elimination). For all closed terms p of TAfm, there exists a closed term q
of BPPA(FM) such that p = q is derivable from the axioms of TAfm.

Proof. We prove this by induction on the structure of p:

– p ≡ S: S is a closed term of BPPA(FM).
– p ≡ D: D is a closed term of BPPA(FM).
– p ≡ tau◦ p′: Let q ′ be a closed term of BPPA(FM) such that p′ = q ′. Such a term

exists by the induction hypothesis. Then tau ◦ q ′ is a closed term of BPPA(FM)
and tau ◦ p′ = tau ◦ q ′.

– p ≡ p′� f.m � p′′: Let q ′ and q ′′ be closed terms of BPPA(FM) such that p′ =
q ′ and p′′ = q ′′. Such terms exist by the induction hypothesis. Then q ′� f.m �q ′′

is a closed term of BPPA(FM) and p′ � f.m � p′′ = q ′ � f.m � q ′′.
– p ≡ SD(p′): By the induction hypothesis, there exists a closed term q ′ of

BPPA(FM) such that p′ = q ′. So we are done if we have proved the follow-
ing lemma:

Let q ′ be a closed term of BPPA(FM). Then there exists a closed term r ′ of
BPPA(FM) such that SD(q ′) = r ′ is derivable from the axioms of TAfm.

We prove this lemma by induction on the structure of q ′:
– q ′ ≡ S: SD(S) = D by S2D1 and D is a closed term of BPPA(FM).
– q ′ ≡ D: SD(D) = D by S2D2 and D is a closed term of BPPA(FM).

12 J. A. Bergstra and C. A. Middelburg

– q ′ ≡ tau ◦ q ′′: SD(tau ◦ q ′′) = tau ◦ SD(q ′′) by S2D3. Let r ′′ be a closed term
of BPPA(FM) such that SD(q ′′) = r ′′. Such a term exists by the induction
hypothesis. Then tau ◦ r ′′ is a closed term of BPPA(FM) and SD(tau ◦ q ′′) =
tau ◦ r ′′.

– q ′ ≡ q ′′ � f.m � q ′′′: SD(q ′′ � f.m � q ′′′) = SD(q ′′)� f.m � SD(q ′′′) by
S2D4. Let r ′′ and r ′′′ be closed terms of BPPA(FM) such that SD(q ′′) = r ′′ and
SD(q ′′′) = r ′′′. Such terms exist by the induction hypothesis. Then r ′′� f.m �
r ′′′ is a closed term of BPPA(FM) and SD(q ′′� f.m �q ′′′) = r ′′� f.m �r ′′′.

– p ≡ ‖(α): Ifα = 〈 〉, then ‖(α) = S by CSI1 and S is a closed term of BPPA(FM).
Ifα = ‖(〈p′

1〉�· · ·�〈p′
n〉) for some n > 0, then, by the induction hypothesis, there

exist closed terms q ′
1, . . . , q ′

n of BPPA(FM) such that p′
1 = q ′

1, . . . , p′
n = q ′

n . So
we are done if we have proved the following lemma:

Let q ′
1, . . . , q ′

n (n > 0) be closed terms of BPPA(FM). Then there exists a closed
term r ′ of BPPA(FM) such that ‖(〈q ′

1〉� · · ·� 〈q ′
n〉) = r ′ is derivable from the

axioms of TAfm.

We prove this lemma by induction on the sum of the depths plus one of q ′
1, . . . , q ′

n
and case distinction on the structure of q ′

1:
– q ′

1 ≡ S: ‖(〈S〉� 〈q ′
2〉� · · ·� 〈q ′

n〉) = ‖(〈q ′
2〉� · · ·� 〈q ′

n〉) by CSI2. Let r ′ be
a closed term of BPPA(FM) such that ‖(〈q ′

2〉� · · ·� 〈q ′
n〉) = r ′. Such a term

exists by the induction hypothesis. Moreover, ‖(〈S〉� 〈q ′
2〉� · · ·� 〈q ′

n〉) = r ′.
– q ′

1 ≡ D: ‖(〈D〉� 〈q ′
2〉� · · ·� 〈q ′

n〉) = SD(‖(〈q ′
2〉� · · ·� 〈q ′

n〉)) by CSI3. Let
r ′ be a closed term of BPPA(FM) such that ‖(〈q ′

2〉� · · ·� 〈q ′
n〉) = r ′. Such a

term exists by the induction hypothesis. Let s ′ be a closed term of BPPA(FM)
such that SD(r ′) = s ′. Such a term exists by the lemma proved above for the
case p ≡ SD(p′). Moreover, ‖(〈D〉� 〈q ′

2〉� · · ·� 〈q ′
n〉) = s ′.

– q ′
1 ≡ tau◦q ′′

1 : ‖(〈tau◦q ′′
1 〉�〈q ′

2〉�· · ·�〈q ′
n〉) = tau◦‖(〈q ′

2〉�· · ·�〈q ′
n〉�〈q ′′

1 〉)
by CSI4. Let r ′ be a closed term of BPPA(FM) such that ‖(〈q ′

2〉� · · ·� 〈q ′
n〉�

〈q ′′
1 〉) = r ′. Such a term exists by the induction hypothesis. Then tau ◦ r ′ is a

closed term of BPPA(FM) and ‖(〈tau ◦ q ′′
1 〉� 〈q ′

2〉� · · ·� 〈q ′
n〉) = tau ◦ r ′.

– q ′
1 ≡ q ′′

1 � f.m � q ′′′
1 : ‖(〈q ′′

1 � f.m � q ′′′
1 〉� 〈q ′

2〉� · · ·� 〈q ′
n〉) = ‖(〈q ′

2〉�
· · ·� 〈q ′

n〉� 〈q ′′
1 〉)� f.m �‖(〈q ′

2〉� · · ·� 〈q ′
n〉� 〈q ′′′

1 〉) by CSI5. Let r ′ and r ′′

be closed terms of BPPA(FM) such that ‖(〈q ′
2〉� · · ·� 〈q ′

n〉� 〈q ′′
1 〉) = r ′ and

‖(〈q ′
2〉� · · ·�〈q ′

n〉�〈q ′′′
1 〉) = r ′′. Such terms exist by the induction hypothesis.

Then r ′� f.m �r ′′ is a closed term of BPPA(FM) and ‖(〈q ′′
1 � f.m �q ′′′

1 〉�
〈q ′

2〉� · · ·� 〈q ′
n〉) = r ′ � f.m � r ′′.

The following proposition, concerning the cyclic interleaving of a thread vector of
length 1, is easily proved using Theorem 2.

Proposition 1. For all closed terms p of TAfm, the equation ‖(〈p〉) = p is derivable
from the axioms of TAfm.

Proof. By Theorem 2 it is sufficient to prove that this equation is derivable for all closed

A Thread Algebra with Multi-Level Strategic Interleaving 13

terms p of BPPA(FM). We prove this by induction on the structure of p:

– p ≡ S: ‖(〈S〉) = S by CSI2 and CSI1.
– p ≡ D: ‖(〈D〉) = D by CSI3, CSI1 and S2D1.
– p ≡ tau ◦ p′: ‖(〈tau ◦ p′〉) = tau ◦ p′ by CSI4 and the induction hypothesis.
– p ≡ p′ � f.m � p′′: ‖(〈p′ � f.m � p′′〉) = p′ � f.m � p′′ by CSI5 and the

induction hypothesis.

In the proof of each case, in addition to the above-mentioned axioms, the fact that
α = α � 〈 〉 = 〈 〉� α is needed.

The equation ‖(〈p〉) = p from Proposition 1 expresses the obvious fact that in the cyclic
interleaving of a thread vector of length 1 no proper interleaving is involved.

The following are useful properties of the deadlock at termination operator which
are proved using Theorem 2 as well.

Proposition 2. For all closed terms p1, . . . , pn of TAfm, the following equations are
derivable from the axioms of TAfm:

SD(SD(p1)) = SD(p1), (1)

SD(‖(〈p1〉� · · ·� 〈pn〉)) = ‖(〈SD(p1)〉� · · ·� 〈SD(pn)〉). (2)

Proof. By Theorem 2, it is sufficient to prove that these equations are derivable for all
closed terms p1, . . . , pn of BPPA(FM). We prove that (1) is derivable by induction on
the structure of p1:

– p1 ≡ S: SD(SD(S)) = D by S2D1 and S2D2, and D = SD(S) by S2D1.
– p1 ≡ D: SD(SD(D)) = SD(D) by S2D2.
– p1 ≡ tau ◦ p′

1: SD(SD(tau ◦ p′
1)) = tau ◦ SD(SD(p′

1)) by S2D3 twice, tau ◦
SD(SD(p′

1)) = tau ◦ SD(p′
1) by the induction hypothesis, and tau ◦ SD(p′

1) =
SD(tau ◦ p′

1) by S2D3.
– p1 ≡ p′

1 � f.m � p′′
1 : SD(SD(p′

1 � f.m � p′′
1)) = SD(SD(p′

1)) � f.m �
SD(SD(p′′

1)) by S2D4 twice, SD(SD(p′
1)) � f.m � SD(SD(p′′

1)) =
SD(p′

1) � f.m � SD(p′′
1) by the induction hypothesis, and SD(p′

1) � f.m �
SD(p′′

1) = SD(p′
1 � f.m � p′′

1) by S2D4.

We prove that (2) is derivable by induction on the sum of the depths plus one of p1, . . . , pn

and case distinction on the structure of p1:

– p1 ≡ S: SD(‖(〈S〉�〈p2〉� · · ·�〈pn〉)) = SD(SD(‖(〈p2〉� · · ·�〈pn〉))) by CSI2
and (1), SD(SD(‖(〈p2〉� · · ·� 〈pn〉))) = SD(‖(〈SD(p2)〉� · · ·� 〈SD(pn)〉)) by
the induction hypothesis, and SD(‖(〈SD(p2)〉� · · ·� 〈SD(pn)〉)) = ‖(〈SD(S)〉�
〈SD(p2)〉� · · ·� 〈SD(pn)〉) by CSI3 and S2D1.

– p1 ≡ D: SD(‖(〈D〉 � 〈p2〉 � · · · � 〈pn〉)) = SD(SD(‖(〈p2〉 � · · · � 〈pn〉))) by
CSI3, SD(SD(‖(〈p2〉 � · · · � 〈pn〉))) = SD(‖(〈SD(p2)〉 � · · · � 〈SD(pn)〉)) by
the induction hypothesis, and SD(‖(〈SD(p2)〉� · · ·� 〈SD(pn)〉)) = ‖(〈SD(D)〉�
〈SD(p2)〉� · · ·� 〈SD(pn)〉) by CSI3 and S2D2.

14 J. A. Bergstra and C. A. Middelburg

– p1 ≡ tau ◦ p′
1: SD(‖(〈tau ◦ p′

1〉 � 〈p2〉 � · · · � 〈pn〉)) = tau ◦ SD(‖(〈p2〉 �
· · ·� 〈pn〉� 〈p′

1〉)) by CSI4 and S2D3, tau ◦SD(‖(〈p2〉� · · ·� 〈pn〉� 〈p′
1〉)) =

tau ◦ ‖(〈SD(p2)〉� · · ·� 〈SD(pn)〉� 〈SD(p′
1)〉) by the induction hypothesis, and

tau◦‖(〈SD(p2)〉� · · ·� 〈SD(pn)〉� 〈SD(p′
1)〉) = ‖(〈SD(tau◦ p′

1)〉� 〈SD(p2)〉�
· · ·� 〈SD(pn)〉) by CSI4 and S2D3.

– p1 ≡ p′
1 � f.m � p′′

1 : SD(‖(〈p′
1 � f.m � p′′

1〉 � 〈p2〉 � · · · � 〈pn〉)) =
SD(‖(〈p2〉 � · · · � 〈pn〉 � 〈p′

1〉)) � f.m � SD(‖(〈p2〉 � · · · � 〈pn〉 � 〈p′′
1〉))

by CSI5 and S2D4, SD(‖(〈p2〉 � · · · � 〈pn〉 � 〈p′
1〉)) � f.m � SD(‖(〈p2〉 �

· · · � 〈pn〉 � 〈p′′
1〉)) = ‖(〈SD(p2)〉 � · · · � 〈SD(pn)〉 � 〈SD(p′

1)〉) � f.m �
‖(〈SD(p2)〉 � · · · � 〈SD(pn)〉 � 〈SD(p′′

1)〉) by the induction hypothesis, and
‖(〈SD(p2)〉�· · ·�〈SD(pn)〉�〈SD(p′

1)〉)� f.m �‖(〈SD(p2)〉�· · ·�〈SD(pn)〉�
〈SD(p′′

1)〉) = ‖(〈SD(p′
1 � f.m � p′′

1)〉 � 〈SD(p2)〉 � · · · � 〈SD(pn)〉) by CSI5
and S2D4.

We extend TAfm with guarded recursion like in the case of BPPA. It involves
systems of recursion equations over TAfm, which require an adaptation of the no-
tion of guardedness. A system of recursion equations over TAfm is a set of equations
E = {X = tX | X ∈ V } where V is a set of variables and each tX is a term of TAfm that
only contains variables from V . Let t be a term of TAfm containing a variable X . Then
an occurrence of X in t is guarded if t has a subterm of the form t ′� a � t ′′ containing
this occurrence of X . A system of recursion equations E is guarded if all occurrences
of variables in the right-hand sides of its equations are guarded or it can be rewritten to
such a system of recursion equations using the axioms of TAfm and the equations of E .

Henceforth, we will write TAfm + REC for TAfm extended with the constants for
solutions of guarded systems of recursion equations over TAfm and the axioms RDP and
RSP from Table 2.

Theorem 2 states that the strategic interleaving operator for cyclic interleaving and
the deadlock at termination operator can be eliminated from closed terms of TAfm. It
does not state anything concerning closed terms of TAfm + REC. The following two
propositions concern the case where the operand of the strategic interleaving operator
for cyclic interleaving is a sequence of constants for solutions of guarded systems of
recursion equations over BPPA(FM) and the case where the operand of the deadlock at
termination operator is such a constant.

Proposition 3. Let E ′ and E ′′ be guarded systems of recursion equations over
BPPA(FM), let X ∈ V(E ′) and let Y ∈ V(E ′′). Then there exists a guarded sys-
tem of recursion equations E over BPPA(FM) and a variable Z ∈ V(E) such that
‖(〈〈X |E ′〉〉� 〈〈Y |E ′′〉〉) = 〈Z |E〉 is derivable from the axioms of TAfm + REC.

Proof. Without loss of generality, we may assume that all occurrences of variables in
the right-hand sides of the equations in E ′ and E ′′ are guarded (see Remark 1). Without
loss of generality, we may also assume that V(E ′) and V(E ′′) are disjoint sets. We take
an injective function Z that maps each pair of variables in (V(E ′)×V(E ′′))∪ (V(E ′′)×
V(E ′)) to a variable not in V(E ′) ∪ V(E ′′), and define, guided by axioms CSI2–CSI5,

A Thread Algebra with Multi-Level Strategic Interleaving 15

the following guarded system of recursion equations:

E = {Z(X ′, Y ′) = Y ′ | X ′ = S ∈ E ′ ∧ Y ′ ∈ V(E ′′)}
∪ {Z(X ′, Y ′) = SD(Y

′) | X ′ = D ∈ E ′ ∧ Y ′ ∈ V(E ′′)}
∪ {Z(X ′, Y ′) = tau ◦ Z(Y ′, X ′′) |

X ′ = tau ◦ X ′′ ∈ E ′ ∧ Y ′ ∈ V(E ′′)}
∪ {Z(X ′, Y ′) = Z(Y ′, X ′′)� f.m � Z(Y ′, X ′′′) |

X ′ = X ′′ � f.m � X ′′′ ∈ E ′ ∧ Y ′ ∈ V(E ′′)}
∪ {Z(Y ′, X ′) = X ′ | Y ′ = S ∈ E ′′ ∧ X ′ ∈ V(E ′)}
∪ {Z(Y ′, X ′) = SD(X

′) | Y ′ = D ∈ E ′′ ∧ X ′ ∈ V(E ′)}
∪ {Z(Y ′, X ′) = tau ◦ Z(X ′, Y ′′) |

Y ′ = tau ◦ Y ′′ ∈ E ′′ ∧ X ′ ∈ V(E ′)}
∪ {Z(Y ′, X ′) = Z(X ′, Y ′′)� f.m � Z(X ′, Y ′′′) |

Y ′ = Y ′′ � f.m � Y ′′′ ∈ E ′′ ∧ X ′ ∈ V(E ′)}
∪ E ′ ∪ E ′′.

If we replace in E , for all X ′ ∈ V(E ′) and all Y ′ ∈ V(E ′′), all occurrences of Z(X ′, Y ′)
by ‖(〈〈X ′|E ′〉〉� 〈〈Y ′|E ′′〉〉), all occurrences of Z(Y ′, X ′) by ‖(〈〈Y ′|E ′′〉〉� 〈〈X ′|E ′〉〉),
all occurrences of X ′ by ‖(〈〈X ′|E ′〉〉) and all occurrences of Y ′ by ‖(〈〈Y ′|E ′′〉〉), then
each of the resulting equations is derivable by first applying RDP and then applying one
of CSI2–CSI5. Hence, ‖(〈〈X |E ′〉〉 � 〈〈Y |E ′′〉〉) is a solution of E for Z(X, Y). From
this, it follows by RSP that ‖(〈〈X |E ′〉〉� 〈〈Y |E ′′〉〉) = 〈Z(X, Y)|E〉.

Proposition 4. Let E ′ be a guarded system of recursion equations over BPPA(FM),
and let X ∈ V(E ′). Then there exists a guarded system of recursion equations E over
BPPA(FM) and a variable Y ∈ V(E) such that SD(〈X |E ′〉) = 〈Y |E〉 is derivable from
the axioms of TAfm + REC.

Proof. Without loss of generality, we may assume that all occurrences of variables in
the right-hand sides of the equations in E ′ are guarded. We take an injective function
Y that maps each variable in V(E ′) to a variable not in V(E ′), and define, guided by
axioms S2D1–S2D4, the following guarded system of recursion equations:

E = {Y (X ′) = D | X ′ = S ∈ E ′} ∪ {Y (X ′) = D | X ′ = D ∈ E ′}
∪ {Y (X ′) = tau ◦ Y (X ′′) | X ′ = tau ◦ X ′′ ∈ E ′}
∪ {Y (X ′) = Y (X ′′)� f.m � Y (X ′′′) | X ′ = X ′′ � f.m � X ′′′ ∈ E ′}.

If we replace in E , for all X ′ ∈ V(E ′), all occurrences of Y (X ′) by SD(〈X ′|E ′〉), then
each of the resulting equations is derivable by first applying RDP and then applying one
of S2D1–S2D4. Hence, SD(〈X |E ′〉) is a solution of E for Y (X). From this, it follows
by RSP that SD(〈X |E ′〉) = 〈Y (X)|E〉.

16 J. A. Bergstra and C. A. Middelburg

Table 9. Transition rules for cyclic interleaving and deadlock at termination.

x1 ↓, . . . , xk ↓, 〈xk+1, ρ〉 a−→ 〈x ′
k+1, ρ

′〉
〈‖(〈x1〉� · · ·� 〈xk+1〉� α), ρ〉 a−→ 〈‖(α� 〈x ′

k+1〉), ρ′〉
(k ≥ 0)

x1 �, . . . , xk �, xl ↑, 〈xk+1, ρ〉 a−→ 〈x ′
k+1, ρ

′〉
〈‖(〈x1〉� · · ·� 〈xk+1〉� α), ρ〉 a−→ 〈‖(α� 〈D〉� 〈x ′

k+1〉), ρ′〉
(k ≥ l > 0)

x1 ↓, . . . , xk ↓
‖(〈x1〉� · · ·� 〈xk〉)↓

x1 �, . . . , xk �, xl ↑
‖(〈x1〉� · · ·� 〈xk〉)↑ (k ≥ l > 0)

〈x, ρ〉 a−→ 〈x ′, ρ′〉
〈SD(x), ρ〉 a−→ 〈SD(x ′), ρ′〉

x �
SD(x)↑

Proposition 3 states that the strategic interleaving operator for cyclic interleaving can
be eliminated from terms of the form ‖(〈〈X |E ′〉〉� 〈〈Y |E ′′〉〉) if E ′ and E ′′ are guarded
systems of recursion equations over BPPA(FM). Proposition 4 states that the deadlock
at termination operator can be eliminated from terms of the form SD(〈X |E ′〉) if E ′ is a
guarded system of recursion equations over BPPA(FM). Moreover, both state that the
resulting term is a term of the form 〈Z |E〉 where E is a guarded system of recursion
equations over BPPA(FM). It is clear that the proof of Proposition 3 generalizes to the
case where the operand is a sequence of length greater than 2.

The structural operational semantics of TAfm is described by the transition rules
given in Tables 4 and 9.

Bisimulation equivalence is also a congruence with respect to the strategic inter-
leaving operator for cyclic interleaving and the deadlock at termination operator. This
follows immediately from the fact that the transition rules for TAfm constitute a complete
transition system specification in the relaxed panth format (see e.g. [12]). The axioms
given in Tables 7 and 8 are sound with respect to bisimulation equivalence.

4. Thread-Service Composition

In this section we extend the thread algebra introduced in Section 3 with thread-service
composition, which allows for certain basic actions performed by a thread to be processed
by a certain service. This is needed if certain basic actions are performed by the thread
only for the sake of getting reply values returned by a certain service and that way having
itself affected by that service.

For each f ∈ F , we introduce a thread-service composition operator /f . These
operators have a thread as first argument and a service as second argument. P /f H is the
thread that results from processing all basic actions performed by thread P that are of the
form f.m by service H . When a basic action f.m performed by thread P is processed by
H , it is turned into the action tau and postconditional composition is removed in favour
of action prefixing on the basis of the reply value produced by H .

A service is represented by a function H : M+ → {T, F,B,R} with the property
that H(α) = B ⇒ H(α � 〈m〉) = B and H(α) = R ⇒ H(α � 〈m〉) = R for all
α ∈M+ and m ∈M. This function is called the reply function of the service. Given a
reply function H and a method m, the derived reply function of H after processing m,
written (∂/∂m)H , is defined by (∂/∂m)H(α) = H(〈m〉� α).

A Thread Algebra with Multi-Level Strategic Interleaving 17

Table 10. Axioms for thread-service composition

S /f H = S TSC1
D /f H = D TSC2
(tau ◦ x) /f H = tau ◦ (x /f H) TSC3
(x � g.m � y) /f H = (x /f H)� g.m � (y /f H) if f �= g TSC4
(x � f.m � y) /f H = tau ◦ (x /f (∂/∂m)H) if H(〈m〉) = T TSC5
(x � f.m � y) /f H = tau ◦ (y /f (∂/∂m)H) if H(〈m〉) = F TSC6
(x � f.m � y) /f H = D if H(〈m〉) ∈ {B,R} TSC7

The connection between a reply function H and the service represented by it can be
understood as follows:

– If H(〈m〉) = T, the request to process command m is accepted by the service, the
reply is positive and the service proceeds as (∂/∂m)H .

– If H(〈m〉) = F, the request to process command m is accepted by the service, the
reply is negative and the service proceeds as (∂/∂m)H .

– If H(〈m〉) = B, the request to process command m is not refused by the service,
but the processing of m is temporarily blocked. The request will have to wait until
the processing of m is not blocked any longer.

– If H(〈m〉) = R, the request to process command m is refused by the service.

The axioms for thread-service composition are given in Table 10. In this table
and all subsequent tables with axioms or transition rules in which g occurs, like f ,
g stands for an arbitrary focus from F . Axiom TSC3 expresses that the action tau is
always accepted. Axioms TSC5 and TSC6 make it clear that tau arises as the residue
of processing commands. Therefore, tau is not connected to a particular focus, and is
always accepted.

Henceforth, we write TAtsc
fm for TAfm extended with the thread-service composition

operators and the axioms from Table 10.

Example 2. Let m,m ′,m ′′ ∈M, and let H be a service such that H(α � 〈m〉) = T
if #m ′(α) − #m ′′(α) > 0, H(α � 〈m〉) = F if #m ′(α) − #m ′′(α) ≤ 0, H(α � 〈m ′〉) = T
and H(α � 〈m ′′〉) = T, for all α ∈ M∗. Here #m ′(α) and #m ′′(α) denote the number
of occurrences of m ′ and m ′′, respectively, in α. Then the following equation is easily
derivable from the axioms of TAtsc

fm:

(f.m ′ ◦ ((f ′.m ′ ◦ S)� f.m � (f ′′.m ′′ ◦ S))) /f H = tau ◦ tau ◦ f ′.m ′ ◦ S.

This equation shows clearly how the thread f.m ′ ◦ ((f ′.m ′ ◦ S)� f.m � (f ′′.m ′′ ◦ S))
is affected by service H : the processing of f.m ′ and f.m by H turns these basic actions
into tau, and the reply value returned by H after completion of the processing of f.m
makes the thread proceed with performing f ′.m ′.

We can prove that each closed term of TAtsc
fm can be reduced to a closed term of

BPPA(FM).

18 J. A. Bergstra and C. A. Middelburg

Theorem 3 (Elimination). For all closed terms p of TAtsc
fm, there exists a closed term q

of BPPA(FM) such that p = q is derivable from the axioms of TAtsc
fm.

Proof. The proof follows the same lines as the proof of Theorem 2. Here, we have to
consider one additional case, viz. p ≡ p′ /f H . By the induction hypothesis, there exists
a closed term q ′ of BPPA(FM) such that p′ = q ′. So we are done if we have proved the
following lemma:

Let q ′ be a closed term of BPPA(FM). Then there exists a closed term r ′ of
BPPA(FM) such that q ′ /f H = r ′ is derivable from the axioms of TAtsc

fm.

We prove this lemma by induction on the depth of q ′ and case distinction on the structure
of q ′:

– q ′ ≡ S: S /f H = S by TSC1 and S is a closed term of BPPA(FM).
– q ′ ≡ D: D /f H = D by TSC2 and D is a closed term of BPPA(FM).
– q ′ ≡ tau◦q ′′: (tau◦q ′′)/f H = tau◦(q ′′/f H) by TSC3. Let r ′′ be a closed term of

BPPA(FM) such that q ′′/f H = r ′′. Such a term exists by the induction hypothesis.
Then tau ◦ r ′′ is a closed term of BPPA(FM) and (tau ◦ q ′′) /f H = tau ◦ r ′′.

– q ′ ≡ q ′′ � g.m � q ′′′: We distinguish four cases:
– f �= g: (q ′′� g.m �q ′′′)/f H = (q ′′/f H)� g.m �(q ′′′/f H)by TSC4. Let r ′′

and r ′′′ be closed terms of BPPA(FM) such that q ′′/f H = r ′′ and q ′′′/f H = r ′′′.
Such terms exist by the induction hypothesis. Then r ′′� g.m � r ′′′ is a closed
term of BPPA(FM) and (q ′′ � g.m � q ′′′) /f H = r ′′ � g.m � r ′′′.

– f = g, H(〈m〉) = T: (q ′′ � g.m � q ′′′) /f H = tau ◦ (q ′′ /f (∂/∂m)H) by
TSC5. Let r ′′ be a closed term of BPPA(FM) such that q ′′ /f (∂/∂m)H = r ′′.
Such a term exists by the induction hypothesis. Then tau ◦ r ′′ is a closed term
of BPPA(FM) and (q ′′ � g.m � q ′′′) /f H = tau ◦ r ′′.

– f = g, H(〈m〉) = F: This case goes analogous to the previous case.
– f = g, H(〈m〉) ∈ {B,R}: (q ′′ � g.m � q ′′′) /f H = D by TSC7 and D is a

closed term of BPPA(FM).

The following are useful properties of the deadlock at termination operator in the
presence of both cyclic interleaving and thread-service composition which are proved
using Theorem 3.

Proposition 5. For all closed terms p1, . . . , pn of TAtsc
fm, the following equations are

derivable from the axioms of TAtsc
fm:

SD(SD(p1)) = SD(p1), (1)

SD(‖(〈p1〉� · · ·� 〈pn〉)) = ‖(〈SD(p1)〉� · · ·� 〈SD(pn)〉), (2)

SD(p1 /f H) = SD(p1) /f H. (3)

Proof. By Theorem 3 it is sufficient to prove that these equations are derivable for all
closed terms p1, . . . , pn of BPPA(FM). For (1) and (2), this is already done in the proof

A Thread Algebra with Multi-Level Strategic Interleaving 19

of Proposition 2. For (3), we do it by induction on the depth of p1 and case distinction
on the structure of p1:

– p1 ≡ S: SD(S /f H) = D by TSC1 and S2D1, and D = SD(S) /f H by TSC2
and S2D1.

– p1 ≡ D: SD(D /f H) = D by TSC2 and S2D2, and D = SD(D) /f H by TSC2
and S2D2.

– p1 ≡ tau ◦ p′
1: SD((tau ◦ p′

1) /f H) = tau ◦ SD(p′
1 /f H) by TSC3 and S2D3,

tau ◦ SD(p′
1 /f H) = tau ◦ (SD(p′

1) /f H) by the induction hypothesis, and
tau ◦ (SD(p′

1) /f H) = SD(tau ◦ p′
1) /f H by TSC3 and S2D3.

– p1 ≡ p′
1 � g.m � p′′

1 : We distinguish four cases:
– f �= g: SD((p′

1 � g.m � p′′
1) /f H) = SD(p′

1 /f H) � g.m � SD(p′′
1 /f

H) by TSC4 and S2D4, SD(p′
1 /f H) � g.m � SD(p′′

1 /f H) = (SD(p′
1) /f

H) � g.m � (SD(p′′
1) /f H) by the induction hypothesis, and (SD(p′

1) /f

H)� g.m � (SD(p′′
1)/f H) = SD(p′

1� g.m � p′′
1)/f H by TSC4 and S2D4.

– f = g, H(〈m〉) = T: SD((p′
1� g.m � p′′

1) /f H) = tau◦SD(p′
1 /f (∂/∂m)H)

by TSC5 and S2D3, tau◦SD(p′
1/f (∂/∂m)H) = tau◦(SD(p′

1)/f (∂/∂m)H) by
the induction hypothesis, and tau ◦ (SD(p′

1) /f (∂/∂m)H) = SD(p′
1 � g.m �

p′′
1) /f H by TSC5 and S2D4.

– f = g, H(〈m〉) = F: This case goes analogous to the previous case.
– f = g, H(〈m〉) ∈ {B,R}: SD((p′

1 � g.m � p′′
1) /f H) = D by TSC7 and

S2D2, and D = SD(p′
1 � g.m � p′′

1) /f H by TSC7 and S2D4.

We extend TAtsc
fm with guarded recursion as in the case of TAfm. Systems of recursion

equations over TAtsc
fm and guardedness of those are defined as in the case of TAfm, but

with TAfm everywhere replaced by TAtsc
fm.

Henceforth, we will write TAtsc
fm+REC for TAtsc

fm extended with the constants for
solutions of guarded systems of recursion equations over TAtsc

fm and the axioms RDP and
RSP from Table 2.

Theorem 3 states that the strategic interleaving operator for cyclic interleaving, the
deadlock at termination operator and the thread-service composition operators can be
eliminated from closed terms of TAtsc

fm. It does not state anything about closed terms of
TAtsc

fm+REC. Propositions 3 and 4, concerning the case where the operand of the strategic
interleaving operator for cyclic interleaving is a sequence of constants for solutions of
guarded systems of recursion equations over BPPA(FM) and the case where the operand
of the deadlock at termination operator is such a constant, go through in the presence of
the thread-service composition operators. The following proposition concerns the case
where the first operand of a thread-service composition operator is such a constant.

Proposition 6. Let E ′ be a guarded system of recursion equations over BPPA(FM),
and let X ∈ V(E ′). Moreover, let f be a focus and let H be a reply function. Then
there exists a guarded system of recursion equations E over BPPA(FM) and a variable
Y ∈ V(E) such that 〈X |E ′〉 /f H = 〈Y |E〉 is derivable from the axioms of TAtsc

fm +REC.

Proof. Without loss of generality, we may assume that all occurrences of variables in
the right-hand sides of the equations in E ′ are guarded (see Remark 1). LetH be the set

20 J. A. Bergstra and C. A. Middelburg

Table 11. Transition rules for thread-service composition.

〈x, ρ〉 tau−→ 〈x ′, ρ′〉
〈x /f H, ρ〉 tau−→ 〈x ′ /f H, ρ′〉

〈x, ρ〉 g.m−−→ 〈x ′, ρ′〉
〈x /f H, ρ〉 g.m−−→ 〈x ′ /f H, ρ′〉

f �= g

〈x, ρ〉 f.m−−→ 〈x ′, ρ′〉
〈x /f H, ρ〉 tau−→ 〈x ′ /f

∂
∂m H, ρ′〉

H(〈m〉) ∈ {T, F}, (f.m, H(〈m〉)) ∈ ρ(〈 〉)

〈x, ρ〉 f.m−−→ 〈x ′, ρ′〉
x /f H ↑ H(〈m〉) ∈ {B,R} x ↓

x /f H ↓
x ↑

x /f H ↑

inductively defined by the following rules: (i) H ∈ H; (ii) if m ∈M and H ′ ∈ H, then
(∂/∂m)H ′ ∈ H. We take an injective function Y that maps each pair in V(E ′)×H to a
variable not in V(E ′), and define, guided by axioms TSC1–TSC7, the following guarded
system of recursion equations:

E = {Y (X ′, H ′) = S | X ′ = S ∈ E ′ ∧ H ′ ∈ H}
∪ {Y (X ′, H ′) = D | X ′ = D ∈ E ′ ∧ H ′ ∈ H}
∪ {Y (X ′, H ′) = tau ◦ Y (X ′′, H ′) | X ′ = tau ◦ X ′′ ∈ E ′ ∧ H ′ ∈ H}
∪ {Y (X ′, H ′) = Y (X ′′, H ′)� g.m � Y (X ′′′, H ′) |

X ′ = X ′′ � g.m � X ′′′ ∈ E ′ ∧ f �= g ∧ H ′ ∈ H}
∪ {Y (X ′, H ′) = tau ◦ Y (X ′′, (∂/∂m)H ′) |

∃X ′′′ • (X ′ = X ′′ � f.m � X ′′′ ∈ E ′ ∧ H ′(〈m〉) = T ∧ H ′ ∈ H)}
∪ {Y (X ′, H ′) = tau ◦ Y (X ′′′, (∂/∂m)H ′) |

∃X ′′ • (X ′ = X ′′ � f.m � X ′′′ ∈ E ′ ∧ H ′(〈m〉) = F ∧ H ′ ∈ H)}
∪ {Y (X ′, H ′) = D | ∃m, X ′′, X ′′′ •

(X ′ = X ′′ � f.m � X ′′′ ∈ E ′ ∧ H ′(〈m〉) ∈ {B,R} ∧ H ′ ∈ H)}.
If we replace in E , for all X ′ ∈ V(E ′) and all H ′ ∈ H, all occurrences of Y (X ′, H ′) by
〈X ′|E ′〉/f H , then each of the resulting equations is derivable by first applying RDP and
then applying one of TSC1–TSC7. Hence, 〈X |E ′〉 /f H is a solution of E for Y (X, H).
From this, it follows by RSP that 〈X |E ′〉 /f H = 〈Y (X, H)|E〉.

The structural operational semantics of TAtsc
fm is described by the transition rules

given in Tables 4, 9 and 11.
Bisimulation equivalence is also a congruence with respect to the thread-service

composition operators. This follows immediately from the fact that the transition rules
for these operators are in the path format. The axioms given in Table 10 are sound with
respect to bisimulation equivalence.

5. Guarding Tests

In this section we extend the thread algebra developed in Sections 3 and 4 with guarding
tests. Guarding tests are basic actions meant to verify whether a service will accept

A Thread Algebra with Multi-Level Strategic Interleaving 21

the request to process a certain method now, and if not so whether it will be accepted
after some time. Guarding tests allow for dealing with delayed processing and exception
handling as will be shown in Section 6.

We extend the set of basic actions. For the set of basic actions A, we now take the
set FMgt = { f.m, f ?m, f ??m | f ∈ F,m ∈M}. Basic actions of the forms f ?m and
f ??m will be called guarding tests. Performing a basic action f ?m is taken as making
the request to the service named f to reply whether it will accept the request to process
method m now. The reply is positive if the service will accept that request now, and
otherwise it is negative. Performing a basic action f ??m is taken as making the request
to the service named f to reply whether it will accept the request to process method m
now or after some time. The reply is positive if the service will accept that request now
or after some time, and otherwise it is negative.

A service may be local to a single thread, local to a multi-thread, local to a host, or
local to a network. A service local to a multi-thread is shared by all threads from which
the multi-thread is composed, etc. Henceforth, to simplify matters, it is assumed that
each thread, each multi-thread, each host, and each network has a unique local service.
Moreover, it is assumed that t, p, h, n ∈ F . Below, the foci t, p, h and n play a special
role:

– for each thread, t is the focus of its unique local service;
– for each multi-thread, p is the focus of its unique local service;
– for each host, h is the focus of its unique local service;
– for each network, n is the focus of its unique local service.

As explained below, it happens that not only thread-service composition but also
cyclic interleaving has to be adapted to the presence of guarding tests.

The additional axioms for cyclic interleaving and deadlock at termination in the
presence of guarding tests are given in Table 12. Axioms CSI6 and CSI7 state that:

– after a positive reply on f ?m or f ??m, the same thread proceeds with its next
basic action; and thus it is prevented that meanwhile other threads can cause a
state change to a state in which the processing of m is blocked (and f ?m would
not reply positively) or the processing of m is refused (and both f ?m and f ??m
would not reply positively);

– after a negative reply on f ?m or f ??m, the same thread does not proceed with it;
and thus it is prevented that other threads cannot make progress.

Without this difference, Theorem 5 in Section 7 would not go through.

Table 12. Additional axioms for cyclic interleaving and deadlock at
termination.

‖(〈x � f ?m � y〉� α) = ‖(〈x〉� α)� f ?m � ‖(α� 〈y〉) CSI6
‖(〈x � f ??m � y〉� α) = ‖(〈x〉� α)� f ??m � ‖(α� 〈y〉) CSI7

SD(x � f ?m � y) = SD(x)� f ?m � SD(y) S2D5
SD(x � f ??m � y) = SD(x)� f ??m � SD(y) S2D6

22 J. A. Bergstra and C. A. Middelburg

Table 13. Additional axioms for thread-service composition.

(x � g?m � y) /f H = (x /f H)� g?m � (y /f H) if f �= g TSC8
(x � f ?m � y) /f H = tau ◦ (x /f H) if H(〈m〉) ∈ {T, F} TSC9
(x � f ?m � y) /f H = tau ◦ (y /f H) if H(〈m〉) = B ∧ f �= t TSC10
(x � f ?m � y) /f H = D if (H(〈m〉) = B ∧ f = t)

∨ H(〈m〉) = R TSC11
(x � g??m � y) /f H = (x /f H)� g??m � (y /f H) if f �= g TSC12
(x � f ??m � y) /f H = tau ◦ (x /f H) if H(〈m〉) ∈ {T, F,B} TSC13
(x � f ??m � y) /f H = tau ◦ (y /f H) if H(〈m〉) = R TSC14

The additional axioms for thread-service composition in the presence of guarding
tests are given in Table 13. Axioms TSC10 and TSC11 are crucial. The point is that, if
the local service of a thread is in a state in which the processing of method m is blocked,
no other thread can raise that state. Consequently, if the processing of m is blocked, it is
blocked forever.

Henceforth, we write TAtsc,gt
fm for TAtsc

fm extended with a postconditional composition
operator for each guarding test and the axioms from Tables 12 and 13.

We can prove that each closed term of TAtsc,gt
fm can be reduced to a closed term of

BPPA(FMgt).

Theorem 4 (Elimination). For all closed terms p of TAtsc,gt
fm , there exists a closed term

q of BPPA(FMgt) such that p = q is derivable from the axioms of TAtsc,gt
fm .

Proof. The proof follows the same lines as the proof of Theorem 3. Here, we have to
consider two additional cases, namely p ≡ p′� f ?m � p′′ and p ≡ p′� f ??m � p′′.
These cases go the same as the case p ≡ p′ � f.m � p′′. In the lemma for the case
p ≡ SD(p′), we have to consider the additional cases q ′ ≡ q ′′ � f ?m � q ′′′ and
q ′ ≡ q ′′ � f ??m � q ′′′. These cases go the same as the case q ′ ≡ q ′′ � f.m � q ′′′.
In the lemma for the case p ≡ ‖(α), we have to consider the additional cases q ′

1 ≡
q ′′

1 � f ?m � q ′′′
1 and q ′

1 ≡ q ′′
1 � f ??m � q ′′′

1 . These cases go analogous to the case
q ′

1 ≡ q ′′
1 � f.m � q ′′′

1 . In the lemma for the case p ≡ p′ /f H , we have to consider
the additional cases q ′ ≡ q ′′ � g?m � q ′′′ and q ′ ≡ q ′′ � g??m � q ′′′. These cases go
similar to the case q ′ ≡ q ′′ � g.m � q ′′′.

In other words, Theorem 3 goes through in the presence of guarding tests.
We extend TAtsc,gt

fm with guarded recursion as in the case of TAfm. Systems of recur-
sion equations over TAtsc,gt

fm and guardedness of those are defined as in the case of TAfm,
but with TAfm everywhere replaced by TAtsc,gt

fm .
Henceforth, we will write TAtsc,gt

fm +REC for TAtsc,gt
fm extended with the constants for

solutions of guarded systems of recursion equations over TAtsc,gt
fm and the axioms RDP

and RSP from Table 2.

Example 3. Let f ∈ F be such that f �= t, let m,m ′,m ′′ ∈ M, and let H be
a service such that H(α � 〈m〉) = T if #m ′(α) − #m ′′(α) > 0, H(α � 〈m〉) = B

A Thread Algebra with Multi-Level Strategic Interleaving 23

Table 14. Additional transition rules for cyclic interleaving and deadlock at termination.

x1 ↓, . . . , xk ↓, 〈xk+1, ρ〉 γ−→ 〈x ′
k+1, ρ

′〉
〈‖(〈x1〉� · · ·� 〈xk+1〉� α), ρ〉 γ−→ 〈‖(〈x ′

k+1〉� α), ρ′〉
(α, T) ∈ ρ(〈 〉) (k ≥ 0)

x1 �, . . . , xk �, xl ↑, 〈xk+1, ρ〉 γ−→ 〈x ′
k+1, ρ

′〉
〈‖(〈x1〉� · · ·� 〈xk+1〉� α), ρ〉 γ−→ 〈‖(〈x ′

k+1〉� α� 〈D〉), ρ′〉
(α, T) ∈ ρ(〈 〉) (k ≥ l > 0)

x1 ↓, . . . , xk ↓, 〈xk+1, ρ〉 γ−→ 〈x ′
k+1, ρ

′〉
〈‖(〈x1〉� · · ·� 〈xk+1〉� α), ρ〉 γ−→ 〈‖(α� 〈x ′

k+1〉), ρ′〉
(α, F) ∈ ρ(〈 〉) (k ≥ 0)

x1 �, . . . , xk �, xl ↑, 〈xk+1, ρ〉 γ−→ 〈x ′
k+1, ρ

′〉
〈‖(〈x1〉� · · ·� 〈xk+1〉� α), ρ〉 γ−→ 〈‖(α� 〈D〉� 〈x ′

k+1〉), ρ′〉
(α, F) ∈ ρ(〈 〉) (k ≥ l > 0)

〈x, ρ〉 γ−→ 〈x ′, ρ′〉
〈SD(x), ρ〉 γ−→ 〈SD(x ′), ρ′〉

if #m ′(α) − #m ′′(α) ≤ 0, H(α � 〈m ′〉) = T and H(α � 〈m ′′〉) = T, for all α ∈ M∗.
Moreover, let E be the guarded system of recursion equations that consists of the equation
X = ((f ′.m ′ ◦ S)� f.m � (f ′′.m ′′ ◦ S))� f ?m � X . Then the following equations
are easily derivable from the axioms of TAtsc,gt

fm +REC:

‖(〈(f ′.m ′ ◦ S)� f.m � (f ′′.m ′′ ◦ S)〉� 〈 f.m ′ ◦ S〉) /f H = tau ◦ D,

‖(〈〈X |E〉〉� 〈 f.m ′ ◦ S〉) /f H = tau ◦ tau ◦ tau ◦ tau ◦ f ′.m ′ ◦ S.

The first basic action performed by ‖(〈(f ′.m ′ ◦S)� f.m �(f ′′.m ′′ ◦S)〉�〈 f.m ′ ◦S〉) is
f.m. Because H(〈m〉) = B, the processing of f.m by H leads to D. The first basic action
performed by ‖(〈〈X |E〉〉 � 〈 f.m ′ ◦ S〉) is f ?m. Because H(〈m〉) = B and f �= t, next
f.m ′ is performed and thereafter f ?m is performed again. Because (∂/∂m ′)H(〈m〉) = T,
next f.m is performed and thereafter f ′.m ′ is performed.

Just like Theorem 3, Propositions 3, 4 and 6 go through in the presence of guarding
tests. The proofs follow the same lines as before, but, like in the proof of Theorem 4, we
have to take into account that two additional kinds of basic actions may occur in guarded
systems of recursion equations.

The additional transition rules for cyclic interleaving and deadlock at termination
in the presence of guarding tests are given in Table 14, where γ stands for an arbitrary
basic action from the set { f ?m, f ??m | f ∈ F,m ∈M}. The additional transition rules
for thread-service composition in the presence of guarding tests are given in Table 15.

Bisimulation equivalence remains a congruence with respect to these operators. The
axioms given in Tables 12 and 13 are sound with respect to bisimulation equivalence.

6. Delayed Processing and Exception Handling

We go on to show how guarding tests can be used to express postconditional composition
with delayed processing and postconditional composition with exception handling.

24 J. A. Bergstra and C. A. Middelburg

Table 15. Additional transition rules for thread-service composition.

〈x, ρ〉 g?m−−→ 〈x ′, ρ′〉
〈x /f H, ρ〉 g?m−−→ 〈x ′ /f H, ρ′〉

f �= g

〈x, ρ〉 f ?m−−→ 〈x ′, ρ′〉
〈x /f H, ρ〉 tau−→ 〈x ′ /f H, ρ′〉

H(〈m〉) ∈ {T, F}, (f ?m, T) ∈ ρ(〈 〉)

〈x, ρ〉 f ?m−−→ 〈x ′, ρ′〉
〈x /f H, ρ〉 tau−→ 〈x ′ /f H, ρ′〉

H(〈m〉) = B, f �= t, (f ?m, F) ∈ ρ(〈 〉)

〈x, ρ〉 t?m−−→ 〈x ′, ρ′〉
x /t H ↑ H(〈m〉) = B

〈x, ρ〉 f ?m−−→ 〈x ′, ρ′〉
x /f H ↑ H(〈m〉) = R

〈x, ρ〉 g??m−−→ 〈x ′, ρ′〉
〈x /f H, ρ〉 g??m−−→ 〈x ′ /f H, ρ′〉

f �= g

〈x, ρ〉 f ??m−−−→ 〈x ′, ρ′〉
〈x /f H, ρ〉 tau−→ 〈x ′ /f H, ρ′〉

H(〈m〉) ∈ {T, F,B}, (f ??m, T) ∈ ρ(〈 〉)

〈x, ρ〉 f ??m−−−→ 〈x ′, ρ′〉
〈x /f H, ρ〉 tau−→ 〈x ′ /f H, ρ′〉

H(〈m〉) = R, (f ??m, F) ∈ ρ(〈 〉)

For postconditional composition with delayed processing, we extend the set of basic
actions with the set { f !m | f ∈ F,m ∈ M}. Performing a basic action f !m is like
performing f.m, but in case processing of the command m is temporarily blocked, it is
automatically delayed until the blockade is over.

For postconditional composition with exception handling, we introduce the notations
x � f.m [y] � z and x � f !m [y] � z. The intuition for x � f.m [y] � z is that
x � f.m � z is tried, but y is done instead in the exceptional case that x � f.m � z
fails because the request to process m is refused. The intuition for x� f !m [y] �z is that
x� f !m �z is tried, but y is done instead in the exceptional case that x� f !m �z fails
because the request to process m is refused. The processing of m may first be blocked
and thereafter be refused; in that case, y is done instead as well.

The defining axioms for postconditional composition with delayed processing and
the two forms of postconditional composition with exception handling are given in
Table 16. Axiom DP guarantees that f.m is only performed if f ?m yields a positive
reply. Axioms EH1 and EH2 guarantee that f.m is only performed if f ??m yields a
positive reply. An alternative to axiom EH2 is

x � f !m [y] � z = ((x � f.m � z)� f ?m � (x � f !m � z))� f ??m � y.

In that case, y is only done if the processing of m is refused immediately.

Table 16. Axioms for delayed processing and exception handling.

x � f !m � y = (x � f.m � y)� f ?m � (x � f !m � y) DP
x � f.m [y] � z = (x � f.m � z)� f ??m � y EH1
x � f !m [y] � z = ((x � f.m � z)� f ?m � (x � f !m [y] � z))� f ??m � y EH2

A Thread Algebra with Multi-Level Strategic Interleaving 25

From DP, EH1–EH2 and CSI6–CSI7 (Table 12), it follows immediately that

‖(〈x � f !m � y〉� α)
= ‖(〈x � f.m � y〉� α)� f ?m � ‖(α � 〈x � f !m � y〉),

‖(〈x � f.m [y] � z〉� α) = ‖(〈x � f.m � z〉� α)� f ??m � ‖(α � 〈y〉),
‖(〈x � f !m [y] � z〉� α)

= (‖(〈x � f.m � z〉� α)� f ?m � ‖(α � 〈x � f !m [y] � z〉))
� f ??m � ‖(α � 〈y〉).

These equations give a clear picture of the mechanisms for delayed processing and
exception handling.

Henceforth, we write TAtsc,gt,dp,eh
fm for TAtsc,gt

fm extended with the postconditional
composition operators for delayed processing and exception handling and the axioms
from Table 16.

We extend TAtsc,gt,dp,eh
fm with guarded recursion as in the case of TAfm. Systems of

recursion equations over TAtsc,gt,dp,eh
fm and guardedness of those are defined as in the case

of TAfm, but with TAfm everywhere replaced by TAtsc,gt,dp,eh
fm .

Henceforth, we will also write TAtsc,gt,dp,eh
fm + REC for TAtsc,gt,dp,eh

fm extended with
the constants for solutions of guarded systems of recursion equations over TAtsc,gt,dp,eh

fm
and the axioms RDP and RSP from Table 2.

Example 4. Let H be as in Example 3. Then the following equations are easily deriv-
able from the axioms of TAtsc,gt,dp,eh

fm :

‖(〈(f ′.m ′ ◦ S)� f.m � (f ′′.m ′′ ◦ S)〉� 〈 f.m ′ ◦ S〉) /f H

= tau ◦ D,

‖(〈(f ′.m ′ ◦ S)� f !m � (f ′′.m ′′ ◦ S)〉� 〈 f.m ′ ◦ S〉) /f H

= tau ◦ tau ◦ tau ◦ tau ◦ f ′.m ′ ◦ S.

The resemblance with the equations from Example 3 is not accidental: the equation
〈X |E〉 = (f ′.m ′◦S)� f !m �(f ′′.m ′′◦S), in which E is the guarded system of recursion
equations from Example 3, is derivable from the axioms of
TAtsc,gt,dp,eh

fm + REC.

The additional transition rules for postconditional composition with delayed pro-
cessing and postconditional composition with exception handling are given in
Table 17.

Bisimulation equivalence is a congruence with respect to these operators. The axioms
given in Table 16 are sound with respect to bisimulation equivalence.

26 J. A. Bergstra and C. A. Middelburg

Table 17. Transition rules for delayed processing and exception handling.

〈(x � f.m � y)� f ?m � (x � f !m � y), ρ〉 a−→ 〈z′, ρ′〉
〈x � f !m � y, ρ〉 a−→ 〈z′, ρ′〉

〈(x � f.m � z)� f ??m � y, ρ〉 a−→ 〈u′, ρ′〉
〈x � f.m [y] � z, ρ〉 a−→ 〈u′, ρ′〉

〈((x � f.m � z)� f ?m � (x � f !m [y] � z))� f ??m � y, ρ〉 a−→ 〈u′, ρ′〉
〈x � f !m [y] � z, ρ〉 a−→ 〈u′, ρ′〉

7. A Formal Design Prototype

In this section we show that the thread algebra developed in Sections 3–6 can be used to
develop a simplified, formal representation schema of the design of systems that consist
of several multi-threaded programs on various hosts in different networks and to verify
a property of all systems designed according to the schema. We propose to use the
term formal design prototype for such a schema. The presented schema can be useful in
understanding certain aspects of the systems with which it is concerned.

The set of basic thread expressions, with typical element P , is defined by

P ::= D
∣
∣ S

∣
∣ P � f.m � P

∣
∣ P � f ! m � P

∣
∣

P � f.m [P] � P
∣
∣ P � f ! m [P] � P

∣
∣ 〈X |E〉,

where f ∈ F , m ∈ M and 〈X |E〉 is a constant standing for the unique solution for
variable X of a guarded system of recursion equations E in which the right-hand sides of
the equations are basic thread expressions in which variables may occur wherever basic
thread expressions are expected. Thus, the use of guarding tests, i.e. basic actions of the
forms f ?m and f ??m, is restricted to their intended use.

A thread vector in which each thread has its local service is of the form

〈P1 /t TLS1〉� · · ·� 〈Plt /t TLSlt 〉,
where P1, . . . , Plt are basic thread expressions, and TLS1, . . . ,TLSlt are local services
for threads. The local service of a thread does nothing else but maintaining local data
for the thread. A multi-thread vector in which each multi-thread has its local service is
of the form

〈‖(TV1) /p PLS1〉� · · ·� 〈‖(TVlp) /p PLSlp 〉,
where TV1, . . . ,TVlp are thread vectors in which each thread has its local service, and
PLS1, . . . ,PLSlp are local services for multi-threads. The local service of a multi-thread
maintains shared data of the threads from which the multi-thread is composed. A typical
example of such data are Java pipes. A host behaviour vector in which each host has its
local service is of the form

〈‖(PV1) /h HLS1〉� · · ·� 〈‖(PVlh) /h HLSlh 〉,
where PV1, . . . ,PVlh are multi-thread vectors in which each multi-thread has its local
service, and HLS1, . . . ,HLSlh are local services for hosts. The local service of a host

A Thread Algebra with Multi-Level Strategic Interleaving 27

maintains shared data of the multi-threads on the host. A typical example of such data
are the files connected with Unix sockets used for data transfer between multi-threads on
the same host. A network behaviour vector in which each network has its local service
is of the form

〈‖(HV1) /n NLS1〉� · · ·� 〈‖(HVln) /n NLSln 〉,
where HV1, . . . ,HVln are host behaviour vectors in which each host has its local service,
and NLS1, . . . ,NLSln are local services for networks. The local service of a network
maintains shared data of the hosts in the network. A typical example of such data are the
files connected with Unix sockets used for data transfer between different hosts in the
same network.

The behaviour of a system that consist of several multi-threaded programs on various
hosts in different networks is described by an expression of the form ‖(NV), where NV
is a network behaviour vector in which each network has its local service. A typical
example is the case where NV is an expression of the form

‖(〈‖(〈‖(〈P1 /t TLS1〉� 〈P2 /t TLS2〉) /p PLS1〉
�〈‖(〈P3 /t TLS3〉� 〈P4 /t TLS4〉� 〈P5 /t TLS5〉) /p PLS2〉) /h HLS1〉

� 〈‖(〈‖(P6 /t TLS6〉) /p PLS3〉) /h HLS2〉) /n NLS,

where P1, . . . , P6 are basic thread expressions, TLS1, . . . ,TLS6 are local services for
threads, PLS1,PLS2,PLS3 are local services for multi-threads, HLS1, HLS2 are local
services for hosts, and NLS is a local service for networks. It describes a system that
consists of two hosts in one network, where on the first host currently a multi-thread with
two threads and a multi-thread with three threads exist concurrently, and on the second
host currently a single multi-thread with a single thread exists.

A desirable property of all systems designed according to the schema ‖(NV) is laid
down in Theorem 5 below. That theorem is phrased in terms of the relation sim (is sim-
ulated by) on closed terms of TAtsc,gt,dp,eh

fm + REC defined inductively by means of the
rules in Table 18. This relation can be explained as follows: p sim q means that, in any
execution environment, q performs the same actions as p, in the same order as p, but q
possibly performs additional actions prior to each of those common actions and next to
the last of those common actions if their number is finite. Roughly speaking, Theorem 5
states that, if a finite thread that forms part of a system designed according to the
schema ‖(NV) does not make use of the services that form part of the system, then that
thread is simulated by the system. In other words, the thread is not really affected by
the system.

Table 18. Definition of simulation relation.

S sim x
D sim x
x sim y ∧ x sim z ⇒ x sim y � a � z
x sim y ∧ z simw ⇒ x � a � z sim y � a � w

28 J. A. Bergstra and C. A. Middelburg

Theorem 5 (Simulation). Let P be a basic thread expression in which all basic actions
are from the set { f.m | f ∈ F \ {t, p, h, n},m ∈ M} and constants standing for the
solutions of guarded systems of recursion equations do not occur. Let C[P] be a context of
P of the form ‖(NV)where NV is a network behaviour vector as above. Then P sim C[P].
This implies that C[P] will perform all steps of P in finite time.

Proof. We prove this theorem for a more general schema than the schema ‖(NV)
presented above. We consider the schema that is obtained from the one presented above
by replacing all expressions of the form ‖(V), where V is a thread vector, a multi-thread
vector, a host behaviour vector or a network behaviour vector, by expressions of the form
Sn

D(‖(V)). Here, for each term p and each n ≥ 0, the term Sn
D(p) is defined by induction

on n as follows: S0
D(p) is p and Sn+1

D (p) is SD(S
n
D(p)). The less general schema is

covered because S0
D(‖(V)) is ‖(V).

Let

TV = 〈P1 /t TLS1〉� · · ·� 〈Plt /t TLSlt 〉,
PV = 〈Sn1

D (‖(TV1)) /p PLS1〉� · · ·� 〈Snlp

D (‖(TVlp)) /p PLSlp 〉,
HV = 〈Sn′

1
D (‖(PV1)) /h HLS1〉� · · ·� 〈Sn′

lh
D (‖(PVlh)) /h HLSlh 〉,

NV = 〈Sn′′
1

D (‖(HV1)) /n NLS1〉� · · ·� 〈Sn′′
ln

D (‖(HVln)) /n NLSln 〉
be the thread vector in which P occurs, the multi-thread vector in which TV occurs, the
host behaviour vector in which PV occurs and the network behaviour vector in which
HV occurs, respectively. Let it be the position of P in TV , let ip be the position of TV in
PV , let ih be the position of PV in HV , and let in be the position of HV in NV . Then the
position of P in Sn

D(‖(NV)) is it + lt (ip − 1 + lp(ih − 1 + lh(in − 1))).
We prove P sim C[P] by induction on the depth of P and case distinction on the

structure of P:

– P ≡ S: S sim C[S] follows immediately from the definition of sim;
– P ≡ D: D sim C[D] follows immediately from the definition of sim;
– P ≡ P ′ � f.m � P ′′:

We prove this case by induction on the position of P in ‖(NV):
– Position of P in ‖(NV) is 1:

Because P1 ≡ P ′ � f.m � P ′′, we derive, using TSC4, CSI5 and S2D4,
Sn1

D (‖(TV)) = Sn1
D (‖(TV ′))� f.m � Sn1

D (‖(TV ′′)) (1), where

TV ′ = 〈P2 /t TLS2〉� · · ·� 〈Plt /t TLSlt 〉� 〈P ′ /t TLS1〉,
TV ′′ = 〈P2 /t TLS2〉� · · ·� 〈Plt /t TLSlt 〉� 〈P ′′ /t TLS1〉.
Because TV1 ≡ TV , we derive from (1), using TSC4, CSI5 and S2D4,

S
n′

1
D (‖(PV)) = S

n′
1

D (‖(PV ′))� f.m � S
n′

1
D (‖(PV ′′)) (2), where

PV ′ = 〈Sn2
D (‖(TV2)) /p PLS2〉� · · ·� 〈Snlp

D (‖(TVlp)) /p PLSlp 〉
� 〈Sn1

D (‖(TV ′)) /p PLS1〉,

A Thread Algebra with Multi-Level Strategic Interleaving 29

PV ′′ = 〈Sn2
D (‖(TV2)) /p PLS2〉� · · ·� 〈Snlp

D (‖(TVlp)) /p PLSlp 〉
� 〈Sn1

D (‖(TV ′′)) /p PLS1〉.
Because PV1 ≡ PV , we derive from (2), using TSC4, CSI5 and S2D4,

S
n′′

1
D (‖(HV)) = S

n′′
1

D (‖(HV ′))� f.m � S
n′′

1
D (‖(HV ′′)) (3), where

HV ′ = 〈Sn′
2

D (‖(PV2)) /h HLS2〉� · · ·� 〈Sn′
lh

D (‖(PVlh)) /h HLSlh 〉
� 〈Sn′

1
D (‖(PV ′)) /h HLS1〉,

HV ′′ = 〈Sn′
2

D (‖(PV2)) /h HLS2〉� · · ·� 〈Sn′
lh

D (‖(PVlh)) /h HLSlh 〉
� 〈Sn′

1
D (‖(PV ′′)) /h HLS1〉.

Because HV1 ≡ HV , we derive from (3), using TSC4, CSI5 and S2D4,
Sn

D(‖(NV)) = Sn
D(‖(NV ′))� f.m � Sn

D(‖(NV ′′)) (4), where

NV ′ = 〈Sn′′
2

D (‖(HV2)) /n NLS2〉� · · ·� 〈Sn′′
ln

D (‖(HVln)) /n NLSln 〉
� 〈Sn′′

1
D (‖(HV ′)) /n NLS1〉,

NV ′′ = 〈Sn′′
2

D (‖(HV2)) /n NLS2〉� · · ·� 〈Sn′′
ln

D (‖(HVln)) /n NLSln 〉
� 〈Sn′′

1
D (‖(HV ′′)) /n NLS1〉.

The depth of NV ′ and NV ′′ is one less than the depth of NV . Hence, it fol-
lows from (4), using the induction hypothesis and the definition of sim, that
P ′ � f.m � P ′′ sim C[P ′ � f.m � P ′′].
Below, in similar pieces of proof, more than one case must be considered
because TSC4, TSC5, TSC6 or TSC7 is applicable where above only TSC4 is
applicable.

– Position of P in ‖(NV) is greater than 1:
Let

TV1 = 〈P1 /t TLS1〉� · · ·� 〈Plt /t TLSlt 〉,
PV1 = 〈Sn1

D (‖(TV1)) /p PLS1〉� · · ·� 〈Snlp

D (‖(TVlp)) /p PLSlp 〉,

HV1 = 〈Sn′
1

D (‖(PV1)) /h HLS1〉� · · ·� 〈Sn′
lh

D (‖(PVlh)) /h HLSlh 〉
be the thread vector at position 1 in PV1, the multi-thread vector at position
1 in HV1 and the host behaviour vector at position 1 in NV , respectively. We
make a case distinction on the structure of P1:
• P1 ≡ S: We derive, using TSC1 and CSI2, Sn1

D (‖(TV1)) = Sn1
D (‖(TV ′

1)),
where TV ′

1 = 〈P2 /t TLS2〉 � · · · � 〈Plt /t TLSlt 〉. Therefore, Sn
D(‖(NV)) =

Sn
D(‖(NV ′)), where NV ′ is NV with Sn1

D (‖(TV1)) replaced by
Sn1

D (‖(TV ′
1)). The position of P in Sn

D(‖(NV ′)) is one less than the posi-
tion of P in Sn

D(‖(NV)). Hence, it follows, using the induction hypothesis,
that P sim C[P].

30 J. A. Bergstra and C. A. Middelburg

• P1 ≡ D: We derive, using TSC2 and CSI3, Sn1
D (‖(TV1)) = Sn1+1

D (‖(TV ′
1)),

where TV ′
1 = 〈P2 /t TLS2〉 � · · · � 〈Plt /t TLSlt 〉. Therefore, Sn

D(‖(NV)) =
Sn

D(‖(NV ′)), where NV ′ is NV with Sn1
D (‖(TV1)) replaced by

Sn1+1
D (‖(TV ′

1)). The position of P in Sn
D(‖(NV ′)) is one less than the po-

sition of P in Sn
D(‖(NV)). Hence, it follows, using the induction hypothesis,

that P sim C[P].
• P1 ≡ P ′

1 � f1.m1 � P ′′
1 : On similar lines as for P above, we derive, using

TSC2–TSC7, CSI3–CSI5 and S2D3–S2D4, either Sn
D(‖(NV)) =

Sn
D(‖(NV ′)) � f1.m1 � Sn

D(‖(NV ′′)), Sn
D(‖(NV)) = tau ◦ Sn

D(‖(NV∗)) or
Sn

D(‖(NV)) = Sn+1
D (‖(NV∗∗)), where NV ′, NV ′′, NV∗ and NV∗∗ are such that

the position of P in Sn
D(‖(NV ′)), Sn

D(‖(NV ′′)), Sn
D(‖(NV∗)) and

Sn+1
D (‖(NV∗∗)) is one less than the position of P in Sn

D(‖(NV)). In each
case it follows, using the induction hypothesis and the definition of sim, that
P sim C[P].

• P1 ≡ P ′
1 � f1!m1 � P ′′

1 : On similar lines as for P above, we derive,
using TSC2–TSC11, CSI3–CSI6 and S2D3–S2D5, either Sn

D(‖(NV)) =
(Sn

D(‖(NV ′)) � f1.m1 � Sn
D(‖(NV ′′))) � f1?m1 � Sn

D(‖(NV ′′′)),
Sn

D(‖(NV)) = tau ◦ tau ◦ Sn
D(‖(NV∗)), Sn

D(‖(NV)) = tau ◦ Sn
D(‖(NV∗∗)) or

Sn
D(‖(NV)) = Sn+1

D (‖(NV∗∗∗)), where NV ′, NV ′′, . . . are such that the posi-
tion of P in Sn

D(‖(NV ′)), Sn
D(‖(NV ′′)), Sn

D(‖(NV ′′′)), Sn
D(‖(NV∗)),

Sn
D(‖(NV∗∗)) and Sn+1

D (‖(NV∗∗∗)) is one less than the position of P in
Sn

D(‖(NV)). In each case it follows, using the induction hypothesis and the
definition of sim, that P sim C[P].

• P1 ≡ P ′
1 � f1.m1 [P ′′

1] � P ′′′
1 : On similar lines as for P above, we de-

rive, using TSC2–TSC7, TSC12–TSC14, CSI3–CSI5, CSI7, S2D3–S2D4
and S2D6, either Sn

D(‖(NV)) = (Sn
D(‖(NV ′)) � f1.m1 � Sn

D(‖(NV ′′)))
� f1??m1 � Sn

D(‖(NV ′′′)), Sn
D(‖(NV)) = tau ◦ tau ◦ Sn

D(‖(NV∗)),
Sn

D(‖(NV)) = tau ◦ Sn+1
D (‖(NV∗∗)) or Sn

D(‖(NV)) = tau ◦ Sn
D(‖(NV∗∗∗)),

where NV ′, NV ′′, . . . are such that the position of P in Sn
D(‖(NV ′)),

Sn
D(‖(NV ′′)), Sn

D(‖(NV ′′′)), Sn
D(‖(NV∗)), Sn+1

D (‖(NV∗∗)) and Sn
D(‖(NV∗∗∗))

is one less than the position of P in Sn
D(‖(NV)). In each case it follows,

using the induction hypothesis and the definition of sim, that P sim C[P].
• P1 ≡ P ′

1 � f1!m1 [P ′′
1] � P ′′′

1 : On similar lines as for P above, we derive,
using TSC2–TSC14, CSI3–CSI7 and S2D3–S2D6, either Sn

D(‖(NV)) =
((Sn

D(‖(NV ′)) � f1.m1 � Sn
D(‖(NV ′′))) � f1?m1 � Sn

D(‖(NV ′′′)))
� f1??m1 � Sn

D(‖(NV ′′′′)), Sn
D(‖(NV)) = tau ◦ tau ◦ tau ◦ Sn

D(‖(NV∗)),
Sn

D(‖(NV)) = tau ◦ tau ◦Sn
D(‖(NV∗∗)), Sn

D(‖(NV)) = tau ◦Sn+1
D (‖(NV∗∗∗))

or Sn
D(‖(NV)) = tau ◦ Sn

D(‖(NV∗∗∗∗)), where NV ′, NV ′′, . . . are such that
the position of P in Sn

D(‖(NV ′)), Sn
D(‖(NV ′′)), Sn

D(‖(NV ′′′)), Sn
D(‖(NV ′′′′)),

Sn
D(‖(NV∗)), Sn+1

D (‖(NV∗∗)), Sn
D(‖(NV∗∗∗)) and Sn

D(‖(NV∗∗∗∗)) is one less
than the position of P in Sn

D(‖(NV)). In each case it follows, using the
induction hypothesis and the definition of sim, that P sim C[P].

• P1 ≡ 〈X |E〉: Let tX be the right-hand side of the equation for X in E .
By RDP, 〈X |E〉 = 〈tX |E〉. Hence, in this case P1 can be replaced by 〈tX |E〉.
The structure of 〈tX |E〉 is covered by one of the previous
cases.

A Thread Algebra with Multi-Level Strategic Interleaving 31

In the proof of P sim C[P] for the case P ≡ P ′ � f.m � P ′′ given above, we show
among other things that multi-level cyclic interleaving (in the presence of delayed pro-
cessing and exception handling) is fair, i.e. that there will always come a next turn for
all active threads, multi-threads, etc. For the single-level case, a mathematically precise
definition of a fair interleaving strategy is given in [8].

8. Conclusions

We have presented an algebraic theory of threads and multi-threading based on multi-
level strategic interleaving for the simple strategy of cyclic interleaving. The other inter-
leaving strategies treated in [7] can be adapted to the setting of multi-level strategic inter-
leaving in a similar way. We have also presented a reasonable though simplified formal
representation schema of the design of systems that consist of several multi-threaded
programs on various hosts in different networks. By dealing with delays and excep-
tions, this schema is sufficiently expressive to formalize mechanisms like Java pipes
(for communication between threads) and Unix sockets (for communication between
multi-threads, called processes in Unix jargon, and communication between hosts). The
exception handling notation introduced is only used for single threads.

To the best of our knowledge, there is no other work on the theory of threads
and multi-threading that is based on strategic interleaving. Although a deterministic
interleaving strategy is always used for thread interleaving, it is the practice in work
in which the semantics of multi-threated programs is involved to look upon thread
interleaving as arbitrary interleaving, see e.g. [1] and [9].

Options for future work include:

– formalization of mechanisms like Java pipes and Unix sockets using the thread
algebra developed in this paper;

– adaptation of some interleaving strategies from [7], other than cyclic interleaving,
to the setting of multi-level strategic interleaving;

– extension of the program algebra from [6] with features for delayed processing
and exception handling, with a behavioural semantics based on the thread algebra
developed in this paper.

Acknowledgments

We thank Mark van der Zwaag from the University of Amsterdam, Programming Research Group, for suggest-
ing a substantial improvement of the structural operational semantics of TAfm presented in a draft of this paper,
and for suggesting the use of the symbol � to denote the auxiliary transition relation employed in the resulting
structural operational semantics [13]. We also thank an anonymous referee for his/her valuable comments
concerning the presentation of the paper.

References

[1] E. Ábrahám, F. S. de Boer, W. P. de Roever, and M. Steffen. A compositional operational semantics for
JavaMT. In N. Dershowitz, editor, Verification: Theory and Practice, pages 290–303. Volume 2772 of
Lecture Notes in Computer Science. Springer-Verlag, Berlin, 2003.

32 J. A. Bergstra and C. A. Middelburg

[2] L. Aceto, W. J. Fokkink, and C. Verhoef. Structural operational semantics. In J. A. Bergstra, A. Ponse,
and S. A. Smolka, editors, Handbook of Process Algebra, pages 197–292. Elsevier, Amsterdam, 2001.

[3] J. A. Bergstra and I. Bethke. Polarized process algebra and program equivalence. In J. C. M. Baeten,
J. K. Lenstra, J. Parrow, and G. J. Woeginger, editors, Proceedings 30th ICALP, pages 1–21. Volume 2719
of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 2003.

[4] J. A. Bergstra and I. Bethke. Polarized process algebra with reactive composition. Theoretical Computer
Science, 343:285–304, 2005.

[5] J. A. Bergstra and J. W. Klop. Process algebra for synchronous communication. Information and Control,
60(1/3):109–137, 1984.

[6] J. A. Bergstra and M. E. Loots. Program algebra for sequential code. Journal of Logic and Algebraic
Programming, 51(2):125–156, 2002.

[7] J. A. Bergstra and C. A. Middelburg. Thread algebra for strategic interleaving. To appear in Formal
Aspect of Computing.

[8] J. A. Bergstra and C. A. Middelburg. Simulating Turing Machines on Maurer Machines. Computer
Science Report 05-28, Department of Mathematics and Computer Science, Eindhoven University of
Technology, November 2005.

[9] C. Flanagan, S. N. Freund, S. Qadeer, and S. A. Seshia. Modular verification of multithreaded programs.
Theoretical Computer Science, 338(1/3):153–183, 2005.

[10] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification, second edition. Addison-
Wesley, Reading, MA, 2000.

[11] A. Hejlsberg, S. Wiltamuth, and P. Golde. C# Language Specification. Addison-Wesley, Reading, MA,
2003.

[12] C. A. Middelburg. An alternative formulation of operational conservativity with binding terms. Journal
of Logic and Algebraic Programming, 55(1/2):1–19, 2003.

[13] M. B. van der Zwaag. Personal communication, 2006.

Received September 26, 2005, and in revised form April 4, 2006, and in final form August 29, 2006.
Online publication April 20, 2007.

