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ABSTRACT

In this paper we study the problem of how resilient netwonies a
to node faults. Specifically, we investigate the questiorhai/
many faults a network can sustain so that it still containargd
(i.e. linear-sized) connected component that still has@pmately
the same expansion as the original fault-free network. fisnte
apply a pruning technique which culls away parts of the fanéit-
work which have poor expansion. This technique can be appie
both adversarial faults and to random faults. For adveaktailts
we prove that for every network with expansion a large con-
nected component with basically the same expansion as itjie or
nal network exists for up to a constant timesn faults. This result
is tight in the sense that every graphof sizen and uniform ex-
pansiona(-), i.e. G has an expansion @f(n) and every subgraph
G’ of sizem of G has an expansion @(a(m)), can be broken
into sublinear components with(«(n) - n) faults.

For random faults we observe that the situation is signifigan
different, because in this case the expansion of a graphgiviys
a very weak bound on its resilience to random faults. Morei§pe
ically, there are networks of uniform expansiai{(/n) that are
resilient against a constant fault probability but there @so net-
works of uniform expansiof2(1/ log n) that are not resilient again-
st aO(1/logn) fault probability. Thus, a different parameter is
needed. For this we introduce thpanof a graph which allows
us to determine the maximum fault probability in a much bette

d-dimensional meshes.

Categories and Subject Descriptors
C.2 [Computer Systems Organizatiof: Computer Communica-

tion Networks; G.2.2flathematics of Computing]: Discrete Math-
ematics—Graph Theory

General Terms
Theory, Reliability

Keywords

faulty networks, expansiom-dimensional mesh, random faults

1. INTRODUCTION

Communication in faulty networks is a classical field in netiv
theory. In practice, one cannot expect nodes or commuaitati
links to work without complications. Software or hardwaaeilfs
(or phenomena outside the control of a network operator asch
caterpillars) may cause nodes or links to go down. To be able t
adapt to faults without a serious degradation of the servrie¢
works and routing protocols have to be set up so that theyaait f

way than the expansion can. We use the span to show the firsttolerant. Fault-tolerant routing has recently attainemkeveed in-

known results for the effect of random faults on the expansib
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terest due to the tremendous rise in popularity of mobiléaa-
networks and peer-to-peer networks. In these network#isface
actually not an exception but a frequently occurring evamtno-
bile ad-hoc networks, users may run out of battery power or ma
move out of reach of others, and in peer-to-peer networlexsus
may leave without notice.

Central questions in the theoretical area of faulty netedr&ve
been:

e How many faults can a network sustain so that the size of its
largest connected component is still a constant fractighef
original size?

e How many faults can a network sustain so that it can still
emulate its ideal counterpart with constant slowdown?

The first question has been heavily studied in the graph yheor
community, and the second question has been investigatstlymo
by the parallel computing community to find out up to whichroi
a faulty parallel computer can still emulate an ideal patalbm-
puter with the same topology with constant slowdown. Werrefe
the reader td[27] for a survey of results in these areas.
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1.1 Largeconnected componentsin faulty net-
works

We start with an overview of previous results for random t&ul
and afterwards consider adversarial faults.

Given a graphG and a probability valug, let GP) be the ran-
dom graph obtained fror& by keeping each edge 6f alive with
probability p (i.e. p is thesurvival probability. Given a graplG,
lety(G) € [0, 1] be the fraction of nodes @F contained in a largest
connected component.

LetG = {G. | n € IN} be any family of graphs with parameter
n. Let p™ be thecritical probability for the existence of a linear-
sized connected component. |.e. for every constant0 it holds:

1. For everyp > (1 + ¢)p* there exists a constant> 0 with
limy, o0 Pr[y(GP) > ] = 1.

2. For all constants > 0 and for allp < (1 —¢)p™ it holds that
limy s oo Pr[’y(Gﬁf’)) >c] =0.

Of course, it is not obvious whether critical probabilitiesist.
However, the results by Erdés and Rérvil[10] and its sulrsei
improvements (e.gl.]5.221]) imply that for the complete drapn
nodesp™ = 1/(n — 1), and that for a random graph with- n/2
edges,p* = 1/d. For the 2-dimensionak x n-mesh, Kesten
showed thap™ = 1/2 [L6]. Ajtai, Komlds and Szemerédi proved
that for the hypercube of dimension p* = 1/n [1]. For then-
dimensional butterfly network, Karlin, Nelson and Tamalowhd
that0.337 < p* < 0.436 [15]. Leighton and Maggs117] showed
that there is an indirect constant-degree network conmgetiin-
puts withn outputs vialog n levels ofn nodes each, called multi-
butterfly, that has the following property: Up to a constaautlf
probability it is still possible to find)(log n) length paths from a
constant fraction of the inputs to a constant fraction ofdhiputs.
Subsequently Cole, Maggs and Sitaranién [6] extended thidtre
for the butterfly.

Adversarial fault models have also been investigated. Hteig

and Maggsl[1i7] also showed that no matter how an adversanseho

into the largest connected component of a faulty networku#-fa
free network of the same size and kind. Ambeddingf a graph

G into a graphH maps the nodes @f to non-faulty nodes off and

the edges ofy to non-faulty paths inf. An embedding is called
staticif the mapping of the nodes and edges is fixed. Both static
and dynamic embeddings have been used. A good embedding is
one with minimum load, congestion, and dilation, where ltiasl

of an embedding is the maximum number of nodeg-ahat are
mapped to any single node &f, the congestiorof an embedding

is the maximum number of paths that pass through any edgé/,

and thedilation of an embedding is the length of the longest path.
The load, congestion, and dilation of the embedding detezrtiie

time required to emulate each step@fon H. In fact, Leighton,
Maggs, and Rao have shown]18] that if there is an embedding of
G into H with load ¢, congestionc, and dilationd, then H can
emulate any communication step (and also computation ste@)

with slowdownO(? + ¢ + d).

When demanding a constant slowdown, only a few results are
known so far. In the case of worst-case faults, it was shown by
Leighton, Maggs and Sitaraman (using dynamic embeddiagestr
gies) that am-input butterfly withn!~¢ worst-case faults (for any
constante) can still emulate a fault-free butterfly of the same size
with only constant slowdowr [19]. Furthermore, Cole, Maggsl
Sitaraman showed that an< » mesh can sustain up td —¢ worst-
case faults and still emulate a fault-free mesh of the saneevgith
(amortized) constant slowdowhl[7]. It seems that alsorthede
hypercube can even achieve a constant slowdown fof worst-
case faults, but so far only partial answers have been autdir®].

Random faults have also been studied. For example, Hastad,
Leighton and Newmarh[12] showed that if each edge of the hyper
cube fails independently with any constant probabjlity 1, then
the functioning parts of the hypercube can be reconfiguresihte
ulate the original hypercube with constant slowdown. Lugh
Maggs and Sitaraman [19] showed that a butterfly network ehos
nodes fail with some constant probabilitgan still emulate a fault-
free butterfly of the same size with slowdo@fi'>2” ™) Interest-

es f nodes to fail, there will be a connected component left in the Ngly in the conference version dfi[7], Cole, Maggs and 1itaan

multibutterfly with at least: — O(f) inputs and at least — O( f)
outputs. (In fact, one can even still route packets betwbkerirt-

claim that ann x n. mesh in which each node is faulty indepen-
dently with a constant fault probability is able to emulatialt-

puts and outputs in this component in almost the same amdunt o fré& mesh with a constant slowdowr [8]. The proof of thisrlai

time steps as in the ideal case.) Subsequently LeightongMaigd
Sitaraman[[19] extended this result for the butterfly.

Upfal [28], following up on work by Dwork et. al[]9] and Alon
and ChungllR], showed that there is also a direct constagrede

which is stronger than the theorem we prove aboutithen mesh
in this paper, is omitted ir .[8] and has not appeared elsesvtter
the best of our knowledge.

For a list of further references concerning embeddings wf-fa

network onn nodes, a so-called expander, that has the property: no fré€ into faulty networks see the paper by Leighton, Maggs an

matter how an adversary choosgsodes to fail, there will be a
connected component left in it with at least- O(f) nodes. Both
results are optimal up to constants. Upfal uses a prunirmiqae
to achieve his bound which is similar in spirit to the one we.us
Apart from the fact that Upfal gives a polynomial-time aligiom
for pruning while we do not, the important difference wortbt-n
ing is that Upfal’s pruning does not guarantee a large corapoof
good expansion. In fact, to the best of our knowledge thermis
known constant approximation algorithm to determine thaaex
sion of a graph of unknown topology.

1.2 Simulation of fault-free networks by faulty
networks

Next we look at the problem of simulating fault-free netwsork
by faulty networks. Consider the situation that there caméo

Sitaraman[[19].

1.3 Our approach

The two common approaches — connectivity and emulation of
fault-free by faulty networks — are too extreme for many picat
applications. Knowing how long a network is still connectedy
not be very useful, because in extreme cases (just a singledin-
nects one half to the other) the speed of communication may be
reduced to a crawl, making it useless for applications teatna
fast interaction or a large bandwidth such as interactivaigg or
video conferences. On the other hand, emulating a faultrfete
work on a faulty network is like using a giant hammer to crack a
lesser nut, so to speak. Emulation may not be needed whereall w
want is reduced congestion or good expansion.

Applications in ad-hoc networks or peer-to-peer systernsliys

f worst-case node faults in the system at any time. One way to do not care about how a network is connected, concerning-them

check whether the largest remaining component still alleffis
cient communication is to check whether it is possible to ednb

selves instead with whether it still provides sufficient ¢hardth
and ensures sufficiently small delays. In this scenario seemale-



vant question is: Consider a grapliz = (V, E). LetU C V be any subset of
nodes.U is defined to beeompactif and only if U andV \ U are

How many faults can a network sustain so that it still connected inG. Let/ be the set of all compact sets 6f Let
contains a network of at least a constant fraction of P(U) be the smallest tree if which connects every node IU)
its original size that still has approximately the same (i.e. it essentially spans the boundaryld¥. Note that the set of
expansion? nodes inP(U) need not be front/ alone or fromV \ U alone.
Then thespanof a graph is defined as:
Knowing an answer to this question would have many useful
conse istri i = { [P(O)] }
qguences for distributed data management, routinhdisn @)
tributed computing. Research on load balancing has shoatrifth veu | MU
the expansion basically stays the same, the ability of aorktto The span helps us characterize the resilience of the expatsi
balance single-commaodity or multi-commodity load badjcstiays random faults. We show that a graph with maximum degraad
the same, and this ability can be exploited through simptallal- spano can tolerate a fault probability up to a constant tingesand
gorithms [1138]. Also, the ability of a network to route imfisation still retain an expansion within a factor é6fof its original expan-
is preserved because it is closely related to its expan@@j Fur- sion.
thermore, as long as the original network still has a largeeoted We also show that thé-dimensional meshes have constant span.
component of almost the same expansion, one can still achiev The proof of this theorem is of independent value as it efstadb
most everywhere agreement which is an important prereqdisi an interesting property of thédimensional mesh: The boundary
fundamental primitives such as atomic broadcast, Byzartgree- of any set of connected vertices in ttielimensional mesh, whose
ment, and clock synchronizationl [9.128, 4]. complement is also connected, can be spanned by a tree dftsize
Many different fault models have been studied in the litenmet most twice the size of the boundary.

faults may be permanent or transient, nodes and/or edgebnealy .

down, and faults may happen at random or may be caused by an ad-l-5 Outline of the paper

versary or attacker. The former faults are cali@ddom faultsand The rest of the paper is organized as follows: In Sedfion 2 we
the latter faults are calleddversarial faults We will concentrate consider adversarial faults, and in Sectidn 3 we considedtai

on situations in which there are static node faults, i.e.esceither faults. The paper ends in Sectith 4 with a discussion of how ou
break down randomly or due to some adversary. For advelrsaria results are related to previous research and some opereprsbl
faults, we will consider the node expansion of a graph, anddio-

dom faults we will use the edge expansion of a graph. 2. ADVERSARIAL FAULTS

Given a graphtz = (V, E) and a subset/ C V/, the (node) In this section we prove the existence of a large connected co
expansiorof U is defined as ponent with good expansion in a graph with faulty nodes. We as
T(U)] sume that a malicious adversary decides which nodes argy.faul
o(U) = U] More formally, we are given a network = (V, E) with n nodes
and vertex expansion. An adversary gives us a faulty version of
whereI'(U) is the set of nodes ifv \ U that have an edge from  this network, called7, with f faulty nodes removed. We will

U and|S| denotes the size of sét The(node) expansionf G is show that there exists a subnetwork @ called H which has
defined agy = miny, |y |<|v|/2 a(U). O(n) nodes and has an expansion®fa) provided that the ad-
Similarly, the edge expansion 6f is defined as: versary is given no more thab(« - n) faults.
We cannot argue that the expansiorfis no more than a con-
Qe = min {M} stant factor less tham for the simple reason that the adversary can
vev | min{[U|, [V \U[} create bottlenecks in the network. However, we describeyatova

find a large connected component®jf with the required proper-
ties using an algorithm calledrune described in FigurEl1. Note
that the running time oPruneis not necessarily polynomial, nor

where(U, V' \ U) denotes the set of edges with one endpoirit'in
and the other iV \ U.

1.4 Our main results are we claiming it is.Prunesimply helps us prove an existential
result.
Adversarial faults Before we get to the algorithm we need to introduce some nota-

] tion. We defind’(.S) to be the set of nodes in the neighbourhood of
We give general upper and lower bounds for the number of node 5 supnetworkS. The algorithm generates a sequence of graghs

faults a graph can sustain so that it still has a large comyianith to G'm. We now present the algorithm and state the main theorem
basically the same expansion, where the bounds are tighd Bp t  of this subsection.

constant factor. More specifically, we show that the numlhede

versarial node faults a graph with node expansioandrn nodes ~ THEOREM 2.1. Given a networki with n nodes, node expan-
can sustain, with only a constant factor decrease in itsresipa, siona and f faulty ”09525 chosen by an a}dversary, for any constant
is a constant timea - n. For graphs3 of sizen and uniform ex- ksuchthat > 2and=L < 2, Prune( — ;) returns a subnetwork

pansiona(-), i.e. G has an expansion ef(n) and every subgraph  H of at least size: — % with expansion(1 — 1) - a.

G’ of sizem of G has an expansion @¥(«(m)), this result is best

possible up to constant factors. PROOF. DenoteGi; \ H asS. S is thus the union of all the
regions culled byPrune To prove the result we will first show that
Random faults the size ofS is bounded by%. To show this we will use the fact
We also study random faults. Our main contribution here &ip that the number of faults required to cull a region is proiposl to
gest a new parameter for their study, which may be of indepr@ind  the size of the region. To demonstrate that we need the finipw
interest. lemma.



AlgorithmPruneg)
1. Go+ Gy, i+ 0
while 35; C G; such thafI’'(

N

Si)| < a-e-|S;|and|S;| <

G| /2
3 Git1+ G\ S;
4 14 1+4+1
5. end while
6: H<+ G;; m<+1
Figure 1: The pruning algorithm
LEMMA 2.2
1
Pl S)|< D IS <a(1- E)'USZ"

0<i<j 0<i<j 0<i<j

PrROOF Consider the first inequality. Obviously, any node that
lies in the neighborhood qfJ; S; must lie in the neighborhood of
somesS;. Thereforel'(|J, S:) € U, T'(S:). Hence the first in-
equality. Each se$; that is culled byPrune(l — ) has the prop-
erty that|I'(S:)| < a- (1 — 1) - |Si|. Since the setS are disjoint,
>, 18i] = U, Si|. Hence the second inequality]

We will show thatS < % by contradiction. Let, if possible,
S > % Since at every iteration of the algorithm we pick .&n
which is the smaller side of the cut we have found, e8glis at
mostn /2 in size. Now, smcé’“— < 7. there is g such that either
< ’U0<i<j i| < n/2o0rS; such thatt:l < |S;| < n/2. So

we can always choose @i C S such thatl < [S’| < n/2. In
either case, from Lemnia2.2, we have:

N(§)<a-(1- —) Sl

We know that inGG, |T'(S’)] is at leastx - |S’|. Hence, the number
of faulty nodes inS”’s neighborhood must be at leastl — (1 —
1)) - |S’| i.e. greater tham - + - 2L j.e. greater tharf. Since
the total number of faults allowed to the adversary is at rttuist
number, we have a contradiction. Henégjis at least, — £ in

size and has expansion at leést- 1) - a. O

The result given in Theoref2.1 is the best possible up to con-

stant factors. To prove this we will first show that for every> 0
smaller than some constant there is an infinite family of ksap
which disintegrate into sublinear components on removinges
¢+ a - n vertices where is the number of nodes in the given graph

andc is some constant. Then we show that Thedterh 2.1 is also the

best possible up to constant factors for arbitrary graphsdbrm
expansion.

THEOREM 2.3. There exists a constat such that, given any
a < (3, there is an infinite family of graphs with expansiarfor
which there is an adversarial selection of « - n faulty nodes
causing the graph to break into sublinear components, whege
the number of nodes in the graph ané an appropriately chosen
constant.

PROOF To construct this family of graphs let us considén)
to be an infinite family of expander graphs with constant espan
[ and constant degree

For eachG € G(n), construct a graphtZ, which is a copy of
G with each edge replaced by a chainkafiodes, wheré: is even.
ThenH has®2* 4+ n = O(k - n) nodes.

CLAIM 2.4. Graph H has expansio®( ;).

PROOF Take any subséf of nodes inH representing original
nodes inG and letU’ be the set resulting frory by adding the
k/2 nearest nodes of each chain a nod#&iis connected to. Then

U] = (3¢ +1) - |U| but T(U")| = |r<U>| <6+ |U|. Hence,
F( l)|
o U’ = | < 17

completing the proof of the claim.[]

Now, from each chain ok nodes we remove the central node.
Each component remaining has % nodes left, i.e. a sublinear
number, and the total number of nodes removegl is:, which is
% times the number of nodes in the graph.]

Recall that a grapldr of sizen is of uniform expansionx(-) if
the expansion of is a(n) and every subgrapt’ of sizem of G
has an expansion @(a(m)). This is the case for all well-known
classes of graphs. Consider, for example,thex m-mesh with
n = m? nodes and let(m) = /m. Its expansion approximately
\/n, and every subgraph of that mesh of sizehas an expansion
of O(y/m). Hence, it has a uniform expansion.

THEOREM 2.5. For every connected graph of sizeand uni-
form expansionx(z) there is an adversarial selection af a(n) -
n) faulty nodes that causes the graph to break into sublinear-co
ponents.

PROOF Let G = (V, E) be any graph of uniform expansion
a(z) that consists ofi nodes. Then there must be a 8t C V,
U] < n/2, so that|T'(U1)| < «(n) - |Ui]. RemovingI'(Uy)
leavesG with a setVy = {V’,V"} of two node setsy’ = U and
V" =V \ (U UT'(Uy)). LetV; be a setin; of maximum size. It
follows from the uniformity ofG that there must be a sét C V4,
|U2| < |Vi|/2, so that)l'(U2)| w.r.t. G(V1) is O(a(|Vi])) - |Uz|.
RemovingU- results in a new sabs of sets of nodes in which is
replaced by, andV; \ (U2 UT'(Uz)). We continue to take a node
setV; of largest size out oP; and remove nodes at the minimum
expansion part ii7(V;) until there is no subset iw; left of size at
leasten.

Our goal is to show that this process only remo@(éw .
a(n) - n) nodes fromG. If this is true, the theorem would follow
immediately. We prove the bound with a charging strategychEa
time a setV; is selected fronV;, we charge all nodes iR(U;1)
taken away froni/; to the nodes if/; 1. Since

(V)] = Ofa(en)) 10| = O (2L 0

for anya(z) > 1/x, this means that every nodelih; is charged
with a value ofO(¢~* - a(n)). Every node can be charged at most
log(1/¢) times because each time a node is charged, it ends up in
a node sel;4 that is at most half as large a3, and we stop
splitting a node set once it is of size less than Hence, at the
end, every node ifi’ is charged with a value @b (22129 . o(n)).
Summing up over all nodes, the total charge is

0 (L) 1)

which represents the number of nodes that have been remmaad f
the graph.



3. RANDOM FAULTS

We now direct our attention to the case of random faults. We

3.2 Extracting a subnetwork of sizee(») and
edge expansiom(a.)

assume that each node in the network can independently lgecom  We are given a network’ = (V, E) with n nodes, edge expan-

faulty with a given probabilityp.

3.1 Random faults aren’t (always) easier to
handle

Intuitively it appears that in general this situation migbteasier
to handle since there is no malicious adversarial inteninioetine
distribution of node failures. But, in general this does se¢m to
be true. We begin this section by showing that there are fesnil
of graphs for which a fault probability @ («) causes the graph to
disintegrate into sublinear fragments, wherés the node expan-
sion of the graph. In other words, in these graphgmn) random
node failures can be catastrophic: they don't even allovwodsd
a linear sized connected component, hence making it impegsi
find a linear sized connected component with good expansion.

To construct this family of graphs we begin with an infinitenfa
ily of constant degree expander graphs with a constant nquine
sion 8 and maximum degre& We denote this family a&'(n).

THEOREM 3.1. Given anyx < 3, there exists an infinite family
of graphs with node expansian for which a fault probability of
2199 . o causes the graph to disintegrate.

PROOF We use the family of graphs constructed in the proof of
TheorenfZRB, i.e. lef¥(n) be an infinite family of constant degree
expander graphs with constant expansiand degreé. Construct
a graph,H, which is a copy ofG with each edge replaced by a
chain ofk nodes. Graph hasO(k - n) nodes. From Claifi24
we know thatH has expansio@(%). Excercise 5.7 of 23] gives
us the following important property dff:

CLAIM 3.2. The number of connected subgraphstbiwith r
vertices fromG in them is at most - 62"

PROOF Any connected subgraph of sizeean be spanned by a
tree withr — 1 edges. This tree can be traversed by an Eulerian
tour in which each edge is used at most twice. Hence the spibgra
is represented by a walk along the graph of length at reoser-
tices fromG. Since the root can be one efvertices, the result
follows. O

Let the failure probability of the nodes ifi bep = 2122, Con-
sider any subgraph dff with » = Inn vertices fromG. The total
number of nodes in this subgraph is at méstk - » and at least
k - r. Hence, this particular subgraph survivesdnwith probabil-
ity at most(1 — p)*” < e~*"™P, By Claim[Z2 there are no more
thatn - 82" such components iff. Hence, the probability that such
a subgraph survives is at mast §°" - e F7P = p! 720 < L
Since with high probability there can be no connected syitgra
with size® (¢ - k Inn) in H which hask - n vertices and is a con-
stant, we conclude thdf breaks down into sublinear components
with high probability.

In the above construction, skt= (él for a givenae < B and
the theorem follows. [

However itisn't as if the expansion of the graph is a critjpaint
for all graphs. There are several important classes of greyblich
can sustain a much higher fault probability and still yieltingar
sized connected component with good expansion.

sion a. and graph spaa. Let us call the faulty version of this
networkGy. We want to find a networll C G of size©(n)
with edge expansio®(a.). Leti/ be the set of all compact sets
of G. Note that a set is compact if both it and its complement are
connected. We will use the notion efige expansioim this section.

LEMMA 3.3.If S C G is connected andlS| < n/2 then there
exists a compact séf (S) in G whose edge expansion is no more
than S's edge expansion.

PROOF If S € U thenKg(S) is simplyS. If S ¢ U, G\
S is not connected. Lef(S) be the set of maximal connected
subgraphs of7 \ S. LetI'.(-) be the set of edges leaving a set.
It is clear thatC(S) C U (if not then they are not maximal). We
consider two cases.
Case 1:There is aC' € C(S) with |C| > n/2.
ThenG\C eU,SCG\C,|G\C| <n/2,andl'.(G\ C) C
I'e(S). Hence,G \ C has an edge expansion less tiis edge
expansion. Sak¢(S) = G\ C.
Case 2:ForallC € C(S5), |C| < n/2.
If any of the connected components@dQS) has a an edge expan-
sion less tharb’s then let that component b€ (.S). If not, then
all components”; € C(S) have an edge expansion strictly larger

thanS's, i.e. for alli, T£L5) > LelB) But, T (Ui Cy) = Te(S).
Hence,|S| > |G \ S|, which is a contradiction. Therefore, one of
theC;'s must have an edge expansion less than or equ#stedge

expansion. [

Algorithm Prune2¢)

1. Go+ Gy, i+ 0
and|S;| < |G;|/2 andsS; is connected
3 K; + Kci (SL)
4 Gi+1 — G \ K;
5: 11+ 1
6
7

N

end while

Figure 2: The pruning algorithm

We use notation from algorithiRrune2in the proof and state-
ment of theorerfi 314.

THEOREM 3.4. Prunez) returns a subnetwork of size|H| >
n/2 with edge expansioa- . with high probability, provided that

2, 0] 3 n .
edge expansiony. > % fault probability,p < 5

o . 1
degradation in expansion, < 5.

and

PROOFR Let7T = G\ H. HenceT is the union of all the culled
regions. To prove the result we will show that with high proiba
ity the size of T is not more tham/2. Let {T1,T>,...,T;} be
maximal connected componentspf

CLAIM 3.5.VT; € T, T; is compact inGy.



PROOF Supposel; is not compact irGy. Select the largest
such thatl; is not compact irG; andT; C Gj;. (i.e. no part off;
has been culled yet, which means thgt, ; is well-defined.) Let
us consider two cases:

Case 1.T; C Gj+1

This means thaf; must be compact iii7;41 elsej could have
been one higher. So, we ha¥eomponents iti7;, namely: K ;, T;
andGj41 \ T;. SinceT; is noncompact irG;, the neighborhood
of K; in G; is wholly in T;. SinceKj; is disjoint with T3, T; is not
maximal. Contradiction.

Case 2.T; € Gj+1

This means thaf; and K; are not disjoint. Sincés; is a culled
set it must be wholly insid€7;, elseT; is not maximal.T; is not
compact inG;, soT; \ K is not compact irG;+1. We know that
T; \ K; will not be in H. Hence, all but one connected component
(the one that contain®) in G+1 \ T; must belong to/. Hence
T; is not maximal. Contradiction. (]

LetT'(-) andI'/(-) denote the node neighbourhoods in the fault-
less graph and the faulty graph respectively. It is easy ¢otilse
following inequalities:|T"(73)| > % and|TY (T3)| < aee|T3].
These two inequalities imply th#f’ (7;)| < €5|T'(T3)|. Note that
any setT; was culled byprune2because its edge neighbourhood
fell by a factor of more thaa.

The probability that the neighbourhood of some connectéd se
T; in the faulty graph went down froi(T;) to I'/ (1) is (for the
sake of brevityA := |T(T3)| — | (T3))):

D) ep|D(T3)\*
<|rf<Tz~>|>p ( A )

N ]
1—ed

Note that this is valid under the condition that+ 6 < 1. Itturns

out that we have flexibility in bounding these two terms. Wetva
to seted closest to 1 so that degradation in expansion is minimal.
Therefore, if the following inequalities hold:

A<

)

<

ed< s, ep<

92540’

N =

then the probability thaF; is culled byprune2is at mos$ —310(73)!
(this is an upperbound on the RHN 2).

PHT; is culled < 521" ("%

We enumerate two cases on the size of the neighbourho@sof
In case 1 we argue thatfa with a large neighbourhood is unlikely
with high probability. In case 2 we show that if &l}s have small
neighbourhoods then it is unlikely that|T;| is more thang with
high probability. So, in case 2 assume thLa}li:1 T;| > n/2. Let

k = 3logs n in the following cases:

Case 1:3i, |I'(T3)| > k.

We know from before that the probability that a given comsaitt-
graphT; is culled is at moss 37Tl We multiply this proba-
bility with the number of ways of choosing such a subgraphisTh
gives us the probability that there isTa with such a large neigh-
bourhood. Each compact subgraph has its correspondinméeri
ter. Therefore, the number of compact subgraphs with baynda
|T'(T3)| is at most the number @f - |T'(T;)| sized spanning trees in
the graph. This is at most - 627" (7| Note that by definition,

o > 1. Hence,

PAIT,, [D(T))| > k] <Y n- 827572
t=k

n?.s7k <

IN
S|

Case 2:Vi, [D(T})| < k.

PT; is culled < 63 1"T)l < 53

T;s are disjoint by definition. Som&; andT; might share a bad
node in their neighbourhood leading to a dependency bettheem

But we do know that since the perimeter of edglis at mostk — 1,

the maximum degree of the dependency graph betweem;this

0 - (k — 1). Hence the dependency graph can be coloured with
d-(k—1)+1<4-kcolours.

We know that Ui-:1 T;| > n/2. Hence there has to be a colour
class in the colouring of the dependency graph, let us adJlstich
that theT’s in that colour class contain at leag}; nodes.

T3] < ’;—f Hence, the number of distings inC has to be at
least 352>, We know that thel;s in C are independent of each
other. We set a bound om. such that this probability becomes

2 1.3
small. Letore > 205
n

PiVT; : Tiis bad < PiVT; € C : T; is bad
1

n

3ae-n .
<6TzaR? <5<

Prinodes pruned> n/2] < PriCase 1+ Prf{Case 2 < %
O
3.3 Span of the mesh

THEOREM 3.6. Thed-dimensional mesh has span

PROOF. Consider a compact sét in the d-dimensional mesh
M. Let B be the boundary nodds(S). We place virtual edges
between nodes if3. Two distinct nodes: = (uo, . ..uq—1) and
v = (vo,...vq—1) have a virtual edge between thenif — u;| =
0 for at leastd — 2 of its dimensions anfb; — u;| < 1 for the rest.
Call the set of such virtual edgéds,. In Lemmd3J, stated below,
we claim that the graplB, E,) is connected. Therefore, we can
find a spanning tree faB which has exactlyB| — 1 virtual edges.
Since each edge iR, can be simulated by exactly 2 edgesidf
we can say that there is a spanning treéinfor the nodes ofB
with at most2 - (|B| — 1) edges. [

LEMMA 3.7. LetS c Z¢ be a finite compact set, & be the
boundary node¥'(S), and letE, be the set of virtual edges. Then
the graph(B, E,) is connected.

PrROOF We will show that for any two points andv in B,
there is a path in&, connecting the two; if this can be done for
every two points, the® is connected as we hope to prove.

Our proof uses some basic and standard homology theorylof cel
complexes, which can be found in any introductory topolaat;t
for instance, seé [13]. Specifically, we use tfiehomology ofd-
dimensional Euclidean spade’. We partitionR? into a complex
of unit hypercube cells having the points Bf as their vertices.
Eachd-dimensional unit hypercube cell has as its boundary a set



of 2d (d — 1)-dimensional unit hypercube facets, again hawf{g

as vertices, and so on. In this complexk&hain is defined to

be any finite set ofk-dimensional unit hypercubes having points
of Z¢ as vertices. The boundary oftachainC is the symmetric
difference of the boundaries of its hypercubes; that is the set

of (k — 1)-dimensional hypercubes that are on the boundary of
an odd number of thé-dimensional hypercubes ifi. A k-cycle

is defined to be &-chain that has an empty boundary, and-a
boundaryis defined to be &-chain that is the boundary of some
(k + 1)-chain. For quite general classes of cell complexes in more
complicated topological spaces th&f, everyk-boundary is &-
cycle, but inR%, the reverse is also known to be true: evergycle

is ak-boundary.

Now, givenu andwv, sincesS is connected we can find a path
connectingu to v by a sequence of adjacent pointsin We also
find an edgee; connectingu to an adjacent point of¢ outside
S, an edgees connectingy to an adjacent point af? outsides,
and a pathpz connecting these two exterior points by a sequence
of adjacent points outsid8 (since the complement &f is con-
nected). The union g1, p2, and{e1, ez} forms a 1-chain in the
cubical complex described above. Moreover, this is a legymb-
cause it has degree two at every vertex it touches. Theretore
is the boundary of a 2-chai@; that is,C is a set of squares and
p1 Up2 U{e1,e2} is the set of edges in the cubical complex that
touch odd numbers of squares@h

Next, letU be the subset d&“ formed by a union of axis-aligned
unit hypercubes, one for each membeiSpfind having that mem-
ber as its centroid; note that these hypercubes do not htegein
vertices. LetB be the boundary facets 6f; B consists of a collec-
tion of (d — 1)-dimensional unit hypercubes that again do not have
integer vertices. Finally, lef = BN C.

Whenever a squareof C' and a(d—1)-dimensional hypercuble
of G meet, they do so in a line segment of lengft2, that connects
the centroid ofi (where it is crossed by one edge of the square) to
the centroid of one of its boundafy — 2)-dimensional hypercubes.
ThusG, the union of these line segments, can be viewed as a graph
that connects vertices at these points. The degree of acadrthe
centroid ofh is equal to the number of squares@that touch that
point, and the degree of the other vertices can only be twour f
depending on which of the four vertices of the square defittieg
vertex is interior taUJ.

Since the boundary of' crossesB only on the two edges:
andez, these two crossing points have odd degree and all the other
vertices ofG have even degree. Any connected component of any
graph must have an even number of odd-degree vertices, sedhe
odd verticeg; N B ande2 N B must belong to the same component
and can be connected by a pathin G.

Each lengtht /2 segment ofps belongs to the boundary of a
single hypercube i/, which has as its centroid a point 8. Let
p4 be the sequence of centroids corresponding to the sequénce o
edges inps. Thenp, starts atu, and ends av. Further, at each
step from one edge ip4, either the current point i does not
change, or it changes from one point #hto an adjacent point
(when the corresponding pair of edgeginform a180° angle on
two adjoining hypercubes), or it changes from one poinBirio
a point at distance/2 away (when the corresponding edgein
form a270° angle across a concavity on the boundary/of

So, we have constructed a pathApn between an arbitrarily cho-
sen pair of pointas, v in B, and therefore the grapiB, E.,) is
connected. [

Theoren3Fb implies that thédimensional mesh can sustain a
fault probability inversely polynomial il and still have a large
component whose expansion is no more than a factarwérse

than the original.

4. CONCLUSION

In this paper we presented a general technique for determin-
ing the robustness of the expansion of different networkh far
adversarial and random faults. For random faults we haveecom
up with a new parameter, the span, which allows us to prove a
strong result regarding the robustness of high dimensimeshes.
Among other things, this result can provide useful insigtits the
working of peer-to-peer networks like CAN[25] which behave
like a d-dimensional mesh in its steady state. Basically we have
shown that CAN can tolerate a fault probability which is irsady
polynomial in its dimension without losing too much in itspax-
sion properties.

For the 2-dimensional mesh our result is related to the line o
research followed by Raghaven24], Kaklamanis et.[al. frd
Mathies [22] who show that despite a constant fault progt{ibf
as high as 0.4) a mesh with random failures can emulate affealt
mesh using paths with stretch factor at mé§togn). Since the
distance of nodes in a graph of expansiois O(a~* logn) [20],
our technique gives essentially the same result albeit avitiwer
fault probability. Additionally for meshes of constant dinsion
greater than 2 our results implylog n) dilation for path lengths,
and hence a way to generalize these earlier results to hilynen-
sions.

The strength of our technique is that it is able to yield ressiar
the 2-dimensional mesh which are comparable to previougtses
while giving new results for higher dimensional meshes amd p
viding a general method suitable for analyzing any netwohkse
span can be estimated.

Open problems

We conjecture that the butterfly, shuffle-exchange, and wgBr
network all have a span @(1), which means that they can tol-
erate a constant fault probability. Though the span mayigeov
tight results for these networks, the exponential depenydehthe
fault probability on the span does not really give usefulitssif

the span is beyontbg n. Hence, either a better dependency result
is needed or a parameter better than the span is neededlyClear
as mentioned in the introduction, having a parameter thaacau-
rately describe the fault tolerance of graphs w.r.t. exjpsnsnder
random faults would be very useful for many applications.
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