Theory Comput Syst (2008) 43: 204-233
DOI 10.1007/s00224-007-9025-6

On Short Paths Interdiction Problems: Total and
Node-Wise Limited Interdiction

Leonid Khachiyan - Endre Boros - Konrad Borys -
Khaled Elbassioni - Vladimir Gurvich -
Gabor Rudolf - Jihui Zhao

Published online: 10 July 2007
© Springer Science+Business Media, LLC 2007

Abstract Given a directed graph G = (V, A) with a non-negative weight (length)
function on its arcs w : A — R, and two terminals s, # € V, our goal is to destroy all
short directed paths from s to ¢ in G by eliminating some arcs of A. This is known as
the short paths interdiction problem. We consider several versions of it, and in each
case analyze two subcases: fotal limited interdiction, when a fixed number k of arcs
can be removed, and node-wise limited interdiction, when for each node v € V afixed
number k(v) of out-going arcs can be removed. Our results indicate that the latter sub-
case is always easier than the former one. In particular, we show that the short paths

This research was supported in part by NSF grant IIS-0118635 and by DIMACS, the NSF Center for
Discrete Mathematics & Theoretical Computer Science. Preprints DTR-2005-04 and DTR-2006-13

are available at http://dimacs.rutgers.edu/TechnicalReports/2005.html and
http://dimacs.rutgers.edu/TechnicalReports/2006/html.
Our co-author Leonid Khachiyan passed away with tragic suddenness on April 29th, 2005.

E. Boros () - K. Borys - V. Gurvich - G. Rudolf
RUTCOR, Rutgers University, 640 Bartholomew Road, Piscataway, NJ 08854, USA
e-mail: boros @rutcor.rutgers.edu

K. Borys
e-mail: kborys @rutcor.rutgers.edu

V. Gurvich
e-mail: gurvich@rutcor.rutgers.edu

G. Rudolf
e-mail: grudolf @rutcor.rutgers.edu

K. Elbassioni
Max-Planck-Institiit fiir Informatik, Saarbriicken, Germany
e-mail: elbassio@mpi-sb.mpg.de

J. Zhao

Department of Computer Science, Rutgers University, 110 Frelinghuysen Road, Piscataway,
NJ 08854, USA

e-mail: zhaojih@cs.rutgers.edu

@ Springer

Theory Comput Syst (2008) 43: 204-233 205

node-wise interdiction problem can be efficiently solved by an extension of Dijkstra’s
algorithm. In contrast, the short paths total interdiction problem is known to be NP-
hard. We strengthen this hardness result by deriving the following inapproximability
bounds: Given k, it is NP-hard to approximate within a factor ¢ < 2 the maximum s—¢
distance d (s, t) obtainable by removing (at most) k arcs from G. Furthermore, given
d, it is NP-hard to approximate within a factor ¢ < 104/5 — 21 ~ 1.36 the minimum
number of arcs which has to be removed to guarantee d(s, t) > d. Finally, we also
show that the same inapproximability bounds hold for undirected graphs and/or node
elimination.

Keywords Approximation algorithm - Dijkstra’s algorithm - Most vital arcs
problem - Cyclic game - Maxmin mean cycle - Minimal vertex cover - Network
inhibition - Network interdiction

1 Introduction
1.1 Node-Wise Limited Interdiction

Let G = (V, A) be a directed graph (digraph) with given arc-weights w(e), e € A.
For each vertex v € V, we are allowed to delete (remove, block, interdict) a subset
X (v) of the arcs A(v) ={e € A | e = (v, u)} leaving v. We assume that these arc-sets
X (v) C A(v) are selected for all vertices v € V independently, and we call the collec-
tion B(v) of all admissible arc-sets X (v) a blocking system at v. We also assume that
for each v, the family B(v) forms an independence system, i.e., if X (v) € B(v) is an
admissible arc-set at v, then so is any subset of X (v). Hence, we could replace B(v)
by the collection of all inclusion-wise maximal admissible arc-sets. In general, we
will only assume that the blocking system B(v) is given by a membership oracle O:

(Bp) Given a list X (v) of out-going arcs for some vertex v, the oracle can deter-
mine whether or not the set of arcs in the list belong to 5(v) and hence can be
simultaneously deleted.

A similar formalization of blocking sets via membership oracles is used by Pisaruk
[33]. We will also consider two special types of blocking systems:

(B1) The blocking system is given by a function k(v) : V — Z,, where k(v) <
|A(v)| = out-deg(v). For each vertex v, we can delete any collection of (at
most) k(v) arcs leaving v. The numbers k(v) define digraphs with prohibitions
considered by Karzanov and Lebedev [27].

(By) There are two types of vertices: control vertices, where we can select any out-
going arc e € A(v) and block all the remaining arcs in A(v), and regular ver-
tices, where we can block no arc. This case, considered in [6, 20], is a special
case of By: k(v) = |A(v)| — 1 for control vertices, and k(v) = 0 otherwise.

We call a digraph G’ = (V, A’) admissible for G = (V, A) if A’ C A is obtained by
deleting an admissible subset X (v) € B(v) of outgoing arcs for each vertex v € V.

@ Springer

206 Theory Comput Syst (2008) 43: 204-233

1.2 Interdiction of Directed Cycles

We proceed with an obvious observation. Let G = (V, A) be a directed graph (di-
graph) and our goal is to destroy all directed cycles in G. In this case the total limited
interdiction problem is stated as follows. Is it possible to destroy all directed cycles of
G by eliminating (at most) k arcs of A, or in other words, whether G has a feedback
arc set of size (at most) k? In 1972 Karp [25] proved that this decision problem is
NP-hard.

Node-wise limited cycle interdiction problem of type 31 can be stated as follows.
Is it possible to destroy all directed cycles in G by deleting for each node v € V (at
most) k(v) arcs going from v? This problem is trivial. Indeed, if k(v) < out-deg(v)
for each v € V then the answer is negative, since for each v € V at least one out-
going arc will remain and they will form a directed cycle, since G is finite. If k(v) >
out-deg(v) for a vertex v € V then obviously all out-going arcs from v should be
removed, since after this we can delete the node v itself together with all in-going
arcs. Repeating this simple procedure recursively we get a linear time algorithm for
the node-wise limited directed cycle interdiction problem. The above algorithm can
obviously be generalized for the interdiction of type By.

1.3 Interdiction of Negative Directed Cycles and Mean Payoff Games

Now let us assume that weights may be negative and consider the negative cycle
interdiction problem. Clearly, the total limited version of it is NP-hard, since if all
weights are negative then all directed cycles are negative too, and we obtain the pre-
vious NP-hard problem as a special case.

In contrast, the node-wise limited negative directed cycles interdiction is equiva-
lent to a famous open problem, solving mean payoff games, [10, 11, 20, 30, 31], that
is very unlikely NP-hard, since it is known to be in NP N co-NP, [27], and there is a
sub-exponential algorithm for it, [6] and [23].

A mean payoff game is a zero-sum game played by two players on a finite arc-
weighted digraph G all vertices of which have positive out-degrees, in other words,
there are no dead-ends in G. The vertices of G (positions) are partitioned into two
sets controlled by two players, who move a chip along the arcs of the digraph, starting
from a given vertex s € V (the initial position). A positional strategy of a player is a
mapping which assigns an out-going arc to each of his positions. If both players select
positional strategies then the sequence of moves (the play) starts in s and settles on
a simple directed cycle of G whose average arc-weight is called the effective payoff
corresponding to the selected strategies.

Ehrenfeucht and Mycielski [10, 11] and Moulin [30, 31] introduced mean payoff
games on bipartite digraphs and proved the existence of the value for such games
in positional strategies. Gurvich, Karzanov, and Khachiyan [20] extended this result
to arbitrary digraphs and suggested a potential-reduction algorithm to compute the
value and optimal positional strategies of the players. In many respects this algorithm
for mean payoff games is similar to the simplex method for linear programming.

Let us assume that the vertices assigned to the maximizing (respectively, to the
minimizing) player are controlled (respectively, regular) vertices for 3,. Then the de-
termination of an optimal positional strategy for the maximizing player reduces to

@ Springer

Theory Comput Syst (2008) 43: 204-233 207

computing a B-admissible digraph G = (V, A’) that maximizes the minimum aver-
age arc-cost for the cycles reachable from the initial position s. Beffara and Vorobyov
[4] report on computational experiments with the potential-reduction algorithm [20]
in which it was used to solve very large instances of mean payoff games. However,
for some special instances with exponentially large arc-weights, this algorithm may
require exponentially many steps [5, 20]. Interestingly, computational experiments
[5] seem to indicate that such hard instances become easily solvable if the game is
modified into an equivalent one by a random potential transformation.

Karzanov and Lebedev [27] extended the potential-reduction algorithm [20] to so-
called mean payoff games with prohibitions, that is to interdiction of type B;. Pisaruk
[33] further extended these results to interdiction of type By defined by an arbitrary
membership oracle, and showed that in this general setting, the potential-reduction
algorithm [20] is pseudo-polynomial. Zwick and Paterson [40] gave another pseudo-
polynomial algorithm for interdiction of type B;.

As mentioned above, mean payoff games can be reduced to the node-wise limited
negative directed cycles interdiction. Indeed, if we fix a start vertex s, then determin-
ing whether the value of a mean payoff game on G = (V, A) exceeds some threshold
& is equivalent to the following decision problem:

(&) Is there an admissible digraph G’ such that the average arc-weight of each cycle
reachable from s in G’ is at least £?

After the substitution w(e) — w(e) — &, for all e € A, we may assume without loss
of generality that £ = 0. This completes the reduction.

Bjorklund, Sandberg and Vorobyov [6] recently showed that mean payoff games
can be solved in expected sub-exponential time. A deterministic sub-exponential al-
gorithm, for solving an important special case, the so-called parity games, was pro-
posed by Jurdzinski, Paterson, and Zwick [23]. However, the question as to whether
this class of games can be solved in polynomial time remains open, even though the
decision problem (&) is in NP N co-NP [27, 40].

Finally, let us consider a special case when digraph G contains only one negative
arc, w(t,s) = —d, where d is a positive threshold. Let us also assume that, except
(¢, s), there is no other arc going from ¢ and that 3(¢) = @, or in other words, that (¢, s)
cannot be deleted. It is easy to see that in this case negative directed cycles of G are in
one-to-one correspondence with directed paths from s to ¢ that are shorter than d. So
we will destroy these paths rather than negative cycles. Since the arc (¢, s) becomes
irrelevant, we can delete it and get a network with non-negative weights. Thus, we
come to the short paths interdiction problem that is studied in the rest of the paper.
As usual, we consider two cases: total limited and node-wise limited interdiction.

1.4 Node-Wise Limited Short Paths Interdiction
Given a digraph G = (V, A) with a non-negative weight function w: A — R4, and a
blocking system B, find an admissible digraph G’ that maximizes the distance from
a given start vertex s to a given terminal vertex ¢:

£(s, 1) def max{s—t distance in G’ | G’ is an admissible digraph for G}.

@ Springer

208 Theory Comput Syst (2008) 43: 204-233

We will see from what follows that, for any fixed terminal vertex ¢ € V, we can
select an optimal admissible digraph that simultaneously maximizes the distances
from all start vertices s. In other words, there exists an admissible digraph G° such
that for all vertices v € V' \ {t}, we have

£(v,t) = v—t distance in G°.

For this reason, it is convenient to consider the single-destination version of the
above problem:

MASPNLAI (Maximizing all shortest paths to a given terminal by node-wise lim-
ited arc interdiction) Given an arc-weighted digraph G = (V, A), a non-negative
weight function w, a terminal vertex ¢t € V, and a blocking system B, find an
optimal admissible digraph G that maximizes the distances from all vertices
veV\{r}tor.

Let us remark however, that if we fix a start vertex s, instead of ¢, then distinct
terminal vertices may require distinct optimal admissible digraphs. For example, con-
sider a graph with three vertices s, #1, f» and two arcs, from s to both #; and #,. As-
sume further, that 3 allows to delete exactly one arc (going out form s). Clearly, to
maximize the distance s—t; (respectively, s—#») one has to delete the arc (s, 1) (re-
spectively, (s, t2)). The same happens if we consider in-going rather than out-going
arcs.

In Sect. 2 we show that MASPNLALI can be solved in strongly polynomial time
by a natural extension of Dijkstra’s algorithm.

Theorem 1 Given a digraph G = (V, A), a non-negative weight function w : A —
R, and a terminal vertext € V,

(1) The special case of problem MASPNLAI for blocking systems 31 can be solved
in time

(0] <|A| + |V|log|V|+ Z [out-deg(v) — k(v)]log(k(v) + 1)).
veV\(r}

In particular, for blocking systems By the problem can be solved in O(|A| +
|[V]log|V]) time;

(ii) For arbitrary blocking systems defined by membership oracles, MASPNLAI can
be solved in O(|A|log|V|) time and at most |A| monotonically increasing mem-
bership tests,

(iii)) When all of the arcs have unit weight, problem MASPNLAI can be solved in
O(|A| 4+ |V]) time and at most |A| monotonically increasing blocking tests. The
special cases B and By can be solved in O(|A| + |V]) time.

We show parts (ii) and (iii) of the theorem by using an extension of Dijkstra’s
algorithm and breadth-first search, respectively. As mentioned in the theorem, both
of these algorithms employ monotonically increasing membership queries and never
de-block a previously blocked arc. This is not the case with the variant of Dijkstra’s

@ Springer

Theory Comput Syst (2008) 43: 204-233 209

algorithm used in the proof of part (i). Note also that for blocks of type B and 5, the
above bounds include the blocking tests overhead, and that the bound stated in (i) for
B, is as good as the running time of the fastest currently known strongly-polynomial
algorithm by Fredman and Tarjan [12] for the standard shortest path problem, without
interdiction.

Let us also mention that by Theorem 1, problem MASPNLAI can be solved
in strongly polynomial time for any digraph G = (V, A) that has no directed cy-
cles of negative total arc-weight. Indeed, Gallai [14] proved that if G has no
negative cycles then all input arc-weights w(v, u) can be made non-negative by
a potential transformation w(v,u) — w(v,u) + ¢(v) — e(u), where ¢ : V. — R
are some vertex weights (potentials); see [1, 35]. Clearly, the total weights of
all directed cycles remain unchanged and the total weight of a directed path p
from s to ¢ is transformed as follows: w(p(s,t)) — w(p(s, 1)) + &(s) — &(t).
Hence, the sets of optimal arc blocks for MASPNLAI remain unchanged, too.
Karp [26] showed that such a potential transformation can be found in O(|A||V])
time.

We proceed with a negative observation. It is well known that the standard
shortest path problem is in NC, that is it can be efficiently solved in parallel.
In contrast, problem MASPNLALI is P-complete already for blocking systems of
type B, and acyclic digraphs G = (V, A) of out-degree 2. This is because de-
termining whether the blocking distance between a pair of vertices s,¢ is finite:
d(s,t) < 400 includes, as a special case, the well-known monotone circuit value
problem [18, 19].

1.5 Total Limited Short Paths Interdiction and Similar Problems

Given a digraph G = (V, A), terminals s, € V, a non-negative weight function w :
A — R, and two thresholds k € Z, and d € R, is it possible to remove k arcs
from A so that d(s,) > d in the remaining digraph? For any constant k this clearly
can be accomplished in polynomial time (see e.g., Corley and Shaw [8]), however, in
general the problem is NP-hard, as it was shown by Bar-Noy, Khuller, and Schieber
in [3]. In this paper we strengthen this result by deriving inapproximability bounds.
For a given k let us denote by £4(G, s, t, k) the maximum of d (s, ¢) over all digraphs
obtainable from G by deleting (at most) k arcs.

Theorem 2 [t is NP-hard to approximate £ 4 within a factor smaller than 2, even for
bipartite graphs.

Given a positive integer d, let us denote by b4 (G, s, t,d) the smallest integer k
such that d(s, t) > d after k appropriate arcs are deleted from G.

Theorem 3 Iz is NP-hard to approximate b within a factor smaller than 104/5 —
21 & 1.36, even for bipartite graphs.

@ Springer

210 Theory Comput Syst (2008) 43: 204-233

The inapproximability bound 10+/5 — 21 & 1.36 was recently obtained by Dinur
and Safra [9] for the Minimum Vertex Cover Problem in graphs improving the pre-
vious bound 7/6 ~ 1.17 given by Hastad [21]. In our proof we reduce the problem
from the Minimum Vertex Cover Problem.

We prove also that the same bounds 2 and 104/5 — 21 & 1.36 hold for undirected
graphs and/or vertex interdiction.

Clearly, the functions £4 and b4 establish an inverse connection between the dis-
tance d(s,t) and the number of deleted arcs k: the more arcs we delete, the higher
the distance between s and ¢. In some situations we might be interested to know
the tradeoff between the number of deleted arcs and the distance achieved. We can
however show that even this tradeoff cannot be approximated arbitrarily well, unless
P=NP.

Let us say that it is NP-hard to distinguish two disjoint subsets of (di)graphs, .4
and B, if no polynomial time algorithm can accept all graphs G € A and reject all
graphs G € 3, unless P = NP.

Theorem 4 For every fixed € > 0 it is NP-hard to distinguish graphs having d(s,t) >
d after the removal of some k arcs from those having d(s,t) < 2]Ted in all subgraphs

obtained by removing (% — €)k arcs, where d and k are part of the input.
1.6 Multiple Cuts

Let us next recall that similar sounding problems about multiple cuts can be solved
in polynomial time.

Given a directed graph G(V, A), two terminals s, € V, a subset A’ C A of the
arcs is called an £-cut, if any s—t directed path contains at least £ arcs from A’. Then,
the following problem can be solved in polynomial time:

M Given adigraph G = (V, A) with two distinguished vertices s, t € V and positive
integers k and ¢, determine whether there exists an £-cut A’ C A consisting of
(at most) k arcs.

Suppose without loss of generality that ¢ is reachable from s in G, and let A’
be an arbitrary £-cut, that is, |A’ N P| > £ for any s— path P C A. Then, denoting
by V; the set of vertices that can be reached from s by using at most i arcs from
A’, we conclude that A’ contains £ disjoint s—¢ cuts C; = cut(V;_q, (V; \ V;_1)) for
i=1,...,¢ where cut(V;_1, (V; \ Vi—1)) denotes the set of arcs of A’ connecting a
vertex of V;_; to a vertex of V; \ V;_1. Conversely, the union of any ¢ arc-disjoint s—¢
cuts is an £-cut separating ¢ from s. Hence problem M can be equivalently stated as
follows:

M’ Given a digraph G = (V, A), two distinguished vertices s,z € V, and positive
integers k and £, determine whether there exist £ arc-disjoint s—¢-cuts Cy, ..., Cy
such that |Cy| +--- + |C¢| <k.

The latter problem is polynomial. Moreover, Wagner [37] showed that its weighted
optimization version can be solved in strongly polynomial time.

@ Springer

Theory Comput Syst (2008) 43: 204-233 211

M, Given a digraph G = (V, A) with two distinguished vertices s, € V, a weight
function w : A — R, and a positive integer ¢, find £ arc-disjoint s, -cuts
Cy, ..., Cy of minimum total weight w(C1) + --- + w(Cy).

1.7 Network Interdiction and Its Applications

Problem MASPNLALI is a special (polynomially solvable) case of the so-called net-
work interdiction problem. Interdiction (or inhibition) is an attack on arcs to destroy
them, or increase their effective lengths, or decrease their capacities. The goal of
the interdiction is to utilize a given budget most efficiently, that is to maximize the
shortest path or minimize the maximum flow between two given terminals. These
problems were originally motivated by military applications, McMasters and Mustin
[29], Ghare, Montgomery, and Turner [16]. Later analogous models of pollution and
drug interdiction were developed by Wood and Washburn [38, 39]. The problem of
minimizing the maximum flow was considered by Phillips [32], while the maximiza-
tion of the shortest path was first studied by Fulkerson and Harding [13] and also by
Golden [17] (see Israeli and Wood [22] for a short survey). An important special case
of the latter problem is the so-called k-most-vital-arcs problem [2, 3, 8, 28] in which
it is allowed to destroy exactly k arcs. All the above mentioned problems are known
to be NP-hard, in general.

Problem MASPNLAI is the short paths interdiction problem under the assumption
that the budget is node-wise limited. This problem is polynomially solvable.

To illustrate possible applications of this polynomially solvable case, suppose that
for each arc e = (1, v) we are given a probability p(e) that some undesirable tran-
sition (for example, contraband smuggling) from u to v can be carried out unde-
tected. Then, assuming independence and letting w(e) = —log p(e) > 0, we can in-
terpret problem MASPNLALI as the uniform maximization of interception capabili-
ties for a given target ¢ under limited inspection resources distributed over the nodes
of G.

2 Proof of Theorem 1

We first describe an extension of Dijkstra’s algorithm for problem MASPNLALI that
uses blocking queues and may temporarily block and then de-block some arcs. This
extension, presented in Sect. 2.2, is used to show part (i) of Theorem 1. Then in
Sect. 2.4 we present another implementation of the extended algorithm to prove part
(i) of the theorem. Part (iii) is shown in Sect. 2.5.

2.1 Blocking Queues

Let B be a blocking (i.e. independence) system on a finite set A, for example on the
set A(v) of arcs leaving a given vertex v of G. Given a mapping p: A — R, and a
set Y C A, let

@ Springer

212 Theory Comput Syst (2008) 43: 204-233

Y)= i , 1
pi(Y) max eg{lxp(e) (D

where, as usual, it is assumed that the minimum over the empty set is +oo. For
instance, if Y = {ey, e2, 3, e4} and (p(e1), p(ez), p(e3), p(es)) = (1,3, 3,5), then

1, if{e)}¢B;
)3, if {e1} € Bbut {e1, ez, e3} ¢ B;
PBIYV=15" if{e) er e3) c Bbut ¥ ¢ B:
400, ifY eB.

Considering the image {p(e), e € Y} as a set of keys, we define a B-queue as a
data structure for maintaining a dynamic set of keys under the following operations:

1. Make_queue: Create an empty queue ¥ = (J;

2. Insert: Expand Y by adding a new element e with a given key value p(e);

3. Return pp(Y): Compute the right-hand side of (1) for the current key set. Note
that when the independence system is trivial, B = {{)}, we obtain the customary
definition of a minimum priority queue (modulo the operation delete-min which
is not needed in our application).

When B is a blocking system of type B, that is, X € B whenever |X| < k for
some given integer k < |A|, then

) [+ if Y] < k:
PBY) =0 (k + 1)% smallestkey of ¥, if [Y| >k + 1.

Hence, by maintaining a regular maximum priority queue of at most k + 1 elements
of A,

e A sequence of d > k queue operations for an initially empty Bj-queue can be
implemented to run in O (k 4 (d — k) log(k + 1)) time.

For general blocking systems 3, each 3-queue operation can be performed in
O (log|Y]) time and O (log|Y|) oracle queries. This can be done by using a balanced
binary search tree on the set of keys in Y. Specifically, inserting a new key into Y
takes O(log|Y|) time and no oracle queries, while computing the value of pg(Y)
can be done by searching for the largest key p in the tree for which the oracle can
block the set of all keys smaller than p. Note that each query to the blocking oracle
can be specified by a list of keys if we additionally maintain a sorted list of all keys
in Y along with pointers from the search tree to the list.

We close this subsection by defining, for each set ¥ C A of keys, a (unique)
inclusion-wise minimal blocking set X (Y) € B such that

pp(Y)= min p(e).
ecY\X(Y)

@ Springer

Theory Comput Syst (2008) 43: 204-233 213

We will refer to X (Y) C Y as the lazy block for Y. For instance, if, as before, ¥ =
{e1, €2, e3,ea} and (p(e1), p(e2), p(e3), ples)) =(1,3,3,5), then

@, if {e1} € B;

)A((Y)z {e1}, if {e;} € B, but{ey, e, e3} € B;
{e1,en,e3}, if{ej,er,e3}eB, butY & B;
Y, if Y € B.

For an unsorted list of keys {p(e), e € Y}, the lazy block X (Y) can be computed in
O(]Y|) time and O(log|Y|) oracle queries by recursively splitting the keys around
the median. For blocking systems [3; this computation takes O (|Y) time.

2.2 Extended Dijkstra’s Algorithm for MASPNLAI

Given a digraph G = (V, A), a non-negative weight function w(v) : A — R*, a ver-
tex t € V, and a blocking system B, we wish to find an admissible graph G that
maximizes the distance from each start vertex v € V to ¢. In the statement of ex-
tended Dijkstra’s algorithm below we assume without loss of generality that the out-
degree of the terminal vertex ¢ is 0, and the input arc-weights w(e) are all finite. By
definition, we let £(¢,1) = 0.

Similarly to the regular Dijkstra’s algorithm, the extended version maintains, for
each vertex v € V, an upper bound p(v) on the blocking v—t distance:

def . .
p()=>£L(v,t) = max {distance from v to ¢ in G'}.
G’ admissible

Initially, we let p(f) =0 and p(v) = +oo for all vertices v € V \ {¢}. As the regu-
lar Dijkstra’s algorithm, the extended version runs in at most |V | — 1 iterations and
(implicitly) partitions V into two subsets S and 7 = V \ S such that p(v) = €(v, 1)
for all v € T. We iteratively grow the initial set 7 = ¢} by removing, at each iter-
ation, the vertex u with the smallest value of p(v) from S and adding it to 7. For
this reason, the values of p(v), v € S are stored in a minimum priority queue, e.g.,
in a Fibonacci heap. Once we remove the minimum-key vertex u from S (and thus
implicitly declare that p(u) = €(u, t)), we update p(v) for all those vertices v € S
that are connected to u# by an arc in G. Recall that the regular version of Dijk-
stra’s algorithm uses updates of the form p(v) <— min{p(v), w(v, u) + p(u)}. The
updates performed by the extended version use blocking queues Y (v) maintained
at all vertices v € V \ {¢}. Initially, all these B(v)-queues are empty, and when the
value of p(v) needs to be updated for some vertex v € S such that e = (v, u) € A,
we first insert arc e with the key value p(e) = w(v, u) + p(u) into Y (v), and then

let p(v) < pp(Y(v)) &of maxx ¢ B(y) Mieey v)\x p(€). In particular, for the standard
shortest path problem, we obtain the regular updates.

Finally, as the regular Dijkstra’s algorithm, the extended version terminates as
soon as p(u) =min{p(v), ve S} =4ocoor |S]| = 1.

@ Springer

214 Theory Comput Syst (2008) 43: 204-233

EXTENDED DIJKSTRA’S ALGORITHM

Input: A digraph G = (V, A) with arc-weights {w(e) € [0,+0), e € A}, a
destination vertex ¢t € V, and a blocking system B.

Initialization:

1. p(t) < 0;

2. For all vertices v € V' \ {t} do:

3. p(v) « +oo; Set up an empty blocking queue Y (v);

4. Build a minimum priority queue (Fibonacci heap) S on the key values
p(v), veV.

Iteration loop:
5. While |S| > 1 do:
If min{p(v), v € S} = +0c0, break loop and go to line 12;
Extract the vertex u with the smallest key value p(-) from S;
For all arcs e = (v,u) € A such that v € S, do:
p(e) — w(e) + p(u);
0. Insert p(e) into Y (v);
1. Update the value of p(v) : p(v) «— pa(Y(v)).

= il B

Output: .
12. For each vertex v € V' \ {t}, return p(v) with the lazy block X (Y (v)).

Bounds on Running Time for Blocks of Type B; Line 12 and the initialization steps
in lines 14 take linear time O (|V |+ |A]). Letn <|V|—1 be the number of iterations
performed by the algorithm. Denote by Y; (v) (the set of key values in) the blocking
queue at a fixed vertex v € V \ {¢} after the execution of iteration i =1, ..., n, and
let Yo(v) = ¥ be the initial queue at v. As Yp(v) € Y1 (v) C--- C Y, (v), the values of
pi (v) = pp(Y;(v)) are monotonically non-increasing: +00 = pg(v) > p1(v) > --- >
pn(v). Since S is a (minimum) Fibonacci heap, the decrease-key operations in line
11 can be executed in constant amortized time per iteration, provided that the values
of pp(Y;(v)) are known. Lines 6 and 7 take O(1) and O(log|V|) time per itera-
tion, respectively. In view of the bounds on the ;- queue operations 10-11 stated in
Sect. 2.1, the overall running time of the algorithm is thus within the bound stated in
part (i) of Theorem 1.

To complete the proof of part (i) it remains to show that the extended algorithm is
correct.

2.3 Correctness of Extended Dijkstra’s Algorithm

Let us show that upon the termination of the extended Dijkstra’s algorithm,

e p(v)=4L(v,1) def MaXG’ gdmissible\distance from v to t in G’} for all vertices v € V,
and

e Thedigraph G° = (V, A\ Uvev\{t} X(Y (v) obtained by deleting the lazy blocking
sets of arcs }A((Y(v)) is an optimal admissible digraph for all vertices: £(v,t) =
v—t distance in G°.

@ Springer

Theory Comput Syst (2008) 43: 204-233 215

Let S; and 7; = V \ S; be the vertex partition maintained by the algorithm for i =
0,1,....n<|V|—=1.Wehave So =V DO S =V \{t}D:---DS,—1 2 8,, where
Sn—1 = S, if and only if the algorithm terminates due to the stopping criterion in
line 6. For the given arc weights w(e), e € A, consider the following weight functions
wi : A — R4 U {400}

, _ Jtoo, if both endpoints of e are in S;,
wi(e) = {w(e), otherwise. 2
Clearly, we have wo(e) = +00 > wi(e) > --- > wy(e) = w(e). Let
Li(v,t) def max {w;-distance from vto ¢ in G'},
G’ admissible

then £o(v,t) = 400 > €1 (v,t) = --- > £,(v,t) > €(v, 1) for all v e V \ {¢}. The
correctness of the algorithm will follow from the following two invariants: for all
i=0,1,...,n,

II.S: 0i(v) =£;(v,t) for all vertices v € Sj;

IiT: IfveT; =V\S,, then p;(v) = £(v, t) and the admissible digraph G} = (V, A\
Uvev\{,})A((Yi(v))) is an optimal blocking digraph for v. Moreover, min{p; (v),
v e S} >max{l(v,t), v € T;} and for each vertex v € T; there exists a shortest
v—t path in G which lies entirely in T;.

Note that by Il.T , the algorithm removes vertices from S and determines their blocking
distances in non-decreasing order.

Proof of invariants Zis and IiT is similar to that for the regular Dijkstra’s algorithm.
Since Ty = ¢, invariant IOT holds trivially. Ig follows from the initialization steps of
the algorithm: for Sy = V we have wq(e) = 400, and hence pg(t) = £o(t,t) =0 and
po(v) = £o(v, t) = 400 for all vertices v € V \ {¢}.

In order to prove by induction that Z, | and Z , follow from Z7 and Z], let
us first suppose that the ith iteration loop breaks due to the stopping criterion in
line 6: min{p; (v), v € §;} =4+00. Theni =n — 1 and §,,_; = §,;, which means that
Ly(v,t) =4£,_1(v,t) and p,(v) = p,—1(v). Consequently, the statements of I;f and
ZT become identical to I,f_l and InT_l , and we have nothing to prove. Moreover, as
all vertices of S, are disconnected from ¢ in G° = G9, invariant Z! also shows that
the algorithm correctly computes the blocking distances and the optimal blocking
digraph G° for all vertices.

We may assume henceforth that n = |V| — 1 and |S,| = 1. Consider the vertex u
that moves from S; to 7;4 at iteration i:

pi(u) = min{p; (v), v € §;} < +o0. 3

To show that p; (1) = £(u, t), observe that by Il.S, pi(w)=~;(u,t) > £(u,t). In other
words, p; (u) is an upper bound on the w-cost of reaching ¢ from u, regardless of any
admissible blocks selected by the adversary. So we will have p; (u) = €(u, t) if we
can find an admissible digraph G’ such that

pi (u) = w-distance from u to ¢ in G’. 4

@ Springer

216 Theory Comput Syst (2008) 43: 204-233

Let G’ = GY be the admissible digraph defined in IZ.T. Then (4) follows from ZI.T, the
non-negativity of the input arc-weights, and the fact that p; (u) = p(es) = w(es) +
pi (v), where e, = (u, v) € A is the arc with the smallest key value in the (S;, 7;)-cut
of G'.

After u gets into T;1, the value of p(u) never changes. Hence p; 41 (1) = €(u, t),
as stated in ZIT+1 Note that (3) and invariant Il.Talso tell us that min{p; (v), v € S;} =
£(u,t) > max{f(v,t), v € T;}. Let us now show that after the algorithm updates p (v)
on S; 41, we still have

min{pi+l(v)v UeSi-i—l} Z E(uvt) ZmaX{E(U,t), U€E+1}1 (5)

again as stated in IiT+1~ Suppose to the contrary, that p;+1(v) < £(u,t) = p;i(u)
for some vertex v € S;41. Then from (3) it would follow that e = (v, u) is an arc
of G = (V, A) and consequently Y;;1(v) = Y;(v) U {e}. Moreover, we must have
e €)A((Y,-H(v)), for otherwise the value of p;4+1(v) = pp(Yi+1(v)) could not have
dropped below the minimum of p; (v) and p(e) = w(v, u) + £(u, t), which is at least
l(u,t). Butife e)A((YH] (v)) then again pp(Y;+1(v)) > p(e), contradiction.

To complete the proof of IZH, it remains to show that G¢ 1 1s an optimal admis-
sible digraph for each vertex v € T, and that some shortest v— path in G| lies in
Ti+1. This readily follows from (5) and the fact that the sub-graphs of G and G7
induced by 7;4 are identical.

Finally, IiS+1 follows from the updates p;+1(v) < pp(Yi4+1(v)) performed by the
algorithm in lines 8-11. (]

Since we could assume in the above proof that n = |V| — 1 and |S,| = 1, the
correctness of the algorithm readily follows from Z;f and InT . When S, is a singleton
s € V, then w,(e) = w(e), see (2). Hence ¢,,(v,t) = £(v, t), and Ins yields p, (s) =
£,(s,t) = €(s,t). By InT, we also have p,(v) = £(v,) for the remaining vertices
ve T, =V\{s} Invariant Z! also guarantees that G° = G is an optimal admissible
digraph for all vertices v e V.

2.4 Modified Dijkstra’s Algorithm

In this section we prove part (ii) of Theorem 1 by modifying the algorithm stated in
Sect. 2.2.

The modified algorithm keeps all arcs across the current (S, 7')-cut in a minimum
priority queue A, implemented as a binary heap. As in the previous algorithm, each
arc e = (v, V') across the cut is assigned the key value p(e) = w(e) + p(v'), where
p() =L, 1) for all vertices v’ € T. In addition to the arcs in the current cut,
A may also contain some arcs e = (v, v’) for which both endpoints v, v" are in T. In
order to compute the vertex u to be moved from S to 7, we repeatedly extract the
minimum-key arc e from A, and check whether e = (v, v') belongs to the current cut
and can be blocked along with the arcs that have already been blocked at v. The first
arc ¢ = (v, v') in the cut that cannot be blocked defines the vertex u = v. We then
move u to T, insert all arcs e = (v, u) € A for which v € S into A, and iterate.

@ Springer

Theory Comput Syst (2008) 43: 204-233 217

MODIFIED ALGORITHM

Input: A digraph G = (V,A) with arc-weights {w(e) € [0,+0), e € A},
a terminal vertex ¢ € V, and a blocking system B C 2% defined via a
membership testing subroutine.

Initialization:

1. Initialize arrays T[1: V] = FALSE and /[1: V,t] = 40 ;

2. T[t] — TRUE, d[t,t] < 05

3. For each vertex v € V' \ {t} initialize an empty list X (v);

4. For each arc e = (v,t) € A, insert e with key p(e) = w(e) into an initially
empty binary heap A.

Iteration loop:
5. While A # 0 do:

6. Extract the minimum-key arc e = (u,v) from A;

7. If T[u] = FALSE and T[v] = TRUE do:

8. If X(u) U {e} can be blocked at u, insert e into X (u)

9. else { T[u] — TRUE; Return X(u) and [u,t] = p(e);

10. For all arcs e = (v,u) € A such that T[v] = FALSE,

Insert e with key value p(e) = w(e) + £[u, t] into A}.

The outputs of the modified algorithm and the extended Dijkstra’s algorithm pre-
sented in Sect. 2.2 are identical. It is also easy to see that the running time and the
number of membership tests required by the modified algorithm satisfy the bounds
stated in part (ii) of Theorem 1.

2.5 Unit Arc-Weights

When w(e) =1 forall e € A, and the blocking systems B(v) are all empty, the single-
destination shortest path problem can be solved in linear time by breadth-first search.
The extended Dijkstra’s algorithm for problem MASPNLALI can be similarly simpli-
fied to prove part (iii) of Theorem 1.

BREADTH-FIRST SEARCH FOR MASPNLAI

Input: A digraph G = (V,A) with a destination vertex ¢ € V, and a
blocking system B defined by a membership subroutine.

Initialization:

1. Initialize ¢(1 : V,t) = 400 and an empty first-in first-out queue T}
2. {(t,t) < 0; Enqueue t into T}

3. For each vertex v € V' \ {t} initialize an empty list X (v);

Iteration loop:

4. While T # () do:

5. Extract the first vertex u from T}

For all arcs e = (v,u) € A, do:
If {(v,t) = 400 and X (v) U {e} can be blocked, insert e into X (v);
else {(v,t) «— {(u,t) + 1, enqueue v into T, and return £(v,t), X (v).

e B

@ Springer

218 Theory Comput Syst (2008) 43: 204-233

The above algorithm runs in at most |A| iterations. It follows by induction on £(v, t)
that it correctly computes the blocking distances and that the admissible digraph
G°=(V,A\ UveV\{t} X (v)) is optimal.

3 Inapproximability Bounds

In the rest of the paper we prove the inapproximability results for total limited short
paths interdiction stated in the introduction, and a few analogous claims for vertex
interdiction and/or undirected graphs. Let us first give precise formulations for these
results.

3.1 Problems and Results

We consider a graph (or digraph) G = (V, E) with a nonnegative length associated
with every edge (or arc), two distinct vertices s and ¢, and a threshold d € Z., and
denote this input by (G, s, t,d).

A vertex blocker of (G, s, t,d) is a set of vertices different from s and ¢ whose re-
moval increases the s—¢ distance to at least d. We define the Minimum Vertex Blocker
to Short Paths Problem (MVBP) as follows:

Minimum Vertex Blocker to Short Paths Problem (MVBP)

Input: A graph (digraph) G with a nonnegative length associated with every
edge (arc), two vertices s, t and a threshold d

Output: The size by (G, s,t,d) of the smallest vertex blocker:

bv(G,s,t,d) = min{ |U| : dgv)(s,t) >d, UCV ~ {s,t}}.

Theorem S It is NP-hard to approximate the size of the smallest vertex blocker within
a factor smaller than 10~/5 — 21 2 1.36, even for bipartite graphs.

An edge blocker of (G, s,t,d) is a set of edges (arcs) whose removal increases
the s—¢ distance to at least d. We define the Minimum Edge Blocker to Short Paths
Problem (MEBP) as follows:

Minimum Edge Blocker to Short Paths Problem (MEBP)

Input: A graph (digraph) G = (V, E) with a nonnegative length associated
with every edge (arc), two vertices s, t and a threshold d

Output: The size bg(G, s,t,d) of the smallest edge blocker:
be(G,s,t,d) =min{ |F| : dy,pr)(s,t) >d, F CE}.

The next statement is similar to Theorem 5 above and it is a reformulation of
Theorem 3 stated in the introduction:

@ Springer

Theory Comput Syst (2008) 43: 204-233 219

Theorem 6 It is NP-hard to approximate the size of the smallest edge blocker within
a factor smaller than 10+/5 — 21 ~ 1.36, even for bipartite graphs.

The Most Vital Vertices Problem (MVVP) is defined as follows:
Most Vital Vertices Problem (MVVP)

Input: A graph (digraph) G = (V, E) with a nonnegative length associated
with every edge (arc), two special vertices s, t and a threshold &

Output: The maximum £y (G, s,t, k) of s-t distances in all graphs obtained
from G by removing k vertices. More precisely:

ty (G, s,t, k) = mar{dgyuv)(s,;t) | U SV~ {s,t}, [U] = k}.

Theorem 7 It is NP-hard to approximate Ly within a factor smaller than 2, even for
bipartite graphs.

The Most Vital Edges Problem (MVEP) is defined as follows:
The Most Vital Edges Problem (MVEP)

Input: A graph (digraph) G = (V, E) with a nonnegative length associated
with every edge (arc), two vertices s, ¢ and a threshold k

Output: The maximum ¢ (G, s,t, k) of s-t distances in all graphs obtained
from G by removing k edges. More precisely:

le(G,s,t k) = max{dy, g p(st) | F C E|F| =k}
Then, Theorem 2 can be reformulated as follows:

Theorem 8 It is NP-hard to approximate £ g within a factor smaller than 2, even for
bipartite graphs.

3.2 Restricted Problems

In this section we define restricted versions of the above problems by introducing
the assumption that some vertices (edges) cannot be removed. We call these vertices
(edges) fixed. The remaining vertices (edges) are called removable.

We obtain restricted-MVBP and restricted-MVVP from MVBP and MVVP, re-
spectively, by fixing some vertices (in addition to s and ¢). Similarly we obtain re-
stricted-MEBP and restricted-MVEP from MEBP and MVERP, respectively, by fixing
some edges.

For a graph G, two vertices s, f, a set of fixed vertices V' (or a set of fixed edges
E’) and thresholds d and k, let by, (G, s, t, V', d), b (G,s,t, E',d), £}, (G,s,t, V' k)
and E/E(G, s,t, E' k) denote the solutions to restricted-MVBP, restricted-MEBP,
restricted-MV VP and restricted-M VEP, respectively.

@ Springer

220 Theory Comput Syst (2008) 43: 204-233

Fig.1 Graph G

v vy

Given an instance (G, s, t, V', d) of restricted-MVBP we assume that all remov-
able vertices form a vertex blocker. Similarly given an instance (G, s,t, E', k) of
restricted-MEBP we assume that all removable edges form an edge blocker.

3.3 Inapproximability of Minimum Vertex Cover

In this section we recall previously known results on which the proofs of our results
are based. A vertex cover of an undirected graph G is a subset of vertices incident to
every edge. Let (G) denote the size of the smallest vertex cover of G.

Deciding if G has a vertex cover of size at most k is NP-hard [15], even for tripar-
tite graphs [34]. However, 7(G) can be easily approximated within a factor 2, since
the vertex cover consisting of both vertices of edges belonging to a maximal match-
ing has size at most 27 (G). Improving this simple 2-approximation algorithm has
been a major open problem. The best known approximation algorithm has a factor of

2 — @(%), where 7 is the number of vertices [24].

Jlogn
On the other hand, in 1997 Hastad [21] proved that it is NP-hard to approximate

7(G) within a factor smaller than % ~ 1.17. Recently Dinur and Safra [9] obtained

the better inapproximability factor of 10+/5 — 21 2 1.36. For tripartite graphs it is
NP-hard to approximate t(G) within a factor smaller than % ~ 1.03 [7].

4 Proof of Theorem 5

In this section we prove Theorem 5 by reducing the minimum vertex cover problem to
restricted-MVBP. As will be shown in Sects. 7 and 7.1, for each instance of restricted-
MVBP, we can construct an instance of MVBP with the same optimal value and a
bipartite input graph. Therefore Theorem 9 below implies Theorem 5.

Theorem 9 It is NP-hard to approximate b\, within a factor smaller than 1045 —
21 =~ 1.36.

Proof Let G be an undirected graph with vertices vy, ..., v, (see Fig. 1). We con-
struct an instance of restricted-MVBP. We obtain an undirected graph H from G
by adding to it a path sujus...u,t and connecting v; to u; for i = 1,...,n (see
Fig. 2). Let W denote the vertex set of H. We assign length 1 to edges {u1, uz},
{uz,u3}, ..., {un_1,u,} and O to all other edges. Let V' = {u1, ..., u,} be the set of

@ Springer

Theory Comput Syst (2008) 43: 204-233 221

0
[: o= 1 —Jub—1 lu_l’JZ‘ 1 wa—o—]

Fig. 2 Graph H. Squares are fixed vertices

@

0

Fig. 3 Graph H[W ~\ U] obtained from H by removal of the vertex cover U = {v1, v4} of G

fixed vertices. The threshold is n — 1. Note that the set of all removable vertices forms
a vertex blocker.
Recall that 7(G) denotes the size of the smallest vertex cover of G.

Claim 1 ©(G) =bl,(H,s,t,V',n —1).

Proof LetU C {vy, ..., v,}beasetof removable vertices. We show that U is a vertex
cover of G if and only if U is a vertex blocker of (H, s, t,n — 1).

Suppose U is a vertex cover of G. Since V \ U is an independent set of G, there
is only one s—t path, sujus...u,t,in H[W ~\ U] and the length of this pathis n — 1
(see Fig. 3).

Conversely, suppose U is a vertex blocker of (H, s, t,n — 1). Note that for every
i < j there is no edge between vertices v; and v; in H[W \ U], since otherwise there
would exist a path suy ... u;v;vju;...u,t in H{W \ U] shorter than n — 1. Thus U
is a vertex cover of G. (|

@ Springer

222 Theory Comput Syst (2008) 43: 204-233

0
vl /ﬁo\\
!
OO

Fig. 4 Digraph H. Squares are fixed vertices

Since it is NP-hard to approximate the minimum vertex cover within a factor
smaller than 10+/5 — 21~ 1.36 [9], Theorem 9 follows.

We can similarly reduce the minimum vertex cover problem to restricted-MVBP
for directed graphs. Let H be a digraph obtained from G by replacing every edge
{vi,v;}, i < j, of G by an arc (v;, v;), adding to it a dipath suu>...u,t and con-

necting v; to u; with two arcs (v;, u;) and (u;, v;) fori =1, ..., n (see Fig. 4).

As before we assign length 1 to arcs (uy, u2), (u2,u3), ..., (uy—1,u,) and O to
all other arcs, vertices u1, ..., u, are fixed and the threshold is n — 1. The proof that
©(G) =by,(H,s,t,V',n — 1) is analogous. O

5 Proof of Theorem 6

In this section we prove Theorem 6 similarly to the proof of Theorem 5. We reduce
the minimum vertex cover problem to restricted-MEBP. As will be shown in Sects. 7
and 7.2, for each instance of restricted-MEBP we can construct an instance of MEBP
with the same optimal value and a bipartite input graph. Therefore Theorem 10 below
implies Theorem 6.

In the proof of Theorem 10, we use a gadget similar to the one used in [3] to prove
NP-hardness of the Most Vital Edges Problem.

Theorem 10 It is NP-hard to approximate by, within a factor smaller than 104/5 —
21~ 1.36.

Proof Let G be an undirected graph with vertices vy, ..., v, (see Fig. 1). We con-
struct an instance of restricted-MEBP. We obtain an undirected graph H from G by

e Replacing every vertex v; of G by two vertices v/ and v} connected by an edge
{v],v]'} of length 1 fori =1, .

e Replacing every edge {v;, vJ} i<] of G by {v/ v } of length 5(j —i) —

e Adding to it a path P = su jujufu’) .. u,u,t, Where {u},u} has length 5 for i=
1, ..., n and other edges have length 0

@ Springer

Theory Comput Syst (2008) 43: 204-233 223

/ /. . / /

O————€ {}{%J}@{} @——0

Fig. 5 Graph H. Solid lines are fixed edges

e Adding two edges {v,u;} and {v/, u!} of length 2 fori =1, ..., n (see Fig. 5).

All edges except {v(,v{},...,{v,, v} are fixed. We denote the set of fixed edges
by E’. The threshold is 5n. Note that the set of all removable edges forms an edge
blocker. Let W and E denote the vertex and edge sets of H, respectively.

Letx € {u}, u}}, y € {u’j, u/jf}, where i # j. We call the subpath of P from x to y
an x—y line. An x—y detour is an x—y path D in H, where no vertices of D, apart
from the first and the last, belong to P. An i—j shortcut is the path v/v!v ; ;/ (see
Fig. 6).

Let length(Q) denote the length of a path Q.

Claim 2 [f x—y detour D contains no shortcuts then length(D) > length(x—y line).

Proof For integers i, j,r > 1, with i < j, let us denote by Q,(v/,]) a path
1 ! 1 / 1 I 1 /

viQ’vj:l’l{il’vjz’ Vis Vjps s Up 0 U in H, where.zo._ i, jr=17J,1 <']1, and iy <

min{ ji, jk+1} for k =1,...,r — 1. Note that O, (i, j) does not contain a shortcut,

and

r—1

length(Q, v/, v)) = 10 Y (ji = i) +5(j =) = 4r +2=5(j —i) +6r =8. (6)
=1

Let us next consider a path in H, consisting of the concatenation of k > 0 of
such paths Pk(l{}{), U}k) = er(v” vjl)Qrz(v” ,]2) o™ (v;’k . v;.k), and note by
(6) and telescoping that

k
length(Pr (v}, v,)) = 5Cjk — jo) +6 > _ri — Tk — 1.)
i=1

Note thatfork=1andr; =1, Pk(v;’0 v) is just the edge {v v;.k} and hence (7) is

tight in this case. Furthermore, assuming that Pk(v ior v k) does not contain a shortcut,
we must have r; >2fori =2,...,k—1.In particular,

length(Py (v, V) = 5jic — jo) +6(r1 + 1)) + 5k — 25, @®)

@ Springer

224 Theory Comput Syst (2008) 43: 204-233

/. J /

?

Fig. 6 Thick lines are edges of the s— path consisting of the s—u| line, a u|—u detour Dy, the u}j—u;
line, a u—uy detour D and the u;— line. Note that the detour D; contains the 1-2 shortcut

and for k > 3, we have length(Pk(v;.’O, v}k)) > 5(jx — jo) + 2. Similarly, for k =2
and r; + o > 3, we have length(Pk(v}/O, v}k)) > 5(jx — jo) + 3 by (8), while for
k=1andr; >2, we have length(Pk(v}’O, v}k)) > 5(jx — jo) +4 by (7). Thus, except
for the cases k =2,r1 =rp=1and k =1,r; =1, we have length(Pk(v}’o, v}k)) >
5(jx — jo) + 2, and generally we have length(Pk(v}’o, v}k)) > 50k — jo)—3fork>1.

There are six possible kinds of x—y detours containing no shortcuts:

Case 1: u/v, Py (v!, v/)vj u’j’ for i < j and k > 0. Then length(x—y line) =
5(j —i)+ 5. If k=0, then i = j and length(detour(x,y)) =5. lf k =r; =1
or k=2 and r; =r, = 1, we have a shortcut. Otherwise, length(detour(x, y)) =
6 + length(Pi (v/', v})) = 5(j — i) + 8.

Case 2: u}v] P (v}, v})u’j, fori < j and k > 1. Then length(x—y line) = 5(j — i)
and length(detour(x, y)) =5 + length(Pr (v, v;.)) >5(—i)+2.

Case 3: u! P (v, v})u/j, fori < jand k > 1. Then length(x—y line) =5(j —i — 1)
and length(detour(x, y)) = 4 + length(Py (v}, v;.)) >5(—i)+ 1.

Case 4: u} P (v, 0")v;’ ’/’, for i < j. Then length(x—y line) = 5(j — i) and
length(detour(x, y)) =5 +length(Pc (v]', v})) = 5(j — i) + 2.

Case 5: u;v] P vy, v})v,’(/v,’(u;(, fori <k < j and k > 1. Then length(x—y line) =
5(k — i) and length(detour(x, y)) = 6 + length(Py (v}, v;.)) +5(G -k —-2>1+
52 —i—k)> 50k —i).

Case 6: u Py (v, v})v}(’v}(u}(, fori <k < j and k > 1. Then length(x—y line) =
5(k —i — 1) and length(detour(x, y)) = 5 + length(P (v, v})) +5(—k)—2>
5Qj—i—k)>5Stk—i—1).

Thus all six kinds of x—y detours are at least as long as the corresponding x—y
line. U

Claim 3 Let Q be an s—t path in H. If for every detour D contained in Q
length(D) > length(x—y line), where x and y are ends of D, then the length of Q
is at least 5n.

@ Springer

Theory Comput Syst (2008) 43: 204-233 225

-=0 -
0 0
--0-={v] 0 --0- @
0 --0-
0 0

@}l,/u 0

Fig. 7 Digraph H. Solid lines are fixed arcs

Proof Note that Q starts with the edge {s, u}} and ends with the edge {u},, t}. Thus
we can decompose Q into an alternating sequence of lines and detours the s—¢; line,

an ¢1-rq detour D1, the ri—¢; line, an £,—r, detour D5, ..., an {,,—r,, detour D,,,
the r,,—t line (see Fig. 6). Since no x—y detour is shorter than the x—y line, we have
length(Q) > length(P) = 5n. U

Recall that 7(G) denotes the size of the smallest vertex cover of G.
Claim 4 ©(G) =D}, (H,s,t, E', 5n).

Proof Let F be a subset of removable edges. We show that {v; | {v], v ;
vertex cover of G if and only if F is an edge blocker of (H, s, t, E’, 5n).
Suppose {v; | {v;, V] Y € F} is a vertex cover of G. Thus there is no shortcut in the
graph (W, E \ F). By Claim 2 all x—y detours are longer than x—y lines, which by
Claim 3 implies that every s— path has length at least 5n.
Conversely, suppose F is an edge blocker of (H,s,t, E’,5n) and suppose that
{vl, ; m, {v], J} ¢ F, for some edge vivj of G. Then F does not block the path

consisting of the s—u line, the u}—u",] ! detour uv/v! v; v;/ ’J/ and the u/ /~t line which

has a total length 5n — 1, a contradlctlon. (]

v/}eF}isa

Since it is NP-hard to approximate the minimum vertex cover within a factor
smaller than 10v/5 — 21 & 1.36 [9], Theorem 10 follows.

Note that we can similarly reduce the Minimum Vertex Cover Problem to
restricted-MEBP for directed graphs. Let H be a digraph obtained from G by

. Replacing every vertex v; of G by two vertices v; and v; connected by an arc
(vl, ; v/) of length O fori =1, .
e Replacing every edge {v;, v]}, i <], of G by (v, v}) of length 0,

@ Springer

226 Theory Comput Syst (2008) 43: 204-233

Fig. 8 Tripartite graph G Vs

\

e Adding to it a dipath sujuj...u,t, where arcs (uy, uz), (ua, u3), ..., (Up—1, up)
have length 1 and all other arcs have length O,
e Adding two arcs (u;, v;) and (v/', u;) of length O fori =1, ..., n (see Fig. 7).

As before, all arcs except (v}, v{), ..., (v,,v,) are fixed, we denote the set of fixed

n’>-n
arcs by E’ and the threshold is n — 1.
Analogously to proof of Claim 1 we can show that 7(G) = b% (H,s,t,E',n—1),
implying the theorem. U

6 Proof of Theorem 7

In this section we prove Theorem 7 by reducing the problem of deciding whether
a tripartite graph has a vertex cover of size at most k, which is known to be NP-
hard [34], to restricted-MVVP. As shown in Sects. 7 and 7.3, for each instance of
restricted-MV VP we can construct an instance of MV VP with the same optimal value
and a bipartite input graph. Therefore Theorem 11 below implies Theorem 7.

Theorem 11 Iz is NP-hard to approximate I}, within a factor smaller than 2.

Proof We will show that a (2 — €)-approximation algorithm, where € > 0, can decide
whether a tripartite graph has a vertex cover of size k in polynomial time.

Let G be a tripartite graph with vertex set V = Vi U V, U V3, where V1, V, and V3
are independent sets (see Fig. 8). We construct an instance of restricted-MVVP. We
obtain an undirected graph H from G by adding to it a path suu,u3t and connecting
every v € V; to u;, fori =1, 2,3 (see Fig. 9). Let W denote the vertex set of H. We
assign length 1 to edges {1, u3}, {u2, u3} and O to all other edges. Vertices u1, us, u3
are fixed.

Claim 5 (i) If G has a vertex cover of size at most k then £1,(H,s,t, V' k) =2.
(ii) If G does not have a vertex cover of size at most k then £,(H,s,t, V', k) < 1.

Proof (i) Let U be a vertex cover of G such that |U| <k. Since V \ U is an inde-

pendent set in G, there is only one s—t path, sujusu3zt, in H[W \ U] and the length
of this path is 2.

@ Springer

Theory Comput Syst (2008) 43: 204-233 227

Fig. 9 Graph H. Squares are fixed vertices

(i1) Since G has no vertex cover of size k, for every k-element subset U of re-
movable vertices, V \ U is not independent in G. Thus there is an edge {x, y} in
H[W ~ U] with x and y belonging to different parts of G. There are three cases:

Case 1: x € Vi, y € V5. Then sujxyupust is an s—t path of length 1.

Case 2: x € V1, y € V3. Then sujxyust is an s—t path of length 0.

Case 3: x € Vo, y € V3. Then sujupxyust is an s—t path of length 1.

Thus the s— distance in H[W ~ U] is 0 or 1 for every k-element set U of remov-
able vertices. O

Since a (2 — €)-approximation algorithm, when run on H, must produce a solution
less than or equal to 1 when E’V (H,s,t,V', k) €{0, 1} and a solution strictly greater
than 1 (and hence is exactly 2) when IQ/(H ,s,t, V', k) =2, such an algorithm could
distinguish graphs that have a vertex cover of size k from graphs that do not.

We can similarly reduce the Most Vital Vertices Problem to restricted-MV VP for
directed graphs. We obtain a directed graph H from G by replacing every edge
{v,w}, where v e V;, we V;, i < j, of G by an arc (v, w), adding to it a di-
path sujupust and two arcs (v, u;) and (u;, v) for every v € V;, fori = 1,2, 3 (see
Fig. 10). We assign length 1 to arcs (u1, u2), (12, u3) and O to all other arcs. Vertices
u1, uz, u3 are fixed. The proof of Claim 5 is essentially the same as in the undirected
case. 0

@ Springer

228 Theory Comput Syst (2008) 43: 204-233

Fig. 10 Digraph H. Squares are fixed vertices

l2
lo @ l3
/
l
l2 1 l3

0 — %

51
o N
51

Fig. 11 Operation of splitting x into n copies

7 Reduction from Restricted to Original Problems

In this section for each instance of a restricted problem we construct in polynomial
time an instance of the original problem with the same optimal value.

For an undirected graph we define the operation of splitting a vertex x into n
copies as follows: we replace x by vertices x!, ..., x”* and each edge {x, y} of length
[by edges {x', y}, ..., {x", y} of length [(see Fig. 11). We call vertices x', ..., x"
split vertices of x.

Analogously, for a directed graph we define the operation of splitting a vertex

x into n copies as follows: we replace x by vertices x!, ..., x", each arc (x,y) of

@ Springer

Theory Comput Syst (2008) 43: 204-233 229

2

l
l2 @ l3
’
l
lg 1 l3
JoTNe NN (AN
B
l .
11 2 /
o N
l

1

Fig. 12 Operation of splitting x into n copies in directed graphs

l 0
O——@ —= ;

l \@/ 0
Fig. 13 Operation of splitting xy into n copies

length [by arcs (x'y), ..., (x", y) of length and each arc (y, x) of length [by arcs
(v, b, (y, x™) of length [(see Fig. 12).

For a graph (digraph) we define the operation of splitting an edge (arc) {x, y}
into n copies as follows: we add vertices zl, ..., 7", then replace the edge (arc)
{x,y} of length I by edges (arcs) {x,z'},...,{x,z"} of length [and edges (arcs)
{z', y}, ..., {z" y} of length O (see Fig. 13). We call vertices z!, ..., z" division ver-

tices of {x, y}.
7.1 Reduction from Restricted-MVBP to MVBP

For each instance of restricted-MVBP we construct in polynomial time an instance
of MVBP with the same size of the minimum vertex blocker.

Let (G, s, t, V', d) be an instance of restricted-MVBP. Recall that we assume that
all removable vertices form a vertex blocker. Let n be the number of vertices of G.
We obtain a graph H from G by consecutively splitting every fixed vertex x € V’
into n copies. Let W denote the vertex set of H.

Observation 1 Let U be a subset of removable vertices. Then U is a vertex blocker
of (H,s,t,d) if and only if U is a vertex blocker of (G,s,t, V', d).

@ Springer

230 Theory Comput Syst (2008) 43: 204-233

Claim 6 Let U be a minimum vertex blocker of (H,s,t,d). If U contains a split
vertex y of some fixed vertex x, then U contains all split vertices of x.

Proof Since y € U, there is an s—¢ pathin H[(W ~ U)U y] through y which is shorter
than d. Suppose there is a split vertex z of x such that z ¢ U. Since the neighborhoods
of y and z are the same we can replace y by z in this path and obtain a path of the
same length in H[(W \ U)], a contradiction with U being a vertex blocker. Thus all
split vertices of x belong to U. U

Proposition 1 b, (G,s,t,V',d)=by(H,s,t,d).

Proof By Observation 1 every vertex blocker of (G, s, t, V', d) is a vertex blocker of
(H,s,t,d). Thus b’V(G, s,t,V',d)>by(H,s,t,d).

Suppose b, (G,s,t,V',d) > by(H,s,t,d). Let U be a minimum vertex blocker
of (H,s,t,d). Since by our assumption all removable vertices form a vertex blocker
of (G,s,t,V’,d), we have |U| < n. Thus by Claim 6 U cannot contain split vertices.
By Observation 1 U is a vertex blocker of (G, s, t, V', d), a contradiction. O

7.2 Reduction from Restricted-MEBP to MEBP

For each instance of restricted-MEBP we construct in polynomial time an instance of
MEBP with the same size of the minimum edge blocker.

Let (G, s, t, E’, k) be an instance of restricted-MEBP. Recall that we assume that
all removable edges (arcs) form an edge blocker. Let m be the number of edges (arcs)
of G. We obtain a graph H from G by consecutively splitting every fixed edge (arc)
{x,y} € E’ into m copies.

Similarly to Proposition 1 we can show that the minimum edge blockers of
(G,s,t,E',d)and (H, s, t,d) have the same size.

Proposition 2 b, (G,s,t,E',d) =by(H,s,t,d).
7.3 Reduction from Restricted-MV VP to MVVP

For each instance of restricted-MVVP we construct in polynomial time an instance
of MV VP with the same optimal value.

Let (G, s,t, V', k) be an instance of restricted-MVVP. We construct an instance
(H,s,t, k) as in Sect. 7.1 (where we split each fixed vertex now into k copies). Sim-
ilarly to Proposition 1 we can show that the maximum of s—¢ distances in all graphs
obtained from G by removing k vertices and the maximum of s—¢ distances in all
graphs obtained from H by removing k vertices are equal.

Proposition 3 ¢\, (G,s,1, V' k) =Ly(H,s,1,k).
7.4 Reduction from Restricted-MVEP to MVEP

For each instance of restricted-MVEP we construct in polynomial time an instance
of MVEP with the same optimal value.

@ Springer

Theory Comput Syst (2008) 43: 204-233 231

Let (G,s,t, V', k) be an instance of restricted-MVEP. We construct an instance
(H,s,t,k) as in Sect. 7.2. Similarly to Proposition 1 we can show that the maximum
of s—t distances in all graphs obtained from G by removing k edges and the maximum
of s—t distances in all graphs obtained from H by removing k edges are equal.

Proposition 4 ¢'.(G,s,t,E' k) ={g(H,s,t,k).

8 Reduction to Bipartite Graphs

In this section for each instance of an original problem we construct in polynomial
time an instance with a bipartite input graph and the same optimal value.

Let G = (V, E) be a graph (digraph). We construct a graph (digraph) H by split-
ting every edge of G into 1 copy, where the operation of edge splitting was defined
in Sect. 7. Let W be the set of newly added division vertices. Note that the graph
H is bipartite, since every edge of H has one endpoint in V and the other in W.
Analogously to Proposition 1, we can prove that bg (G, s, t,d) =bg(H, s, t,d) and
LE(G,s,t,k)=LE(H,s,t,k).

We next obtain a graph (digraph) H’ from H by splitting every vertex of W
into | V| copies, where the operation of vertex splitting was defined in Sect. 6. Note
that H' is still bipartite, and we can prove that by (G, s, t,d) = by(H', s, t,d) and
Ly (G,s, t,k)=Ly(H', s,1,k).

9 Decision Problems

Using the well known connection between optimization and decision problems (see
Chap. 29 in [36]) we can restate Theorems 5, 6, 7 and 8 as follows:

Proposition 5 (Reformulation of Theorems 5 and 6) It is NP-hard to distinguish
instances of MVBP having a vertex (edge) blocker of size k to paths of length at most
d from those having all vertex (edge) blockers of size greater than 1.36k to paths of
length at most d, where k is also a part of the input.

Proposition 6 (Reformulation of Theorems 7 and 8) For every € > 0 it is NP-hard to
distinguish instances of MVVP having s—t distance d after removing some k vertices
(edges) from those having s—t distance less than ﬁ d in all induced subgraphs
obtained by removing k vertices (edges), where k is also a part of the input.

Note that Theorem 4 is the strengthening of Proposition 6. Similarly it can be
viewed as a two-sided generalization of Proposition 5, although the corresponding
factor is worse.

@ Springer

232 Theory Comput Syst (2008) 43: 204-233

10 Proof of Theorem 4

As shown in [7], it is NP-hard to approximate the size of the smallest vertex cover in
tripartite graphs within a factor smaller than %. This can be restated as follows: for
every fixed € > 0 it is NP-hard to distinguish tripartite graphs having a vertex cover
of size k from those having all vertex covers of size greater than (% — €)k, where k
is a part of the input.

The claim below immediately follows from Claims 5 and 6.

Claim 7 Let G be a tripartite graph, let Hy and HEg be the graphs constructed from
G in Sects. 4 and 5, respectively, and let € > 0.

(1) If G has a vertex cover of size k then
Iy (Hy,s,t,V' k) >2and Iy, (Hg, s, t, E' k) > 2.
(1) If all vertex covers of G have size larger than (% — €)k then
¢y (Hy,s,t,V', (33 — k) < Land };(Hg,s,t, E', 35 —e)k) < 1.

Theorem 4 follows from Claim 7 and the inapproximability result stated in the
beginning of this section.

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications.
Prentice-Hall, New Jersey (1993)

2. Ball, M.O., Golden, B.L., Vohra, R.V.: Finding the most vital arcs in a network. Oper. Res. Lett. 8,
73-76 (1989)

3. Bar-Noy, A., Khuller, S., Schieber, B.: The complexity of finding most vital arcs and nodes. Technical
Report CS-TR-3539, University of Maryland, Institute of Advanced Computer Studies, College Park,
MD (1995)

4. Beffara, E., Vorobyov, S.: Adapting Gurvich-Karzanov-Khachiyan’s algorithm for parity games: im-
plementation and experimentation. Technical Report 020, Department of Information Technology,
Uppsala University (2001) (available at http://www.it.uu.se/research/reports/#2001)

5. Beffara, E., Vorobyov, S.: Is randomized Gurvich-Karzanov-Khachiyan’s algorithm for parity games
polynomial? Technical Report 025, Department of Information Technology, Uppsala University
(2001) (available at http://www.it.uu.se/research/reports/#2001)

6. Bjorklund, H., Sandberg, S., Vorobyov, S.: A combinatorial strongly subexponential strategy improve-
ment algorithm for mean payoff games. Discret. Appl. Math. 155(2), 210-229 (2007)

7. Clementi, A.E.F., Crescenzi, P., Rossi, G.: On the complexity of approximating colored-graph prob-
lems. In: COCOON, pp. 281-290 (1999)

8. Corely, H.W., Shaw, D.Y.: Most vital links and nodes in weighted networks. Oper. Res. Lett. 1, 157—
160 (1982)

9. Dinur, L., Safra, S.: On the hardness of approximating minimum vertex cover. Ann. Math. 162, 439—
485 (2005)

10. Ehrenfeucht, A., Mycielski, J.: Positional games over a graph. Not. Am. Math. Soc. 20, A-334 (1973)

11. Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games. Int. J. Game Theory 8,
109-113 (1979)

12. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network optimization algo-
rithms. J. ACM 34(3), 596-615 (1987)

13. Fulkerson, D.R., Harding, G.C.: Maximizing the minimum source-sink path subject to a budget con-
straint. Math. Program. 13, 116-118 (1977)

14. Gallai, T.: Maximum-minimum Sitze iiber Graphen. Acta Math. Acad. Sci. Hung. 9, 395-434 (1958)

@ Springer

Theory Comput Syst (2008) 43: 204-233 233

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

25.

26.

27.
28.

29.

30.

31.
32.

33.
34.

35.

36.

38.

39.
40.

Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-
Completeness. Freeman, San Francisco (1979)

Ghare, PM., Montgomery, D.C., Turner, T.M.: Optimal interdiction policy for a flow network. Nav.
Res. Logist. Q. 18, 37-45 (1971)

Golden, B.L.: A problem in network interdiction. Nav. Res. Logist. Q. 25, 711-713 (1978)
Goldschlager, L.M.: The monotone and planar circuit value problem are log space complete for P.
SIGACT News 9(2), 25-29 (1977)

Greenlaw, R., Hoover, H.J., Ruzzo, W.L.: Limits to Parallel Computation: P-Completeness Theory.
Oxford University Press, Oxford (1995)

Gurvich, V., Karzanov, A., Khachiyan, L.: Cyclic games and an algorithm to find minimax cycle
means in directed graphs. USSR Comput. Math. Math. Phys. 28, 85-91 (1988)

Hastad, J.: Some optimal inapproximability results. In: STOC *97: Proceedings of the Twenty-Ninth
Annual ACM Symposium on Theory of Computing, New York, NY, USA, pp. 1-10. ACM Press
(1997)

Israely, E., Wood, K.: Shortest-path network interdiction. Networks 40(2), 97-111 (2002)
Jurdzinski, M., Paterson, M., Zwick, U.: A deterministic subexponential algorithm for solving parity
games. In: SODA 2006, pp. 117-123

Karakostas, G.: A better approximation ratio for the vertex cover problem. In: ICALP, pp. 1043—-1050
(2005)

Karp, R.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Com-
plexity of Computer Computations, pp. 85-103. Plenum, New York (1972)

Karp, R.: A characterization of the minimum cycle mean in a digraph. Discret. Math. 23, 309-311
(1978)

Karzanov, A.V., Lebedev, V.N.: Cyclical games with prohibition. Math. Program. 60, 277-293 (1993)
Malik, K., Mittal, A.K., Gupta, S.K.: The k most vital arcs in the shortest path problem. Oper. Res.
Lett. 8, 223-227 (1989)

McMasters, A.W., Mustin, T.M.: Optimal interdiction of a supply networks. Nav. Res. Logist. Q. 17,
261-268 (1970)

Moulin, H.: Prolongement des jeux a deux joueurs de somme nulle. Bull. Soc. Math. France, Memoire
45 (1976)

Moulin, H.: Extension of two person zero sum games. J. Math. Anal. Appl. 55(2), 490-507 (1976)
Phillips, C.A.: The network inhibition problem. In: Proceedings of the 25th Annual ACM Symposium
on the Theory of Computing, pp. 776-785 (1993)

Pisaruk, N.N.: Mean cost cyclical games. Math. Oper. Res. 24(4), 817-828 (1999)

Poljak, S.: A note on the stable sets and coloring of graphs. Comment. Math. Univ. Carol. 15, 307-309
(1974)

Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Algorithms and Combinatorics,
vol. 24. Springer, New York (2003)

Vazirani, V.: Approximation Algorithms. Springer, Berlin (2001)

Wagner, D.K.: Disjoint (s, #)-cuts in a network. Networks 20, 361-371 (1990)

Washburn, A., Wood, K.: Two-person zero-sum games for network interdiction. Oper. Res. 43(2),
243-251 (1995)

Wood, R.K.: Deterministic network interdiction. Math. Comput. Model. 17, 1-18 (1993)

Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theor. Comput. Sci.
158(1-2), 343-359 (1996)

@ Springer

	On Short Paths Interdiction Problems: Total and Node-Wise Limited Interdiction
	Abstract
	Introduction
	Node-Wise Limited Interdiction
	Interdiction of Directed Cycles
	Interdiction of Negative Directed Cycles and Mean Payoff Games
	Node-Wise Limited Short Paths Interdiction
	Total Limited Short Paths Interdiction and Similar Problems
	Multiple Cuts
	Network Interdiction and Its Applications

	Proof of Theorem 1
	Blocking Queues
	Extended Dijkstra's Algorithm for MASPNLAI
	Bounds on Running Time for Blocks of Type B1

	Correctness of Extended Dijkstra's Algorithm
	Modified Dijkstra's Algorithm
	Unit Arc-Weights

	Inapproximability Bounds
	Problems and Results
	Restricted Problems
	Inapproximability of Minimum Vertex Cover

	Proof of Theorem 5
	Proof of Theorem 6
	Proof of Theorem 7
	Reduction from Restricted to Original Problems
	Reduction from Restricted-MVBP to MVBP
	Reduction from Restricted-MEBP to MEBP
	Reduction from Restricted-MVVP to MVVP
	Reduction from Restricted-MVEP to MVEP

	Reduction to Bipartite Graphs
	Decision Problems
	Proof of Theorem 4
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

