Adversarial Queueing Model for Continuous Network Dynamics

Maria J. Blesa, Daniel Calzada, Antonio Ferndndez, Luis Lépez
Andrés L. Martinez, Agustin Santos, Maria J. Serna

Report LSI-05-10-R

first version 29th March 2005
revised version 26th May 2005

©

Adversarial Queueing Model for Continuous
Network Dynamics * **

Marfa J. Blesa!, Daniel Calzada?, Antonio Ferndndez?, Luis Lépez3,
Andrés L. Martinez?®, Agustin Santos?, and Maria J. Sernal

1 ALBCOM, LSI, Universitat Politecnica de Catalunya, E-08034 Barcelona, Spain
{mjblesa,mjserna}@lsi.upc.edu

2 ATC, EUI, Universidad Politécnica de Madrid, E-28031 Madrid, Spain
dcalzada@eui.upm.es

3 LADyR, GSyC, ESCET, Universidad Rey Juan Carlos, E-28933 Madrid, Spain
{anto,llopez,aleonar,asantos}@gsyc.escet.urjc.es

Abstract. In this paper we start the study of generalizing the Adver-
sarial Queueing Theory (AQT) model towards a continuous scenario in
which the usually assumed synchronicity of the evolution is not required
anymore. We consider a model, named continuous AQT (CAQT), in which
packets can have arbitrary lengths, and the network links may have dif-
ferent speeds (or bandwidths) and propagation delays. We show that,
in such a general model, having bounded queues implies bounded end-
to-end packet delays and vice versa. From the network point of view,
we show that networks with directed acyclic topologies are universally
stable, i.e., stable independently of the protocols and the traffic patterns
used in it, and that this even holds for traffic patterns that make links to
be fully loaded. Concerning packet scheduling protocols, we show that
the well-known LIS, SIS, FTG and NFS protocols remain universally stable
in our model. We also show that the CAQT model is strictly stronger
than the AQT model by presenting scheduling policies that are unstable
under the former while they are universally stable under the latter.

1 Introduction

The Adversarial Queueing Theory (AQT) model [1,2] has been used in the latest
years to study the stability and performance of packet-switched networks. The
AQT model, (like other adversarial models) allows to analyze the system in a
worst-case scenario, since it replaces traditional stochastic arrival assumptions
in the traffic pattern by worst-case inputs. In this model, the arrival of packets to

* Partially supported by EU IST-2001-33116 (FLAGS), IST-2004-15964 (AEOLUS),
COST-295 (DYNAMO), and by Spanish MCyT TIC2002-04498-C05-03 (TRACER),
by the Comunidad de Madrid 07T/0022/2003, and by the Universidad Rey Juan
Carlos project PPR-2004-42.

** We address the reader to the appendix for details on the proofs of the theorems.

the network (i.e., the traffic pattern) is controlled by an adversary that defines,
for each packet, the place and time in which it joins the system and, additionally
it might decide the path it has to follow. In order to study non-trivial overloaded
situations, the adversary is restricted so that it can not overload any link (in
an amortized sense). Under these assumptions, we study the stability of network
systems (G, P,.A), which are represented by three elements: the network topology
G, the protocol P used for scheduling the packets at every link, and the adversary
A, which defines the traffic pattern. Stability is the property that at any time
the maximum number of packets present in the system is bounded by a constant
that may depend on system parameters.

The original AQT model assumes a synchronous behavior of the network, that
evolves in steps. In each step at most one packet crosses each link. Implicitly, this
assumption means that all the packets have the same size and all the links induce
the same delay in each packet transmission. There have been generalizations of
the AQT model to dynamic networks, like networks with failures [3,4,5,6] and
networks with links with different and possibly variable capacities or delays
[7,8,9]. These works still assume a synchronous network evolution, to the point
that, for instance in [7] all capacities and slow-downs must have an integral value.
To the best of our knowledge, the work included in [10] is the only generalization
of the AQT model considering packets of arbitrary lengths (up to a maximum)
or links of arbitrary (not integral) speeds and propagation delays. In that model
the adversary is more powerful than in the AQT model, and a sufficient condition
on the adversary injection rate for assuring network stability is presented.

In this paper we propose a generalization of the AQT model allowing arbitrary
packet lengths, link speeds (bandwidths), and link propagation delays. The net-
work traffic flow is considered to be continuous in time. Since we do not restrict
a synchronous system evolution anymore, we call this model continuous AQT
(cAQT). Note that all the results for the AQT model which are concerned with
instability, also hold for our CAQT model, e.g., the instability of the FIFO protocol
at any constant rate [11]. The cAQT model is inspired in the traffic conditions
of the session oriented model proposed by Cruz [12], which is widely studied
in the communication networks literature. The synchronous assumptions of the
AQT model limit the capacity of the adversary as well. In the CAQT model the
adversary is more powerful, and any instability result shown in the AQT model
can be reproduced in ours.

We show that several results from the AQT model still hold in the cAQT
model. First, we show that having bounded queue size implies having bounded
packet end-to-end delays and vice versa. Then, we show that networks with a
directed acyclic graph (DAG) topology are always stable even if the links are fully
loaded. Concerning packet scheduling protocols, we show that the well-known
LIS, SIS, FTG and NFS protocols remain universally stable in our model. Finally,
we show that some protocols whose policies are based on criteria concerning the
length of the packets, the bandwidth of the links or their propagation delay, can
configure unstable systems.

2 System Model

Like AQT, the CAQT model represents a network as a finite directed graph G
in which the set of nodes V(G) represent the hosts, and the set of edges E(G)
represent the links between those hosts. Each link e € E(G) in this graph has
associated a positive but not infinite transmission speed (a bandwidth), denoted
as Be. The bandwidth of a link establishes how many bits can be transmitted
in the link per second. Instead of considering the bandwidth as a synonym for
parallel transmission, we relate the bandwidth to the transmission velocity. We
consider that only one bit can be put in a link e € E(G) at each time, and that
conceptually the sender puts the associated signal level to the corresponding bit
for 1/B. seconds for each bit. This means that a bit can be partially transmitted
or partially received at a given time. Let us denote as By = mingcg(g) Be and
as Buax = maxecp(g) Be the minimum and maximum bandwidth, respectively,
of the edges in G.

Each link e € F(G) has also associated a propagation delay, denoted here as
P,, being P, > 0. This delay, measured in seconds, establishes how long it takes
for a signal (the start of a bit, for instance) to traverse the link. This parameter
has to do with the propagation speed of the changes in the signal that carry
the bits along the physical medium used for the transmission. We will denote
as Ppin = mingcpg) Pe and Ppax = max,c E(G) P, the minimum and maximum
propagation delay, respectively, of the edges in G.

Like in the AQT model, we assume the existence of an adversary that defines
the traffic pattern of the system by choosing when and where to inject packets
into the system, and the path to be followed by each of them. We assume that a
packet path is edge-simple, in the sense that it does not contain the same edge
more than once (it can visit the same vertex several times, though). Again, we
restrict the adversary so that it can not trivially overload any link. To do so, we
also define two system-wide parameters: the injection rate r (with 0 < r < 1),
and the burstiness b (with b > 1). For every link e € E(G), if we denote by N, (I)
the total size (in bits) of the packets injected by the adversary in the interval I
whose path contains link e, it must be satisfied that

N.(I) < 7|I|B. +b.

We call an adversary A that satisfies this restriction an (r,b)-adversary. The
injection rate r is sometimes expressed alternatively as (1 — ¢), with € > 0.

Regarding packet injections, we assume that the adversary injects packets
instantaneously. From the above restriction, this implies that packets have a
maximum size of b bits. In general, we will use L, to denote the length (in bits)
of a packet p, and Lyax = max, L, < b to denote the maximum packet length.
Once a packet p starts being transmitted through a link e € E(G), it will only
take P, + L,/B. units of time more until it crosses it completely.

Let us now look at the packet switching process. We assume that each link
has associated an output queue, where the packets that have to be sent across
the link are held. The still unsent portion of a packet that is being transmitted

partially received packet -
\ packet
|| dispatcher

partially sent packet

Dacket waiting in queue

Fig. 1. Elements involved in the nodes and links of the network in the CAQT model.

is also held in this queue. In fact, if a bit has only been partially sent, we assume
that the still unsent portion of the bit still resides in this queue. A packet can
arrive to a node either by direct injection of the adversary or by traversing some
incoming link. In the latter case we assume that only full packets are dispatched
(moved to an output queue). Hence, we assume that each link has a reception
buffer in the receiving node where the portion of a partially received packet is
held. As soon as the very last bit of a packet is completely received, the packet is
dispatched instantaneously (by a packet dispatcher) to the corresponding output
queue (or removed, if this is the final node of the packet). Figure 1 shows these
network elements.

The definition of stability in the CAQT model is analogous to the definitions
stated under other adversarial models.

Definition 1. Let G be a network with a bandwidth and a propagation delay
associated to each link, P be a scheduling policy, and A an (r,b)-adversary, with
0<r<1andb>1. The system (G,P,A) is stable if, at every moment, the
total number of packets (or, equivalently, the total number of bits) in the system
is bounded by a value C, that can depend on the system parameters.

We also use common definitions of universal stability. We say that a schedul-
ing policy P is universally stable if the system (G, P, A) is stable for each network
G and each (r,b)-adversary A, with 0 < r < 1 and b > 1. Similarly, we say that
a network G is universally stable if the system (G, P, A) is stable for each greedy
scheduling policy? P and each (r,b)-adversary A, with 0 <r <1 and b > 1.

Some additional notation is needed to describe the state of the queues and
the packets at a specific time step. We will use Q;(e) to denote the queue size

4 Greedy (or work-conserving) protocols are those forwarding a packet across a link e
whenever there is at least one packet waiting to traverse e. Three types of packets
may wait to traverse a link in a particular instant of time: the incoming packets
arriving from adjacent links, the packets injected directly into the link, and the
packets that could not be forwarded in previous steps. At each time step, only one
packet from those waiting is forwarded through the link; the rest are kept in a queue.

(in bits) of edge e € E(G) at time ¢, and define Qmax(e) = max; Q¢(e). Similarly,
we will use R;(e) to denote the number of bits at time ¢ that are crossing link
e, or already crossed it but are still in its reception buffer at the target node of
e. Then, we define Ryax(e) = max; R;(e). Observe that Ryax(e) < PeBe 4+ Limax
and is hence bounded. A;(e) will denote the number of bits in the system that
require to cross e and still have to be transmitted across link e at time ¢. The
bits in Q¢(e) are included in A¢(e), but those in Ry(e) are not.

3 General Results

We point out some general results that apply to every system (G, P, A) in the
CAQT model, independently of which is the network topology, the protocol used
and the traffic pattern.

3.1 Relation between maximum queue size and maximum delay

We show that for injection rate r < 1, having bounded queues is equivalent to
having bounded end-to-end packet delay. This generalizes a result from the AQT
model to the stronger CAQT model.

Theorem 1. Let G be a network, P a protocol, and A an (r,b)-adversary with
r <1 andb > 1. If the maximum end-to-end delay is bounded by D in the system
(G,P,A), then the maximum queue size of an edge e is bounded by (D — P,)B,.

Proof: We prove the claim by contradiction. Suppose there is some time ¢ at
which e has Q.(e) > (D — P.)B,. bits in its queue. Then, the last packet p to
completely cross e (out of those with bits in the queue at time ¢) will do so at a

time
D—-P,)B
t >t + @i(e) +P, >t+@+Pe:t+D.
B. B.
Therefore, the end-to-end delay of p cannot be bounded by D. [|

Theorem 2. Let G be a network with m = |E(G)| links, P a greedy protocol,
and A an (r,b)-adversary, withr =1—¢e <1 and b > 1. If the mazimum queue
size is bounded by @Q in the system (G,P,A), then the end-to-end delay of a
packet p with path eq,,eq is bounded by

Z mQ + 3 cep(g) Rmax(e) +b

P.,.
eBe, + e

=1

Proof: We bound the time p takes to cross every edge e;. Let us assume that p
arrives at the queue of e; at time ¢. Note that all the bits in the system are either
in the output queues, crossing links, or in the reception buffers. Then, there are

at most m@Q + Y. Rmax(€) bits in the whole system at time ¢. Hence, the queue
of e; will be empty after at most an interval of time of length A, such that

AB, =mQ+ Y Rumax(€) + rAB, +b.

Hence, p will completely cross e by time

Then, the following corollary follows from the above two lemmas.

Corollary 1. Let G be a network, P a greedy protocol, and A an (r,b)-adversary,
with r < 1 and b > 1. In the system (G, P, A) the mazimum end-to-end delay
experienced by any packet is bounded if and only if the maximum queue size is
bounded.

3.2 Initial Configurations

The moment in which a system (G, P, .A) starts its dynamics is usually denoted
as tg, and usually ty = 0. The system can start either with no packet placed at
any element of the network or with some kind of initial configuration. Usually,
an initial configuration Cy consists of a set S of packets located in the output
queues of the network links. Trivially, any such initial configuration for a system
(G,P,A) can be built from an empty initial configuration at time 0 if we allow
a large enough burstiness. Thus, any system (G, P,.A) that starts with a non-
empty initial configuration as described can be simulated by another system
(G,P,A") that starts with an empty one.

Theorem 3. Let Ag = max, Ag(e) be the mazimum number of bits that have
to be transmitted across any given edge in the paths of the set S of packets. A
system (G, P, A), where G is a network, P a greedy protocol, and A an (r,b)-
adversary with v < 1 and b > 1, that starts with an initial configuration Cy
consisting of a set S of packets in the network output queues can be simulated
by a system (G, P, A') starting from an empty configuration, where A’ is an
(r, As + b)-adversary.

Corollary 2. A policy or network that is universally stable for systems with
empty initial configurations is also universally stable for initial configurations in
which there are initially packets in the network output queues.

4 Stability of networks

We focus first on the study of stability of networks. We show that networks with
a directed acyclic graph topology are universally stable, even when the traffic

pattern can fully load the links, i.e., even for the injection rate » = 1. Note
that this proof is not a direct adaptation of the one in [1] for the corresponding
analogous result in the AQT model.

Theorem 4. Let G be a directed acyclic graph, P any greedy protocol, and A
any (r,b)-adversary with r <1 and b > 1. The system (G, P, A) is stable.

Proof: Let us first denote with T, the node at the tail of link e (i.e., the node
that contains the output queue of e), for every edge e € E(G). Let us also denote
with in(v) the set of incoming links to node v, for all v € V(G). Let us define
the function ¥ on the edges of G as

T(e) = Qole) + b+ Rumax(e) + > W(€).

e’€in(Te)

If we call nodes without incoming links sources, we will show that A;(e)+ R¢(e) is
bounded by ¥ (e), for all e and all ¢ > 0, by induction on the maximum distance
of T, to a source (i.e., the length of the longest directed path from any source
to T¢). Then, stability follows.

The base case of the induction is when T, is a source. In this case, A:(e) =
Qi(e) and ¥(e) = Qo(€e)+b+ Rmax(€). Let us fix a time ¢ and consider two cases,
depending on whether in the interval [0,¢] the output queue of e was empty at
any time. If it was never empty, then by the restriction on the adversary and
the fact that P is greedy we have that

Qi(e) < Qole) +rtB. +b—tB. < Qole) + b.

Otherwise, if time ¢’ was the last time in interval [0,¢] that the queue of e was
empty (i.e., Qp(e) = 0), by the same facts,

Qi(e) < Que) +r(t—t)Be+b— (t—t')B. <b.
Clearly, in either case,
At(e) + Rt(e) S Qt(e) + Rmax(e) S QO(e) + b + Rmax(e) == W(e)

Now, let us assume that the maximum distance of T, to any source is
k > 0. Note that for any edge ¢ € in(T.), the maximum distance of T,/
to a source is at most £ — 1. Then, by induction hypothesis, we assume that
(Ar(e") + Re(e')) < w(e!) for all t > 0 and all €’ € in(T,). Note that A:(e) <
Qi(e) + 2 cin(r,) (At(€') + Ri(e')). Again, we fix t and consider separately the
case when the output queue of e was never empty in the interval [0,¢] and the
case when it was. In the first case we have that

Ai(e) < Qoe) +rtBe +b—tB. + Z (Ap(e") + Ro(€"))
e’€in(Te)

Qole) +b+ > w(e).

e’€in(Te)

IN

In the second case, if time ¢ was the last time in interval [0, ¢] that the queue of
e was empty (i.e., Q¢ (e) = 0), we have that

A(e) < Quie) +r(t—t)Bo+b—(t—t)Bo+ Y (Au(e)) + Ru(e))
e’cin(Te)

<b+ > w(e).

e’€in(Te)

In either case, we have that

Ai(e) + Ri(e) < Qole) + b+ Rmax(e) + > W(e)) =(e).

e'ein(Te)

5 Stability of queueing policies

Stability can also be studied from the point of view of the protocols. Unstable
protocols in the AQT model are also unstable in the CAQT model. In the following,
we show that the so-called LIS, SIS, FTG and NFS protocols are universally stable
in the CAQT model, as they were in the AQT model [2].

5.1 Universal stability of LIS

The LIS (longest-in-system) protocol gives priority to the packet which was ear-
liest injected in the system. Independently of the network topology and the
(r,b)-adversary, any system (G, LIS, .A) is stable.

We first show a bound on the time that a packet needs to cross his path.
Consider some packet p, injected at time Tj, and whose path crosses edges
€1,€2,...,eq, in this order. We use T; to denote the time instant in which p
finishes crossing edge e;, for i = 1,...,d. Let ¢ denote some time in [Ty, Ty4]. Let
us denote by g; the injection time of the oldest packet in the system at time ¢.
We define ¢ = maxc(r, 1, t — 9t-

(1—5d)(ﬁ+Pmax)
l1—e :

Lemma 1. Ty — Ty < (1 —e%)c+

Proof: Packet p reaches the tail of edge e; at time T;_1. Thus, from the definition
of ¢, only packets injected in the interval [T;_1 — ¢, Ty] can block p in the queue
of e;. The packets injected in that interval include p and have at most r(Tp —
T;—1 + ¢)Be, + b bits. Hence,

f(Ty~Tia+ B +b-L, L,

T, <T;_
< 1+ B, B.,

+P3i

=eTi1+ (1—e)(c+To) +

Bei + Pei

<eTi1+ (1 —e)(e+To) + + Prax

Bmin

10

Thus, solving the recurrence, we obtain

d—1
Ti<((L—e)(c+To) + m— + Puax) Y "+ T
min Z:0
=((1—e)(c+Ty) + + P,)1_Ed+dT
= e 0 Bmin max 1—¢ € 0
1— e b 4 Poax
:(1—5d)c+(AS:)+TO
1—¢
and the claim follows. [|

Theorem 5. Let G be a network, A an (r,b)-adversary withr =1—¢ < 1, and
d the length of the longest simple directed path in G. Then all packets spend less
than (# + Prax)/(re?) time in the system (G, L1s, A).

Proof: Let ¢/ = (Biin + Prax)/((1 — €)e?) and assume that at time ¢ is the first
time that a packet p satisfies t — g; = ¢, i.e., the first time that a packet p has
been in the system for ¢’ time. We apply the previous Lemma 1 to this packet
p. From that lemma, p should have been absorbed in at most

(1 - Ed)(BL + Pmax)

1 _ d / min
(I—-e%+ o .
’ (Bb. +Pmax)_(1_€d)(3b. +Pmax) /
— d — min min <c
1—¢
time, and a contradiction is reached. [|

Corollary 3. Let G be a network, A an (r,b)-adversary with r =1 —¢ < 1,
and d the length of the longest edge-simple directed path in G. Then, the system
(G, 118, A) is stable, and there are always less than (ﬁ + Prax) € Bpax + b
bits trying to cross any edge e.

5.2 Universal stability of SIS

The s1s (shortest-in-system) protocol gives priority to the packet which was
injected the latest in the system. In the case of the sis protocol, bounding the
size of the packets recently injected is related to bounding the time that a packet
packet p requires to cross the edge e. The following lemma provides us with such
a bound:

Lemma 2. Let p be a packet that, at time t, is waiting in the queue of edge
e € E(G). At that instant, let k — 1 be the total size in bits of the packets in
the system that also require e and that may have priority over p (i.e., that were
injected later in the system). Then p will start crossing e in at most (k + b)/(¢Be)
units of time.

11

Proof: The lemma can be proved by contradiction. Suppose that the packet p
is not transmitted across the edge e in the claimed units of time. Then, other
packets different from p must have crossed the edge meanwhile. Those packets,
must have also had priority over p; however, during that time, the only packets
in the system that have priority over p are, either those comprising the k — 1
bits existing at time ¢, or those that have been injected meanwhile. During that
time, a total size of at most

k+b
eB.

(k1)+((15) Be+b>

bits belong to packets that have priority over p. The packet p would be trans-
mitted right after these bits are transmitted; since these bits would require at
most

=1+ (1= 5LB4+b) 4y
<
B, eB.
units of time to be sent across e, this leads to a contradiction. [|

Observe that, once the packet p starts being transmitted through the link e,
it will only take P. + L,/B. units of time more until it crosses it completely.
Using the bound obtained in Lemma 2 in a recursive way, we can derive more
general bounds, thus proving the universal stability of the Sis protocol.

Theorem 6. Let G be a network, A an (r,b)-adversary withr =1—¢ < 1 and
b > 1, and d the length of the longest edge-simple directed path in G. The system
(G,s18,A) is stable and, moreover:

— no queue ever contains kg + Lmax bits, and
— no packet spends more than (d(b+ £Lmax) + Zgzl k;)/ (€ Bmin) + dPmax time
in the system.

where k; is defined according to the following recurrence:

b for i=1
ki:{k- + (1=) (B5EE 4 B 4 Po) Bua+ b for 1<i<d
i—1 Bmin Bumin max max >
Proof: We first show that, when a given packet p, with path IT, = {eq, ..., e|17p|}7
|II,| < d, arrives at the queue of e;, the total size of the packets with priority
over p that also require some edge e; € I, is at most k; — 1.

This can be proved by induction on the position ¢ of the edge e; in the path
II,. The claim holds for ¢ = 1, since the only packets requiring any e; € II,
that at the time of p’s injection could have priority over p are those injected at
the same time; whose total size is at most b — 1 bits (since L, > 1). Let us now
assume that the claim holds for some ¢ > 1 (inductive hypothesis). Then, using
the bound in Lemma 2, p will completely arrive at the queue of e;;1 in at most

ki +b L,

eB,, + B..

2

+Pei

12

units of time more. During that time, at most another

ki+b L
1-¢) (D P 4P)B, +b
(€)<5Bei+Be-+) ;

i

k1+b Lmax
S(l—E) (EB - +B i +Pmax>Bmax+b

bits of packets requiring an edge e; could be injected. According to the sis policy,
those packets have priority over p. Thus, when p has completely arrived to e;11,
there is a total amount of at most

ki + b Lmax
+

(]{72 —].) + (]. - 5) <€Bmin Bmin + Pmax> Bmax +b= ki+1 -1

bits (belonging to packets in the system) which require an edge e and have
priority over p. This validates the induction and proves the claim.

Suppose now that, at some point, there are kg + L.y bits in the queue of
some edge e. Then, the latest packet arrived into the queue found at least kg bits
there, which contradicts the above inductive proof. This proves the first claim
of the theorem.

Also, by combining the initial claim with the bound in Lemma 2, we get that
a packet p takes at most ’:BH’ + BL—: + P., units of time to cross the ith edge
in its path II,. Since every pzfth defined over the graph G has length at most d,
then no packet spends more than

d d
ki+b L, d(b+ eLmax) + > 51 ki
Pe. < = deax
; < 5Bei + Bei * 1) o €Bmin +
units of time in the system. This proves the second claim of the theorem.]

5.3 Universal stability of FTG

The FTG (farthest-to-go) protocol gives priority to the packet which still has to
traverse the longest path until reaching its destination. We show that FTG is
universally stable by using the fact that all the packets have to traverse at least
one edge, and that all the packet go at most d edges further.

Theorem 7. Let G be a network with m = |E(G)| links, A an (r,b)-adversary
withr <1 and b > 1, and d the length of the longest edge-simple directed path
in G. The system (G,FTG,A) is stable and:

— there are never more than ki bits in the system,

— no queue ever contains more than ko + b bits, and

- no packet spends more than dPpax + (d(b + €Limax) + Z?:z k;)/(€Bmin) time
in the system.

13

where k; is defined according to the following recurrence:

0 for i >d
ki=1q mkii +mb+ > Rmax(e) for 1<i<d
e€E(G)

Proof: We claim that, for all 7, the size of packets in the system that still have
to cross at least i edges (they could be crossing one of these edges) is at most
k;. The proof is done by a backward induction on 3.

The claim is trivial for ¢ > d, since each packet has to cross at most d edges.
By induction hypothesis we consider the claim true for ¢ + 1. Consider now a
particular edge e. We use Qi(e) to denote the bits in the queue of edge e that
belong to packets that still have to cross at least ¢ edges at time t. Let ¢’ be
the latest time no later than ¢ such that Q¢ (e) = 0.> Then, any packet p whose
bits are accounted in Qi(e) either was in some other edge at time ¢’, and hence
had at least ¢ + 1 edges to cross, or else it has been injected after t’. Since we
consider a greedy protocol, packets have been continuously sent across edge e in
the interval (¢',¢]. Hence,

Qi) < i+ (=) (t—t)B.+b) — (t—)B,
(ind.hyp.)
= ki+1 +b*€(t*tl)Be.

With this result, we can calculate the following:

(i) An upper bound on the total size of the packets in the system that still have
to cross at least i edges:
Knowing that for a concrete edge e, Qi(e) < kjy1 +b—eBe(t —t'), and that
Ry (e) bits are either crossing e or in its reception buffer at time ¢, we can
conclude that the size of the packets in the system that still have to cross 4
or more edges at any time ¢ is at most

> (Qie) + Ri(e)) <mkipy +mb+ 3 (Ri(e) —e(t —t)Be)

ecE(G) ecE(G)
< mki-‘rl + mb + Z Rmax(e)
ecE(G)
= kia

and hence the inductive step holds.

This trivially shows the first claim of the theorem, since no more than £
bits belong to packets that need to traverse at least one edge, which are all
the packets in the system.

(ii) An upper bound on the size of the queue of any edge e:
The maximum queue size of any edge e can be calculated when considering
i =1, since all packets in the queue need to cross at least one edge (e itself).
Then, independently of the time instant, Qmax(e) = max; Q; (¢) < ko + b.

5 Observe that, w.l.o.g. we can assume that the system had empty initial configuration
(see Corollary 2), and thus such a time t’ always exists.

14

(iii) An upper bound on ¢ — t':
Since for any concrete edge e, Qi(e) > 0, we obtain that

kiy1+b < kiy1+b

t—t' < ;
- EBe - EBmin

and so the maximum amount of time that a packet p with path ey, es,...,eq
spends in the system is bounded by

d d
Z (y + - +Pei> S (te)+ZZ_2 +deax-
i=1 i

Be. EBmin

i

5.4 Universal stability of NFS

The NFS (nearest-from-source) protocol gives priority to the packet which is
closest to its origin, i.e., which has traversed the less portion of its whole path.
We show that NFs is universally stable by using a similar argument as the one
used for FTG; however the bounds will be provided now taking the length of the
longest path as a reference point.

Theorem 8. Let G be a network with m = |E(G)| links, A an (r,b)-adversary
with r <1 and b > 1, and d the length of the longest edge-simple directed path
in G. The system (G,N¥S,A) is stable and:

— there are never more than kg bits in the system,

— no queue ever contains more than kq_1 + b bits, and

— no packet spends more than dPmax+ (d(b+ €Lmax) + Z?;ll k;)/(eBmin) time
in the system.

where k; is defined according to the following recurrence:

0 for i=0
ki=19q mki_1 +mb+ 3. Ruax(e) for 1<i<d
e€E(G)

Proof: We claim that, for all i, the total size of the packets in the system that
have (completely) crossed less than ¢ edges is at most k;. The proof is done by
induction on 1.

The claim is trivial for ¢ = 0, since it is not possible to cross less than 0
edges. By induction hypothesis we consider the claim true for ¢ — 1. Consider
now a particular edge e. We use Q%(e) to denote the bits in the queue of edge
e that belong to packets that have crossed less than i edges at time t. Let ¢’ be
the latest time no later than ¢ such that Q% (e) = 0.° Then, any packet p whose

5 Observe that, w.l.o.g. we can assume that the system had empty initial configuration
(see Corollary 2), and thus such a time t’ always exists.

15

bits are accounted in Qi(e) either was at some other edge at time ¢’, and hence
had crossed less than i — 1 edges, or else it has been injected after ¢'. Since we
consider a greedy protocol, packets have been continuously sent across edge e in
the interval (¢, ¢]. Hence,

Qi) < ki +(L—e)(t—t)Be+b)— (t—1)B,

(ind.hyp.)
= ki1 —l—b—E(t—t/)Be.

With this result, we can calculate the following:

(i) An upper bound on the total size of the packets in the system that have
crossed less than ¢ edges:
Knowing that for a concrete edge e, Qi(e) < k;_1 +b—eB.(t —t'), and that
R:(e) bits are either crossing e or in its reception buffer at time ¢, we can
conclude that the size of the packets in the system that have crossed less
than ¢ edges at any time ¢ is at most

> (Qile) + Ru(e)) <mkiy+mb+ 3 (Ri(e) — et —t')Be)

e€E(G) ecE(9)
<mki—1+mb+ > Rmax(e)
e€E(G)
= ki7

and hence the inductive step holds.

This trivially shows the first claim of the theorem, since no more than kg
bits belong to packets that have traversed less than d edges, which are all
the packets in the system.

(ii) An upper bound on the size of the queue of any edge e:
The maximum queue size of any edge e can be calculated when considering
i = d, since no packet in the queue has crossed d edges. Then, independently
of the time instant, Quax(€) = max; Q¢(e) < kg1 +b.

(iii) An upper bound on ¢ — t':
Since for any concrete edge e, Q%(e) > 0, we obtain that

ki—1+0b < ki—1+0b

t—t' < ,
- €Be gBmin

and so the maximum amount of time that a packet p with path ey, es, ..., eq
spends in the system is bounded by

dPpax-
Be. <C:-Bmin * *

7

d—1
(Bt) < e+

=1

16

vy

Fig. 2. Baseball network Gp presented in [2].

6 Instability of queueing policies

In this section we introduce some new protocols that base their policies in the
main features of the CAQT model, namely, the length of the packets, the edge
bandwidths and the edge propagation delays. We show that the CAQT model is
strictly stronger than the AQT model by presenting scheduling policies that are
unstable under the former while they are universally stable under the latter.

6.1 Instability by difference in packet length

Consider the LPL (longest-packet-length) protocol which gives priority to the
packet with longest length. Let us denote as LPL-LIS the same protocol when
ties are broken according to the LIS policy. Note that LPL-LIS is universally
stable under the AQT model, since in this model all packets have the same length
and hence the policy simply becomes L1s [2]. However, we show here that LPL-
LIS is unstable in an extension of AQT with multiple packet lengths just by
considering two different packet lengths (1 and 2). For simplicity we will assume
that time advances in synchronous steps (as in AQT). Packets of length 2 take
2 steps to cross each link. In the LPL-LIS protocol, these double packets will
have priority over the single packets. Note that this model is trivially included
in cAQT. To show the instability of the LPL-LIS protocol, we use the baseball
network presented in [2] (see Figure 2).

Theorem 9. Let Gg be the graph with nodes V(Gg) = {vg,v1,wo, w1}, and
edges E(Gg) = {(vo,wo), (v1,w1), (w1, v0), (w1, v0), (wo,v1), (wo,v1)}. All the
edges in E(Gg) have bandwidth 1 and null propagation delay. For r > 1/1/2
there is an (r,b)-adversary A that makes the system (Gp,LPL-LIS, A) to be un-
stable only with packets of length 1 and 2.

Proof: We assume an initial configuration in which there are sy packets of length
1, distributed roughly evenly among w; and vy, and all of them trying to cross
ep, for a large enough sg. This is the base case of the induction. Then, we show

17

that at the end of phase j there are at least sg+ j packets of length 1 distributed
evenly among wi_; and v1_; that want to cross edge e;, where ¢ = 7 mod 2. This
clearly holds for phase 0.

Then, we consider phase j. Without loss of generality we assume j to be odd.
By induction hypothesis at the beginning of phase j there is a set S of s packets
of length 1 that want to cross ey in w; and vy. The sequence of injections is
divided into subphases as follows.

(i) We let one step go to allow the first packet in S to reach the queue of eg
(note that after then all the packets will follow without interruption). Then,
for the next s steps, we inject a set S7 of rs packets of length 1 that want
to traverse edges eqfe1. These are blocked by the packets in S, since they
all have the same length, but those in S are older.

(ii) Then, for the next rs steps we inject a set of r2s packets of length 1 that

want to traverse edges eq foe1. These are blocked by the packets in S.
We also delay the flow of packets in 57 through f using single—edge injections
of packets of length 2. The new packets block the packets in Sy, since they
are longer. Roughly r%s/2 packets of length 2 can be injected, and hence
roughly 7s — 2r2s/2 packets of Sy get to cross fj. Then, at the end of this
sub-phase there are still 72s packets of S; in wg.

This completes phase j. Clearly, at the end of it there are r2s packets in wq
and r2s packets in vg, all of length 1 and trying to traverse e;. Since 2r2s > s
for large enough s, the induction hypothesis holds.]

6.2 Instability by difference in bandwidth

Consider the sPL (slowest-previous-link) protocol which gives priority to the
packet whose last crossed link was the slowest, i.e., had the smallest bandwidth.
This policy aims to equilibrate the lost in transmission velocity suffered in previ-
ous links. Let us denote as SPL-NFS this protocol, when ties are broken according
to the NFS protocol. Observe that the SPL-NFS protocol is equivalent to NFS in
the AQT model and thus universally stable [2]. However, we show that in a sim-
ilar way as shown for the LPL-LIS protocol, the SPL-NFS protocol can be made
unstable in the CAQT model.

Theorem 10. Let Gp be the graph with nodes V(Gp) = {vo,v1,wo, w1} and
edges E(Gp) = {(vo, wo), (v1,w1), (w1, v0), (w1,v0), (wo,v1), (wo,v1)}. Let G be
the graph obtained from Gg whose set of nodes is V(G) = V(G)U{v{, v, wh, wi },
and whose set of edges is E(G) = E(Gg) U {(v}, vo), (v1,v1), (wh, wo), (wh,wi)}.
Those edges inciding to vy and v have bandwidth 2, while the rest have band-
width 1. All the edges have null propagation delays. For v > 1/+/2 there is an
(r,b)-adversary A that makes the system (G, SPL-NFs, A) to be unstable.

Proof: The proof is similar to the proof of Theorem 9 above but the injec-
tions are done only at the queues of the new 4 edges. Using the same induction

18

hypothesis and sequence of injections we have that in the first sub-phase the
packets in S still block those in S; because the latest edge crossed by the latter
is faster, while in the second sub-phase the single injections (now injections of
path length 2) block the packets in S; by NFs. [|

6.3 Instability by difference in propagation delays

Consider the sPP (smallest-previous-propagation) protocol which gives priority
to the packet whose previously traversed edge had smallest propagation delay,
and combine it with NFS to break ties. Let us denote this protocol as spp-
NFS. Observe that the SPP-NFS protocol is equivalent to NFS in the AQT model
and thus universally stable [2]. However, we show with the SPP-NFS protocol as
example, that just the fact of considering propagation delays can make a policy
unstable in CAQT.

Theorem 11. Let Gp be the graph with nodes V(Gg) = {vg,v1,wo, w1} and
edges E(Gg) = {(vo,wo), (v1,w1), (w1, v0), (w1, v0), (wo,v1), (wo,v1)}. Let G be
the graph obtained from Gp whose set of nodes is V(G) = V(Gp)U{v}, v}, wj, w },
and whose set of edges is E(G) = E(Gg) U {(v},vo), (vi,v1), (wf, wo), (w},w1)}.
Those edges inciding to vy and vy have propagation delay 1, while the rest have
null propagation delay. All the edges have unary bandwidth. For r > 1/+/2 there
is an (r,b)-adversary A that makes the system (G, SPP-NFS, A) to be unstable.

Proof: The proof is similar to the proof of Theorem 9 above but the injections
are done only at the queues of the new 4 edges. Packets in S block those in
S1 because the latter crossed an edge with larger propagation delay. Then, the
single (two-edge in this case) injections block the packets in S7 by NFs. |

7 Conclusions and open questions

We consider a networking scenario in which packets can have arbitrary lengths,
and the network links may have different speeds and propagation delays. Taking
into account these features, we have presented a generalization of the well-known
Adversarial Queueing Theory (AQT) model which does not assume anymore
synchronicity in the evolution of the system, and makes it more appropriate
for more realistic continuous scenarios. We called it the CAQT model.

We have shown that, in the CAQT model having bounded queues is equivalent
to having bounded packet end-to-end delays. From the network point of view, we
show that networks with a directed acyclic topologies are universally stable even
when the traffic pattern fully loads the links. From the protocol point of view,
we have also shown that the well-known LIS, SIS, FTG and NFS protocols remain
universally stable in the CAQT model. New protocols have also been proposed
which are universally stable in the AQT model but unstable in the CAQT model.

19

Many interesting questions remain still open in the CAQT model. More results

are needed concerning the stability of networks, starting from simple topologies
like the ring, to finally tackle the universal stability of networks. It would be of
interest to know the queue sizes to be expected (as is was studied in [2,13] for
the AQT model), as well as which conditions guarantee that all the packets are
actually delivered to destination (as it was studied in [14] for AQT).

8

Acknowledgments

The authors would like to thank the unknown referees from the 30th Interna-
tional Symposium on Mathematical Foundations of Computer Science (MFCS’05)
for their comments and suggestions.

References

10.

11.

. Borodin, A., Kleinberg, J., Raghavan, P., Sudan, M., Williamson, D.: Adversarial

queueing theory. Journal of the ACM 48 (2001) 13-38

Andrews, M., Awerbuch, B., Ferndndez, A., Kleinberg, J., Leighton, T., Liu, Z.:
Universal stability results for greedy contention—resolution protocols. Journal of
the ACM 48 (2001) 39-69

Awerbuch, B., Berenbrink, P., Brinkmann, A., Scheideler, C.: Simple routing
strategies for adversarial systems. In: 42th. IEEE Symposium on Foundations
of Computer Science, IEEE Computer Society Press (2001) 158-167

Anshelevich, E., Kempe, D., Kleinberg, J.: Stability of load balancing algorithms
in dynamic adversarial systems. In: 34th. Annual ACM Symposium on Theory of
Computing, ACM Press (2002) 399-406

Alvarez, C., Blesa, M., Diaz, J., Fernandez, A., Serna, M.: Adversarial models for
priority-based networks. Networks 45 (2005) 23-35

Alvarez7 C., Blesa, M., Serna, M.: The impact of failure management on the
stability of communication networks. In: 10th International Conference on Parallel
and Distributed Systems, IEEE Computer Society Press (2004) 153-160

Borodin, A., Ostrovsky, R., Rabani, Y.: Stability preserving transformations:
Packet routing networks with edge capacities and speeds. Journal of Intercon-
nection Networks 5 (2004) 1-12

Koukopoulos, D., Mavronicolas, M., Spirakis, P.: Instability of networks with quasi-
static link capacities. In: 10th Internaltional Colloquium on Structural Information
Complexity. Volume 17 of Proceedings in Informatics., Carleton Scientific (2003)
179-194

Koukopoulos, D., Mavronicolas, M., Spirakis, P.: Performance and stability bounds
for dynamic networks. In: 7th International Conference on Parallel Architectures,
Algorithms and Networks, IEEE Computer Society Press (2004) 239-246
Echagiie, J., Cholvi, V., Ferndndez, A.: Universal stability results for low rate
adversaries in packet switched networks. IEEE Communication Letters 7 (2003)
578-580

Bhattacharjee, R., Goel, A., Lotker, Z.: Instability of FIFO at arbitrarily low rates
in the adversarial queueing model. STAM Journal on Computing 34 (2004) 318-332

20

12.

13.

14.

Cruz, R.: A calculus for network delay. Part I (network elements in isolation)
and II (network analysis). IEEE Transactions on Information Theory 37 (1991)
114-141

Weinard, M.: The necessity of timekeeping in adversarial queueing. In: 4th In-
ternational Workshop on Efficient and Experimental Algorithms. Volume 3503 of
Lecture Notes in Computer Science., Springer-Verlag (2005) 440-451

Rosén, A., Tsirkin, M.: On delivery times in packet networks under adversarial
traffic. In: 16th ACM Symposium on Parallel Algorithms and Architectures, ACM
Press (2004) 1-10

