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Abstract A traveling salesman game is a cooperative game G = (N, cD). Here N ,
the set of players, is the set of cities (or the vertices of the complete graph) and cD

is the characteristic function where D is the underlying cost matrix. For all S ⊆ N ,
define cD(S) to be the cost of a minimum cost Hamiltonian tour through the ver-
tices of S ∪ {0} where 0 �∈ N is called as the home city. Define Core(G) = {x ∈
�|N | : x(N) = cD(N) and ∀S ⊆ N,x(S) ≤ cD(S)} as the core of a traveling sales-
man game G. Okamoto (Discrete Appl. Math. 138:349–369, 2004) conjectured that
for the traveling salesman game G = (N, cD) with D satisfying triangle inequality,
the problem of testing whether Core(G) is empty or not is NP-hard. We prove that
this conjecture is true. This result directly implies the NP-hardness for the general
case when D is asymmetric. We also study approximately fair cost allocations for
these games. For this, we introduce the cycle cover games and show that the core of a
cycle cover game is non-empty by finding a fair cost allocation vector in polynomial
time. For a traveling salesman game, let ε-Core(G) = {x ∈ �|N | : x(N) ≥ cD(N) and
∀S ⊆ N , x(S) ≤ ε · cD(S)} be an ε-approximate core, for a given ε > 1. By viewing
an approximate fair cost allocation vector for this game as a sum of exact fair cost al-
location vectors of several related cycle cover games, we provide a polynomial time
algorithm demonstrating the non-emptiness of the log2(|N | − 1)-approximate core
by exhibiting a vector in this approximate core for the asymmetric traveling sales-
man game. We improve it further by finding a ( 4

3 log3(|N |) + c)-approximate core in
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polynomial time for some constant c. We also show that there exists an ε0 > 1 such
that it is NP-hard to decide whether ε0-Core(G) is empty or not.

Keywords Cooperative games · Fair cost allocations · Traveling salesman game ·
Approximate fair cost allocation · Combinatorial optimization

1 Introduction

A cooperative game is characterized by a set of players (or agents) and a cost function
that is defined for any coalition of these players. The cooperative game related with
the traveling salesman problem is very well studied. In a traveling salesman game,
the players are the cities which a salesman has to visit. The cost function is intuitively
the cost incurred by visiting a given subset of the cities and returning to the home city.

Several problems can be posed with respect to a given combinatorial optimiza-
tion game. One prominent question is to test the non-emptiness of the core of a
game. Probably [18] is the first paper that studied a cooperative game, namely, the
assignment game. The underlying combinatorial optimization problem is the assign-
ment problem (or equivalently, the maximum weighted matching problem on bipar-
tite graphs). Testing the core non-emptiness of this game is essentially the same as the
polynomial solvability of the optimization problem by the Hungarian method [13].
Another example is the minimum spanning tree game where the core was shown to
be non-empty by an explicit construction of a vector in the core [2, 9, 14]. In these
examples and some more, a clear relationship exists between the polynomial solv-
ability of the underlying optimization problem and testing the non-emptiness of the
core of the game.

Another characterization of the core non-emptiness of a game is from linear pro-
gramming. A result of Deng et al. [3] states that a necessary and sufficient condi-
tion for the core of a maximum packing game and a minimum covering game to be
non-empty is that the linear programming relaxations of these problems have integral
optimal solutions. Note that the underlying optimization problems in this case are NP-
hard. Other characterizations in this direction are for the facility location games [12],
partition games [5], and delivery games [10] to mention a few.

On the other hand, several papers deal with the intractability of the core non-
emptiness of certain games. For example, Deng et al. [3], showed that testing the non-
emptiness of the core of the minimum coloring game is NP-complete. The underlying
combinatorial optimization problem in the case is also NP-hard. Thus, this reinstates
again the relationship between these two problems. Goemans and Skutella [8] showed
the NP-completeness of the core non-emptiness of a facility location game.

In this paper, we study traveling salesman games, introduced by Potters et al. [17].
More formally, a cooperative game is given by the tuple (N,f ), where N =
{1,2, . . . , n} and f : 2N → � is a characteristic function. In the case of a travel-
ing salesman game, N = {1,2, . . . , n} (the cities) with a given symmetric distance
matrix D (referred to as a cost function defined on all pairs of cities) on the set of
cities and for a subset S ⊆ N , we have the characteristic function cD(S) defined to
be the cost of a minimum cost Hamiltonian tour which visits all the cities in S ∪ {0}
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where 0 �∈ N is called the home city or home node. Note that the cost matrix D is
defined over all pairs (i, j) where i, j ∈ N ∪{0}. The core of a game (N,f ) is defined
to be the following:

Core(N,f ) = {x ∈ �n : x(N) = f (N) and ∀S ⊆ N,x(S) ≤ f (S)},
where x(S) = ∑

i∈S x(i) with x = (x(i))i=1,...,n. The interpretation of this definition
for the traveling salesman game can be motivated as follows. Consider home node 0
as the home city of a professor who has to give talks at the universities located in
vertices 1, . . . , n. The total travel cost is cD(N). So, the problem is to find a fair cost
allocation (a vector in the core) such that no coalition S will split off because they
pay more than the actual cost of an optimal subtour through S ∪ {0} and invite the
professor to visit only the universities i ∈ S.

Various aspects of traveling salesman games have already been covered in the
literature. Tamir [19] showed that a metric (i.e., satisfying triangle inequality) travel-
ing salesman game with at most four players always has a non-empty core and also
the existence of a game with six players whose core is empty. Furthermore, Faigle
et al. [6] designed an instance of a 2-dimensional Euclidean game with six players
such that the core is empty. More recently, Okamoto [15] showed that the problem
of deciding whether a general traveling salesman game has an empty core or not, is
NP-hard. But for the special case of metric traveling salesman games, the same ques-
tion was left open and conjectured to be NP-hard. In this paper, we show that this is
indeed the case. In fact, we prove that testing the core-emptiness of a {1,2} traveling
salesman game where the costs on any pair of cities is either one or two and the costs
are symmetric (i.e., cost on a pair (i, j) is the same as that on (j, i)) is NP-hard. This
also proves that it is NP-hard to decide if the core of an asymmetric traveling sales-
man game with triangle inequality is empty or not. Note that an asymmetric traveling
salesman game is a generalization of the symmetric game.

We then consider approximately fair cost allocations, i.e., find a cost allocation
vector x ∈ �|N | such that ∀S ⊆ N , x(S) ≤ ε · cD(S) and x(N) ≥ cD(N), for some
ε > 1. Our reduction also shows that it is NP-hard to find an ε0-approximate cost al-
location vector for some ε0 > 1 for the (a)symmetric traveling salesman game, using
a result of Berman et al. [1].

We introduce cycle cover games on the same underlying complete directed graph,
where the characteristic function is the cost of a minimum cost cycle cover. Note that
a cycle cover game on a complete directed graph is equivalent to an assignment game
on a bipartite graph (complete bipartite except for a perfect matching). We show that
the core is always non-empty for such a game and provide a O(|N |3) time algorithm
for finding a fair cost allocation vector. This follows easily from known results on
assignment games, but we present a proof, too, since we need the notations. We also
show that an approximately fair cost allocation vector for an asymmetric traveling
salesman game is the sum of exact fair cost allocation vectors of several related cycle
cover games.

The question of finding an approximately fair cost allocation vector has already
been considered for several cooperative games where testing the core non-emptiness
problem is NP-hard. Faigle et al. [6] find a 1.5-approximately fair cost allocation vec-
tor for symmetric traveling salesman game. For this, they make use of Christofides’
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well-known approximation algorithm for the symmetric traveling salesman optimiza-
tion problem. In this paper, we provide a polynomial time algorithm that finds a
log2(|N | − 1)-approximate cost allocation vector for the asymmetric traveling sales-
man game. We make use of an approximation algorithm for the minimum asymmetric
traveling salesman problem (Min ATSP) of Frieze et al. [7]. By adapting a polyno-
mial time 4

3 log3(n)-approximation algorithm for Min ATSP by Kaplan et al. [11],
we find a ( 4

3 log3(|N |) + c)-approximate cost allocation vector for the asymmetric
traveling salesman game for some constant c.

2 Preliminaries

Let N = {1,2, . . . , n}. Define D : (N ∪ {0}) × (N ∪ {0}) → {1,2} to be an (n + 1) ×
(n + 1) symmetric matrix. Let cD : 2N → Z be such that ∀S ⊆ N ,

cD(S) = min
ρ:S→S

⎧
⎨

⎩
d(0, ρ(i1)) +

|S|−1∑

j=1

d(ρ(ij ), ρ(ij+1)) + d(ρ(i|S|),0)

⎫
⎬

⎭

over all permutations ρ on S = {i1, i2, . . . , i|S|}. In other words, cD(S) is the cost of
a minimum cost Hamiltonian tour through S ∪ {0}, with 0 �∈ N called the home node,
when we consider the complete graph on N ∪{0}. The tuple (N, cD) is the symmetric
traveling salesman game. The core of the game is defined as

Core(N, cD) = {x ∈ �n : x(N) = cD(N) and ∀S ⊆ N,x(S) ≤ cD(S)},

where x(S) = ∑
i∈S x(i) with x = (x(i))i=1,...,n. Any vector x ∈ Core(N, cD) is

called a fair cost allocation vector. Whenever x is a vector, x(i) will refer to the
corresponding value at the ith coordinate.

Consider the following decision problem: given a matrix D that fulfills the triangle
inequality, is Core(N, cD) = ∅ or not?

We denote the problem as Core-�TS or the problem of testing the core non-
emptiness of a metric traveling salesman game. A special case of this problem is
Core-(1,2)-TS where the costs on the edges are either one or two. We show that
Core-�TS is NP-hard by a polynomial time reduction from the following SAT prob-
lem (3SAT4) to Core-(1,2)-TS. 3SAT4 is also called the Bounded Occurrence Satis-
fiability problem:

Given a boolean formula φ as a conjunction of disjunctive clauses with exactly
three literals per clause and the number of occurrences of a literal is four, does there
exist a truth assignment to the variables of the formula such that all the clauses are
satisfied?

3SAT4 was shown to be NP-complete in [20]. Recently, it was shown in [1], that
it is NP-hard to approximate the corresponding maximization problem to within a
constant c > 1.



Theory Comput Syst (2008) 43: 19–37 23

3 Papadimitriou-Yannakakis’ Construction

STSP(1,2) is the following minimization problem: given a complete graph on nodes
N where the costs on the edges are either one or two, find a minimum cost Hamil-
tonian tour in the graph. We describe the construction of Papadimitrou and Yan-
nakakis [16] to prove the SNP-hardness of STSP(1,2) from 3SAT4. In the subsequent
section, we elaborate our polynomial time reduction from 3SAT4 to Core-(1,2)-TS,
and highlight the differences in both the constructions.

3.1 The Basic Gadgets

The usual reductions to the traveling salesman problem make use of special compo-
nents called gadgets or devices. A gadget forces an optimal Hamiltonian tour to have
a special structure.

A basic gadget used in the construction is the ex-OR device, shown in Fig. 1a.
All the edges in this device are of cost one. The structure of the device is so that
there can be only two possible traversals of this gadget by any optimum Hamiltonian
tour which uses only cost one edges since the gadget is connected to the rest of the
graph only at the boundary vertices. We shall think of an ex-OR subgraph as two
edges connected by an extrinsic device (Fig. 1b). This will be useful in visualizing
the Hamiltonian cycle in the whole graph.

For each variable of the boolean formula, we have a device as shown in Fig. 2. It
has two paths, one for each truth value of the variable. We refer to these paths as “true
path” and “false path” respectively. Each path is an arrangement of 29 ex-ORs–four

Fig. 1 a The ex-OR gadget.
b1, b2, b3, b4 are called
boundary vertices.
b Representation of an ex-OR
device

Fig. 2 The variable gadget.
There are four “occurence”
edges corresponding to the four
occurrences of literal x or x̄, in
the respective paths



24 Theory Comput Syst (2008) 43: 19–37

Fig. 3 The clause gadget.
There are three ex-OR devices
corresponding to the three
literals of the clause

Fig. 4 The graph H . Corners of
clause gadgets, and the nodes s

and t ’ form a complete subgraph
of H

of them are connected to the clause devices (one for each occurrence of a literal called
occurrence edge), and the others (five “batteries” or “series” of five ex-ORs each) are
connected within to the other path of the same variable device. The intuition behind
such a construction is consistency, i.e., to ensure that an optimal tour does not traverse
both paths. So, any optimal Hamiltonian tour traverses exactly one of the two paths
and also all the vertices of this path appear successively on the tour.

For each clause, we have a triangle device with each edge connected to the occur-
rence edge of the literal in the clause via an ex-OR device. Please refer to Fig. 3.

3.2 The Construction

We now describe the actual graph that will be constructed from a given boolean
formula. Let φ = C1 ∧ C2 ∧ · · · ∧ Cm be the given boolean formula where each
Ci = (ai ∨ bi ∨ ci). Also any variable v appears four times as the literal v and four
times as the literal v̄ in φ. We construct graph the H as follows. Fix an order of the
variables and connect the variable gadgets as a series, as shown in Fig. 4. The set
of all m clause gadgets are connected so that the 3m corners are pairwise connected
amongst themselves and also to the first and last vertices of the variable series.

The distance matrix D for this graph H is simply: d(i, j) = 1 if (i, j) ∈ E, and
otherwise d(i, j) = 2. This means that all the edges which are mentioned in the con-
struction are of cost one and the remaining edges (note that an instance of a TSP
game is a complete graph) are of cost two.
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3.3 Structural Lemmas

Definition 1 Nodes of G that are traversed by an optimal Hamiltonian tour with one
edge of cost one and another of cost two are called endpoints. Those nodes that are
traversed with both edges of cost two are called double endpoints and will be seen as
two endpoints each.

The following two lemmata are shown by Papadimitriou and Yannakakis.

Lemma 1 Let A be a truth assignment to the variables of φ such that maximum
number of clauses are satisfied. If, under A, φ has k unsatisfied clauses, then there
exists an optimal Hamiltonian tour through the vertices of H with k or k + 1 end-
points, depending on k being even or odd respectively. Moreover, these endpoints are
present in the clause part of H .

Lemma 2 Let n be the number of vertices in H . If φ is satisfiable, the cost of an
optimal Hamiltonian tour in H is n. If φ is unsatisfiable and there exists an optimal
(in the sense of satisfying maximum number of clauses) assignment with k unsatisfied
clauses, then the cost of an optimal Hamiltonian tour in H is n + � k

2�.

4 Our Construction

Our reduction differs from that of Papadimitriou and Yannakakis [16] in that we
reduce to Core-(1,2)-TS instead of STSP(1,2). But since the former problem differs
only slightly from the latter in structure, we make use of the basic gadgets and the
structural lemmas from the previous section.

Our clause gadget is shown in Fig. 5. Note that we have extra nodes as corners and
that there are nine edges between the boundary points of adjacent ex-OR devices of
the gadget. These edges will be referred to as boundary-boundary edges. (The gadget
differs from the one presented in the conference version, the six newedges are needed
in the proof of Lemma 3.) This is an important difference from the clause gadget
of [16], which will be essential for the NP-hardness proof. The instance graph G of
Core-(1,2)-TS is illustrated in Fig. 6. The modifications are necessitated because of

Fig. 5 The clause gadget.
There are three ex-OR devices
corresponding to the three
literals of the clause. b3, b4
vertices are the boundary
vertices of the corresponding
ex-ORs
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Fig. 6 The graph G. Home
node “0” is not considered to be
part of G. Corners of clause
gadgets, the nodes s and t and
“0” form a complete subgraph
of G ∪ {0}

Fig. 7 The traversal of a clause gadget that corresponds to a clause satisfied by one, two, or three literals,
respectively

the inclusion of the home node “0”. Note that in the construction, we only show cost
one edges. It is assumed that the remaining edges of the complete graph on N ∪ {0}
are of cost two.

4.1 Structure of an Optimal Tour

We show the following lemmas on the structure of optimal Hamiltonian tours in G.

Lemma 3 Let A be a truth assignment to the variables of φ such that maximum
number of clauses are satisfied. If, under A, φ has k unsatisfied clauses, then there
exists an optimal Hamiltonian tour through the vertices of G with k or k + 1 end-
points, depending on k being even or odd respectively. Moreover, these endpoints are
present in the clause part of G.

Proof Consider the following tour. The variable part of G is traversed according to
the assignment A, i.e., if ai = 1 in A, then we take the “true path” of the variable ai ,
otherwise the “false path” of the variable. In the clause part, the tour traverses the
satisfied clause gadgets first. (At most two edges of such a triangle are not covered
by the variable part traversal of the tour). Figure 7 shows how the tour runs through
the gadget if one, two, or three clauses are satisfied. Then, in the unsatisfied clause
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Fig. 8 a shows an optimal
Hamiltonian tour using the
boundary-boundary edge
(b1, b2). Such a tour can be
modified as shown in (b)

gadgets, one endpoint per each gadget is introduced. Since a clause gadget can only
be entered through the corner points or the ex-OR gadgets, a clause gadget that cor-
responds to an unsatisfied clause has to have an endpoint. For parity reasons, one
may have to introduce another endpoint. Thus, in this tour there are either k or k + 1
endpoints and all of them are introduced in the clause devices. It remains to show that
such a tour is optimal. The proof of this fact is essentially the same as given in [16]
which exhaustively lists the various possibilities of traversal and in each case how
one can modify the tour to have the required structure without increasing costs. The
clause gadget of [16] and ours differ in the introduction of new corner vertices addi-
tional cost one edges between the boundary points in our construction (the boundary-
boundary edges). But externally it behaves like the gadget in [16], since we can enter
it only through the corner vertices and the ex-OR-gadgets by cost one edges, so the
arguments are valid here, too.

The optimal tours in our construction can enter a clause gadget several times via
the corner vertices. We can modify the traversal of any optimal Hamiltonian tour
through our clause gadget such that every gadget is only entered once via the corner
vertices. This modification is illustrated in Fig. 8. In Fig. 8a, the optimal tour uses the
boundary edge (b1, b2). This can be overcome by the modification suggested in (b).
Since for optimality, any clause gadget can be entered only from corner vertices, the
vertices c1, c2 are indeed corner vertices and hence are connected by an edge of cost
one. Putting it all together, the lemma follows. �

Lemma 4 Let n be the number of vertices in G. If φ is satisfiable, the cost of an
optimal Hamiltonian tour in G is n. If φ is unsatisfiable and there exists an optimal
(in the sense of satisfying maximum number of clauses) assignment with k unsatisfied
clauses, then the cost of an optimal Hamiltonian tour in G is n + � k

2�.

Proof Consider the optimal Hamiltonian tour constructed in Lemma 3. If φ is sat-
isfiable or in other words k = 0, then this tour has no endpoints. So, its cost is n.
Otherwise, the tour has k or k + 1 endpoints. Each endpoint has one edge of cost two
in the tour, and hence the number of cost two edges in the tour is k

2 or k+1
2 when

k is even or odd respectively, i.e., � k
2� cost two edges. Thus, the cost of the tour is

(n − � k
2�) · 1 + � k

2� · 2 = n + � k
2�. �
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5 Hardness Results

Let n be the number of vertices in G. Define N = {1,2, . . . , n}, the vertices of G.
Also, let cD : 2N → �, be defined as follows. For any S ⊆ N , cD(S) is the cost of
a minimum cost tour through the vertices of S ∪ {0}. Recall that in our construction,
the home node 0 is connected to the corner vertices of all clause gadgets by cost one
edges.

Theorem 1 If N = {1,2, . . . , n} and D is a (n + 1) × (n + 1) symmetric matrix
satisfying triangle inequality, then the problem of deciding if Core(N, cD) is empty
or not, is NP-hard.

Proof We show the NP-hardness of Core-�TS by showing the following equivalent
claim.

Claim Let φ be the boolean formula instance of 3SAT4 given as a conjunction of
clauses. Then, φ is satisfiable if and only if Core(N, cD) is non-empty.

Suppose φ is satisfiable. We show a fair cost allocation in the TSP game (N, cD)

thereby proving the core to be non-empty. Since φ is satisfiable, by Lemma 4, the cost
of an optimal Hamiltonian tour is n + 1. Note that this tour passes through the home
node ‘0’. Let us define the vector x ∈ �n to be ( n+1

n
, n+1

n
, . . . , n+1

n
). We claim that

x ∈ Core(N, cD). Clearly, x(N) = n + 1 = cD(N). Consider any S ⊆ N . We have,
cD(S) ≥ |S|+ 1. But, x(S) = ∑

i∈S
n+1
n

= (1 + 1
n
)|S| = |S|+ |S|

n
≤ |S|+ 1 ≤ cD(S).

Hence, x ∈Core(N, cD).
Now, suppose φ is unsatisfiable. Consider an optimal truth assignment A (optimal

in terms of maximum number of satisfiable clauses) which satisfies all but k clauses
(k > 2). We deal with k = 1,2 cases later. Depending on the truth value of a variable
in A, let T denote all the vertices of G occurring in the “true paths” of all variables
(i.e., if variable vi = 1 in A, then we take the path in the variable device of vi corre-
sponding to the literal vi , otherwise that of v̄i ), the vertices of all the ex-OR batteries
on the “false paths” and finally all the remaining vertices of satisfied clause devices
(with respect to A). This means that we consider all the vertices in the variable part
of G except those present in the occurrence edges on the “false paths” with respect
to A. It also implies that vertices of ex-OR devices of occurrence edges in “true
paths” present on the satisfied clauses (with respect to A) are also in T . Let C denote
the corner vertices of the unsatisfied clause gadgets. Let R := N\{T ∪ C}. Suppose,
for contradiction, that Core(N, cD) �= ∅. Let x ∈ Core(N, cD). Since x ∈ �n is a fair
cost allocation vector, the following structural properties must hold for x.

Observation 1 If x is a fair cost allocation vector, and T is defined as above, then
x(T ) ≤ |T | + 1.

Proof There is a Hamiltonian tour through the vertices of T which uses only cost one
edges, as follows. First, traverse the vertices of T on the variable part of G according
to the assignment A. Now, consider the vertices of satisfied clause devices that have
not yet been covered by the tour. There are three possibilities:
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Fig. 9 a, b, c show the traversals of three tours H1,H2,H3 respectively on an unsatisfied clause gadget.
In H1, the corner vertex 1 and all the vertices of the ex-OR on the edge R(2,3) are not traversed. The
complete tours can be visualized easily since all the corner vertices are pairwise connected

1. Only the corner and boundary vertices of a satisfied clause device are not tra-
versed.

2. An edge of the satisfied clause device and the corner and some boundary vertices
are not traversed.

3. Two edges of the satisfied clause device alongwith the corner vertices are not
traversed.

Clearly, all these vertices can be traversed as depicted before with cost one edges
by recalling the fact that all corner vertices and the home node 0 are interconnected by
cost one edges. Hence, cD(T ) = |T | + 1. Since x(T ) ≤ cD(T ), the claim follows. �

Observation 2 Let C be the set of corner vertices of unsatisfied clause gadgets, and
R be the set of remaining vertices in unsatisfied clause gadgets. If x is a fair cost
allocation vector, then x(C) + x(R) ≥ |C| + |R| + ⌈

k
2

⌉
.

Proof Since x is a fair cost allocation vector, x(N) = cD(N). Now, there is a
Hamiltonian tour through the vertices of G of cost n + � k

2�, by Lemma 4. So,
cD(N) = n + � k

2� + 1, by recalling the fact that cD(N) is an optimal tour includ-
ing the home node 0. Also, x(N) = x(C) + x(R) + x(T ), since the sets C,R,T are
disjoint. Now, by Lemma 1, x(T ) ≤ |T | + 1, and hence the lemma follows. �

We consider three tours H1,H2,H3 through the vertices of C ∪ R as shown
in Fig. 9. Let an unsatisfied clause gadget Ci , for i = 1,2, . . . , k, be given by
(3i − 2,3i − 1,3i,R(3i − 2,3i − 1),R(3i − 1,3i),R(3i,3i − 2)), where the first
three are the corner vertices and R(p,q) denotes the vertices in the ex-OR gad-
get between (p, q) of Ci and the corresponding occurrence edge in the variable
part of G. Thus, the tour H1 is then {2,R(1,2),R(3,1),3,5,R(5,4),R(6,4),6, . . . ,

3k − 1,R(3k − 2,3k − 1),R(3k,3k − 2),3k,2}. The tours H2 and H3 are similarly
defined. Let H be one of these tours with the maximum x(.) value, i.e., x(H) :=
max{x(H1), x(H2), x(H3)}. This implies that x(H) ≥ 1

3 {x(H1) + x(H2) + x(H3)}.
For all u ∈ C ∪ R, x(u) contributes twice in the sum x(H1) + x(H2) + x(H3).

Therefore,

x(H) ≥ 1

3
{2x(C) + 2x(R)} = 2

3

{

|C| + |R| +
⌈

k

2

⌉}

.



30 Theory Comput Syst (2008) 43: 19–37

But, |H | = |H1| = |H2| = |H3| = 2
3 {|C|+ |R|} and x(H) ≤ |H |+1, by the definition

of the tours Hj , i.e., 2
3 {|C| + |R| + � k

2�} ≤ x(H) ≤ 2
3 |C| + 2

3 |R| + 1, a contradiction
when k ≥ 3.

We employ the following technique in order to overcome the difficulty in getting a
contradiction for k ≤ 2. Instead of considering the formula φ, we look at the formula
φ′ = φ1 ∧φ2 ∧φ3. The formula φ′ is a conjunction of the formulas φi , for i = 1,2,3,
where each φi is a copy of the old formula φ but with new, distinct variables. This
means that φ′ has 3n variables and 3m clauses. It is easy to see that both φ and φ′ are
equivalent because the variables of each φi are distinct. Now, if there is an optimal
truth assignment that satisfies all but k clauses of φ, then there is an optimal truth
assignment that satisfies all but 3k clauses of φ′. Thus, when k = 1 or k = 2, the
number of unsatisfied clauses in φ′ is respectively 3 and 6. The above proof holds
good for φ′. Hence, Core(N, cD) = ∅. This proves the claim that φ is satisfiable if
and only if Core(N, cD) is non-empty. Clearly, the construction of the graph G from
φ can be done in polynomial time (in the size of φ and the number of variables).
Therefore, Core-�TS is NP-hard. �

Theorem 2 If N = {1,2, . . . , n} and D is a (n + 1) × (n + 1) matrix, not neces-
sarily symmetric but satisfying triangle inequality, then the problem of deciding if
Core(N, cD) is empty or not, is NP-hard.

Proof Let the problem mentioned in the statement of the theorem be referred to as
Core-�ATS. But since Core-�TS is shown to be NP-hard by Theorem 1, and it is a
special case of Core-�ATS, the claim of the theorem follows. �

6 Approximately Fair Cost Allocation

Since the core emptiness problem is NP-hard for traveling salesman games, we turn
our attention towards finding approximately fair cost allocation vectors. Define, for a
(N,f ) game and a given ε > 1, the ε-approximate core as:

ε-Core(N,f ) =
{
x ∈ �|N | : x(N) ≥ f (N) and ∀S ⊆ N,x(S) ≤ ε · f (S)

}
.

Towards finding such approximately fair cost allocations, we introduce new games
called cycle cover games.

6.1 Cycle Cover Games

Let G = (V ,E) be a complete directed graph with a cost function D : E → �. A cy-
cle cover C in G is a collection of vertex-disjoint cycles that span V . A minimum cost
cycle cover is a cycle cover of minimum cost with respect to D. We define a cycle
cover game to be the tuple (N,fD) where N = V , and fD : 2V → � is defined for a
subset S ⊆ N as the cost of a minimum cost cycle cover on the vertices of S. For this
game, we show that the core is non-empty by finding a fair cost allocation vector in
polynomial time.
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Theorem 3 For a cycle cover game (N,fD), the core is not empty. A fair cost allo-
cation vector in the core can be found in O(|N |3) time.

Proof Consider the following integer program formulation for the minimum cost cy-
cle cover problem:

min
∑

i,j∈N

d(i, j)yij subject to

∑

j∈N\{i}
yij = 1 ∀i ∈ N and

∑

i∈N\{j}
yij = 1 ∀j ∈ N,

where yij ∈ {0,1}.
We relax the final set of constraints to yij ≥ 0, to obtain a linear program L(N).

It is known that in fact L(N) has an integer optimum solution. Next, we consider the
dual program of L(N).

max
∑

v∈N

x+(v) +
∑

v∈N

x−(v) where x+(i) + x−(j) ≤ d(i, j) ∀i, j ∈ N.

Let us denote the dual program by D(N). Let x(v) = x+(v)+x−(v) for all v ∈ N .
We claim that an optimal solution x = (x(v))v∈N of D(N) is a fair cost allocation vec-
tor to the cycle cover game (N,fD). By the duality theorem, we know that the optimal
value of the objective function of L(N) which is fD(N) by definition, is the same as
x(N). Consider any subset S ⊂ N . Let CS denote a minimum cost cycle cover on S,
i.e., the cost of this cycle cover is fD(S). Now, fD(S) = ∑

C∈CS

∑
(u,v)∈C d(u, v) ≥

∑
C∈CS

∑
(u,v)∈C (x+(u) + x−(v)) = ∑

u∈S (x+(u) + x−(u)) = ∑
u∈S x(u) = x(S).

Here, C ∈ CS denotes a cycle in the cycle cover and the inequality in the middle fol-
lows because of the feasibility of x in D(N). Thus, we have shown that x ∈ �|N | is
a fair cost allocation vector of the cycle cover game (N,fD), thereby showing the
non-emptiness of the core. Also x is computed in O(|N |3) time using the algorithm
of [4] which is a primal-dual type algorithm. �

6.2 A Traveling Salesman Game as a Combination of Several Cycle Cover Games

We show how one can view a traveling salesman game to be a combination of several
cycle cover games. Formally, what we prove is that a certain approximately fair cost
allocation vector for a traveling salesman game can be seen as the sum of (exact) fair
cost allocation vectors of several related cycle cover games. We provide an algorithm
to find such an approximately fair cost allocation vector, followed by the proof of the
claimed degree of approximation.

Here, the traveling salesman game refers to the asymmetric traveling salesman
game where the cost matrix fulfills the triangle inequality. For the purpose of proving
the main theorem of this section, we adapt the approximation algorithm of Frieze
et al. [7], for the asymmetric traveling salesman optimization problem. This approxi-
mation algorithm achieves a performance guarantee of log2(|V |), where V is the set
of vertices of the underlying complete directed graph.
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Algorithm 1

Input: An asymmetric game (N, cD) with a complete directed graph on N ∪ {0}, and D satisfying the
triangle inequality.

Output: A vector x∗ ∈ �|N |.
1: Set j := 0, Vj := N , and let x∗ ∈ �|N | be the all zero vector.

2: Compute a fair cost allocation vector xj ∈ �|Vj |+1 for the cycle cover game on the complete graph
induced on Vj ∪ {0}. Let C be a minimum cost cycle cover in this graph.

3: Set, for all 1 ≤ i ≤ |N |, x∗(i) := xj (i) + xj (0)

|N | and then set j := 1. Let z0 ∈ �|N | denote the

current x∗.

4: Pick one vertex from each cycle of C such that the vertex set picked, Vj , does not contain “0”.

5: while |Vj | ≥ 2 do

6: Compute a minimum cost cycle cover C in the induced complete graph on Vj .

7: Compute a fair cost allocation vector xj ∈ �|Vj | by using Theorem 3 for the cycle cover game

(Vj , cD).

8: Update x∗(i) := x∗(i) + xj (i) if i ∈ Vj .

9: j := j + 1.

10: Pick exactly one vertex from each of the cycles of the cycle cover C. Set Vj to be the set of such

vertices.

11: end while

12: return the vector x∗.

The algorithm to find an approximately fair cost allocation vector for an asymmet-
ric traveling salesman game is given in Algorithm 1. Note that the home node “0” is
included only in the first cycle cover game.

Theorem 4 Let (N, cD) be an asymmetric traveling salesman game, with D satisfy-
ing triangle inequality. If x∗ is the vector returned by Algorithm 1 for this game, then
it is a log2(|N | − 1)-approximately fair cost allocation vector. The running time of
the algorithm is O(|N |3).

Proof First, let us consider the following linear program for the asymmetric traveling
salesman problem, T (N):

min
∑

i,j∈N∪{0}
d(i, j)yij subject to

∑

j∈N∪{0}\{i}
yij = 1 ∀i ∈ N and

∑

i∈N∪{0}\{j}
yij = 1 ∀j ∈ N,

∑

i∈S,j∈N∪{0}\S
yij ≥ 1 ∀S ⊆ N and

∑

j∈S,i∈N∪{0}\S
yij ≥ 1 ∀S ⊆ N,

where yij ≥ 0.

The third and the fourth set of constraints together are usually referred to as sub-
tour elimination constraints. Note the inclusion of the home node “0” in the program.
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This program is the asymmetric version of the program for symmetric game given
in [6]. It can be easily verified that the actual integer linear program corresponding
to T (N) has an optimum value cD(N). When the subtour elimination constraints are
dropped from T (N), the linear program obtained is the same as the linear program
L(N ∪ {0}) formulated in the proof of Theorem 3. This can be seen as follows: the
only issue is to verify that not having the in-degree and out-degree constraints at home
node “0” is equivalent to having the constraints. Suppose “0” appears in more than
one cycle of an optimal solution y (we can assume that y is integral). Let u,v ∈ N be
such that yu0 = 1 = y0v where u,v are in the same cycle in this cycle cover y. Then
by changing yuv from 0 to 1 and resetting yu0, y0v both to 0, we obtain a solution of
cost at most that of y as du0 + d0v ≥ duv by triangle inequality.

From the algorithm, x∗(N) = ∑k
j=0

∑
i∈N xj (i) where k is such that |Vk| = 1, i.e.

the number of times the while-loop gets executed. By duality theorem, this means
that x∗(N) is the sum of the costs of all k cycle covers computed in the algorithm.
Now, the union of all these cycle covers is an Eulerian graph (the in-degree of any
vertex is equal to its out-degree). But, any Hamiltonian tour obtained by short-cutting
through such an Eulerian graph is of cost at most that of the whole Eulerian graph
because of triangle inequality. Hence, x∗(N) ≥ cD(N) since cD(N) is the cost of an
optimal Hamiltonian tour.

Consider any subset R ⊂ N . We claim that x∗(R) ≤ log2(|R|)cD(R). By def-
inition, x∗(R) = z0(R) + ∑k

j=1 xj (R ∩ Vj ). First, we show that z0(R) ≤ cD(R).

Now, since x0 ∈ �|N |+1 (refer to step 2 of the algorithm) is an exact fair cost
allocation vector for the cycle cover game on N ∪ {0}, we have x0(R ∪ {0}) is
at most the cost of a minimum cost cycle cover on R ∪ {0}. But, by definition,
x0(R ∪ {0}) = x0(R) + x0(0) = {x0(R) + |R| x0(0)

|N | } + (|N | − |R|) x0(0)
|N | ≥ z0(R) since

|N | − |R| > 0. Thus, z0(R) is at most the cost of a minimum cost cycle cover on
R ∪ {0} which is at most cD(R), the cost of an optimal Hamiltonian tour through
R ∪{0}. Next, we show that for all 0 < j ≤ k, xj (R ∩Vj ) ≤ cD(R). Denote by TSPj ,
the optimal value of the linear program T (Vj ∩ R). Then, since any feasible solution
to T (Vj ∩ R) is a cycle cover on Vj ∩ R, we have that

∑k
j=1 xj (R ∩ Vj ) is bounded

by
∑k

j=1 TSPj . The only non-zero TSPj values are those for which |Vj ∩ R| �= 0.
By triangle inequality, we have that for all j , TSPj ≤ TSP0 where TSP0 is the cost
of an optimal solution to the LP, T (N ∩ R). As shown before, z0(R) ≤ cD(R).
Hence, x∗(R) ≤ z0(R) + ∑

j≥1:|Vj ∩R|�=0 TSP0 ≤ cD(R) + (log2(|R|) − 1)TSP0 ≤
log2(|R|)cD(R). The last inequality is true because the linear program optimal value
is a lower bound on the integer optimal value. Since, R ⊂ N , |R| ≤ |N | − 1. So, for
any R ⊂ N , we have x∗(R) ≤ log2(|N | − 1)cD(R).

From the above two paragraphs, we deduce that x∗ ∈ �|N | is a log2(|N | − 1)-
approximately fair cost allocation vector for the asymmetric traveling salesman game
(N, cD).

As for the running time of the algorithm, to find a minimum cost cycle cover
there is O(|N |3) algorithm due to [4]. Also, as mentioned in Theorem 3, find-
ing a fair cost allocation vector for a cycle cover game takes O(|N |3) time. The
while-loop is executed at most log2(|N |) − 1 times, where |Vj+1| ≤ |Vj |/2 with
j = 0,1, . . . , k where |Vk| = 1 and V0 = N . Thus the total running time of the al-

gorithm is O(
∑k

i=0 (|N |/2i )
3
) = O(|N |3). �
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6.3 Improved Approximately Fair Cost Allocation

In this section, we try to adapt the 4
3 log3(n)-approximation algorithm for the min-

imum asymmetric traveling salesman problem of Kaplan et al. [11] to find a better
approximately fair cost allocation for the asymmetric traveling salesman game.

Lemma 5 [11] Let G = (V ,E) be a complete directed graph with a cost matrix D

satisfying triangle inequality. There exists a 2-regular directed graph C (obtained in
polynomial time in G) such that C is the union of two directed cycle covers C1,C2

where the cost of C is at most 2 · OPT , OPT is the cost of an optimal Hamiltonian
tour and C1,C2 do not share a 2-cycle.

We adapt the above lemma to a statement concerning vectors of cycle covers.

Lemma 6 Let (N, cD) be an asymmetric traveling salesman game where D satisfies
triangle inequality. Also let (N,fD) be the cycle cover game on the same matrix D.
There exist vectors z1, z2 ∈ �|N | corresponding to cycle covers C1,C2 of Lemma 5
such that there is a vector z3 ∈ �|N | where z3 = z1 + z2 that satisfies the proper-
ties:

z3(N) ≤ 2 · fD(N) ≤ 2 · cD(N),

∀R ⊂ N, z3(R) ≤ 2 · fD(R) ≤ 2 · cD(R).

These vectors can be found in polynomial time.

Proof Follows directly from Lemma 5. �

We introduce some notation for understanding the algorithm that finds an im-
proved approximately fair cost allocation vector for the asymmetric traveling sales-
man game. We assume that we are given a directed graph G = (V ,E) with a cost
matrix D. For a directed subgraph H ⊆ G, let d(H) := ∑

{u,v}∈H d(u, v). Also, let
c(H) denote the number of connected components of H and N(H) denote the num-
ber of vertices in H . Define δi,H := 1 if the vertex i ∈ H and zero otherwise.

Theorem 5 Let (N, cD) be an asymmetric traveling salesman game, with D satis-
fying triangle inequality. If x∗ is the vector returned by Algorithm 2 for this game,
then it is a ( 4

3 log3(|N |) + c)-approximately fair cost allocation vector for some con-
stant c. The running time of the algorithm is O(|N |2 log2(|N |dmax) log2(|N |)). Here
dmax is the cost of a maximum cost edge in the complete graph on N .

Proof We need to show that x∗ satisfies the following two properties:

x∗(N) ≥ cD(N), (1)

∀R ⊂ N, x∗(R) ≤
(

4

3
log3(|N |) + c

)

· cD(R). (2)
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Algorithm 2

Input: An asymmetric game (N, cD) with a complete directed graph on N ∪{0}, and D satisfying triangle
inequality.

Output: A vector x∗ ∈ �|N |.

1: Set p := 1. Let Gp be the induced complete graph on N ∪ {0}.
2: Let x∗ ∈ �|N | be the all-zero vector.

3: while |N(Gp)| ≥ 27 do

4: Compute the two vectors z1, z2 ∈ �|N(Gp)| corresponding to the cycle covers C1,C2 from

Lemma 6. Let C be the union of C1 ∪ C2. Also, z3 := z1 + z2.

5: Set C
p
1 := C1,C

p
2 := C2 and Cp := C.

6: Amongst the directed graphs Cp,C
p
1 ,C

p
2 choose the graph G that maximizes

d(G)

log2(N(G)/c(G))

7: Let zjp ∈ {z1, z2, z3} (for some jp ∈ {1,2,3}) be the corresponding vector.

8: if p = 1 then

9: Set z′
jp

(i) := zjp (i) + zjp (0)

|N | for all i = 1, . . . , |N |. Note that zjp ∈ �|N |+1.

10: x∗(i) := x∗(i) + z′
jp

(i).

11: From each connected component of G, pick exactly one vertex arbitrarily. The home node “0”

should not be picked.

12: else

13: x∗(i) := x∗(i) + δi,G · zjp (i).

14: From each connected component of G, pick exactly one vertex arbitrarily.

15: end if

16: Set p := p + 1. Set Gp to be the induced complete graph on the chosen vertices.

17: end while

18: Compute cD(N(Gp)) by exhaustive search since |N(Gp)| < 27. Let v ∈ �|N(Gp)| where v(i) =
cD(N(Gp))

|N(Gp)| for all i ∈ Gp .

19: x∗(i) := x∗(i) + v(i) if i ∈ Gp .

20: return the vector x∗.

x∗(N) is the sum of the costs of all the graphs Gp computed in the algorithm.
Now the union of all these graphs is an Eulerian graph (since Cp is Eulerian too).
But, any Hamiltonian tour obtained by short-cutting through such an Eulerian graph
is of cost at most that of the whole Eulerian graph by triangle inequality. Therefore,
x∗(N) ≥ cD(N).

To prove the second property, we use the structural lemmas from Kaplan et al. [11].
Let R ⊂ N . We have,

γ := z′
j1

(R) + ∑p−2
t=2 zjt (R)

log2(|N(G1)|/|N(Gp−1)|) = z′
j1

(R) + ∑p−2
t=2 zjt (R)

∑p−2
t=1 log2(|N(Gt)|/|N(Gt+1)|)

.
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Consider z′
j1

(R). By definition, z′
j1

(R) = zj1(R) + |R|
|N | · zj1(0). But since zj1 ∈

�|N |+1 satisfies the properties of Lemma 6, we have that zj1(R ∪ {0}) = zj1(R) +
zj1(0) ≤ 2fD(R) ≤ 2cD(R). Therefore, we can extend the above equality by,

γ ≤ max

{
z′
j1

(R)

log2(|N(G1)|/|N(G2)|) , max
t=2,...,p−2

{
zjt (R)

log2(|N(Gt)|/|N(Gt+1)|)
}}

.

Following the arguments given in [11], we obtain that the quantity on the right
side of the above inequality is bounded by 4cD(R)

3 log2(3)
. Thus, for |N(Gp)| ≥ 27,

x∗(R) = z′
j1

(R) +
p∑

t=2

zjt (R) ≤ z′
j1

(R) +
p−2∑

t=2

zjt (R) + 3cD(R)

≤ 4cD(R)

3 log2(3)
log2(|N |) = 4

3
log3(|N |) · cD(R)

since if p ≤ 2, z′
j1

(R) + ∑p

t=2 zjt (R) ≤ 3cD(R). Finally, when |N(Gp)| < 27, we

add the vector v ∈ �|N(Gp)| to x∗ where v(i) = cD(N(Gp))

|N(Gp)| for all i ∈ Gp . We claim
that v is a c-approximately fair cost allocation vector for some small constant c. It is
easy to verify the claim by fixing c = |R|

|N(Gp)| · cD(N(Gp))

minR⊂N(Gp){cD(R)} . Therefore, x∗ is a

( 4
3 log3(|N |)+c)-approximate fair cost allocation vector for the asymmetric traveling

salesman game. The running time of the algorithm is dominated by the time taken to
compute the cycle covers of step 4 which is O(|N |2 log2(|N |dmax)), see [11]. The
number of iterations p until |N(Gp)| < 27 is bounded by log2(|N |). �

6.4 Inapproximability of the Core

Our NP-hardness reduction is approximation preserving (please refer to Vazirani [21]
for a definition). Thus, we have the following result.

Theorem 6 Let (N, cD) be an asymmetric traveling salesman game, with D satis-
fying triangle inequality. There exists an ε0 > 1 such that it is NP-hard to decide
whether ε0-Core(N, cD) is empty or not. In other words, it is NP-hard to find an
ε0-approximately fair cost allocation vector for the game.

Proof Since it is NP-hard to approximate 3SAT4 to within a certain constant α > 1
[1] and the reduction in from the proof of Theorem 2 is approximation preserving,
the result follows. �
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