
Online k-server routing problems∗

Vincenzo Bonifaci† Leen Stougie‡

November 23, 2007

Abstract

In an online k-server routing problem, a crew of k servers has to visit
points in a metric space as they arrive in real time. Possible objective
functions include minimizing the makespan (k-Traveling Salesman Prob-
lem) and minimizing the sum of completion times (k-Traveling Repairman
Problem). We give competitive algorithms, resource augmentation results
and lower bounds for k-server routing problems in a wide class of met-
ric spaces. In some cases the competitive ratio is dramatically better
than that of the corresponding single server problem. Namely, we give
a 1 + O((log k)/k)-competitive algorithm for the k-Traveling Salesman
Problem and the k-Traveling Repairman Problem when the underlying
metric space is the real line. We also prove that a similar result cannot
hold for the Euclidean plane.

1 Introduction

In a k-server routing problem, k servers (vehicles) move in a metric space in
order to visit a set of points (cities). Given a schedule, that is, a sequence of
movements of the servers, the time at which a city is visited for the first time
by one of the servers is called the completion time of the city. The objective is
to find a schedule that minimizes some function of the completion times.

We study k-server routing problems in their online version, where decisions
have to be taken without having any information about future requests. New
requests may arrive while processing previous ones. This online model is often
called the real time model, in contrast to the one-by-one model, which is the

∗An extended abstract of this work has appeared in the proceedings of the 4th Workshop
on Approximation and Online Algorithms, September 2006.

†Dept. Computer and Systems Science, University of Rome “La Sapienza”, Rome, Italy;
Dept. Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven,
the Netherlands. Email: bonifaci@dis.uniroma1.it. Research partly supported by the Dutch
Ministry of Education, Culture and Science through a Huygens scholarship.

‡Dept. Mathematics and Computer Science, Eindhoven University of Technology, Eind-
hoven, the Netherlands; Center for Mathematics and Computer Science (CWI), Amster-
dam, the Netherlands. Email: leen@win.tue.nl. Research partly supported by MRT
Network ADONET of the European Community (MRTN-CT-2003-504438) and the Dutch
BSIK/BRICKS project.

1

more common model in texts about online optimization [6], but inadequate for
server routing problems. The same real time model is also the natural model
and indeed is used for machine scheduling problems [24]. In fact, many of
the algorithms for online routing problems are adaptations of online machine
scheduling algorithms.

Competitive analysis [6] has become the standard way to study online opti-
mization problems: an online algorithm A is said to be c-competitive if, for any
instance σ, the cost of A on σ is at most c times the offline optimum cost on
σ. This worst-case measure can be seen as the outcome of a game between the
online algorithm and an offline adversary, that is trying to build input instances
for which the cost ratio is as large as possible.

There is an abundant amount of literature on offline server routing problems,
both in past and recent times [8, 11, 13, 15, 20]. Online single server routing
problems have a recent but growing literature. The first paper by Ausiello et
al. [3] introduced the model for the online traveling salesman problem. Later
works investigated competitiveness of the more general dial-a-ride problems, in
which requests consist of objects that need to be transported from a source
to a destination [1, 12], and studied different objective functions or different
adversarial models [2, 4, 5, 14, 18, 19, 22]. An overview of single server results
is contained in the thesis [21].

Prior to this publication, there was essentially no work on online multi-server
routing problems, except for some isolated algorithms [1, 4]. We give compet-
itive algorithms and negative results for online multi-server routing problems,
with the objective of minimizing either makespan or sum of completion times.
We consider the variant known as nomadic, in which the servers are not required
to return at the origin after serving all requests; the above cited previous results
apply to the other variant, known as the homing traveling salesman problem.
Apart from being the first work dedicated to multi-server online routing prob-
lems, the results are somewhat unexpected. We give the first results of online
problems for which multiple server versions admit lower competitive ratios than
their single server counterparts. This is typically not the case for problems in
the one-by-one model; for example, it is known that in the famous k-server
problem [23] the competitive ratio necessarily grows linearly with k.

It may also be useful to draw a comparison with machine scheduling, which
is closer to routing problems in many ways. In scheduling, multiple machine
problems have been the subject of much research [24]. In the one-by-one model,
competitive ratios increase with increasing number of machines. In real time
online scheduling, nobody has been able to show smaller competitive ratios for
multiple machine problems than for the single machine versions, though here
lower bounds do not exclude that such results exist (and indeed people suspect
they do) [9, 10].

The rest of our paper is structured as follows. After introducing our model
in Section 2, we give in Section 3 competitive algorithms and lower bounds
for both the k-Traveling Salesman and the k-Traveling Repairman in general
spaces. For these algorithms, the upper bounds on the competitive ratio match
those of the best known algorithms for the single server versions. In Section 4,

2

we show that in the case of the real line we have an almost optimal algorithm
for large k. The same result cannot hold in the Euclidean plane, as we show in
Section 5. We give our conclusions in Section 6.

2 Preliminaries

We assume a real time online model, in which requests arrive over time in a
metric space M. Every request is a pair (r, x) ∈ R+ × M where r is the release
date of the request and x the location of the request. All the information about
a request with release date r, including its existence, is revealed only at time r.
Thus, an online algorithm does not know the moment when all requests have
been released.

An algorithm controls k vehicles or servers. Initially, at time 0, all these
servers are located in a distinguished point o ∈ M, the origin. The algorithm
can then move the servers around the space at speed at most 1. (We do not
consider the case in which servers have different maximum speeds; in compliance
with machine scheduling vocabulary we could say that the servers are identical
and work in parallel.) To process, or serve, a request, a server has to visit
the associated location, but not earlier than the release date of the request.
Introduced by Ausiello et al. [3], in the on-line routing literature this version
was called the nomadic TSP, as opposed to the homing TSP, in which the server
has to return to the origin after serving all requests. Since we study here only
the former version we omit the adjective.

We consider so-called path metric spaces, in which the distance d between
two points is equal to the length of the shortest path between them. We also
require the spaces to be continuous, in the sense that ∀x, y ∈ M ∀a ∈ [0, 1]
there is z ∈ M such that d(x, z) = ad(x, y) and d(z, y) = (1 − a)d(x, y). A
discrete space, like a weighted graph, can be extended to a continuous path
metric space in the natural way; the continuous space thus obtained is said
to be induced by the original space. We recall that a function d : M

2 → R+

is a metric if it satisfies: definiteness (∀x, y ∈ M, d(x, y) = 0 ⇔ x = y);
symmetry (∀x, y ∈ M, d(x, y) = d(y, x)); triangle inequality (∀x, y, z ∈ M,
d(x, z) + d(z, y) ≥ d(x, y)). When referring to a general space, we mean any
element of our class of continuous, path metric spaces. We will also be interested
in special cases, namely the real line R and the real halfline R+, both with the
origin o at 0, and the plane R

2, with o at (0, 0).
Defining the completion time of a request as the time at which the request has

been served, the k-traveling salesman problem (k-TSP) has objective minimizing
the maximum completion time (the makespan), and the k-traveling repairman
problem (k-TRP) has objective minimizing the sum of completion times.

We will use σ to denote a sequence of requests. Given σ, a feasible schedule
for σ is a sequence of moves of the servers such that all requests in σ are served.
ol(σ) is the cost online algorithm ol incurs on σ, and opt(σ) the optimal offline
cost on σ. ol is said to be c-competitive if ol(σ) ≤ c · opt(σ) for all σ. The
competitive ratio of ol is the smallest c such that ol is c-competitive.

3

Problem Lower Upper

Bound Bound

k-TSP 2 1 +
√

2

k-TRP 2 (1 +
√

2)2

k-TSP (R2) 4/3 1 +
√

2

k-TRP (R2) 5/4 (1 +
√

2)2

k-TSP (R) 1 + Ω(1/k) 1 + O((log k)/k)
k-TRP (R) 1 + Ω(1/k) 1 + O((log k)/k)

Table 1: The competitive ratio of multiserver routing problems.

We use s1, . . . , sk to denote the k servers, and write sj(t) for the position of
server sj at time t, and dj(t) for d(sj(t), o). Finally, given a path P in M, we
denote its length by ℓ(P).

All the lower bounds we prove hold for randomized algorithms against an
oblivious adversary [6]. In order to prove these results, we frequently resort to
the following form of Yao’s principle [7, 25].

Theorem 2.1 (Yao’s principle). Let {oly : y ∈ Y} denote the set of determinis-
tic online algorithms for an online minimization problem. If X is a distribution
over input sequences {σx : x ∈ X} such that

inf
y∈Y

EX [oly(σx)] ≥ c EX [opt(σx)]

for some real number c ≥ 1, then c is a lower bound on the competitive ratio of
any randomized algorithm against an oblivious adversary.

A summary of our results is presented in Table 1.

3 Algorithms for general metric spaces

In this section, we give competitive algorithms and lower bounds for the k-TSP
and the k-TRP in general spaces. Our results will be formulated in a more
general resource augmentation framework [16]. We define the (k, k∗)-TSP and
(k, k∗)-TRP exactly as the k-TSP and the k-TRP, except that we measure the
performance of an online algorithm with k servers relative to an optimal offline
algorithm with k∗ ≤ k servers.

Sections 3.1 and 3.2 give an algorithm for the (k, k∗)-TSP and the (k, k∗)-
TRP respectively. A lower bound for both problems is proved in Section 3.3.

3.1 The k-Traveling Salesman Problem

Theorem 3.1. There is a deterministic online algorithm for the (k, k∗)-TSP
with competitive ratio

1 +
√

1 + 1/2⌊k/k∗⌋−1.

4

Algorithm 1 Group Return Home (grh)

Divide the servers into g = ⌊k/k∗⌋ disjoint sets (groups) of k∗ servers each. Any
remaining server is not used by the algorithm.
Initially, all servers wait at o. Every time a new request arrives, all servers
not at o return to the origin at full speed. Once all of the servers in one of
the groups, say group G (ties broken arbitrarily), are at o, compute a set of k∗

paths {P1, . . . , Pk∗} starting at o, covering all unserved requests and minimizing
maxi ℓ(Pi). Then, for i = 1, . . . , k∗, the i-th server in G follows path Pi at the
highest possible speed while remaining at a distance at most αt from o at any
time t, for some constant α ∈ (0, 1]. Servers in other groups continue to head
towards o (or wait there) until a new request is released.

The algorithm achieving this bound is called Group Return Home (Algo-
rithm 1). The algorithm tries to always keep a group of k∗ servers near the
origin, so it can start quickly a new schedule if needed. This involves a tradeoff
with the speed at which the current active group is able to complete its sched-
ule. The following Lemma shows that indeed there is always a group relatively
close to the origin. Define the distance of a group to the origin at time t as the
maximum distance of a server in the group to o at time t.

Lemma 3.2. At any time t, in the schedule generated by grh, let
G1(t), . . . , Gg(t) be the g groups in order of nondecreasing distance to o. Then
the distance of Gi(t) to o is at most 2i−gαt.

Proof. We prove the lemma by induction on the number of requests. That is,
we show that if the lemma holds at the release date t of some request, it will
hold until the release date t+ of the next request. Obviously, the lemma is true
up to the time the first request is given, since all servers remain at o.

Suppose a request is given at time t. By induction, we know that there are
groups G1(t), . . . , Gg(t) such that each server of group Gi(t) is at distance at
most 2i−gαt from o. For the rest of the proof we fix the order of the groups as
the order they have at time t and write Gi instead of Gi(t). Let Di(τ) be the
distance of group Gi to the origin, that is Di(τ) = maxs∈Gi

d(s(τ), o).
Between time t and t′ = t + D1(t), the lemma holds since all servers are

getting closer to o. We show that the lemma holds at t′+δ for all 0 < δ < t+−t′.
Notice that D1(t

′ + δ) ≤ δ since every server moves at most at unit speed.
If δ ∈ (0, 21−gαt], we know that D1(t

′ + δ) ≤ 21−gαt, so the lemma holds
with the groups in the same order as before.

Now, let δ ∈ (2i−1−gαt, 2i−gαt] for 2 ≤ i ≤ g. Then at time t′ + δ, group Gj

is already at o for each 1 < j < i. For group Gi, Di(t
′+δ) ≤ 2i−gαt−2i−1−gαt =

2i−1−gαt. For group G1, D1(t
′ + δ) ≤ 2i−gαt. For groups Gi+1 through Gg,

Di+1(t
′ + δ) ≤ 2i+1−gαt, . . . , Dg(t

′ + δ) ≤ 20αt. So the lemma holds for these
values of δ.

The last case is αt < δ < t+ − t′. In this case all groups except G1 are at
o, and because of the speed constraint D1(t

′ + δ) ≤ α(t′ + δ). Thus the lemma
holds.

5

o

x0 = s(t′)
P ′

0
0

t′
τ

d(o, x0)

d(o, s(τ))
ατ

Figure 1: The path followed by s (left) and the variation of d(o, s) (right).

Proof of Theorem 3.1. Let t be the release date of the last request and let G1

be the group minimizing the distance to the origin at time t. Using Lemma 3.2
we know that D1(t) ≤ 21−gαt. Group G1 will return to the origin and then
follow the offline set of paths {P1, . . . , Pk∗}. Notice that opt(σ) ≥ t, since no
schedule can end before the release date of a request, and opt(σ) ≥ maxi ℓ(Pi)
because of the optimality of Pi.

Let s be the server in G1 that achieves the makespan. If s does not limit its
speed after time t, we have grh(σ) ≤ t+D1(t)+maxi ℓ(Pi) ≤ (2+21−gα)opt(σ).

Otherwise, let t′ be the last time at which the invariant d(o, s(τ)) ≤ ατ is
satisfied with equality. Then the rate of growth of d(o, s) must be at least α just
before t′, and less than α just after t′ (see Figure 1). Thus, s must serve some
request at time t′. If x0 is the location of this request, t′ = (1/α)d(x0, o) and
after time t′, s continues following the remaining part of its path, call it P ′, at full
speed. Hence, grh(σ) = t′+ℓ(P ′). Since opt(σ) ≥ maxi ℓ(Pi) ≥ d(o, x0)+ℓ(P ′)
this yields grh(σ) ≤ (1/α)opt(σ).

Thus, the competitive ratio is at most max{2 + 21−gα, 1/α} and choosing
α in order to minimize it gives α =

√

2g−1(2g−1 + 1) − 2g−1 and the desired
competitive ratio.

Corollary 3.3. There is a deterministic (1 +
√

2)-competitive online algorithm
for the k-TSP.

3.2 The k-Traveling Repairman Problem

Theorem 3.4. There is a deterministic online algorithm for the (k, k∗)-TRP
with competitive ratio 2 · 31/⌊k/k∗⌋.

We call the algorithm achieving the bound Group Interval (Algorithm 2), as
it can be seen as a multi-server generalization of algorithm Interval [18]. The
algorithm divides the servers into groups of size k∗, each group operating in
phases of geometrically increasing length. Intuitively, the geometrical increase
allows the algorithm to schedule, during a phase, at least as many requests as
the optimal solution served in the previous phase.

The algorithm is well defined since β ≥ 1 for any α ∈ (1, 31/g], and moreover
the time between two departures from o of the same group is enough for the

6

Algorithm 2 Group Interval (gi)

Divide the servers into g = ⌊k/k∗⌋ disjoint sets (groups) of k∗ servers each. Any
remaining server is not used by the algorithm.
Let L be the earliest time that any request can be completed (wlog L > 0). For
i = 0, 1, . . ., define Bi = αiL where α ∈ (1, 31/g] will be fixed in the analysis.
At time Bi, compute a set of paths Si = {P i

1, . . . , P
i
k∗} for the set of yet unas-

signed requests released up to time Bi with the following properties:
(i) every P i

j starts at the origin o;

(ii) maxj ℓ(P i
j) ≤ Bi;

(iii) Si maximizes the number of requests served among all schedules satisfying
the first two conditions.
The requests in Si are now considered assigned.
Let β = 2/(αg − 1). Starting at time βBi, the j-th server in the (i mod g)-th
group follows path P i

j , then returns to o at full speed.

group to complete its first schedule and return to the origin: βBi+g − βBi =
β(αg − 1)Bi = 2Bi.

To give the proof of Theorem 3.4, we start with two preliminary lemmas.

Lemma 3.5 ([18]). Let ai, bi ∈ R for i = 1, . . . , p, for which

(i)
∑p

i=1 ai =
∑p

i=1 bi, and

(ii)
∑p′

i=1 ai ≥
∑p′

i=1 bi for all 1 ≤ p′ ≤ p.

Then the
∑p

i=1 τiai ≤
∑p

i=1 τibi for any nondecreasing sequence of real numbers
0 ≤ τ1 ≤ τ2 ≤ . . . ≤ τp.

Lemma 3.6. Let Ri be the set of requests served by the set of paths Si computed
by Group Interval at time Bi, i = 1, 2, . . . and let R∗

i be the set of requests in
the optimal offline solution that are completed in the time interval (Bi−1, Bi].
Then

q
∑

i=1

|Ri| ≥
q
∑

i=1

|R∗
i | for all q = 1, 2,

Proof. The proof is similar to that of Lemma 4 in [18]. We first argue that
for any q ≥ 1 we can obtain, from the optimal offline solution S∗, a set S of
k∗ paths, each starting at the origin and of length at most Bq, which serve all
requests in ∪q

i=1R
∗
i .

Consider the optimal offline solution S∗. Start at the origin and consider
the path followed by each server in S∗ for the first Bq time units. This gives
a set S of paths of length at most Bq which together serve all the requests in
∪q

i=1R
∗
i . Since the servers move at unit speed, the endpoints of the paths in S

are within distance Bq from the origin.
We now consider phase q and show that by the end of phase q, at least

∑q
i=1 |R∗

i | requests have been scheduled by Group Interval. Notice that the

7

set S obtained as above satisfies the conditions (i) and (ii) required by Group
Interval. Moreover, the set S serves all requests in ∪q

i=1R
∗
i . Since Group Interval

picks a set of paths maximizing the number of requests served, among all sets
satisfying condition (i) and (ii), in phase q Group Interval can serve at least all
requests from

(

q
⋃

i=1

R∗
i

)

\
(

q−1
⋃

i=1

Ri

)

.

Consequently, the number of requests served in schedules S1, . . . , Sq of Group
Interval is at least | ∪q

i=1 R∗
i | =

∑q
i=1 |R∗

i | as claimed.

Proof of Theorem 3.4. Let σ = σ1 . . . σm be any sequence of requests. By con-
struction of Group Interval, each request in Ri is served no later than time
(1+β)Bi. Now, let p be such that the optimal offline schedule completes in the
interval (Bp−1, Bp]. Summing over all phases 1, . . . , p yields

gi(σ) ≤ (1 + β)

p
∑

i=1

Bi|Ri| = (1 + β) · α
p
∑

i=1

Bi−1|Ri|. (1)

From Lemma 3.6 we know that
∑q

i=1 |Ri| ≥ ∑q
i=1 |R∗

i | for q = 1, 2, . . . We
also know that

∑p
i=1 |Ri| =

∑p
i=1 |R∗

i |. Applying Lemma 3.5 to the sequences
ai := |Ri|, bi := |R∗

i |, τi := Bi−1, i = 1, . . . , p yields in (1)

gi(σ) ≤ (1 + β) · α
p
∑

i=1

Bi−1|Ri| ≤ (1 + β) · α
p
∑

i=1

Bi−1|R∗
i |. (2)

Let C∗
j be the optimal offline completion time of request σj . For each σj denote

by (Bφj
, Bφj+1] the interval that contains C∗

j . This inserted in (2) yields

gi(σ) ≤ (1 + β) · α
m
∑

j=1

Bφj
≤ (1 + β) · α

m
∑

j=1

C∗
j = (1 + β) · α · opt(σ).

Choosing α = 31/g (so that β = 1) proves the theorem.

Corollary 3.7. There is a deterministic (1+
√

2)2-competitive online algorithm
for the k-TRP.

Proof. The upper bound proved in Theorem 3.4 is

(1 + β)α =

(

1 +
2

αg − 1

)

α

where α ∈ (1, 31/g]. When g = 1, this expression attains its minimum if α =
1 +

√
2 (for g ≥ 2, basic calculus shows that the best choice is α = 31/g as in

Theorem 3.4).

8

3.3 Lower bounds

Theorem 3.8. The competitive ratio of any randomized online algorithm for
the (k, k∗)-TSP or the (k, k∗)-TRP is at least 2.

Proof. Consider the metric space induced by a star graph with m unit-length
rays, the origin being the center of the star. No request is given until time 1. At
time 1, the adversary gives a request on an edge chosen uniformly at random, at
distance 1 from the origin. The expected makespan for the adversary is 1. For
the online algorithm, we say that a server guards a ray if at time 1 the server is
located on the ray, but not at the center of the star. Then the makespan is at
least 2 if no server guards the ray where the request is released, and at least 1
otherwise. But k servers can guard at most k rays, so

E[ol(σ)] ≥ 2 ·
(

1 − k

m

)

+ 1 · k

m
≥ 2 − k

m

and the result follows by Yao’s principle, since m can be arbitrarily large.

Notice that this lower bound is independent of the values k and k∗. Conse-
quently, the upper bounds of Sections 3.1 and 3.2 are essentially best possible
when k >> k∗, as in that case they both approach 2.

4 Algorithms for the real line

4.1 An asymptotically optimal algorithm

Theorem 4.1. There is a deterministic online algorithm with competitive ratio
1 + O((log k)/k) for both the k-TSP and the k-TRP on the real line.

As a preliminary, we prove a similar result on the halfline. The idea behind
the algorithm is to keep the servers, at any time t, well distributed within the
interval [0, t], so that any new location can be efficiently reached. In particular
it is sufficient that a request (r, x) is served at a time that is small compared
to either r or x, as both r and x are lower bounds on the cost of the optimal
solution.

Lemma 4.2. Let gk be the unique real root greater than 1 of the equation
zk(z − 1) = 3z − 1. Then gps (Algorithm 3) is gk-competitive for k-TSP and
k-TRP on the halfline.

Proof. First, notice that the modified release date of a request (as defined in
the description of the algorithm) is a lower bound on its completion time. Thus
it is enough to prove that, for every request (r, x), the time at which it is served
is at most gkr′.

For 1 < j < k, we say that a request (r, x) is in zone j if αj ≤ x/r′ < αj+1.
We also say that a request is in zone 1 if x/r′ < α2, and that it is in zone k if
x/r′ ≥ αk. By construction, every request is in some zone and a request in zone
j will be eventually served by server sj (Figure 2).

9

0
0 t

x

zone 3

zone 2

zone 1

x = t

s2(t)

s3(t)

s1(t)

t0 t1 t2

Figure 2: Sample run of algorithm gps on the halfline (k = 3).

Algorithm 3 Geometric Progression Speeds (gps)

As a preprocessing step, the algorithm delays every request (r, x) for which
x ≥ r to time x; that is, the release date of each request (r, x) is reset at
r′ := max{r, x} (the modified release date).
Then, let gk be the unique root greater than 1 of the equation zk(z−1) = 3z−1

and define αj = gj−k−1

k for j ∈ {2, 3, . . . , k}. For every j > 1, server sj departs
at time 0 from o at speed αj and never turns back (Figure 2). The first server
s1 waits in o until the first request (r0, x0) is released with 0 < x0 < s2(r

′
0). For

i ≥ 0, define ti = gi
kr′0. During any interval [ti−1, ti], s1 moves at full speed first

from o to (gk − 1)ti−1/2 and then back to o.

For a request (r, x) in a zone j with 1 < j < k, since the request is served by
server sj at time x/αj and since x ≤ αj+1r, the ratio between completion time
and modified release date is at most αj+1/αj = gk. Similarly, for a request in
zone k, since x ≤ r′, the ratio between completion time and modified release
date is at most 1/αk = gk.

It remains to give a bound for requests in zone 1. Take any such request,
that is, a request (r, x) such that x < α2r

′ and suppose it is served at time
τ ∈ [ti−1, ti] for some i. If r′ ≥ ti−1, then, since τ ≤ ti, the ratio between τ and
r′ is at most gk by definition of ti, i ≥ 0.

If r′ < ti−1, then, since τ > ti−1, only two possible cases remain. First, the
situation that x > gk−1

2
ti−2. Since τ = ti−1 + x and r′ ≥ x/α2, we have

τ

r′
≤ x + ti−1

x/α2

≤ α2

(

1 +
2gkti−2

(gk − 1)ti−2

)

= α2

3gk − 1

gk − 1
= α2g

k
k = gk.

In the second situation, x ≤ gk−1

2
ti−2. Then r′ must be such that s1 was already

on its way back to 0 during [ti−2, ti−1], in particular r′ ≥ gkti−2 − x. Thus,

τ/r′ ≤ gkti−2 + x

gkti−2 − x
≤ 3gk − 1

gk + 1
≤ gk.

The algorithm for the real line simply splits the k servers evenly between
the two halflines, and uses gps on each halfline.

10

Algorithm 4 Split Geometric Progression Speeds (sgps)

Arbitrarily assign ⌈k/2⌉ servers to R+ and ⌊k/2⌋ servers to R−. On each of the
two halflines, apply Algorithm 3 independently (that is, ignoring the requests
and the servers on the other halfline).

Lemma 4.3. For any k ≥ 2, sgps (Algorithm 4) is g⌊k/2⌋-competitive for the
k-TSP and the k-TRP on the line.

Proof. The only lower bounds on the offline cost that we used in the proof of
Lemma 4.2 were the distance of every request from o and the release date of
every request. They are valid independent of the number of offline servers. In
particular, they hold if the number of offline servers is twice the number of
online servers. Thus, we can analyze the competitiveness of the online servers
on each of the two halflines separately and take the worst of the two competitive
ratios.

Lemma 4.4. For any k ≥ 1, gk ≤ 1 + 2 log k+3

k .

Proof. We defined gk as the unique root greater than 1 of zk = 1 + 2z
z−1

. Since

limz→∞ zk > limz→∞ 1+ 2z
z−1

, it suffices to prove that z0 := 1+ 2 log k+3

k satisfies

zk
0 ≥ 1+ 2z0

z0−1
. The binomial theorem and the standard fact that

(

k
j

)

≥ kj

jj yield

zk
0 − 1 =

k
∑

j=1

(

k

j

)

(2 log k + 3)j

kj
≥

k
∑

j=1

(2 log k + 3)j

jj
≥

⌊log k⌋+1
∑

j=1

(2 log k + 3

j

)j

≥
⌊log k⌋+1
∑

j=1

2j ≥ 2log k+1 − 2 = 2k − 2.

Now it can be verified that for all k > 2, 2k − 2 > 2k
2 log k+3

+ 2 = 2z0

z0−1
. Finally,

the bound also holds for k ∈ {1, 2} as seen by explicitly finding g1 and g2.

Theorem 4.1 now follows from Lemma 4.3 and Lemma 4.4.

4.2 Lower bounds

Theorem 4.5. The competitive ratio of any randomized online algorithm for
the k-TSP or the k-TRP on the line is at least 1 + 1/2k = 1 + Ω(1/k).

Proof. The adversary gives a single request at time 1, in a point drawn uniformly
at random from the interval [−1, 1]. The expected optimal cost is obviously 1.
Thus, by Yao’s principle it suffices to show that E[ol(σ)] ≥ 1 + 1/2k.

In order to bound E[ol(σ)], let f(x) = minj∈{1,...,k} d(x, sj(1)) (Figure 3).
Notice that 1 + f(x) is a lower bound on the cost paid by the online algorithm,
assuming that the request was given at x. In terms of expected values,

E[ol(σ)] ≥ E[1 + f(x)] = 1 +
1

2

∫ 1

−1

f(x)dx.

11

x
−1 +1s1 s2 s3

f(x)

sj−1 s′
j

sj sj+1

1√
2
δ

1√
2
δ

−
+

Figure 3: The function f(x) (left) and an illustration of the proof (right).

The claim follows if we can prove a lower bound of 1/k for
∫ 1

−1
f(x)dx. Find-

ing such a lower bound is equivalent to finding the configuration of k points
s1, . . . , sk ∈ [−1, 1] that minimizes the value of the area below f .

Assume without loss of generality that s1 ≤ s2 ≤ . . . ≤ sk. We first show
that in the minimal configuration the points s1, . . . , sk are evenly spread within
the interval [s1, sk]. Consider any sj , 1 < j < k, and assume wlog sj ≥ (sj−1 +
sj+1)/2. If we moved the point sj to s′j := (sj−1 + sj+1)/2 and let δ := sj − s′j ,

the value of the area below f would vary by 1
2
δ(sj+1 + sj−1 − 2sj) ≤ 0 (Figure

3, right). Therefore, we can assume that each server sj (1 < j < k) is located
halfway between sj−1 and sj+1, or equivalently that the servers are uniformly
distributed across [s1, sk].

Similarly one can prove that, in the minimal configuration, d(−1, s1) =

d(sk, 1). Let D := d(sk, 1). Then
∫ 1

−1
f(x)dx = D2 + (1 − D)2/(k − 1), which

attains its minimum, 1/k, when D = 1/k, as can be seen for example by basic
calculus. The claim follows.

5 Lower bounds on the plane

Comparing the results in Section 3 with those in Section 4, we see that while in
general spaces the competitive ratio of both the k-TSP and the k-TRP always
remains lower bounded by 2, on the real line we can achieve 1 + o(1) asymp-
totically. A natural question is whether on a low-dimensional space like the
Euclidean plane we can also achieve 1 + o(1) competitiveness. In this section
we answer this question negatively.

Theorem 5.1. The competitive ratio of any randomized online algorithm for
the k-TSP on the plane is at least 4/3.

Proof. As a crucial ingredient of the proof we introduce a new kind of request,
which is located in a single point x of the space but has an arbitrarily long pro-
cessing time p (this processing time can be divided among the servers processing
the request). We show how this can be emulated in the Euclidean plane with
arbitrarily good precision by giving a high enough number of requests packed
inside an arbitrarily small square around x.

Fix some arbitrary ǫ > 0. Consider a square with sidelength s =
√

ǫp
centered around x. The square can be partitioned in s2/ǫ2 smaller squares of

12

sidelength ǫ. In the center of each of these smaller squares we give a request.
Notice that the distance between any pair of such requests is at least ǫ. Thus,
the sum of the times required for any k servers to serve all requests is at least

(s2

ǫ2 − k)ǫ, no matter where the servers start (the −kǫ term reflects the possible
saving each server could have by starting arbitrarily close to the first request
he serves).

For ǫ tending to zero, the requests converge to the point x and the total
processing time needed converges to p. If the starting points of the servers are
most favourable, an algorithm could finish serving all requests in time p/k.

We show how to use such a “long” request to achieve our lower bound. At
time 1, the adversary gives a long request of processing time p = 2k in a point
drawn uniformly at random from {(1, 0), (−1, 0)}. The expected optimal cost is
1 + p/k = 3. By Yao’s principle, it remains to prove that E[ol(σ)] ≥ 4.

Since there is a single long request, we can assume without loss of generality
that all the online servers will move to the request and contribute to serving it.
Since p = 2k, the server that will contribute most to the service will have to
spend time at least 2k/k = 2 in x, and this is enough for any other server to
arrive and give a contribution (since at time 1 no server can be farther than 2
from x).

Suppose without loss of generality that the servers are numbered in order of
nondecreasing distance to x and let di = d(x, si(1)). We have ol(σ) ≥ 1 + t0,
with t0 the time needed for the servers to completely serve the request, i.e., the
time needed to reduce its remaining processing time to zero. During this time,
each server first moves towards the request, and then contributes to its service.
The total time needed by all servers is thus the processing time plus all the
distances:

k · t0 = p +

k
∑

i=1

di.

Now notice that E[di], the expected distance of server si from x, is at least
1 for all i. Hence,

E[ol(σ)] ≥ 1 + E[t0] ≥ 1 + p/k + E

[

1

k

∑

i

di

]

= 3 +
1

k

∑

i

E[di]

≥ 3 +
1

k
k

= 4.

A similar technique gives an analogous lower bound for the k-TRP on the plane.

Theorem 5.2. The competitive ratio of any randomized online algorithm for
the k-TRP on the plane is at least 5/4.

13

Proof. We use the same input distribution used in the proof of Theorem 5.1.
For the costs, it is equivalent but easier to consider average completion time
instead of the sum of completion times. Then, the expected optimal cost can
be easily seen to be 2 since the k servers can uniformly process the request of
length p (recall that p = 2k) during time interval [1, 3].

To lower bound the online cost, consider w ∈ [0, p] and let C(w) be the first
time at which a total work of w has been completed by the online algorithm.
Then

ol(σ) =
1

p

∫ p

0

C(w)dw.

Now if we define t0 as in the proof of Theorem 5.1 we have C(p) = 1+ t0, while
C(ǫ) > 1 for any ǫ > 0. Moreover, the function C is concave, since the speed at
which the long request is processed can only increase as more servers arrive, so
the value of the integral above is at least p(1 + t0/2). Thus

E[ol(σ)] ≥ E

[

1

p
· p
(

1 +
t0
2

)

]

= E[1 + t0/2] ≥ 5/2

since we already showed in the proof of Theorem 5.1 that E[t0] ≥ 3. The claim
follows by Yao’s principle.

We remark that for small values of k one can prove better lower bounds than
those in Theorems 5.1 and 5.2. For example, it is possible to prove a 3/2 lower
bound on the competitive ratio of the 2-TSP on the plane.

Theorem 5.3 ([17]). The competitive ratio of any deterministic online algo-
rithm for the 2-TSP on the plane is at least 3/2.

Proof. If at time 1 both online servers are on the same side of the origin, say, on
R−, we issue a single request of length 0 at +1. Then, the optimum makespan
is 1, while the online algorithm needs time at least 2. So, let us assume that at
time 1, one online server is at −x ≤ 0 and the other is at y ≥ 0, where y ≤ x. We
issue a request of length x+ y at +1 at time 1. Clearly opt(σ) = 1 + (x+ y)/2.
The first online server can be at +1 at time 2− y, while the second reaches this
point not earlier than time 2 + x, which is x + y units of time later. So, the
second server can only be at +1 when the whole service is already done and
ol(σ) ≥ 2 + x. We have

ol(σ)

opt(σ)
≥ 2 + x

1 + (x + y)/2
= 2 − 2y

2 + x + y
≥ 2 − y

y + 1
≥ 3

2
.

6 Conclusions

After analyzing the differences between multiple and single server variants, we
can conclude that sometimes having multiple servers is more beneficial to the

14

online algorithm than to the offline adversary. In some cases, including the
traveling repairman problem on the line, the online algorithms can approach
the offline cost when there are enough servers. In more general spaces, these
extremely favorable situation cannot occur. Still in some intermediate cases, like
the Euclidean plane, it is conceivable that the competitive ratios become lower
than those of the corresponding single server problems. We leave the analysis
of the competitive ratio in these situations as an open problem.

Acknowledgements

We would like to thank Sven Krumke for commenting an early version of the
paper and for suggesting Theorem 5.3. We are also grateful to Maarten Lipmann
for useful discussions.

References

[1] N. Ascheuer, S. O. Krumke, and J. Rambau. Online dial-a-ride problems:
Minimizing the completion time. In H. Reichel and S. Tison, editors, Proc.
17th Symp. on Theoretical Aspects of Computer Science, volume 1770 of
Lecture Notes in Computer Science, pages 639–650. Springer-Verlag, 2000.

[2] G. Ausiello, V. Bonifaci, and L. Laura. The on-line asymmetric traveling
salesman problem. Journal of Discrete Algorithms, 2007. In press.

[3] G. Ausiello, E. Feuerstein, S. Leonardi, L. Stougie, and M. Talamo. Al-
gorithms for the on-line travelling salesman. Algorithmica, 29(4):560–581,
2001.

[4] M. Blom, S. O. Krumke, W. E. de Paepe, and L. Stougie. The online TSP
against fair adversaries. INFORMS Journal on Computing, 13(2):138–148,
2001.

[5] V. Bonifaci. Models and Algorithms for Online Server Routing. PhD the-
sis, Technical University Eindhoven, The Netherlands, 2007. Available at
http://www.dis.uniroma1.it/~bonifaci/papers/phdthesis-tue.pdf.

[6] A. Borodin and R. El-Yaniv. Online Computation and Competitive Anal-
ysis. Cambridge University Press, 1998.

[7] A. Borodin and R. El-Yaniv. On randomization in online computation.
Information and Computation, 150:244–267, 1999.

[8] K. Chaudhuri, B. Godfrey, S. Rao, and K. Talwar. Paths, trees, and min-
imum latency tours. In Proc. 44th Symp. on Foundations of Computer
Science, pages 36–45, 2003.

[9] B. Chen and A. P. A. Vestjens. Scheduling on identical machines: How good
is LPT in an on-line setting? Operations Research Letters, 21(4):165–169,
1997.

15

http://www.dis.uniroma1.it/~bonifaci/papers/phdthesis-tue.pdf

[10] J. R. Correa and M. R. Wagner. LP-based online scheduling: From single
to parallel machines. In Integer programming and combinatorial optimiza-
tion, volume 3509 of Lecture Notes in Computer Science, pages 196–209.
Springer-Verlag, 2005.

[11] J. Fakcharoenphol, C. Harrelson, and S. Rao. The k-traveling repairman
problem. In Proc. 14th Symp. on Discrete Algorithms, pages 655–664, 2003.

[12] E. Feuerstein and L. Stougie. On-line single-server dial-a-ride problems.
Theoretical Computer Science, 268(1):91–105, 2001.

[13] G. N. Frederickson, M. S. Hecht, and C. E. Kim. Approximation algorithms
for some routing problems. SIAM Journal on Computing, 7(2):178–193,
1978.

[14] D. Hauptmeier, S. O. Krumke, and J. Rambau. The online dial-a-ride prob-
lem under reasonable load. In G. Bongiovanni, G. Gambosi, and R. Pe-
treschi, editors, Proc. 4th Italian Conference on Algorithms and Complex-
ity, volume 1767 of Lecture Notes in Computer Science, pages 125–136.
Springer-Verlag, 2000.

[15] R. Jothi and B. Raghavachari. Minimum latency tours and the k-traveling
repairmen problem. In M. Farach-Colton, editor, Proc. 6th Symp. Latin
American Theoretical Informatics, volume 2976 of Lecture Notes in Com-
puter Science, pages 423–433. Springer-Verlag, 2004.

[16] B. Kalyanasundaram and K. Pruhs. Speed is as powerful as clairvoyance.
Journal of the ACM, 47(4):214–221, 2000.

[17] S. O. Krumke, 2006. Personal communication.

[18] S. O. Krumke, W. E. de Paepe, D. Poensgen, and L. Stougie. News from the
online traveling repairman. Theoretical Computer Science, 295(1-3):279–
294, 2003.

[19] S. O. Krumke, L. Laura, M. Lipmann, A. Marchetti-Spaccamela, W. E.
de Paepe, D. Poensgen, and L. Stougie. Non-abusiveness helps: an O(1)-
competitive algorithm for minimizing the maximum flow time in the online
traveling salesman problem. In K. Jansen, S. Leonardi, and V. V. Vazirani,
editors, Proc. 5th Int. Workshop on Approximation Algorithms for Combi-
natorial Optimization, volume 2462 of Lecture Notes in Computer Science,
pages 200–214. Springer-Verlag, 2002.

[20] E. L. Lawler, J. K. Lenstra, A. Rinnooy Kan, and D. B. Shmoys, edi-
tors. The Traveling Salesman Problem: A Guided Tour of Combinatorial
Optimization. Wiley, Chichester, England, 1985.

[21] M. Lipmann. On-Line Routing. PhD thesis, Technical University Eind-
hoven, The Netherlands, 2003.

16

[22] M. Lipmann, X. Lu, W. E. de Paepe, R. A. Sitters, and L. Stougie. On-line
dial-a-ride problems under a restricted information model. Algorithmica,
40(4):319–329, 2004.

[23] M. Manasse, L. A. McGeoch, and D. Sleator. Competitive algorithms for
server problems. Journal of Algorithms, 11(2):208–230, 1990.

[24] J. Sgall. On-line scheduling. In A. Fiat and G. J. Woeginger, editors,
Online Algorithms: the State of the Art, pages 196–231. Springer-Verlag,
1998.

[25] L. Stougie and A. P. A. Vestjens. Randomized on-line scheduling: How low
can’t you go? Operations Research Letters, 30(2):89–96, 2002.

17

	Introduction
	Preliminaries
	Algorithms for general metric spaces
	The k-Traveling Salesman Problem
	The k-Traveling Repairman Problem
	Lower bounds

	Algorithms for the real line
	An asymptotically optimal algorithm
	Lower bounds

	Lower bounds on the plane
	Conclusions

