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Abstract

This paper studies the notions of autoreducibility and length-decreasing self-reducibility of
functions and languages. Recently Glaßer et al . have shown that for many classes C, including
PSPACE and NP, it holds that all nontrivial complete languages are polynomial-time many-one
autoreducible. In contrast, this paper shows that for many classes C such that P ⊆ C (e.g.,
PSPACE and NP) some complete languages in C are not polynomial-time length-decreasing
self-reducible unless C ⊆ P, and for classes C such that L ⊆ C ⊆ P (e.g., P and NL) some
complete languages in C are not logarithmic-space length-decreasing self-reducible unless C ⊆ L.

This paper also shows that contrast between autoreducibility and length-decreasing self-
reducibility for the case of functions. In particular, the paper shows that many function complex-
ity classes FC (including well-studied #P, SpanP, and GapP and not-so-well-studied but highly
natural #PE and TotP) have the property that all complete functions in FC are polynomial-time
Turing-autoreducible. For #P and TotP, the autoreductions can be made to be polynomial-time
one-Turing (one query per input).

These results show that, under reasonable assumptions, the notions of length-decreasing self-
reducibility and autoreducibility differ both on complete languages and on complete functions.
In a similar vein, this paper shows that under reasonable assumptions autoreducibility and
random-self-reducibility differ with respect to functions.

1 Introduction

Self-reducibility [MP79, Sch76] and autoreducibility [Lad73, Amb83] are among the most frequently
used central concepts in complexity theory. Intuitively, these notions refer to the situations in which
the membership question about a word in a language can be answered by asking the membership
question in the same language about other words. While autoreducibility essentially permits query-
ing about any word other than the input (within a certain resource constraint), self-reducibility
permits querying only those words preceding the input with respect to some partial order (the
exact definition of the partial order changes the characteristics of the self-reducibility). It is well-
known that the NP-complete problem SAT possesses such a property: Given a non-trivial formula
ϕ as input, one can decide whether ϕ is satisfiable by asking whether at least one of the two
formulas constructed by fixing the value of the first variable of ϕ is satisfiable. This is called
the disjunctive-self-reducibility of SAT. Self-reducibility and autoreducibility apply to functions as
well. For example, a #P-complete function #SAT, which on a propositional formula ϕ as input
returns the number of satisfying truth assignments for ϕ, can be computed using the recursion:
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#SAT(ϕ) = #SAT(ϕ0) + #SAT(ϕ1), where ϕb is the formula ϕ with its first variable set to b. We
will call this type of autoreducibility in which the value of a function at an input x is computed
by a linear combination of the value of the function at some other inputs plus an additive factor
affine autoreducibility.

A rich theory of self-reducibility and autoreducibility has been established by study-
ing the structure of the reductions, that is, how “easier” the queries should be and how
powerful the underlying computation is. The theory encompasses such concepts as coher-
ence [Yao90], log-self-reducibility [Bal90], random-self-reducibility [AFK89], and word-decreasing
self-reducibility [Bal90].1 Much work in the area of autoreducibility has been done on random-self-
reducibility [Yao90, AFK89, FKN90, FFLS92, FF91]. Intuitively, f is random-self-reducible if we
can deduce the value of f at x from the values f(x1), . . . , f(xk), where xi’s are chosen in such a way
that each xi looks as if it was drawn from a distribution that only depends on |x| and i; the xi’s are
not necessarily independent, and typically they are not. Coherence is intuitively the probabilistic
version of autoreducibility in which the queries can be generated with access to randomness and the
final assertion should be produced with a small error probability. Random-self-reducibility has a
wide variety of applications in other topics, including average-case complexity and program testing.
For the former, it is known, for example, that if a function f is random-self-reducible then, it is
“as hard on the average as” it is in the worst case. For the latter, it is known that if a function
f is randomly-self-reducible and we have a deterministic program that computes the function cor-
rectly for all but a small fraction of inputs, then the deterministic program can be modified to a
probabilistic one that computes the correct value with high probability for all inputs [Lip91].

Deterministic versions of self-reducibility and autoreducibility of functions did not receive as
much attention in the literature as their randomized counterparts, with a notable exception of the
paper by Pagourtzis and Zachos [PZ06] which studies self-reductions of TotP and #PE functions.
(TotP is the class of functions that count the total number of computation paths of NP machines
and #PE is the set of #P functions f for which one can determine in polynomial time whether
f(x) > 0.) Here, in this paper, we attempt to fill the gap in the literature regarding deterministic
self-reducibility and autoreducibility of functions.

One of the reasons to study autoreducibility of functions, apart from the natural curiosity, is
that it might lead to natural separations of complexity classes. Buhrman et al . [BFvMT00] have
already shown that using autoreducibility one can separate certain classes (though, there are also
other techniques to achieve some of their separations) and in the case of function classes this attack
might be very attractive as well. In particular, in this paper we show that not all FPt-complete
functions are parsimoniously autoreducible (see Section 2.4; FPt is the set of total FP functions),
but all #P-complete functions are very close to having such autoreductions. Also, recent results
on the many-one autoreducibility of NP-complete languages [GOP+05] raise our hope to be able to
show that all #P-complete functions are parsimoniously autoreducible, and thus to separate #P
and FPt. We study the autoreducibility of complete functions in Section 4.

Like the language SAT and the function #SAT, many concrete complete sets and functions are
known to be self-reducible. In many cases their self-reductions are length-decreasing in the sense

1Some of these variants of “self-reducibility” go beyond what the seminal papers of Meyer and Paterson [MP79]
and of Schnorr [Sch76] intended to capture. In their work self-reducibility refers to situations in which autoreducibility
is established according to a partial order that gives “short” downward chains. Such a short-downward-chain property
does not exist for some of the variants, in particular, for random-self-reducibility and word-decreasing self-reducibility.
This lack seems to blur the distinction between “self-reducibility” and autoreducibility. All the self-reducibility notions
we study are special cases of length-decreasing self-reducibility. Although the term “length-decreasing autoreducibil-
ity” adequately characterizes the property, we follow the convention and keep the word “self-reducibility” in the
names.
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that the query words are shorter than the input. It is easy to see that the self-reductions of SAT
and #SAT presented above are indeed length-decreasing. The standard complete language QBF
for PSPACE has a similar self-reduction in which the membership is queried about the formulas
constructed by fixing the first variable to 0 and to 1. This self-reduction is length-decreasing too.
It is implicit in the work of Pagourtzis and Zachos [PZ06] that, using a certain natural encoding of
graphs, the function #PerfectMatching that given a graph as input returns the number of perfect
matchings in it is also length-decreasing self-reducible.

It is natural to ask whether every complete problem or function for, e.g., PSPACE, NP, and
#P, is indeed length-decreasing self-reducible. We prove that this is unlikely. For a wide variety of
classes C, including PSPACE and NP, it holds that if all complete sets for C are length-decreasing
self-reducible then C ⊆ P. A similar result holds for #P and other function classes.

The above result about NP can be contrasted with the results about autoreducibility of NP-
complete languages. Formally, a language A is autoreducible if it is accepted by a polynomial-time
oracle Turing machine M such that M relative to oracle A accepts A, viz., L(MA) = A, and
on input x machine M never queries its oracle about x. Beigel and Feigenbaum [BF92] showed
that all languages complete for NP with respect to polynomial-time Turing reductions are (Turing)
autoreducible. More recently, Glaßer et al . [GOP+05] showed that all NP-complete sets and all
PSPACE-complete sets are many-one autoreducible. Thus, from our new result it follows that,
e.g., under the assumption that P 6= PSPACE there are PSPACE-complete languages that are
autoreducible but not length-decreasing self-reducible.

Buhrman and Torenvliet [BT96] gave evidence that general self-reducibility (as defined by Meyer
and Paterson in [MP79]) differs from autoreducibility on NP. Our result does not follow from their
result, since the length-decreasing self-reducibility is a special case of the Meyer–Paterson self-
reducibility. Indeed, our results subsume the result of Buhrman and Torenvliet.

While the notions of self-reducibility and autoreducibility have been diversified and well studied
in the literature for languages,2 the notions have not been well explored for functions. We will fill
the gap both by generalizing the language-based notions and by introducing, based on the ideas of
Pagourtzis and Zachos [PZ06], the aforementioned affine reduction type and their subtypes.

This paper is organized as follows. In Section 2 we give basic definitions that will be use-
ful throughout the paper. In particular, we discuss reducibility notions and self-reducibility and
autoreducibility for function classes. Section 3 presents our results regarding length-decreasing
self-reducibility, namely, that for many natural classes it is not the case that all complete languages
(complete functions) within these classes are length-decreasing self-reducible unless unlikely com-
plexity class collapses occur. In Section 4 we turn our attention to autoreducibility of functions and
prove several analogs of results known for the autoreducibility of complete languages. In particular,
we show that many natural #P functions have autoreductions of a very simple form, and we argue
how autoreducibility could be used to separate #P from FPt. We conclude this section with a brief
discussion of algebraic properties of complete functions. Section 5 concludes the paper with a few
open problems.

2 Preliminaries

We assume the reader’s familiarity with basic concepts in complexity theory. The reader may
consult with such textbooks as Bovet and Crescenzi [BC93], Hemaspaandra and Ogihara [HO02],

2Köbler and Watanabe [KW98] use a very generic notion of self-reducibility, which can be applied beyond PSPACE
(all length-decreasing self-reducible sets, and all sets self-reducible with respect to the Meyer–Paterson self-reducibility,
are in PSPACE).
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and Papadimitriou [Pap94] for definitions. Without loss of generality, we assume that all languages
we consider are over the alphabet Σ = {0, 1}. We assume a pairing function that is both polynomial-
time computable and polynomial-time decodable (for example, Cantor’s pairing function). Let 〈·, ·〉
be such a function. All polynomials we consider here have positive coefficients so for all n ≥ 0 their
value is nonnegative. We use the term “NP machine” to mean any polynomial time-bounded
nondeterministic Turing machine.

2.1 Complexity Classes

Next we define complexity classes of our interest.
PSPACE is the set of all languages that are accepted by polynomial-space deterministic Turing

machines. L and NL are respectively the set of languages that are accepted by logarithmic-space
deterministic Turing machines and the set of languages accepted by logarithmic-space nondeter-
ministic Turing machines.

A language L belongs to the class PP [Sim75, Gil77] if there exists a polynomial p and a
polynomial-time decidable predicate R such that for all x,

x ∈ L ⇐⇒ ‖{y | |y| = p(|x|) ∧R(x, y)}‖ ≥ 2p(|x|)−1.

A language L belongs to C=P [Sim75, Wag86] if and only if there is a polynomial p and a polynomial-
time decidable predicate R such that for all x,

x ∈ L ⇐⇒ ‖{y | |y| = p(|x|) ∧R(x, y)}‖ = 2p(|x|)−1.

Both PP and C=P can be viewed as representing the concept of counting the number of accepting
paths of NP machines, that is, PP asks if at least a half of the paths accept and C=P asks whether
exactly a half of the paths accept.

Fact 2.1 below, which is derived from the fact that coNP ⊆ C=P [Sim75] and the fact that
PP ⊆ NPC=P [Tor91], is well known.

Fact 2.1 P = C=P if and only if P = PP.

The rank of a word x among some set of words A is the number of words in A that are
lexicographically smaller than x. Without explicit specification, A by default is Σ∗. We denote the
function that maps each x to its rank in Σ∗ by rank(x).

A Turing machine transducer is a Turing machine with a special one-way infinite write-only
tape called output tape that is accessed via a head moving only one way. We assume that the
output of a Turing machine transducer is over the alphabet Σ and that the output head cannot
be moved before writing in the tape cell at the current position. A Turing machine transducer M
outputs a word w on input x if M on x accepts and w is the word written on the output tape.

A function f : Σ∗ → Σ∗ is polynomial-time computable if there exists a polynomial time-
bounded Turing machine transducer M that computes f .3 A function f : Σ∗ → Σ∗ is logarithmic-
space computable if there exists a logarithmic-space Turing machine transducer M that computes
f . Here the logarithmic bound is not enforced on the output tape. The class of all polynomial-
time computable functions and the class of all logarithmic-space computable functions are denoted
respectively by FP and FL. The sets of total FP and FL functions are denoted by FPt and FLt.

A function f : Σ∗ → Σ∗ can be viewed, by way of an interpretation scheme, as a mapping from
Σ∗ to any finite or countably infinite set of objects, including the natural numbers N, the integers

3Usually, a Turing machine transducer is considered to have an output if and only if it accepts. So, both FP and
FL contain not only total functions but partial functions. We will consider only total functions here.
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Z, and the rationals Q. Instead of fixing the interpretation to one scheme, we simply stipulate that
Σ∗ is viewed as a semiring. (We’ll return to the issue of interpretation in Section 2.4.) With this
stipulation, to mean that every function in a class of functions FC is polynomial-time computable,
we write FC ⊆ FP instead of FC = FP even if it is the case that with respect to some typical
interpretation FP ⊆ FC.

Next we define function classes #P [Val79], GapP [FFK94], SpanP [KST89], TotP [KPSZ98],
and #PE [Pag01].

Let M be an NP machine. For each input x to M , define #accM (x), #rejM (x), and #totM (x),
to be the number of accepting, rejecting, and all computation paths ofM on x, respectively. Clearly,
for all x it holds that #totM (x) = #accM (x) + #rejM (x).

Let f be a function from Σ∗ to N. We say that f belongs to #P if there is an NP machine M
such that for all x, f(x) = #accM (x). We say that f belongs to TotP if there is an NP machine M
such that for all x, f(x) = #totM (x) − 1. (The subtraction of 1 is for allowing TotP functions to
have 0 as their value.) We say that f belongs to #PE if f ∈ #P and the language {x | f(x) > 0}
is in P.

A function f : Σ∗ → Z is in GapP if there is an NP machine M such that for all x, f(x) =
#accM (x) − #rejM (x). A function f : Σ∗ → N is in SpanP if there is an NP Turing machine
transducer M such that for all x, f(x) is the number of distinct outputs of M on input x.

It follows directly from the definitions that, using the semiring N to interpret FPt values,
FPt ⊆ TotP ⊆ #PE ⊆ #P ⊆ SpanP and that #P ⊆ GapP. The following result, which we will
use later, is due to Köbler, Schöning, and Torán.

Fact 2.2 ([KST89]) #P = SpanP ⇐⇒ UP = NP.

2.2 Self-reducibility and Autoreducibility Notions for Languages

As is standard ≤p
m, ≤p

T , ≤p
tt, ≤

log
m , ≤log

T , and ≤log
tt respectively stand for polynomial-time many-one

reducibility, polynomial-time Turing reducibility, polynomial-time truth-table reducibility, logspace
many-one reducibility, logspace Turing reducibility, and logspace truth-table reducibility. Note that,
as Ladner and Lynch showed [LL76], ≤log

T is equivalent to ≤log
tt .

Definition 2.3 A language A is autoreducible (more specifically, polynomial-time Turing autore-
ducible, or ≤p

T autoreducible) if there exists a polynomial-time oracle Turing machine M such that

1. L(MA) = A and

2. for all inputs x, M does not query its oracle about x.

It is easy to see that SAT is autoreducible by the reduction presented in the introduction: On
input formula ϕ, if ϕ does not contain a variable then accept or reject according to whether ϕ is true
or false; otherwise, construct two formulas, ϕ0 and ϕ1, by setting the value of the first variable of
ϕ to 0 and 1, respectively, ask the oracle about the membership of these formulas, and then accept
if and only if the oracle answers positively to at least one of the two queries. In this reduction the
queries are disjunctive and the query words are shorter than the input, so it is actually a disjunctive
length-decreasing self-reduction.

Formally, we define length-decreasing self-reductions as follows:

Definition 2.4 We say that a language A is length-decreasing self-reducible (more specifically,
polynomial-time length-decreasing Turing self-reducible or ≤p

T length-decreasing self-reducible) if
there exists a polynomial-time oracle Turing machine M witnessing that A is autoreducible with
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an additional property that for all x, each query word (if any) of M on input x is shorter than x,
regardless of its oracle.

The logarithmic-space versions of the above two notions are defined simply by requiring that
the machine M should run in logarithmic space. As in the standard definition by Ladner and
Lynch [LL76], the logarithmic bound does not apply to the oracle tape, and thus, the queries can
be of up to polynomial size. Since the logarithmic-space Turing (i.e., adaptive query) reduction is
the same as the logarithmic-space truth-table (i.e., nonadaptive query) reduction, we will use the
symbol ≤log

tt instead of ≤log
T .

Let f be a function from N to N. We say that f is polynomially bounded if there exists a
polynomial p such that for all n ≥ 0 it holds that f(n) ≤ p(n). We say that f is a pad-length
function if for all n ≥ 0 it holds that f(n) > n. We say that a pad-length function f is logspace
computable if the mapping 1n 7→ 1f(n) is computable in logarithmic space and polynomial-time
computable if the mapping is computable in polynomial time. Note that every logspace computable
(or polynomial-time computable) pad-length function is polynomially bounded.

Definition 2.5 We say that a class C is closed under logspace padding (respectively, polynomial-
time padding) if for every nontrivial (neither {0, 1}∗ nor ∅) A ∈ C and for every logspace computable
(respectively, polynomial-time computable) pad-length function f , the language

A′ = {x10m | x ∈ A ∧ 1 + |x|+m = f(|x|)}

belongs to C.

It is easy to see that L, NL, and P are closed under logspace padding and P, NP, PP, C=P,
and PSPACE are closed under both polynomial-time padding and logspace padding.

Lemma 2.6 Let C be a language class that has ≤log
m -complete sets (respectively, ≤p

m-complete sets)
and is closed under logspace (respectively, polynomial-time) padding. Let f be an arbitrary logspace
computable (respectively, polynomial-time computable) pad-length function. Let A be an arbitrary
C-complete set. Then A′ = {x10m | x ∈ A ∧ |x|+ 1 +m = f(|x|)} is C-complete.

Proof: We will prove only the logspace case. Let C, f , and A be as in the hypothesis of the
lemma. Since C is closed under logspace padding, A′ ∈ C. To show that A′ is ≤log

m -hard for C,
define g(x) = x10|f(x)|−|x|−1. Clearly, g is a many-one reduction from A to A′. Since f is a
logspace computable pad-length function, g is logspace computable. Thus, A′ is ≤log

m -hard for C.
This proves the lemma. �

2.3 Reducibility Notions for Function Classes

Here we list the reducibility notions among functions to be used in this paper. All the reducibility
notions defined in this section are deterministic. Recall that we only consider total functions here.
The following definitions apply only to total functions and, as a result, we cannot speak of complete
functions for classes that also contain partial functions.

A function-oracle Turing machine is a standard Turing machine with a special write-only query
tape and with a special read-only answer tape. When the machine enters the query state, in a
single unit time the contents of the query tape are erased and the oracle produces a word over Σ
on the answer tape.
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Definition 2.7 We say that a function f is (polynomial-time) Turing reducible to a function g,
denoted f ≤p

T g, if there is a polynomial-time computable function-oracle Turing machine that
computes f with g as the oracle.

Defining the function version of the “many-one” reduction is not straightforward. Under the
obvious restriction that the function-oracle Turing machine computing the reduction should not
make more than one query to the oracle, one can consider various issues regarding how computation
should be carried out before and after the query: whether the machine should supply the input
without modification to the oracle, whether the machine should output the answer provided by
the oracle, and if not, whether the machine should be allowed to look at the input during the
post-computation phase.

The definition below, due to Krentel [Kre88], is the most flexible one.

Definition 2.8 ([Kre88]) A function f is (polynomial-time) metric reducible to a function g,
denoted by f ≤p

1-T g, if there exist two polynomial-time computable functions ψ and ϕ such that
for all x, f(x) = ϕ(x, g(ψ(x))).

The notation f ≤p
1-T g is different from the notation used in [Kre88]. Our notation is adopted

from [WT92] and signifies that the machine computing the reduction has the full liberty in com-
putation before and after making its single query.

Two more restrictive reduction types are Zankó’s many-one reducibility [Zan91], in which
post-computation should depend only on the oracle answer, and Simon’s parsimonious reducibil-
ity [Sim75],4 in which no post-computation is allowed.

Definition 2.9 ([Zan91, Sim75]) A function f is (polynomial-time) many-one reducible to a
function g, denoted f ≤p

m g, if there exist two polynomial-time computable functions ψ and ϕ such
that for all x, f(x) = ϕ(g(ψ(x))).

A many-one reduction is called parsimonious, f ≤p
par g, if there exists a polynomial-time com-

putable function ψ such that for all x, f(x) = g(ψ(x)).

Next we introduce the notion of reversible metric reducibility. Intuitively, a function f is
reversible metric reducible to a function g if for each input x and for the query, y, for x, it holds
not only that f(x) can be computed from y and g(y) in polynomial time but g(y) can be computed
from x and f(x) in polynomial time.

Definition 2.10 A function f is (polynomial-time) reversible metric reducible to a function g,
denoted f ≤p

1-T-rev g, if there exist polynomial-time functions ϕ, ψ, and ρ such that ϕ and ψ
witness that f ≤p

1-T g and such that for all x, ρ(x, f(x)) = g(ψ(x)).

We conclude this subsection with a quick discussion of some basic properties of the reductions
that we are dealing with. As is both expected and very natural, all of the reductions presented
here are transitive.

Proposition 2.11 Each of ≤p
par, ≤p

m, ≤p
1-T , ≤p

1-T-rev, and ≤p
T is transitive.

4Vollmer [Vol94] uses the term “functional many-one reducibility” to refer to the parsimonious reducibility.
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Proof: We will only do a proof for the case of ≤p
1-T-rev. The transitivity of the other reductions

should be clear. Let f , g, and h be three functions such that f ≤p
1-T-rev g (via ϕ1, ψ1, and ρ1) and

g ≤p
1-T-rev h (via ϕ2, ψ2, and ρ2). That is, for each x we have that

f(x) = ϕ1(x, g(ψ1(x))),
ρ1(x, f(x)) = g(ψ1(x)),

and for each x we have that

g(x) = ϕ2(x, h(ψ2(x))),
ρ2(x, g(x)) = h(ψ2(x)).

The goal is to define ϕ, ψ, and ρ that witness f ≤p
1-T-rev h. We define ϕ and ψ as follows:

for each x, ψ(x) = ψ2(ψ1(x)),
for each x and for each y, ϕ(x, y) = ϕ1(x, ϕ2(ψ1(x), h(y))).

It is clear that both ψ and ϕ are in FPt. Also, it is easy to check that ϕ(x, ψ(x)) = f(x). It remains
to show that we can compute h(ψ(x)) given x and f(x). For each x and for each y, define ρ(x, y)
by:

ρ(x, y) = ρ2(ψ1(x), ρ1(x, y)).

Clearly, ρ ∈ FPt. For all x, we have:

ρ(x, f(x)) = ρ2(ψ1(x), ρ1(x, f(x)))
= ρ2(ψ1(x), g(ψ1(x)))
= h(ψ2(ψ1(x)))
= h(ψ(x)).

This completes the proof. �

Our reduction types vary considerably in the amount of flexibility that they allow. In partic-
ular, the Turing reduction puts no restrictions on the number and nature of the queries that a
reduction can make and the parsimonious reduction allows us to make only one query, without
any post-computation. The following set of implications clearly follows from the definitions of the
reducibilities:

1. if f ≤p
par g then f ≤p

m g;

2. if f ≤p
m g then f ≤p

1-T g;

3. if f ≤p
1-T g then f ≤p

T g.

These implications cannot be replaced by equivalences. In each of the cases there are simple
examples of functions f and g for which it holds that f reduces to g by the stronger reduction but
does not by the weaker one.

Let f(x) = x and g(x) = 2x. (We are considering x here to be a natural number and we view
f and g as FP functions over the semiring of natural numbers.) It holds that f ≤p

m g but it clearly
is not the case that f ≤p

par g.
To show that metric reductions can be more powerful than Zankó’s, let f be some FPt function

that is not constant and let g be a constant function. It holds that f ≤p
1-T g, but it is not the case

that f ≤p
m g as the post-computation in the reduction always gets the same input argument.
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To show that Turing reductions are more powerful than metric reductions we recall that Ladner,
Lynch, and Selman [LLS75] showed two languages, A and B, such that A ≤p

T B but B does not
reduce to A in the truth-table fashion. Let χA and χB be characteristic functions of A and B.
Since A ≤p

T B, it holds that χA ≤p
T χB. Also, a metric reduction from χA to χB would imply a

truth-table reduction from A to B, which is impossible.
Perhaps the most peculiar reducibility that we use is the reversible metric reduction. In partic-

ular, it is interesting to compare its power to Zankó’s many-one reducibility. It is easy to provide
an example of two functions f and g such that f ≤p

1-T-rev g but it is not the case that f ≤p
m g.

One, as in the case of general metric reductions, simply takes g to be a constant function and f to
be an FPt function that is not constant. Interestingly, assuming P 6= NP, one can construct two
recursive functions f and g such that f ≤p

m g and f 6≤p
1-T-rev g. (In fact, if f and g are allowed to

be non-recursive, a pair (f, g) satisfying f ≤p
m g and f 6≤p

1-T-rev g exists unconditionally.)

Lemma 2.12 There exist two recursive functions, f and g, such that (i) f ≤p
m g and (ii) f 6≤p

1-T-rev
g unless P = NP.

Proof: We define f(x) = χSAT(x) to be the characteristic function of SAT and we define g as
follows.

g(x) =

 w
x ∈ SAT and w is the largest satisfying truth assign-
ment for x in the lexicographic order,

ε otherwise.

Here we assume that every truth assignment is a nonempty word.
Let ϕ be a function such that ϕ(ε) = 0 and for all other inputs x it holds that ϕ(x) = 1. For

all x it holds that f(x) = ϕ(g(x)), and thus, f ≤p
m g.

To prove that f 6≤p
1-T-rev g unless P = NP, assume that f ≤p

1-T-rev g. By definition there are
three FPt functions, ϕ, ψ, and ρ, such that for all x,

f(x) = ϕ(x, g(ψ(x))) and ρ(x, f(x)) = g(ψ(x)).

We then construct a polynomial-time algorithm for computing f , which in turn is a polynomial-time
algorithm for SAT, thereby showing that P = NP.

Let x be an input for which we want to compute the value of f and let y = ψ(x). Let w0 = ρ(x, 0)
and w1 = ρ(x, 1). Also, let v0 = ϕ(x,w0) and v1 = ϕ(x,w1). The value of f(x) is either 0 or 1, so
g(y) ∈ {w0, w1}, and thus, f(x) ∈ {v0, v1}. We will describe below a method for finding a b ∈ {0, 1}
such that f(x) = vb.

Note that if w0 6= ε and w0 = g(y), w0 must be the largest satisfying assignment of g(y) in the
lexicographic order, in particular, w0 must be a satisfying assignment of g(y). So, if w0 6= ε and
w0 is not a satisfying assignment of y, then w0 6= g(y), so g(y) = w1, and thus, f(x) = v1.

Similarly, if w1 6= ε and w1 is not a satisfying assignment of y, then w1 6= g(y), so g(y) = w0,
and thus, f(x) = v0.

If neither of the above is the case, we have (either w0 6= ε or w0 is a satisfying assignment of
g(y)) and (either w1 6= ε or w1 is a satisfying assignment of g(y)). If w0 = w1, then g(y) = w0 = w1,
and thus f(x) = v0 = v1. If w0 6= w1, then at least one of w0 and w1 is a satisfying assignment of
w, which implies that y is satisfiable and so g(y) 6= ε. Let b ∈ {0, 1} be such that wb is the larger
of w0 and w1. Since ε is the smallest word in the lexicographic order and no truth assignment is ε,
we have g(y) = wb, and thus, f(x) = vb.

Since ϕ, ψ, and ρ are polynomial-time computable, w0, w1, v0, v1 can be computed in polynomial
time. Since whether w0 and w1 are satisfying assignments for g(y) can be decided in polynomial
time, we have that f is polynomial-time computable. This proves the lemma. �

9



An interesting observation regarding reversible metric reducibility is that if f ≤p
1-T-rev g then,

in some sense, g contains a part h that is reversible metric equivalent to f via a set of two very
simple reductions. Let f and g be two functions such that f ≤p

1-T-rev g via FPt functions ϕ, ψ,
and ρ. That is, f(x) = ϕ(x, g(ψ(x))) and ρ(x, f(x)) = g(ψ(x)). We define h(x) = g(ψ(x)). Then
we have that

f(x) = ϕ(x, h(x)), (1)
h(x) = ρ(x, f(x)). (2)

h is essentially the part of g that is important for the reduction from f to g. In some sense,
reversible metric reducibility has a flavor of an equivalence relation.

In this paper we study many function complexity classes. It is important to know whether these
classes are closed under reducibility types that we are using or not. Not surprisingly, all the classes
that we study are closed under parsimonious reductions.

Proposition 2.13 Each of GapP, SpanP, TotP, #PE, and #P is closed under ≤p
par reductions.

Proof: Let g ∈ #P via an NP-machine M . Suppose f is ≤p
par-reducible to g via a polynomial-time

computable function ψ: for all x, f(x) = g(ψ(x)). Define N to be the machine that, on input x,
computes y = ψ(x), nondeterministically simulates M on input y, and then accepts if M accepts
in the simulation and rejects otherwise. Clearly, the machine N witnesses that f ∈ #P. The same
proof works for TotP, #PE, and GapP.

Furthermore, for SpanP, consider the machine M to be a transducer and modify the algorithm
of N so that it outputs the same output that M produces on each path of simulation. �

On the other hand, even many-one reductions seem to be so powerful that the nondeterministic
function classes that we study here do not seem to be closed under them. The main reason for this
is that many-one reductions allow post-computation but for nondeterministic classes like #P it is
difficult to get a handle on the value of their functions.

Proposition 2.14 #P is closed under ≤p
m if and only if UP = PP.

Proof: Ogihara and Hemaspaandra [OH93] showed that #P is closed under every polynomial-
time computable operation if and only if UP = PP. Being closed under every polynomial-time
operation is simply another way of saying that #P is closed under many-one reductions. �

For similar reasons it is unlikely that either of TotP, #PE, SpanP, or GapP is closed under many-
one reductions. Ogihara and Hemaspaandra [OH93] showed that unlikely complexity class collapses
happen if SpanP is closed under every polynomial-time computable operation and Gupta [Gup92,
Gup95] showed similar results for GapP. For the case of TotP it is easy to see that if TotP is closed
under every polynomial-time computable operation then TotP = #P and then Proposition 2.14
applies. The same approach works for #PE.

We note here that each of the function classes that we discuss in this paper, FPt, #P, #PE,
TotP, SpanP, and GapP, has a canonical complete function under parsimonious reducibility. Many
natural complete functions are also known.
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2.4 Self-reducibility and Autoreducibility for Functions

We now define the notions of self-reducibility and autoreducibility for functions. While a large
part of work in this subject has been on random-self-reducibility, we here focus on reducibility to
itself achieved by deterministic computation. Because of the lack of access to randomness, the
self-reducibility and autoreducibility we use here in some way mimic their language counterparts
instead of random-self-reducibility.

As in the case of “many-one” type reduction, there are several ways in which one can define
self-reducibility and autoreducibility for functions. One of the most natural ones is to simply mimic
the definitions of those notions for languages.

Definition 2.15 A function f is (polynomial-time) Turing autoreducible (or ≤p
T autoreducible) if

there exists a polynomial-time function-oracle Turing machine M that on input x, given f as the
oracle, outputs the value f(x), without ever querying the oracle about x.

A function f is (polynomial-time) length-decreasing self-reducible (or ≤p
T length-decreasing self-

reducible) if f is autoreducible via a machine that queries its oracle only about words that are shorter
than the machine’s input.

The above definitions are the exact analogues of the definitions for the language case. Below,
we define a more restrictive version, inspired by the work of Pagourtzis and Zachos [PZ06].

A semiring is a set S of elements with two algebraic operations + and · with the following
properties:

(i) S is closed both under + and under ·; that is, for all a, b ∈ S, a+ b, a · b ∈ S.

(ii) S has the identity element 0 with respect to + and the identity element 1 with respect to ·;
that is, for all a ∈ S, a+ 0 = 0 + a = a and a · 1 = 1 · a = a.

(iii) S is commutative with respect to +; that is, for all a, b ∈ S, a+ b = b+ a.

(iv) 0 annihilates S; that is, for all a ∈ S, 0 · a = a · 0 = 0.

(v) · satisfies the distributive law; that is, for all a, b, c ∈ S, (a + b) · c = a · c + b · c and
c · (a+ b) = c · a+ c · b.

An encoding of a semiring S is a one-to-one mapping from S to Σ∗. An encoding e of a semiring
S is efficient if the following holds:

• There exists a constant c such that for all a, b ∈ S, |e(a+ b)| ≤ max{|e(a)|, |e(b)|}+ c.

• There exists a constant d such that for all a, b ∈ S, |e(ab)| ≤ |e(a)| + |e(b)| +
d log max{|e(a)|, |e(b)|}.

• The set e(S) is in P.

• The function fadd , defined for all x, y ∈ Σ∗ by fadd (x, y) = e(e−1(x) + e−1(y)) if x, y ∈ e(S)
and ε otherwise, is polynomial-time computable.

• The function fmul , defined for all x, y ∈ Σ∗ by fmul (x, y) = e(e−1(x) · e−1(y)) if x, y ∈ e(S)
and ε otherwise, is polynomial-time computable.
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A more detailed treatment of this sort of computation by circuits can be found in the work of
Borodin, Cook, and Pippenger [BCP83].

Note that each one of the set of natural numbers N, the set of integers Z, and the set of
rationals Q is a semiring with an efficient encoding. Each time we use notation FC we mean a class
of functions from Σ∗ to a semiring S with an efficient encoding.

Definition 2.16 Let f be a function from Σ∗ to a semiring S with an efficient encoding. We
say that f is (polynomial-time) affine autoreducible if there exists a polynomial-time computable
function r with the following property: for each x, r(x) is an ordered set (t,m1, . . . ,mk, h1, . . . , hk)
such that t,m1, . . . ,mk ∈ S, h1, . . . , hk ∈ Σ∗ − {x}, and

f(x) = t+m1f(h1) + · · ·+mkf(hk).

Here, if there exists a constant ` such that for all x the value of k is at most `, then we say that f
is (polynomial-time) `-affine autoreducible.

Also, if for all x, the length of each hi appearing in r(x) is smaller than the length of x (r(ε)
necessarily consists only of the t-part), we say that f is (polynomial-time) length-decreasing affine
self-reducible.

It is easy to see that #SAT, the function that maps each propositional formula to the number
of its satisfying truth assignments, is length-decreasing affine self-reducible. Let #PerfectMatching
be the function that returns, given a graph as input, the number of perfect matchings of the
graph. It is implicit in the paper of Pagourtzis and Zachos [PZ06] that #PerfectMatching is
length-decreasing affine self-reducible, provided that the graph G is represented as a sequences of
pairs (u, v) that represent its edges. In fact, they showed that this function is self-reducible for any
natural representation of graphs, provided that a somewhat less restrictive notion of self-reducibility
is used.

We are interested in the following two special cases of 1-affine autoreducibility.

Definition 2.17 A function f is (polynomial-time) parsimonious autoreducible if there exists a
polynomial-time computable function h : Σ∗ → Σ∗ such that for all x,

h(x) 6= x and f(x) = f(h(x)).

Definition 2.18 Let f be a function from Σ∗ to a semiring S with an efficient encoding. We say
that f is (polynomial-time) nearly parsimonious autoreducible if there exist two polynomial-time
computable functions t : Σ∗ → S and h : Σ∗ → Σ∗ such that for all x,

h(x) 6= x and f(x) = t(x) + f(h(x)).

Note that if f is parsimonious autoreducible then it is nearly parsimonious autoreducible.
One can show that every polynomial-time computable function from Σ∗ to Z, the set of integers,

is nearly parsimonious autoreducible. In fact, if a function f in FPt from Σ∗ to a semigroup S
satisfies the property that there exist two distinct a, b ∈ Σ∗ such that

(i) for all x ∈ Σ∗−{a}, it holds that f(x)−f(a) ∈ S and f(x)−f(a) is computable in polynomial
time, and

(ii) f(a)− f(b) ∈ S,
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then the function h defined for all x by:

h(x) =
{
a if x 6= a,
b otherwise,

and the function t defined for all x by:

t(x) =
{
f(x)− f(a) if x 6= a,
f(a)− f(b) otherwise,

witness that f is nearly parsimonious autoreducible. As a quick corollary, we have that every
polynomial-time computable function from Σ∗ to N with two preimages of 0 is nearly parsimonious
autoreducible. (Compare this result with Theorem 4.7.)

Parsimonious autoreducibility appears harder to achieve than nearly parsimonious autore-
ducibility because for a function f to be parsimonious autoreducible each element in f(Σ∗), the
image of f , must have at least two preimages; i.e., for every x ∈ Σ∗, there exists y ∈ Σ∗ such that
x 6= y and f(x) = f(y). For this reason, any one-to-one function, such as the rank function, cannot
be parsimonious autoreducible. On the other hand, if we consider Z rather than N to be the range
of the rank function, it is nearly parsimonious autoreducible.

Lemma 2.19 There are parsimonious complete functions for FPt that are not parsimonious au-
toreducible.

This lemma might offer a tool for comparing function classes against FPt: If a class FC is
likely to have a property that every parsimonious complete function is parsimonious autoreducible,
then the class is perhaps different from FPt. In this paper we compare the behavior of complete
functions for various hard function classes, #P, SpanP, TotP, #PE and GapP, with the behavior
of complete functions for FPt. Each of #P, SpanP, TotP, #PE and GapP is, by definition, a class
of functions either from Σ∗ to the semiring Z (GapP) or to the semiring N (all the other classes).
For such comparisons we interpret FPt as a class of functions from Σ∗ to an appropriate semiring.
Detecting a different behavior of FPt complete functions and functions complete for one of the
above-mentioned classes would be a significant result showing that the power of nondeterminism is
different from that of determinism.

We note here that the question of whether a function is parsimonious autoreducible is identical
to the question of whether the function has a nice property that from each input x another element
having the same value with respect to the function can be computed in polynomial time. That
question is reminiscent of the study by Joseph and Young [JY85] of NP-complete languages in
terms of polynomial-time encoding and decodable padding functions.

3 Length-Decreasing Self-Reductions

In this section we prove our results regarding length-decreasing self-reducibility and logspace length-
decreasing self-reducibility.

Results of this section can be obtained using a single simple technique. For each class of our
interest we construct a complete language (a complete function) with the property that the language
(function) is length-decreasing self-reducible if and only if the language (function) is easy. Here
by “easy” we mean that the language is polynomial-time decidable in the case where the self-
reductions are polynomial-time computable and that the language is logarithmic-space decidable
in the case where the self-reductions are logarithmic-space computable. With simple modifications,
our technique applies to logspace length-decreasing self-reducibility, obtaining collapses to L.
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Theorem 3.1 Let C be a language class closed under polynomial-time padding with a ≤p
m-complete

language. If all ≤p
m-complete languages for C are length-decreasing self-reducible then C ⊆ P.

Proof: Let A be an arbitrary C-complete language under polynomial-time many-one reductions.
Let k ≥ 2 be an integer. Let f be a function from N to N defined for all n ≥ 0 by: f(n) = the
smallest integer 2ki

such that i is an integer and 2ki
> n. Define B as follows:

B = {x10m | x ∈ A ∧ |x|+ 1 +m = f(|x|)}.

Note that B is simply a padded version of A, in which the length of each member of A is inflated to
an integer of the form 2ki

. The function f is clearly a pad-length function. Also, f is polynomially
bounded because for all n ≥ 0 it holds that f(n) ≤ 2+nk. Furthermore, f is logspace computable:
On input x, f(x) can be computed by successively calculating in binary 2, 2k, (2k)k, ((2k)k)k, · · ·
until the value exceeds |x|. Thus, by Lemma 2.6, B is C-complete. Then by our assumption B is
length-decreasing self-reducible.

Since B is length-decreasing self-reducible, there is a deterministic Turing machine M such that:

1. M runs in polynomial time;

2. L(MB) = B;

3. On input x, M queries its oracle only about words shorter than x.

We now describe a polynomial-time algorithm for B that does not need the oracle. On input x
our algorithm behaves as follows: If |x| is not of the form 2ki

, then by definition x is clearly a
non-member of B, so we immediately terminate the simulation (or return from the simulation if we
are dealing with a recursive call) by asserting that x 6∈ B. Otherwise, we simulate M on input x
replacing each oracle query by a recursive call to M . Nontrivial simulations of M take place only
when the length of the input is of the form 2ki

for some integer i. Since M is length-decreasing
self-reducible, we can assume that on inputs of appropriate length all oracle queries regard words
of length at most |x|

1
k . We also modify M to use a look-up table to decide words of length at most

2.
Now we are ready to prove that our algorithm runs in polynomial time. Let p be a polynomial

such that for all x the running time of M on input x, assuming that the cost of each oracle query
is 1, is p(|x|). Note that all polynomials we are concerned with have nonnegative coefficients, so
p is strictly increasing. We also assume that for all nonnegative n it holds that p(n) > 1. What
is the time complexity of our algorithm? In the recursion tree, there are at most dlog log ne levels

because words of length at most n
1

kdlog log ne are of length at most 2, and we have a look-up table
to decide whether we accept them or not. For each level i ≥ 0 of the recursion tree, let Pi be the
number of computational steps other than processing of recursive calls required to simulate all the
level-i simulations. It holds that:

P0 ≤ p(n),

P1 ≤ p(n) · p(n
1
k ),

P2 ≤ p(n) · p(n
1
k ) · p(n

1
k2 ),

and so on. This is because at the 0th level we just have one call to M with input of length n. At
this level M can make at most p(n) oracle queries, each of length at most n

1
k , thus at the first level

we need to execute at most p(n) · p(n
1
k ) basic steps. The same analysis applies to P2, P3, and so

on, up to Pdlog log ne.
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Let us now estimate the value of Pj for some arbitrary j. We can assume without loss of
generality that p(n) ≤ nd for some nonnegative integer d. It holds that:

Pj ≤
j∏

i=0

p(n
1

ki ) ≤
j∏

i=0

n
d

ki = n
Pj

i=0
d

ki ≤ n
P∞

i=0
d

ki = n
dk

k−1 .

Note that the final result does not depend on j so the time complexity of the whole algorithm is
bounded by:

dlog log ne · n
dk

k−1 ∈ O(nh),

where h is some nonnegative integer such that h ≥ dk
k−1 + 1. Thus, we have shown that B is

decidable in polynomial time. Since B is complete for C, it holds that all languages in C are
decidable in polynomial time. This proves the theorem. �

For all classes C other than some pathological cases (C = {∅} or C = {Σ?}), we have, by the
above theorem, that if C is closed under many-one reductions and all C-complete sets are length-
decreasing self-reducible (and C has at least one complete set) then C ⊆ P. Thus, we have the
following corollaries:

Corollary 3.2 If all NP-complete languages are length-decreasing self-reducible, then P = NP.

Corollary 3.3 If all PSPACE-complete languages are length-decreasing self-reducible then P =
PSPACE.

A similar theorem holds for length-decreasing self-reducibility in logarithmic space.

Theorem 3.4 Let C be a language class that is closed under logspace padding and has a ≤log
m -

complete language. If all ≤log
m -complete languages for C are logspace length-decreasing self-reducible

then C ⊆ L.

Proof: The proof is essentially the same as the proof of Theorem 3.1. The only difference is that
now we need to make sure that we do not use more than a logarithmic amount of space for our
recursive calls.

Let A, k, f , B, and M be as defined in the proof of Theorem 3.1 with the exception that A
is logspace many-one complete for C, and that M is an oracle Turing Machine witnessing that A
is logspace length-decreasing self-reducible. We need to implement the following space-preserving
strategy. We cannot generate the input for the recursive calls on the tape because that would use
more than a logarithmic amount of space. Instead, after each recursive call that completed, we
store the contents of the tape and the position of the head (replacing the previously stored one)
and run the machine—without writing out the next query word—until finally a subsequent query is
to be asked (recursive call is to be performed). Then, in that recursive call we only pass the stored
tape so that the recursive call can recreate any of the bits of its input word on demand (using an
at most log n bit counter).

By definition of logspace length-decreasing self-reducibility, excluding the recursive calls, our
machine uses at most logarithmic amount of space. Thus, if the input word has length n then for
the recursive calls at the first level we only need at most c log n bits, where c is some constant.
Consequently, the total amount of space that we need to handle each branch of recursion is:

dlog log ne∑
i=0

c log
(
n

1

ki

)
≤

∞∑
i=0

c log
(
n

1

ki

)
15



= c log n
P∞

i=1
1

ki

= c

(
k

k − 1

)
log n.

Since we handle recursion branches one at a time, this means that our algorithm requires at most
logarithmic space. As B is C-complete (with respect to logspace many-one reductions) it holds
that all languages in C can be decided in logarithmic space. �

The above theorem yields the following corollary.

Corollary 3.5 If all ≤log
m -complete sets for NL are logspace length-decreasing self-reducible then

L = NL.

By the Time and Space Hierarchy Theorems, it holds that

• L 6= PSPACE and

• P 6= EXP.

Now by Theorems 3.1 and 3.4, it holds that there is a PSPACE-complete language that is not
logspace length-decreasing self-reducible, and that there exists an EXP-complete language that is
not length-decreasing self-reducible.

We note that it follows from Theorem 3.1 that if P 6= PSPACE then there are PSPACE-
complete sets that are not length-decreasing self-reducible. However, it was proved by Beigel and
Feigenbaum [BF92] (see also the work of Glaßer et al . [GOP+05]) that all PSPACE-complete
languages are autoreducible. Thus, if P 6= PSPACE then the notions of polynomial-time length-
decreasing self-reducibility and polynomial-time autoreducibility are different.

Let us now turn to the issue of length-decreasing self-reductions of complete functions. Not
surprisingly, the answer, and the technique to obtain it, is the same as in the case of languages.
The following theorem is the exact counterpart of Theorem 3.1 for the case of functions.

Theorem 3.6 For every function f : Σ∗ → Σ∗, there exists a function f ′ : Σ∗ → Σ∗ such that

• f(Σ∗) = f ′(Σ∗), f ≤p
par f ′, f ′ ≤p

par f , and

• if f ′ is Turing length-decreasing self-reducible then both f ′ and f are polynomial-time com-
putable.

Proof: Let f be an arbitrary function from Σ∗ to Σ∗. Let k be any integer greater than 1. Let
S = {2kn | n ∈ N}. For each positive integer m and for each word x in Σm − {1m}, let ρm(x) be
the word y of length at most m− 1 whose rank in Σ∗ is equal to the rank of x in Σm. For example,
ρ3(000) = ε, ρ3(011) = 00, and ρ3(110) = 11. For all x define f ′(x) by:

f ′(x) =
{
f(ρ|x|(x)) if |x| ∈ S and x 6∈ 1∗,
f(ε) otherwise.

It is easy to see that f is parsimonious reducible to f ′ by the function that maps each x to ρ−1
m (x),

where m is the smallest integer in S that is greater than |x|. This reduction is polynomial-time
computable, since for each x the value m does not exceed |x|k.

It is also easy to see that f ′ is parsimonious reducible to f by the function that maps each x to
ρ|x|(x) if |x| ∈ S and x 6∈ 1∗ and to ε otherwise.
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Now suppose that f ′ is length-decreasing self-reducible via a function-oracle Turing machine
M . We can assume that M never queries its oracle about a word whose length is not in S or about
a word over {1} because for these words the value is known to be f(ε), which can be treated as a
constant. Then, on input x, we can compute f ′(x) recursively using the following algorithm:

• If either |x| 6∈ S or x ∈ 1∗, then output f(ε).

• Otherwise, simulate M on input x. During this simulation, whenever M makes a query, say
y, to its oracle, simulate M on y using a recursive call to obtain the answer of the oracle.

Using exactly the same argument as in the proof of Theorem 3.1, we can show that this algorithm
correctly computes f ′(x) in polynomial time.

Since f ≤p
par f ′, if f ′ is computable in polynomial time, so is f . This proves the theorem. �

Armed with Theorem 3.6 we can show that, for example, not all ≤p
par-complete functions for

#P are length-decreasing self-reducible unless #P ⊆ FPt. The same can be shown for many other
function classes.

Corollary 3.7 Let FC be one of GapP, SpanP, TotP, #PE, and #P. If all ≤p
par-complete func-

tions for FC are length-decreasing self-reducible, then FC ⊆ FPt.

Proof: Let FC be as in the hypothesis of the corollary. Then FC has a ≤p
par-complete function

f . Let f ′ be the function whose existence is given in Theorem 3.6. Then, f ≤p
par f ′, f ′ ≤p

par f ,
f(Σ∗) = f ′(Σ), and furthermore, if f ′ is length-decreasing self-reducible then f ′ is polynomial-time
computable. By Proposition 2.13, FC is closed under ≤p

par reductions, so f ′ ∈ FC. Since f ≤p
par f ′,

this implies that f ′ is ≤p
par-complete for FC. Now, assume that all ≤p

par-complete functions for
FC are length-decreasing self-reducible. Then, we have that f ′ is length-decreasing self-reducible.
This implies f ′ ∈ FPt. Since f ′ is ≤p

par-complete for FC, we have FC ⊆ FPt. �

Since parsimonious reducibility is the least flexible reducibility type for functions Corollary 3.7
is in some sense in the strongest possible form for the case of length-decreasing self-reducibility.

4 Autoreductions of Complete Functions

We now turn to the issue of autoreducibility of complete functions. In the previous section we
showed that for many natural function complexity classes it is not the case that all their parsimo-
nious complete functions are length-decreasing self-reducible. In contrast, we show in this section
that for many classes all their complete functions are indeed autoreducible and that in many cases
the parsimonious-complete functions are in fact nearly parsimonious autoreducible. We then make
observations about algebraic properties of parsimonious complete functions.

We say that a class of functions FC from Σ∗ to N (Z) is closed under increment (respectively,
closed under proper decrement) if for all f ∈ FC, the function f ′ defined for all x by f ′(x) = f(x)+1
(respectively, f ′(x) = max{0, f(x) − 1}) belongs to FC. It is not hard to see that GapP, SpanP,
TotP, #PE, and #P are closed under increment.

Proposition 4.1 Each one of GapP, SpanP, TotP, #PE, and #P is closed under increment.
Also, TotP is closed under proper decrement.

It is not known whether the other three classes are closed under proper decrement (see [OH93]).
Theorem 4.2 shows that if a class of functions is closed under increment and has a ≤p

par-complete
function all of its ≤p

par-complete functions are autoreducible with one query.
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Theorem 4.2 Let FC be a class of functions that is closed under increment and has parsimonious
complete functions. Then every ≤p

par-complete function for FC is autoreducible with one query.

Proof: Let FC be as in the hypothesis of the theorem and let f be a ≤p
par-complete function for

FC. We will construct a polynomial-time function-oracle Turing machine M witnessing that f is
autoreducible with one query.

Define g(x) = f(x) + 1. Since FC is closed under increment, g ∈ FC. Then there is a ≤p
par-

reduction ψ from g to f ; that is, for all x it holds that g(x) = f(ψ(x)). Let M be a machine that
on input x behaves as follows:

1. M computes y = ψ(x).

2. M queries the oracle about y and obtains z = f(y) as the answer.

3. M outputs z − 1.

For all x, f(ψ(x)) = g(x) = f(x) − 1 so M correctly computes f(x). For no x it holds that
ψ(x) = x; otherwise, we would have f(x) = f(x)− 1 for some x, a contradiction. This proves the
theorem. �

Corollary 4.3 Each class FC chosen from GapP, SpanP, TotP, #PE, and #P has the property
that all of its ≤p

par-complete functions are autoreducible with one query.

The above results raise the question of whether a similar property holds for reducibility no-
tions that are more flexible than parsimonious reducibility and for more demanding versions of
autoreducibility. That is, under which condition every complete function for a class FC possesses
a certain type of autoreducibility.

Beigel and Feigenbaum showed that if a language class C has a length-decreasing self-reducible
language then every single Turing-complete language for C is autoreducible. We prove several
results of a similar flavor for function classes.

Theorem 4.4 Let FC be a function class that has ≤p
par-complete functions. If FC has a ≤p

par-
complete function that is length-decreasing affine self-reducible, then every ≤p

par-complete function
for FC is affine autoreducible.

Proof: Let FC be a function class having a≤p
par-complete function. Let f be a≤p

par-complete func-
tion for FC. Let S be a semiring with an efficient encoding associated with the class FC. Suppose
that f is length-decreasing affine self-reducible. Then there exists a polynomial-time computable
function r with the following property: For all x, r(x) is an ordered set (t,m1, . . . ,mk, h1, . . . , hk)
such that t,m1, . . . ,mk are members of S, h1, . . . , hk are words having lengths less than |x|, and

f(x) = t+m1f(h1) + · · ·+mkf(hk).

Let g be an arbitrary ≤p
par-complete function for FC. Let ψ be a ≤p

par-reduction from f to g and
let ϕ be a ≤p

par-reduction from g to f . We will show that g is affine autoreducible.
Consider the machine M that on input x sets y = ϕ(x) and then executes the following algo-

rithm:

Step 1 Compute r(y) = (t,m1, . . . .mk, h1, . . . , hk).

18



Step 2 If k = 0, then output (t) and halt.

Step 3 (k ≥ 1.) For each i, 1 ≤ i ≤ k, compute qi = ψ(hi). If for some i, 1 ≤ i ≤ k, qi = x, pick
the smallest such i, set y to hi, and then return to Step 1.

Step 4 (k ≥ 1 and for all i, 1 ≤ i ≤ k, qi 6= x.) Output (t,m1, . . . ,mk, q1, . . . , qk) and halt.

The initial value of y is ϕ(x). Since ϕ is a ≤p
par-reduction from g to f , it holds that g(x) = f(y) =

f(ϕ(x)). If y is replaced by some hi in Step 3, then ψ(hi) = x. Since ψ is a ≤p
par-reduction from

g to f , it holds that g(x) = f(hi). Thus, during the execution of the algorithm, the property
g(x) = f(y) is maintained.

If M outputs (t) in Step 2, then we have f(y) = t, and thus, it holds that g(x) = t. If M
outputs (t,m1, . . . ,mk, q1, . . . , qk) in Step 4, then we have f(y) = t+m1f(h1) + · · ·+mkf(hk) and
for all i, 1 ≤ i ≤ k, we have ψ(hi) = qi. Since ψ is a ≤p

par-reduction from f to g, for all i, 1 ≤ i ≤ k,
it holds that g(qi) = f(hi). Since f(x) = g(y) is a loop-invariant, we thus have

g(y) = t+m1g(q1) + · · ·+mkg(qk).

Thus, M correctly computes g(x) with g as the oracle without having to query x.
It now suffices to show that M runs in polynomial time. If some hi replaces y in Step 3, then due

to the length-decreasing nature of r, |hi| < |y|. So, each execution of the loop can be done in time
polynomial in |y|, and thus, in time polynomial in |x|. Also, the above condition on the length of
hi’s implies that the loop is executed at most |ϕ(x)|+1 times. Thus, M runs in polynomial time. �

One wonders whether a result similar to Theorem 4.4 holds for ≤p
T -complete functions. We

don’t have an absolute answer to the question, but offer a partial answer, which is stated below.

Theorem 4.5 Let FC be a function class that has both Turing-complete and reversible metric
complete functions. If a ≤p

T -complete function for FC is length-decreasing self-reducible, then each
reversible metric complete function for FC is Turing autoreducible.

Proof: Suppose that the hypothesis of the theorem holds. Let f be a ≤p
T -complete function for

FC that is length-decreasing self-reducible and let g be an arbitrary ≤p
1-T-rev-complete function for

FC. Let R be a polynomial-time function-oracle Turing machine that computes a ≤p
T -reduction

from g to f and let S be a machine witnessing that g is length-decreasing self-reducible. Since g is
≤p

1-T-rev-complete, there exist some ϕ,ψ, ρ ∈ FPt witnessing that f ≤p
1-T-rev g; that is, for all y, it

holds that
f(y) = ϕ(y, g(ψ(y))) and g(ψ(y)) = ρ(y, f(y)). (3)

It suffices to show that g is ≤p
T autoreducible. Consider a machine N that on input x executes the

following algorithm:

Phase 1 Attempt to compute g(x) by simulating R on input x. For each query y of R, execute
the following:

(a) Compute x′ = ψ(y).

(b) If x′ = x, then terminate the simulation, set y′ to y, and then jump to Phase 2.

(c) If x′ 6= x, then ask the oracle about x′ and obtain its answer a.

(d) Compute b = ϕ(y, a). Return to the simulation of R with b as the answer.

When the simulation of R is completed with an output c, output c and halt.
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Phase 2 Attempt to simulate S on input y′ by answering each query y exactly in the same way
as in Phase 1. In particular, upon finding a query y such that ψ(y) = x in Step (b), restart
Phase 2 with the value of y′ set to that query y.

When the simulation of S is completed with an output d, output ρ(y′, d) and halt.

It is clear that N on x never asks its oracle about x. We show that for all x, the output of N on x
is g(x). Let x be fixed. Suppose that N on input x outputs c in Phase 1 with f as the oracle. Then
this c is the output of R on input x provided that each query y of R is answered by ϕ(y, g(ϕ(y)).
Then, by (3) in the above, the answer to query y is equal to f(y). This means that c is precisely
the output of R on input x with oracle f , which is g(x). This also implies that, if N does not
enter Phase 2, then N halts and outputs g(x). So, suppose that N on input x enters Phase 2.
Whenever N enters Phase 2, it holds that ψ(y′) = x, and thus, by (3) in the above, it holds that
g(x) = ρ(y′, f(y′)). As in the case when N halts in Phase 1, if N finishes simulation of S with an
output value of d, this d is equal to f(y′). Thus, ρ(y′, d), which is the output of N in Phase 2, is
equal to g(x).

Let p be a polynomial that bounds both the running time of R with oracle g and the running
time of S with oracle g. If the value of y′ is changed from y1 to y2, we have that y2 is a query word
of S on input y1 with g as the oracle. This means that |y2| < |y1|. If y0 is the value of y′ when
N enters Phase 2 for the first time, then y′ is updated at most |y0| + 1 times, and this is at most
p(|x|) + 1. This implies that Phase 2 eventually halts with the correct value of g(x).

The time that it takes to simulate S and R, except for the time to compute ϕ, ρ, and ψ is
O(p(|x|)2). Since each query y produced in the simulation has length bounded by p(|x|) and ϕ, ρ,
and ψ are polynomial-time computable, the total running time of the above algorithm is bounded
by a fixed polynomial in |x|. This proves the theorem. �

A crucial part of the proofs of Theorems 4.4 and 4.5 is the use of reversible metric reducibility.
(Recall that parsimonious reducibility is a special type of a reversible metric reducibility.) The next
theorem shows that a result similar to Theorems 4.4 and 4.5 holds without assuming reversibility.

Theorem 4.6 Let FC be a function class that has both ≤p
T -complete and ≤p

m-complete functions.
If there is a ≤p

T -complete function for FC that is length-decreasing ≤p
T self-reducible, then each

≤p
m-complete function for FC is ≤p

T autoreducible.

Proof: Let FC be as in the hypothesis of the theorem. Let g be an arbitrary ≤p
m-complete

function for FC. Let f be an arbitrary ≤p
T -complete function for FC that is length-decreasing

self-reducible. Let S be a machine witnessing that f is length-decreasing self-reducible. Let R be
a machine that ≤p

T -reduces g to f . Since g is ≤p
m-complete for FC, there exist two FPt functions ϕ

and ψ such that for all y, f(y) = ϕ(g(ψ(y))). It then suffices to show that g is ≤p
T -autoreducible.

Let x be fixed for which we wish to compute the value of g. The idea behind the algorithm
below is that we compute the Turing reduction from g to f and we use the fact that f ≤p

m g to
answer each query y regarding f using the fact that f(y) = ϕ(g(ψ(y))). However, we cannot do
that in case ψ(y) = x. Yet, we notice that for every two strings y1 and y2 such that ψ(y1) = ψ(y2)
it holds that f(y1) = f(y2). We use this fact to compute, using the self-reducibility of f , K = f(y)
in the case when ψ(y) = x. Naturally, we only need to compute K once and reuse it each time a
query y with ψ(y) = x is posed.

Step 1 Set F = 0. Start simulation of R on input x. For each query y of R, do the following:

(a) compute z = ψ(y);
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(b) if z 6= x, query z to the oracle, obtain an answer a, and return to the simulation of R
with ϕ(a) as the answer;

(c) if z = x and F = 1, then return to the simulation of R with K as the answer;
(d) if z = x and F = 0, suspend the simulation of R, set w to y, execute Step 2 and then

return to the simulation of R with K as the answer.

Step 2 Simulate S on input w. For each query u of R, do the following:

(a) compute v = ψ(u),
(b) if v 6= x, query v to the oracle, obtain an answer b, and return to the simulation of S

with ϕ(b) as the answer;
(c) if z = x, then set w to u and start over Step 2.

If the simulation of S is completed, set F = 1, set K to the output of S, and return to the
suspended simulation of R.

Step 3 When the simulation of R is completed with an output c, output c and halt.

Excluding the cost of computing K, our algorithm clearly runs in polynomial time. Also, it
should be clear that if the value K is computed correctly then our algorithm returns the correct
value.

We will now argue that executing Step 2 takes at most polynomial time and computes the
correct value of K. Let ` be the length of the longest query of R on input x. While computing
K in Step 2, each time w is replaced by a new element and the simulation of S is started over,
w becomes shorter due to the length-decreasing nature of S. Thus, the number of times that the
replacement of w occurs is bounded by `, and thus, the number of times that S is simulated as
well as the length of the longest input to S is bounded by `. Since S is polynomial-time bounded,
Step 2 takes polynomial time.

Step 2 computes the correct value of K: If it completes without ever starting over (e.g., without
reaching a query u such that ψ(u) = x) then, by definition of S, K is set to f(w). On the other
hand, each time we reach Step 2(c) it holds that f(w) = f(u) and thus we can safely restart S with
input u.

From the above discussion, our algorithm witnesses that g is autoreducible. This proves the
theorem. �

#SAT is a length-decreasing parsimonious-complete function for #P and so, by Theorem 4.4, we
have that all #P parsimonious-complete functions are affine autoreducible. Similarly, all many-one
complete or reversibly metric complete functions for #P are Turing autoreducible (via Theorems 4.6
and 4.5). An analogous result holds for random-self-reducibility. Feigenbaum and Fortnow [FF91]
showed that all #P Turing-complete functions are adaptively random-self-reducible with polyno-
mially many queries.

In the study of reducibility and autoreducibility, the number of queries that a machine that
computes the reducibility/autoreducibility must make is an important subject of investigation. In
the case of random-self-reducibility, the results of Abadi, Feigenbaum, and Kilian [AFK89] and
of Feigenbaum, Kannan, and Nisan [FKN90] show that the number of queries cannot be very
small. In particular, #P parsimonious-complete functions are not random-self-reducible with one
query unless the polynomial hierarchy collapses to its third level.5 Interestingly, in the case of
deterministic autoreductions we can show that a single query is sufficient.

5Note that there are slight differences in definitions of random-self-reductions between [AFK89] and [FKN90]
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Theorem 4.7 Each parsimonious complete function for #P that has two preimages of 0 is nearly
parsimonious autoreducible.

Proof: Let f be an arbitrary parsimonious-complete function for #P such that f(x) = 0 holds
for at least two distinct values of x and let x1 and x2 be two such inputs. Let M be an NP machine
such that f = #accM . Without loss of generality, we may assume that (a) each nondeterministic
choice of M is binary, and (b) there exists a polynomial p with a positive constant term such that
for each input x, the computation tree of M on input x is a complete binary tree of depth p(|x|);
that is, each computation path of M on x uses exactly p(|x|) nondeterministic moves. Then, for
each input x, each computation path of M on input x can be described as a binary word of length
p(|x|). We also assume that for every word x, the rightmost computation path, the path 1p(|x|), is
rejecting.

For each x and y, |y| = p(|x|), let g(x, y) be the number of accepting paths π of M on input
x such that π < y. Clearly, for all x, g(x, 1p(|x|)) = f(x) and the function g is in #P. By our
assumption, g is then parsimonious reducible to f via some FPt function ψ.

We will construct a polynomial-time computable function r such that for all x, r(x) = (t, y),
t ∈ N, y ∈ Σ∗, and f(x) = t+ f(y). The function r is computed by way of the following algorithm,
inspired by the one presented in [GOP+05] to prove that every NP-complete set is autoreducible.
On input x, do the following:

Step 1 Compute x′ = ψ(x, 1p(|x|)).

Step 2 If x′ 6= x then output (0, x′).

Step 3 (x′ = x.) Compute x′′ = ψ(x, 0p(|x|)).

Step 4 If x′′ = x then output (0, x1) if x1 6= x and (0, x2) otherwise.

Step 5 (x′′ 6= x) , then it holds that ψ(x, 0p(|x|)) 6= ψ(x, 1p(|x|)) = x, so execute binary-search to
find a word y of length p(|x|) such that ψ(x, y) 6= x and ψ(x, succ(y)) = x. Output (0, ψ(x, y))
if y is a rejecting path of M on input x and (1, ψ(x, y)) otherwise.

Clearly, this algorithm runs in polynomial time.
Suppose that the algorithm outputs (0, x′) in Step 2. We then have that x 6= x′ and

f(x′) = g(x, 1p(|x|)) = #accM (x), so we have that f(x) = 0 + f(x′), and thus, the output of the al-
gorithm is correct. Suppose that the algorithm outputs (0, u) in Step 4. Since x = x′′ = ψ(x, 0p(|x|))
and g(x, 0p(|x|)) = 0, it must be the case that f(x) = 0. Since f(x1) = f(x2) = 0, and u is chosen
from x1 and x2 so that u 6= x holds, we have that f(x) = 0 + g(y), and thus, the output of
the algorithm is correct. Finally, suppose that the algorithm outputs (b, u) for some b ∈ {0, 1}
and some u. The value of u is chosen so that ψ(x, u) 6= x and ψ(x, succ(u)) = x = ψ(x, 1p(|x|)).
Since ψ(x, 1p(|x|)) = f(x), we have that f(x) = f(u) if u is a rejecting path of M on x and
f(x) = f(u) + 1 if u is an accepting path of M on x. So, the output of the algorithm is correct
in either case. Thus, the algorithm correctly computes a nearly parsimonious autoreduction of f . �

The above proof raises a couple of interesting points, which we will address in the remainder of
this section.

First, let us observe that an analogous result can be obtained for many-one complete #P
functions.
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Corollary 4.8 For every many-one complete #P function f that takes the value 0 for at least two
words, x1 and x2, there exist three FPt functions t, h, and h′ such that for all words x

f(x) = t(x) + h′(f(h(x))),

and h(x) 6= x.

Proof: The proof is identical to the proof for the case of parsimonious-complete #P functions,
except that we need to take into account the fact that instead of having a parsimonious reduction
function ψ, we have two functions ψ1 and ψ2, such that for all x it holds that

f(x) = ψ2(g(ψ1(x))),

where g is the function defined in the proof of Theorem 4.7. It is then sufficient to replace each
occurrence of ψ in the proof of Theorem 4.7 with ψ1, and then apply h′ = ψ2 to f(h(x)). �

We note here that both Theorem 4.7 and Corollary 4.8 also hold for TotP.
Another interesting issue is the nature of the function t(x) in the affine autoreductions of

Theorem 4.7. The additive term t that appears in the value of r is either 0 or 1, but it seems
hard to predict in polynomial time for which x the value of t is 1. Is it possible to give, for each
#P parsimonious-complete function, an autoreduction where t(x) behaves in a more stable and
predictable fashion? In particular, can we get t(x) = 0 for all x? If we were able to do so, we would
have separated FPt and #P: All #P parsimonious-complete functions would be parsimonious
autoreducible and we know, by Lemma 2.19, that not all FPt parsimonious-complete functions are
parsimonious autoreducible.

On the other hand, perhaps we can make t(x) = 1 for all words x such that f(x) > 0 and
t(x) = 0 otherwise? This, however, seems even more unlikely. Such a function t would have the
property that t(x) = 1 if f(x) > 0 and t(x) = 0 otherwise. Thus, one could use it to decide in
polynomial time the membership in the language L = {x | f(x) > 0}, which is equal to SAT with
f = #SAT. We show, however, that such autoreductions are possible for parsimonious complete
functions for TotP.

Corollary 4.9 Every TotP parsimonious complete function f that takes value 0 for at least two
arguments, x1 and x2, is nearly parsimonious autoreducible via two FPt functions, t and h, such
that for each x:

f(x) = t(x) + f(h(x))

and (1) h(x) 6= x, (2) if f(x) > 0 then t(x) = 1, and (3) t(x) = 0 otherwise.

Proof: TotP is closed under proper decrement and for each TotP function f it is possible to test
in polynomial time whether f(x) > 0.

Let f be a parsimonious-complete TotP function. We define the functions t and h that constitute
f ’s autoreduction with the properties promised by the theorem. Let t(x) = 1 if f(x) > 0 and let
t(x) = 0 otherwise. Clearly, t belongs to FPt.

To define h, we need a helper function g, g(x) = f(x)− t(x). Since TotP is closed under proper
decrement we have g ∈ TotP. Let ψ be an FPt function via which g parsimoniously reduces to f .
We define h(x) as follows.

h(x) =


ψ(x) if f(x) > 0,
x1 if x = x2,
x2 otherwise.
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Clearly, h is computable in polynomial time. Let us show that h(x) 6= x and that
f(x) = t(x) + f(h(x)) for each x. If f(x) > 0 then f(ψ(x)) = g(x) = f(x) − 1 and so naturally
h(x) = ψ(x) 6= x. Also, then f(x) = f(ψ(x)) + 1 = f(h(x)) + t(x). If f(x) = 0 then t(x) = 0,
f(h(x)) = 0, and naturally h(x) 6= x. This proves the corollary. �

Let us come back to the discussion of the autoreducibility of #P parsimonious-complete func-
tions. For these functions how close we can get to having parsimonious autoreductions? By Theo-
rem 4.2, for each such function f and input x we can produce x′ 6= x such that f(x′) = f(x) + 1.
On the other hand, by the proof of Theorem 4.7, we can produce x′′ 6= x such that f(x′′) equals
either f(x) or f(x)− 1. Yet, producing x′′′ 6= x such that f(x′′′) = f(x) seems to be very difficult:
The ability to do so would separate #P from FPt.

A separate issue regarding Theorem 4.7 is the requirement that each parsimonious-complete
function f that it operates on needs to assume value 0 for at least two words, x1 and x2. This
requirement is very natural. Every parsimonious-complete function f has to assume value 0 on at
least one input because it must be possible to parsimoniously reduce the function z(x) = 0 to it.
Let x0 be some word such that f(x0) = 0. If there was no other word x such that f(x) = 0 then
we would have f ∈ #PE as to test if f(x) = 0 it would suffice to check if x = x0. Since #PE = #P
if and only if P = NP, we have the following corollary.

Corollary 4.10 There exists a parsimonious-complete #P function f such that f takes the value
0 for exactly one argument, x0, if and only if P = NP.

Pushing this idea even further, let us ask ourselves a slightly different question: What conse-
quences follow if there is a parsimonious complete function for #P that is one-to-one?

Theorem 4.11 Let FC be one of #P, GapP, and SpanP. Then FC contains a parsimonious
complete one-to-one function if and only if P = PP.

Proof: Note that #P ⊆ GapP and #P ⊆ SpanP. We will first show that if one of #P, GapP, and
SpanP contains a parsimonious complete one-to-one function then P = C=P, and so, by Fact 2.1,
P = PP.

Let FC be one of #P, GapP, and SpanP, and let g be FC parsimonious complete one-to-one
function. Let L be an arbitrary C=P language. By definition, there is a polynomial p and a
polynomial-time predicate R such that

x ∈ L ⇐⇒ ‖{y | |y| = p(|x|) ∧R(x, y)}‖ = 2p(|x|)−1.

Let f be a function that given input x returns the number of words y of length p(|x|) such that
R(x, y) holds. Clearly, f is a #P function, and thus it is parsimonious reducible to g via some
function ϕ. Naturally, the function h defined for all x by h(x) = 2p(|x|)−1 is parsimonious reducible
to g. Let ψ be a function that acts as a parsimonious reduction from h to g.

For all x, we have x ∈ L if and only if f(x) = h(x). However, f(x) = h(x) if and only if
g(ϕ(x)) = g(ψ(x)), and since g is one-to-one, we have that x ∈ L if and only if ϕ(x) = ψ(x). This
gives a test for L that can be done in polynomial time. Thus, L ∈ P. Since L was chosen as an
arbitrary language in C=P, we have that P = C=P and so, by Fact 2.1, P = PP.

Now we need to show that if P = PP then for each FC in {#P,GapP,SpanP} it holds that FC
contains a parsimonious complete one-to-one function.

Let us first observe that if P = PP then, by Fact 2.2, #P = SpanP. We observe that if P = C=P
then #P ⊆ FP. Let f be some #P function and p be a polynomial such that for every word x it
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holds that f(x) ≤ 2p(|x|). Since P = C=P, it is easy to see that the following two languages, L′ and
L′′, are both in P:

L′ = {〈x, y〉 | f(x) = y}
L′′ = {〈x, i, b〉 | ith bit of the integer f(x) is b}.

L′ is in P because it clearly is in C=P and we have P = C=P. Also, L′′ is in P because it is accepted
by a nondeterministic polynomial-time Turing machine N that on input 〈x, i, b〉 guesses a binary
encoding of an integer y ≤ 2p(x), tests if f(x) = y (by checking if 〈x, y〉 ∈ L′), and if so, accepts if
the ith bit of y is b and rejects otherwise. This proves that L′′ ∈ NP and thus, by our assumption,
L′′ ∈ P.

Now, to compute f(x) in polynomial time, it is sufficient to query the language L′′ about
(at most) p(|x|) bits of the value f(x). Thus, we have that #P ⊆ FP. Clearly, FP contains a
parsimonious complete one-to-one function that belongs to #P, namely, the identity function.

By a similar argument, we can get a handle on the value of each GapP function. This is
because each GapP function is a subtraction of two #P functions, and thus, a subtraction of two
FPt function. As a result, the following function k is GapP parsimonious-complete and one-to-one.

k(x) =


rank(y) + 1 if x = 0y,
−rank(y)− 1 if x = 1y,
0 if x = ε.

This completes the proof. �

Theorem 4.11 says that under reasonable assumptions there are no trivial reasons why #P
parsimonious-complete functions shouldn’t be parsimonious autoreducible.

As a corollary to the proof of Theorem 4.11 we have Corollary 4.12.

Corollary 4.12 Both TotP and #PE contain a parsimonious complete one-to-one function if and
only if P = PP.

Proof: In the proof of Theorem 4.11 we have seen that if P = PP then, under the N semiring
interpretation, FPt = #P. Since both TotP and #PE are subsets of #P, if P = PP then FPt =
TotP = #PE and thus both of them have parsimonious-complete one-to-one functions.

As shown in the proof of Theorem 4.11, to show that if either TotP or #PE has a one-to-one
parsimonious-complete function f then P = PP it is enough to show that having such a function f
allows one to test equality of arbitrary #P functions in polynomial time.

Let us first consider the case of #PE. Let g and h be two arbitrary #P functions. We define
g′(x) = g(x) + 1 and h′(x) = h(x) + 1. Clearly, both g′ and h′ are in #PE. Let ψg be an FPt

function reducing g′ to f and let ψh be an FPt function that reduces h′ to f . Clearly we have that
g(x) = h(x) if and only if g′(x) = h′(x). This is equivalent to f(ψg(x)) = f(ψh(x)). Since f is
one-to-one, this is equivalent to ψg(x) = ψh(x). This test can clearly be performed in polynomial
time.

The case of TotP is handled very similarly. It is implicit in the paper of Kiayias et al.
[KPSZ98] that for any two #P functions g and h there are two TotP functions g′ and h′ and a
polynomial p such that g(x) = g′(x) − 2p(|x|) and h(x) = h′(x) − 2p(|x|). Having g′ and h′, we
proceed as in the case of #PE. �

25



5 Open Questions

There are several open questions that naturally come out from the work presented in this paper.
In Section 3 we have shown that for many natural classes of functions and languages it is not the
case that all their complete elements are length-decreasing self-reducible. It is natural to ask about
other types of self-reducibility, not only the length-decreasing one. For example, can we show that
all NP-complete languages are self-reducible via a word-decreasing self-reducibility? In general,
are all NP-complete languages self-reducible in the sense of Meyer and Paterson? For the case
of word-decreasing self-reductions, one might want to focus on a version that requires that if one
runs the self-reduction algorithm recursively (instead of querying the oracle) then the depth of the
recursion is only polynomial in the size of the input.

A very natural open question, though challenging, is whether parsimonious complete #P func-
tions have parsimonious autoreductions. If we were able to show that this is the case, we would
prove that #P is different from FPt.

Regarding the discussion of algebraic properties of #P parsimonious-complete function in the
end of Section 4, a long-standing open problem posed by Hemaspaandra and Ogihara [OH93] asks
if #P is closed under proper decrement.

Finally, a very natural question to ask is whether all PP-complete languages are autoreducible.
The reason to ask this question is that PP is closely related to #P and one could hope that some
results regarding #P would translate to PP. Feigenbaum and Fortnow [FF91] showed that PP-
complete languages are random-self-reducible. We are interested if one can establish deterministic
autoreducibility, perhaps even in a many-one fashion.

Acknowledgments

We wish to thank Daniel Pierre Bovet and Pierluigi Crescenzi for inspiring this work. The results
regarding length-decreasing self-reducibility presented in this paper were motivated by Problem
5.15 in their textbook [BC93]. The problem asks to prove that SAT is length-decreasing self-
reducible and then asks whether this fact is enough for us to conclude that all NP-complete sets
are length-decreasing self-reducible. This paper gives a solution to this problem. We thank Lane
Hemaspaandra, Staszek Radziszowski and Alan Selman for useful discussions. We would also like to
thank Aris Pagourtzis for interesting discussions, useful comments, and bringing the self-reducibility
of functions to our attention. This work is supported in part by NSF Grants EIA-0080124, EIA-
0205061, and CCF-0426761.

References

[AFK89] M. Abadi, J. Feigenbaum, and J. Kilian. On hiding information from an oracle. Journal
of Computer and System Sciences, 39(1):21–50, 1989.

[Amb83] K. Ambos-Spies. P-mitotic sets. In Logic and Machines, pages 1–23, 1983.
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