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Abstract

We prove that the problems of deciding whether a quadratic equation
over a free group has a solution is NP-complete

1 Introduction

The study of quadratic equations over free groups probably started with
[Mal62] and has been deepened extensively ever since. One of the reasons
research in this topic has been so fruitful is the deep connection between
quadratic equations and the topology of surfaces.

In this paper we will show that the problem of deciding if a quadratic
equation over a free group is NP-complete. This problem was shown to be
decidable in [CE81]. In addition it was shown in [Ol′89], [GK92], and [GL92]
that if n, the number of variables, is fixed, then deciding if a quadratic
equation has a solution can be done in time polynomial in the sum of the
lengths of the coefficients. These results imply that the problem is solvable in
at most exponential time. We will improve on this by proving (see Theorem
2.1) that deciding if an quadratic equation over a free group has a solution
is in NP.

In [DR99] it is shown that deciding if a quadratic word equation has a
solution is NP-hard. We will prove (see Theorem 3.10) that deciding if a
quadratic equations over a free group has a solution is also NP-hard. Our
proofs are geometric, relying on the topological results of [Ol′89] and disc
diagram techniques.

2 Quadratic equations over free groups are

in NP

For a finite alphabet alphabet S we denote by S∗ the free monoid with
involution with basis S and for w ∈ S∗, we denote by w−1 its involution.
We denote by F (S) the free group on S.
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2.1 Standard form

A quadratic equation E with variables {xi, yi, zj} and coefficients {wi, d} ∈
F (A) is said to be in standard form if its coefficients are expressed as freely
and cyclically reduced words in A∗ and E has either the form:

g
Y

i=1

[xi, yi]
m−1
Y

j=1

z−1
j wjzjd = 1 or

g
Y

i=1

[xi, yi] = 1 (1)

where [x, y] = x−1y−1xy, in which case we say it is orientable or it has the
form

g
Y

i=1

x2
i

m−1
Y

j=1

z−1
j wjzjd = 1 or

g
Y

i=1

x2
id = 1 (2)

in which case we say it is non orientable. The genus if a quadratic equation
is the number g in (1) and (2) and m is the number of coefficients. If g = 0
then we will define E to be orientable. If E is a quadratic equation we define
its reduced euler characteristic, χ as follows:

χ(E) =



2− 2g if E is orientable
2− g if E is not orientable

It is a well known fact that an arbitrary quadratic equation over a free group
can be brought to a standard form in time polynomial in its length.

2.2 Ol’shanskii’s result

In sections 2.3 and 2.4 of [Ol′89] it is shown that a quadratic equation E in
standard form has a solution if and only if for some n ≤ 3(m− χ(E)),

(i) there is a set P = {p1, . . . pn} of variables and a collection of m discs
D1, . . . , Dm such that,

(ii) the boundaries of these discs are directed labeled graphs such that each
edge has a label in P and each pj ∈ P occurs exactly twice in the union
of boundaries;

(iii) if we glue the discs together by edges with the same label, respecting
the edge orientations, then we will have a collection Σ0, . . . ,Σl of closed
surfaces and the following inequalites: if E is orientable then each Σi

is orientable and
„ l

X

i=0

χ(Σi)

«

− 2l ≥ χ(E)

if E is non-orientable either at least one Σi is non-orientable and

„ l
X

i=0

χ(Σi)

«

− 2l ≥ χ(E)

or, each Σi is orientable and

„ l
X

i=0

χ(Σi)

«

− 2l ≥ χ(E) + 2

and
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(iv) there is a mapping P → A∗ such that upon substitution, the coeffi-
cients w1, . . . , wm−1 and d can be read without cancellations around
the boundaries of D1, . . . , Dm−1 and Dm, respectively; and finally that

(v) if E is orientable the discsD1, . . . , Dm can be oriented so that wi is read
clockwise around ∂Di and d is read clockwise around ∂Dm, moreover
all these orientations must be compatible with the glueings.

We note that the bounds in (iii) are not given explicitly in that paper, but
they follow immediately from the discussion on cutting up diagrams into
so-called simple diagrams, see [Ol′89] for details.

2.3 The certificate

The result of section 2.2 enables us to construct a good certificate.

Theorem 2.1. For a quadratic equation E in standard form there is a
certificate of size bounded by 2(|w1|+ . . .+ |wm|+ |d|+ 3(2g +m)) that can
be checked in polynomial time.

Proof. The certificate will consist of the following:

1. A collection of variables P = {p1, . . . , pn}.

2. A collection of substitutions ψ = {pi 7→ ai, i = 1 . . . n} where ai ∈ A∗

and n < 3(2g +m).

3. A collection of words in P ∗

C =

8

<

:

C1 = pǫ1111 . . . p
ǫ1j1
11

. . .
Cm = pǫm1

m1 . . . p
ǫmjm
mjm

with pij ∈ P, ǫij ∈ {−1, 1} and each pi ∈ P occuring exactly twice.

The C′
is are represent the labels of the boundaries of the discs D1, . . . Dl so

checking contitions (i) and (ii) of Section 2.2 can be done quickly, moreover
we see that the size of C is at most 2n ≤ 6(2g +m).

ψ extends to a monoid homomorphism ψ : P ∗ → A∗. (iv) can also be
verified quickly since for i = 1, . . .m − 1 we just need to check that some
cyclic permutation of ψ(Ci) is equal to wi and some cyclic permutation of
ψ(Cm) is equal do d. Moreover, since the equality is graphical we have that

|a1|+ . . . |an| ≤ |w1|+ . . .+ |wm|+ |d|

Therefore the size of the certificate is bounded as advertised. All that is left
is to determine the topology of the glued together discs. We describe the
algorithm without too much detail.

Step 1: Built a forest of discs: We make a graph Γ such that each ver-
tex vi ∈ V (Γ) corresonds the disc Di and each edge ej ∈ E(Γ) corresponds
to the variable pj ∈ P . The edge ek goes from vi to vj if and only if the
variable pk occurs in the boudary of Di and in the boundary of Dj or if
i = j then there are two different occurences of the variable pk. We con-
struct a spanning forest F . This enables us to count the number of connected
components Σ0, . . . ,Σl.
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Step 2: Determine orientability: For each maximal tree Tr ⊂ F we get
a “tree of discs” by glueing together only the pairs of edges whose labels
correspond to elements of E(Tr). The resulting tree of discs is a simply
connected topological space that can be embedded in the plane and we can
read a cyclic word c(Tr) in P

∗ along its boundary. The surface Σr obtained
by glueing together the remaining paired edges of the tree of discs will be
orientable only if whenever p±1

j occurs in c(Tr) then p∓1
j also occurs. We

can also check (v) at this point.
Step 3: Compute Euler characteristic: The identification of the boundary
of the discs with graphs, enables us to think of the discs as polygons. If a
disc Di has Ni sides then we give each corner of Di an angle of π(Ni−2)/Ni.
Then for each tree of discs produced in the previous step, we identify the
remaining pairs of edges to get the surfaces Σ0, . . .Σl, which now have an
extra angular structure. To each Σi, we can apply the Combinatorial Gauss-
Bonnet Theorem which states that for an angled two-complex X,

2πχ(X) =
X

f∈X(2)

κ(f) +
X

v∈X(0)

κ(v)

where X(2) is the set of faces and X(0) is the set of vertices. This angle
assingment gives each face f a curvature κ(f) = 0 and each vertex has
curvature

κ(v) = 2π −
`

X

c∈link(v)

∡(c)
´

i.e. κ(v) is 2π minus the sum of the angles that meet at v.
With an appropriate data structure one can perform steps 1-3 (not neces-

sarily in sequential order) in at most quadratic time in the size of C. Once all
that is done, verifying the inequalities of (iii) is easy and we are finished.

3 Quadratic equations over free groups are

NP-hard

We will present the bin packing problem which is known to be NP-complete
and show that it is equivalent deciding if a certain type of quadratic equation
has a solution.

3.1 Bin Packing

Problem 3.1 (Bin Packing).

• INPUT: A k−tuple of positive integers (r1, . . . , rk) and positive integers
B,N .

• QUESTION: Is there a partition of {1, . . . , k} into N subsets

{1, . . . , k} = S1 ⊔ . . . ⊔ SN

such that for each i = 1, . . . , N we have

X

j∈Si

rj ≤ B (3)
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This problem is NP-hard in the strong sense (see [GJ79] p.226), i.e. there
are NP-hard instances of this problem when both B and the rj are bounded
by a polynomial function of of k.

Let t = NB −
Pk

i=1 ri. Then by replacing (r1, . . . , rk) by the k+ t-tuple
(r1, . . . , rk, . . . , 1, . . . , 1) we can assume that the inequalities (3) are actually
equalities. This modified version is still NP hard in the strong sense. We
state it explicitly:

Problem 3.2 (Exact Bin Packing).

• INPUT: A k−tuple of positive integers (r1, . . . , rk) and positive integers
B,N .

• QUESTION: Is there a partition of {1, . . . , k} into N subsets

{1, . . . , k} = S1 ⊔ . . . ⊔ SN

such that for each i = 1, . . . , N we have

X

j∈Si

rj = B (4)

The authors warmly thank Laszlo Babai for drawing their attention to
this problem in connection to tiling problems.

3.2 Tiling discs

Throughout this section we will consider the discs to be embedded in E
2 and

will always read clockwise around closed curves.

Definition 3.3. A [a, bn]-disc is a disc as in section 2.2 along whose bound-
ary one can read the cyclic word [a, bn].

Definition 3.4. A [a, bn]-ribbon is a rectangular cell complex obtained by
attaching [a, bj ]-discs by their a-labeled edges, such that we can read [a, bn]
along its boundary. The top of an [a, bn] ribbon is the boundary subpath
along which we can read the word b−n, the bottom is the boundary subpath
along which we can read the word bn.

Definition 3.5. LetD be a disc tiled by [a, bn]-discs, we define the a−pattern
of D to be a graph defined as follows:

1. In the middle of each a-labeled edge put a vertex.

2. Between any two vertices contained in the same [a, bn]-disc draw an
edge.

Connected components of a−patterns are called a−tracks

Lemma 3.6. A disc D tiled by finitely many [a, bn]-discs cannot have any
circular a−tracks.

Proof. It is clear that every a−track is a graph whose vertices have valency
at most 2. If an a−track t has vertices of valency 1 then they must lie on
∂D.

Suppose towards a contradiction that D has a circular a-track c. Then c
divides D into two components: an interior and an exterior. If we examine
the interior we see that it is a planar union of discs with only the letter b
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occuring on its boundary, it follows that the interior contains a disc D′ with
circular a-track. Repeating the argument we find that D must have infinitely
many cells which is a contradiction.

Corollary 3.7. If D is a disc tiled by finitely many [a, bn]-discs, then the
cyclic word read around ∂D cannot contain only the letter b.

Corollary 3.8. We cannot tile a sphere with finitely many coherently ori-
ented [a, bn]-discs.

Proposition 3.9. Suppose that D is a disc with boundary label [aN , bB] that
is covered by [a, bn]-discs, then it is obtained from a collection of M [a, bB]-
ribbons R1, . . . RM such that the bottom of Ri+1 is glued to the top of Ri,
i = 1, . . .M .

Proof. We procede by induction on N . If N = 1, then we consider the
a−track t starting at one of the edges of ∂D labeled a. t must touch the
other edge labeled a in ∂D. Let R(t) be the subset of D consisting of
the [a, bn]-discs that t intersects. We note that R(t) can be obtained by
making some identifications in the top and bottom of some [a, bR]-ribbon,
but R(t) ⊂ D, which means on one hand that if R(t) is not simpy connected
then some subset of ∂R(t) is a circle that bounds a disc inside D, this disc
can only have b’s in its label contradicting Corollary 3.7. It follows that
R(t) is a ribbon and it contains every a−labled edge in D, so we must have
R(t) = D.

Suppose the hypothesis held for all L ≤ N − 1 and suppose that we
could read [aN , bB ] along ∂D. We divide ∂D into four arcs la, tb, ra, bb that
have labels a−N , b−B, aN , bB respectively, i.e. the left, top, right and bottom
sides. Let e be the edge with label a that touches the vertex between la and
tb. Let t be the corresponding a−track. Let R(t) be as above, since D ⊂ E

2

it is easy to see that t cannot be a line from la to la, therefore t must go
from la to some edge e′ in ra.

Suppose towards a contradiction that e′ was not the edge in ra that
touched the vertex v between tb and ra. Let f be the edge in ra that touches
v, and let u be the corresponding a−track, since a-tracks cannot cross we
have that u must also end in ra which is a contradiction.

By the same argument as in the case N = 1 we have that R(t) must be
a embedded ribbon. By Corollary 3.7 we must have that tb is contained in
the top of R(t), which means that R(t) is an embedded [a, bB ]-ribbon and
if we remove R(t) from D, then what remains is a disc D′ such that we can
read [aN−1, bB ] along the boundary. So by induction the result follows.

3.3 A special genus zero quadratic equation

Equipped with Proposition 3.9 we shall deduce NP hardness of the following
equation:

k
Y

j=1

z−1
j [a, bnj ]zj = [aN , bB ] (5)

By the results in section 2.2, (5) has a solution if and only if there is a
collection of discs Dj with boundary labels [a, bnj ] for j = 1 . . . k respectively
and a disc Dm with boundary label [aN , bB] such that, glued together in a
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way that respect labels and orientation of edges, form a union of spheres
(this is forced by the first inequality in (iii), section 2.2).

Theorem 3.10. Deciding if the quadratic equation (5) with coefficients

[a, bn1 ], . . . , [a, bnk ] and [aN , bB ]

has a solution is equivalent to deciding if problem 3.2; with input (n1, . . . , nm)
and positive integers B,N ; has a positive answer.

Proof. “Bin packing ⇒ solution.” Suppose that Problem 3.2 has a positive
answer on the specified inputs. For each subset Si of the given partition
of {1, . . . , k} we form a [a, bB ]-ribbon Ri by glueing together the [a, bnj ]-
discs for j ∈ Si, this is possible by (iv) in section 2.2 and equation (4).
We then construct one hemisphere by glueing the ribbons R1, . . . , RN . The
other hemisphere is the remaining disc with boundary label [aN , bB]−1, the
resulting sphere proves the solvability of (5) with the given coefficients.

“Solution ⇒ bin packing.” If (5) has a solution then there is a union
of spheres tiled with [a, bni ]-discs and one [aN , bB]−1-disc, moreover these
discs are coherently oriented. By condition (v) and Corollary 3.8 there can
only be one sphere: the sphere S0 containing the unique [aN , bB ]−1-disc.
If we remove this [aN , bB ]−1-disc from S0 what remains will be a disc D
with boundary label [aN , bB ] tiled with [a, bni ]-discs. Applying Proposition
3.9 divides D into ribbons R1, . . . RN and we immmediately see that these
ribbons provide a partition of {n1, . . . nk}, showing that Problem 3.2 has a
positive solution on the given input.
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