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Abstract For t > 0 and g ≥ 0, a vertex-weighted graph of total weight W is (t, g)-
trimmable if it contains a vertex-induced subgraph of total weight at least (1−1/t)W

and with no simple path of more than g edges. A family of graphs is trimmable if for
every constant t > 0, there is a constant g ≥ 0 such that every vertex-weighted graph
in the family is (t, g)-trimmable. We show that every family of graphs of bounded
domino treewidth is trimmable. This implies that every family of graphs of bounded
degree is trimmable if the graphs in the family have bounded treewidth or are pla-
nar. We also show that every family of directed graphs of bounded layer bandwidth
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(a less restrictive condition than bounded directed bandwidth) is trimmable. As an
application of these results, we derive polynomial-time approximation schemes for
various forms of the problem of labeling a subset of given weighted point features
with nonoverlapping sliding axes-parallel rectangular labels so as to maximize the
total weight of the labeled features, provided that the ratios of label heights or the
ratios of label lengths are bounded by a constant. This settles one of the last major
open questions in the theory of map labeling.

Keywords Trimming weighted graphs · Domino treewidth · Planar graphs · Layer
bandwidth · Point-feature label placement · Map labeling · Sliding labels ·
Polynomial-time approximation schemes

1 Introduction

In this paper we first show that certain families of vertex-weighted graphs have the
property that a vertex subset of small weight suffices to hit all long simple paths.
This finding allows us to address an application in map labeling, namely the problem
of labeling a subset of given weighted point features with axes-parallel rectangular
labels. In the following we discuss these two research directions in turn.

1.1 Graph Trimming

We study the following problem: Given a graph in which each vertex has a nonnega-
tive weight, delete vertices of small total weight such that the remaining graph does
not contain any long simple paths. Whereas there is an extensive literature on separa-
tors, which can be viewed as serving to destroy all large connected components, we
are not aware of previous work on vertex sets that destroy all long simple paths. Let
us make our notions precise. The length of a path π is the number of edges on π .

Definition 1.1 For t > 0 and g ≥ 0, a (t, g)-trimming of a vertex-weighted graph
G = (V ,E) of total weight W is a set U ⊆ V of weight at most W/t such that every
simple path in G of length more than g contains a vertex in U . If G has a (t, g)-
trimming, we also say that G is (t, g)-trimmable. A family of graphs is trimmable if,
for every constant t > 0, there is a constant g ≥ 0 (that depends only on t) such that
every vertex-weighted graph in the family is (t, g)-trimmable.

Definition 1.1 applies to directed and undirected graphs. Of course, trimming undi-
rected graphs is the harder task in the sense that every (t, g)-trimming of the undi-
rected version of a directed graph G, for arbitrary t > 0 and g ≥ 0, is also a (t, g)-
trimming of G. In order to demonstrate the trimmability of a family of graphs, it
suffices to verify that the condition of Definition 1.1 holds for all integers t larger
than an arbitrary constant.

Not every family of graphs is trimmable, even in the unweighted case where all
vertices are taken to have weight 1. For example, for n, t ≥ 2, if we delete a (1/t)-
fraction of the vertices in an unweighted n-clique Kn, the remaining graph still has a
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simple path of length n(1 − 1/t) − 1. This expression is not bounded by a function
of t alone, so the family of complete graphs is not trimmable.

With a little effort, one can show the family of trees to be trimmable. One popular
generalization of trees is based on the definition below. Given a graph G = (V ,E)

and a set U ⊆ V , we denote by G[U ] the subgraph of G induced by U . The union of
graphs Gi = (Vi,Ei), for i = 1, . . . ,m, is the graph

⋃m
i=1 Gi = (

⋃m
i=1 Vi,

⋃m
i=1 Ei).

Definition 1.2 A tree decomposition of an undirected graph G = (V ,E) is a pair
(T ,B), where T = (X,ET ) is an undirected tree and B : X → 2V maps each node x

of T to a subset of V , called the bag of x, such that

(1)
⋃

x∈X G[B(x)] = G, and
(2) for all x, y, z ∈ X, if y is on the path from x to z in T , then B(x) ∩ B(z) ⊆ B(y).

The width of the tree decomposition (T ,B) is maxx∈X |B(x)| − 1, and the treewidth
of G is the smallest width of any tree decomposition of G.

The notions related to treewidth were introduced by Robertson and Seymour [13].
We refer to condition (2) of Definition 1.2 as the connectedness property. The family
of graphs of treewidth at most 1 coincides with the family of forests. By analogy
with many other generalizations from the family of trees to families of graphs of
bounded treewidth, it seems natural to ask whether every family of graphs of bounded
treewidth is trimmable. At present we cannot answer this question; we need a concept
stronger than bounded treewidth alone.

Definition 1.3 The elongation of a tree decomposition (T ,B) is the maximum length
of a simple path in T between two nodes with intersecting bags. For every s ≥ 0,
the s-elongation treewidth of an undirected graph G is the smallest width of a tree
decomposition of G with elongation at most s.

Ding and Oporowski [5] use the term “diameter” to denote what we call elonga-
tion; our different terminology is motivated by a desire to avoid any possible confu-
sion with the diameter of the tree T . Since every graph has a trivial tree decompo-
sition of elongation 0, the s-elongation treewidth of every graph is well-defined for
every s ≥ 0. The 1-elongation treewidth is the domino treewidth studied, e.g., by Bod-
laender [4]. While every family of bounded domino treewidth trivially has bounded
s-elongation treewidth for every s ≥ 1, the converse is not true. For example, for
n ≥ 2, the n-vertex star graph has 2-elongation treewidth 1, but domino treewidth
�n/2�.

Our main result about graph trimming, proved in Sect. 2, is that for all fixed s ≥ 0,
every family of graphs of bounded s-elongation treewidth is trimmable. Ding and
Oporowski [5] showed that the domino treewidth of a graph can be bounded by a
function of its usual treewidth and its maximum degree. It follows that every family
of graphs of bounded treewidth and bounded degree is also trimmable. We derive
from this that all families of planar graphs of bounded degree are trimmable. We also
consider the following variation of directed bandwidth.
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Definition 1.4 The layer bandwidth of a directed acyclic graph G = (V ,E) is the
smallest integer D for which there exists an integer-valued mapping f defined on V

such that 1 ≤ f (v) − f (u) ≤ D for all (u, v) ∈ E.

If the mapping f is additionally required to be a bijection from V to {1,2, . . . , |V |},
this definition yields the known concept of directed bandwidth [7]. Of course, the
layer bandwidth of a directed acyclic graph is at most its directed bandwidth. We
are not aware of previous studies of layer bandwidth. Our second result about graph
trimming, also proved in Sect. 2, is that every family of directed acyclic graphs of
bounded layer bandwidth is trimmable. These results have applications described in
the following subsection.

One may phrase the definition of a (t, g)-trimming of an unweighted n-vertex
graph G = (V ,E) in the language of ε-nets [9]. A range space is a pair (X,R),
where X is a set and R is a set of subsets of X. In our case, we would take X = V and
let R be the set of vertex sets of simple paths in G. In the context of a range space
S = (X,R), a subset A ⊆ X is shattered by R if every subset of A is of the form
A ∩ r for some r ∈ R. If some integer d bounds the cardinality of every subset of X

shattered by R, the smallest such d is called the (Vapnik-Chervonenkis) dimension
of S; otherwise the dimension of S is infinite. For 0 ≤ ε ≤ 1, an ε-net of X is a subset
of X that contains at least one element of every r ∈ R with |r| > ε|X|. With the choice
of (X,R) indicated above and for ε = (g + 1)/n, an ε-net of X of size at most n/t

is precisely a (t, g)-trimming of G. For range spaces of finite dimension d , ε-nets of
size roughly d/ε are known to exist. Results of this kind do not appear useful in our
context, however, because the relevant range spaces have dimension �(n) for even
very simple graphs, e.g., graphs of domino treewidth 2.

1.2 Label Placement

Our main motivation for investigating trimmable graph families arose in the context
of labeling maps with sliding labels. Generally speaking, map labeling is the prob-
lem of placing a set of labels, each in the vicinity of the object that it labels, while
satisfying certain conditions. For an overview, see the map-labeling bibliography of
Wolff and Strijk [15]. A fundamental requirement in map labeling is that labels are
not allowed to overlap. As a consequence, it may not be possible to label all objects in
a map, and the goal is to make an optimal selection according to some criterion. We
consider the labeling of point features such as towns or mountain tops, each of which
is located at a point in the plane called a site. The label of such a feature can usually
be approximated without much loss by an open axes-parallel rectangular shape that
must be placed in the plane without rotation so that its boundary touches the site of
the feature. One distinguishes between fixed-position models and slider models. In
fixed-position models, each label has a predetermined finite set of anchor points on
its boundary (e.g., the four corners), and the label must be placed so that one of its
anchor points coincides with the site of the feature to be labeled. In slider models,
the anchor points form anchor segments on the boundary of the label (e.g., its bottom
edge).

Van Kreveld et al. [14] introduced a taxonomy of fixed-position and slider models,
which was later extended by Poon et al. [11]. We use the slider models 1SH, 2SH,
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Fig. 1 Slider models (top row)
and fixed-position models
(bottom row). Possible positions
of the label boundary are
indicated in gray

1SV, 2SV and 4S of Poon et al., which define the anchor segments of a label to be its
bottom edge, its top and bottom edges, its left edge, its left and right edges, and its
entire boundary, respectively. An illustration of the three slider models 1SH, 2SH and
4S is given in the top row of Fig. 1, adapted from [11]. We assume that each feature
comes equipped with a nonnegative weight, which may be used to express priorities
among the features. If features represent villages, towns and cities on a map, prior-
ities may correspond to the number of inhabitants, for example. Our objective is to
label features with nonoverlapping labels so as to maximize the sum of the weights
of those features that actually receive a label. This objective function favors the la-
beling of features of large weight (e.g., large cities) over those of smaller weight. We
refer to the specific map-labeling problems described in this paragraph as weighted
1SH-labeling, etc.

We define the height ratio of an instance of a map-labeling problem as the ratio
of the maximum height of a label to the minimum such height. If the height ratio is
bounded by a constant in a class of instances, the class is of bounded height ratio. If
all labels are of the same height, we use the term unit-height. Instances of bounded
height ratio and, in particular, unit-height instances are of great practical importance
because they model the common case in which each label contains a single or a
few lines of text of a common character height. We apply the qualifier “unit-height”
to map-labeling problems to indicate that the input is restricted to be a unit-height
instance. The length ratio of an instance of a map-labeling problem is the ratio of the
maximum length of a label to the minimum such length, and similarly to above we
can consider classes of instances with bounded length ratio. Finally, we say that an
instance has height or length ratio ρ if its height ratio or its length ratio is ρ, and a
class of instances has bounded height or length ratio if there is a fixed ρ ≥ 1 such
that every instance in the class has height or length ratio at most ρ.

For c ≤ 1, a c-approximation algorithm for a maximization problem is an algo-
rithm that always outputs a solution whose value under the objective function is at
least c times the optimal value. An algorithm that takes an additional parameter ε > 0
and, for each fixed ε, is a polynomial-time (1 − ε)-approximation algorithm is called
a polynomial-time approximation scheme (PTAS). If the running time depends poly-
nomially on ε as well, the algorithm is a fully polynomial-time approximation scheme
(FPTAS).

Poon et al. [11] show weighted unit-height 1SH-labeling to be NP-hard, even if
all sites lie on a horizontal line and the weight of each feature equals the length
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of its label. For the one-dimensional case, in which all n sites lie on a horizontal
line, they give an FPTAS, which yields an O(n2/ε)-time (1/2 − ε)-approximation
algorithm for the two-dimensional unit-height case for arbitrary ε > 0. Poon et al.
also describe a PTAS for unit-square labels. They raise the question of whether a
PTAS exists for rectangular labels of arbitrary lengths and unit height. This is known
to be the case for fixed-position models [1] and for sliding labels of unit weight [14].
The corresponding (1 − ε)-approximation algorithms run in nO(1/ε) and in nO(1/ε2)

time, respectively, for arbitrary ε > 0. The question of whether the combination of
both sliding labels and arbitrary weights allows a PTAS in the unit-height case has
been one of the last major open problems in theoretical map labeling.

In Sect. 3 we settle the open question of Poon et al. and, in fact, a slightly more
general question by presenting, for every fixed ρ ≥ 1, a PTAS for the weighted
1SH-labeling problem for instances of height ratio at most ρ. There are no restric-
tions on label lengths and weights. Our approach is to discretize a given instance I of
the weighted 1SH-labeling problem, i.e., to turn it into a fixed-position instance I ′,
after which we can apply a generalization of a known fixed-position algorithm to I ′.
The main difficulty lies in finding a suitable set of discrete label positions for each
site. “Suitable” means that the weight of an optimal labeling of I ′ must be close
enough to the weight of an optimal labeling of I . Dependencies between labels can
be modeled via a graph, and long paths in this graph translate into large sets of an-
chor points that cannot be left out of consideration. Here our results from Sect. 2
come into play. We prove that the family of dependency graphs, if suitably defined, is
trimmable, and we show how this may be used to bound the number of anchor points
by a polynomial. This yields the PTAS. Then we show how to obtain a PTAS for
weighted 1SH-labeling also on classes of instances with bounded length ratio, and
for weighted 2SH-labeling, 1SV-labeling, 2SV-labeling and 4S-labeling on classes of
instances with bounded height or length ratio.

In this paper, our objective is to maximize the sum of the weights of those fea-
tures that receive a label. Let us call this objective label-weight maximization. In the
literature, a different objective has also been considered. In label-size maximization
one insists that all features receive a label, and the objective is to maximize a factor
by which each label is scaled before it is attached to its feature. Label-size maxi-
mization has also been combined with multi-label map labeling, where each feature
may receive several labels. Approximation algorithms have been given for labeling
points with maximum-size congruent squares or disks, two per site [10, 12]. Labeling
points with maximum-size squares, three per site, can be solved exactly in polyno-
mial time [6]. In this paper we combine, for the first time, multi-label map labeling
with label-weight maximization. Our labeling models and approximation schemes
are flexible enough to allow the user to specify several features with sites at the same
position, each with its own label and weight.

We use Z and N to denote the set of integers and the set of positive integers, respec-
tively. By R, R>0 and R≥0 we denote the sets of real numbers, of positive real num-
bers and of nonnegative real numbers, respectively, and R

2 is the two-dimensional
Euclidean plane.
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2 Trimming of Graphs

In this section we show that two generalizations of trees are trimmable. First, we
prove that for every constant s ≥ 0, every family of graphs of bounded s-elongation
treewidth is trimmable. This implies that every family of graphs of bounded degree
is trimmable if the graphs in the family have bounded treewidth or are planar. Subse-
quently we show that for every constant D ≥ 1, the family of directed acyclic graphs
of layer bandwidth at most D is trimmable.

Theorem 2.1 Let k, s ≥ 0 and suppose that a vertex-weighted undirected graph G

has a tree decomposition of width k and elongation s. Take a = k + 1 if s ≥ 2 and
a = �k/2� if s ≤ 1. Then, for every integer t ≥ 2, G has a (t, g)-trimming, where

g =
{

(2(s + 1)t − 3)(k + 1) − 1 if a ≤ 1;
(a(s+1)t−2(a + 1) − 2)(k + 1)/(a − 1) − 1 otherwise.

Therefore, for every constant s, every family of graphs of bounded s-elongation
treewidth is trimmable.

Proof Let (T ,B) be a tree decomposition of G of width k and elongation s, root T

at an arbitrary node and let U be the set of vertices in bags of nodes whose depth d

in T satisfies d mod (s + 1)t = i, with the integer i chosen to minimize the weight
of U . We show that U is a (t, g)-trimming of G.

Let G = (V ,E) and denote the total weight of the vertices in V by W . Since each
vertex in V occurs in bags of nodes on at most s + 1 levels in T , the sum, over all
levels, of the weight of the vertices occurring in bags of nodes on the level under
consideration is at most (s + 1)W . Therefore, by the choice of i, the weight of U is
at most (s + 1)W/((s + 1)t) = W/t , as desired.

Let π = (v0, . . . , vm) be a simple path in G of length m ≥ 1 and, for i = 1, . . . ,m,
choose a node xi in T whose bag contains both vi−1 and vi . For i = 1, . . . ,m − 1,
we call the unique path in T from xi to xi+1 the stroke of vi . By the connectedness
property of T , every bag of a node on the stroke of a vertex v contains v. Con-
catenating the strokes of v1, . . . , vm−1 in this order, we obtain a walk π ′ in T (that,
informally, can be viewed as induced by π ). The walk π ′ may visit a node x in T

several times. Every edge on π ′ that has x as an endpoint, however, must lie on the
stroke of a vertex in B(x), and two such edges can lie on the stroke of the same vertex
only if they are consecutive on π ′. It follows that x occurs at most |B(x)| ≤ k + 1
times on π ′. If s ≤ 1, we can strengthen this statement as follows: Every stroke is
of length at most 1, so every visit to x by π ′ “uses” either the strokes of at least
two vertices in B(x), rather than one, or—at the ends of π ′—a stroke and a vertex
in B(x) that has no stroke. It follows that if s ≤ 1, the number of occurrences of x

on π ′ is bounded by �(k + 1)/2� = �k/2�. Since T is a tree, if π ′ leaves x over an
edge e, its next return to x, if any, must also happen over e. Therefore the nodes
on π ′ span a subtree T ′ of T in which no node has more than a + 1 neighbors,
where a is defined in the statement of the theorem. In other words, no node in T ′ has
more than a children, except that the root may have a + 1 children. The number of
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nodes at depth d in such a tree is bounded by (a + 1)ad−1, for all d ≥ 0, and there-
fore the number of nodes at depth at most d is bounded by 2d + 1 if a = 1 and by
1 + (a + 1)(ad − 1)/(a − 1) = ((a + 1)ad − 2)/(a − 1) if a ≥ 2.

Suppose that π contains no vertex in U . Then, by the choice of U , the depth of T ′
is at most (s + 1)t − 2, and the number of nodes in T ′ is at most 2(s + 1)t − 3 if
a = 1 and at most (a(s+1)t−2(a + 1)− 2)/(a − 1) if a ≥ 2. Since each bag contains at
most k + 1 vertices, it follows that m + 1 ≤ (2(s + 1)t − 3)(k + 1) if a = 1 and that
m + 1 ≤ (a(s+1)t−2(a + 1) − 2)(k + 1)/(a − 1) if a ≥ 2. �

Corollary 2.2 For all integers k ≥ 0, d ≥ 1 and t ≥ 2, every vertex-weighted undi-
rected graph of treewidth k with maximum degree d has a (t, �K/2�2t )-trimming,
where K = (9k + 7)d(d + 1) − 1. Therefore every family of graphs with bounded
degree and bounded treewidth is trimmable.

Proof According to [4, Theorem 3.1], every such graph has a domino tree decom-
position of width at most K . Except in the trivial case k = 0, we have K ≥ 31. By
Theorem 2.1, used with s = 1, the graph has a (t, g)-trimming, where

g = (�K/2�2t−2(�K/2� + 1) − 2)(K + 1)

�K/2� − 1
− 1 ≤ �K/2�2t . �

We can extend this result to planar graphs of bounded degree.

Corollary 2.3 For all integers d, t ≥ 1, every vertex-weighted undirected planar
graph of maximum degree d has a (t, �K/2�4t )-trimming, where K =
(54t − 29)d(d + 1) − 1. Therefore every family of planar graphs of bounded de-
gree is trimmable.

Proof Let G = (V ,E) be a planar graph with maximum degree d and denote the
total weight of the vertices in V by W . We first follow the approach of Baker [2]
to obtain a (2t − 1)-outerplanar subgraph of G by deleting vertices of total weight
at most W/(2t). Process an arbitrary planar embedding of G by repeatedly deleting
the vertices on the boundary of the outer face until no vertex remains. The vertices
deleted in one iteration of this process form a layer. Number the layers R1,R2, . . .

in the order of their deletion. For j = 0, . . . ,2t − 1, let Vj be the set of vertices
in layers Ri with i mod (2t) = j , choose j such that the total weight of Vj is at
most W/(2t) and consider the subgraph Hj of G induced by V \ Vj .

Hj is (2t − 1)-outerplanar and thus has treewidth at most 6t − 4 [3, Theorem 83].
By Corollary 2.2, Hj has a (2t, �K/2�4t )-trimming U . The set Vj ∪ U has weight at
most W/(2t) + W/(2t) = W/t and therefore is a (t, �K/2�4t )-trimming of G. �

Finally, we consider directed graphs of bounded layer bandwidth.

Lemma 2.4 Let G = (V ,E) be a vertex-weighted directed acyclic graph of layer
bandwidth D. Then, for every integer t ≥ 2, G has a (t, g)-trimming, where g =
D(t − 1) − 1.
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Proof Let f : V → Z be a mapping such that 1 ≤ f (v)−f (u) ≤ D for all (u, v) ∈ E.
For each i ∈ Z, we call f −1(i) = {v ∈ V | f (v) = i} the ith layer of G and define
V (i) = ⋃

i≤j<i+D f −1(j) as the union of the D consecutive layers of G starting with
the ith layer. For k = 0, . . . , t −1, let Uk = ⋃

i∈Z
V ((k+ it)D). The set Uk consists of

groups of D consecutive layers, with any two consecutive groups separated by a band
of (t − 1)D layers that are not in Uk . By the properties of f , the layer numbers of the
vertices on a path in G form a strictly increasing sequence with gaps of at most D.
For k = 0, . . . , t − 1, therefore, a path in G[V \Uk] must lie entirely within one band
and be of length at most D(t − 1) − 1 = g. Moreover, the t sets U0, . . . ,Ut−1 are
disjoint, so one of them of minimum weight is a (t, g)-trimming of G. �

3 Labeling Weighted Point Features with Sliding Labels

In this section we define the labeling problems of principal relevance to us for-
mally and show that there are, for every fixed ρ ≥ 1, polynomial-time approximation
schemes for weighted 1SH-labeling, 2SH-labeling, 1SV-labeling, 2SV-labeling and
4S-labeling on instances of height or length ratio at most ρ.

3.1 Problem Definitions

Instances of all of the labeling problems corresponding to slider models can be for-
malized in the uniform way set out in the following definition.

Definition 3.1 A sliding-label instance is a tuple I = (F, x, y, l, h,w), where F is a
finite set and x, y : F → R, l, h : F → R>0 and w : F → R≥0 are functions defined
on F . The size of I is |F |.

For a sliding-label instance I = (F, x, y, l, h,w) and a p ∈ F , we write xp , yp ,
lp , hp and wp for x(p), y(p), l(p), h(p) and w(p), respectively.

In Definition 3.1, the set F represents the set of (point) features to be labeled. For
an instance of size n, we can typically take F to be the set {1,2, . . . , n}. For all p ∈ F ,
(xp, yp) is the site of the feature p, lp and hp are the length and the height of the label
of p, respectively, and wp is the weight of p. The definition allows different features
to have identical sites; this can be useful if different features to be labeled are located
at the same point in the plane. For each set Q ⊆ F , we call w(Q) = ∑

p∈Q wp the
weight of Q.

We next define the most general problem, weighted 4S-labeling, and then derive
the other labeling problems from it.

Definition 3.2 A 4S-labeling of a sliding-label instance I = (F, x, y, l, h,w) is a
pair L = (Q, z), where Q ⊆ F and z : Q → R

2 is a function that maps each feature
p ∈ Q to a point z(p) in such a way that, if we let R(p) denote the open axes-parallel
rectangle with bottom left corner z(p), width lp and height hp , then for all p,q ∈ Q

with p �= q , the rectangles R(p) and R(q) are disjoint, and for all p ∈ Q, the site
(xp, yp) lies on the boundary of R(p). The weight of L is the weight of Q.
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Fig. 2 Two labelings of a
sliding-label instance

(a) A 4S-labeling of a sliding-label instance I

(b) A 1SH-labeling of I (optimal for unit weights)

Table 1 Additional constraints
on z(p) for all p ∈ Q that
a 4S-labeling (Q, z) must satisfy
in order to be a 2SH-labeling,
a 1SH-labeling, etc.

Type of labeling Additional constraints

4S –

2SH zy(p) ∈ {yp − hp,yp}
1SH zy(p) = yp

2SV zx(p) ∈ {xp − lp, xp}
1SV zx(p) = xp

Informally, Q is the set of features that receive a label, and the label of each
p ∈ Q is placed with z(p) at its bottom left corner; see Fig. 2a. When considering a
4S-labeling (Q, z), we let zx and zy be the functions that map each p ∈ Q to the x-
and y-coordinate of z(p), respectively, so that z(p) = (zx(p), zy(p)) for each p ∈ Q.

The (weighted) 4S-labeling problem is the optimization problem of, given a
sliding-label instance I , computing a 4S-labeling of I of largest possible weight. The
corresponding definitions for (weighted) 2SH-labeling, 1SH-labeling, 2SV-labeling
and 1SV-labeling are similar, the only difference being additional constraints on z as
listed in Table 1.

When considering a sliding-label instance I = (F, x, y, l, h,w) in the context
of the 1SH-labeling problem, we say that two features p,q ∈ F y-overlap if yp ≤
yq < yp + hp or yq ≤ yp < yq + hq , i.e., if their labels, when placed with (xp, yp)

and (xq, yq) on their respective bottom edges, have overlapping projections on the
y-axis. In a 1SH-labeling L = (Q, z) of I , the second component of z is determined
by I and therefore redundant, for which reason we may also specify L through the
pair (Q, zx) and call zx(p) the position of the label of p for each p ∈ Q; see Fig. 2b.
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For a given sliding-label instance I = (F, x, y, l, h,w), a pair (Q, zx) with Q ⊆ F

and zx : Q → R is a 1SH-labeling of I if and only if xp − lp ≤ zx(p) ≤ xp for all p ∈
Q and for all y-overlapping features p,q ∈ Q with p �= q , either zx(p) + lp ≤ zx(q)

or zx(q) + lq ≤ zx(p).
Interchanging the roles of the x- and y-dimensions or, equivalently, mirroring the

Euclidean plane in the line through the origin of slope 1, one can translate 1SH-
and 2SH-labeling to 1SV- and 2SV-labeling, respectively, or vice versa. For example,
to compute a 2SV-labeling of a sliding-label instance (F, x, y, l, h,w), compute a
2SH-labeling of (F, y, x,h, l,w) and interchange its x- and y-components.

Our proofs operate not only with slider models, but also with the fixed-position
models 1MH, 2MH, 1MV, 2MV and 4M, which allow the set of anchor points of a
label to be an arbitrary finite subset of its bottom edge, of its bottom and top edges,
of its left edge, of its left and right edges, and of its entire boundary, respectively.
Some of these models are illustrated in the bottom row of Fig. 1. Formally, we define
a fixed-position instance as a pair (I, M), where I = (F, x, y, l, h,w) is a sliding-
label instance and M is a function that maps each feature in F to a finite subset of R

2.
The size of (I, M) is defined as |F | + ∑

p∈F |M(p)|. A 4M-labeling of (I, M) is a
4S-labeling (Q, z) of I that is consistent with M, i.e., that satisfies z(p) ∈ M(p) for
all p ∈ Q. The (weighted) 4M-labeling problem is the optimization problem of, given
a fixed-position instance (I, M), computing a 4M-labeling of (I, M) of largest pos-
sible weight. A 2MH-labeling of a fixed-position instance (I, M) is a 2SH-labeling
of I that is consistent with M, and labelings for the other fixed-position models are
defined analogously. The mirroring transformation discussed above applies to fixed-
position labeling problems as well in an obvious way.

Similarly to our simplifying convention that omits the y-coordinates of
1SH-labelings, we may also, when dealing with 1MH-labelings, specify a fixed-
position instance as a pair (I, Mx), where I = (F, x, y, l, h,w) is a sliding-label
instance and Mx maps each p ∈ F to a finite subset of R that represents the possible
x-coordinates of the left edge of the label of p. In this case, if Mx maps all p ∈ F to
the same set M , we may write (I, Mx) as (I,M).

The principal technical contribution of this section is a reduction of weighted
1SH-labeling to weighted 1MH-labeling. Once this reduction has been established,
corresponding reductions from 2SH- to 2MH-labeling, from 1SV- to 1MV-labeling,
from 2SV- to 2MV-labeling, and from 4S- to 4M-labeling follow with little additional
effort. Under the assumption that the reductions are applied to instances of bounded
height or length ratio, they work in polynomial time, and the resulting fixed-position
instances can be solved using an adaptation of the PTAS of Agarwal et al. [1], so
that we obtain a PTAS for each of the slider models. We first present our results for
1SH-labeling and then discuss the extensions to the other slider models.

3.2 Normalization, Dependency Graphs, and Trimming

This subsection introduces the notions and preliminary results that form the backbone
of our main reduction of 1SH-labeling to 1MH-labeling. It begins with a less formal
overview that introduces and motivates the necessary complications one by one.

Let a sliding-label instance I = (F, x, y, l, h,w) of size n and a constant ε > 0
be given. Our goal is to describe a polynomial-time computation of a fixed-position
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Fig. 3 The process of
normalizing (a), trimming (b)
and renormalizing without (c)
and with (d) stopping lines

(a) A 1SH-labeling L = (Q, z) after normalization, i.e.,
pushing all labels towards the left

(b) A 1SH-labeling L′ = (Q′, z′) obtained from L by
removing two features from Q and restricting z to Q′

(c) The result of renormalizing L′ without the use of stopping
lines—long paths of touching labels may again form

(d) The result of renormalizing L′ with a stopping line drawn
through every site

instance (I, M) that is almost as good as I in the sense that the weight of an optimal
1MH-labeling of (I, M) is at least 1 − ε times that of an optimal 1SH-labeling of I .
The fixed-position instance will in fact be of the form (I,M), where M ⊆ R. It there-
fore suffices to show that a suitable set M exists and can be computed sufficiently
fast.

In a 1SH-labeling (Q, zx) of I , a priori, zx(p) could assume any value in the
continuum between xp − lp and xp for every p ∈ Q. A normalization procedure to
be described next shows that nothing is lost by restricting attention to a finite set of
candidate values. The normalization is introduced for the sake of argument only and
is not actually carried out as part of the reduction.

The normalization can be applied to an arbitrary 1SH-labeling (Q, zx) of I and
results in a normalized labeling. The basic idea is to process the labels of the features
in Q in the order from left to right, pushing each label as far to the left as it can go
without bumping into another label or being separated from its site. Figure 3a shows
a possible outcome of this procedure. In a normalized labeling (Q, z′

x), the position
z′

x(q) of the label of a feature q ∈ Q is either xq − lq (no other label blocked the
movement of the label of q) or z′

x(p) + lp for some p ∈ Q (whose label stopped the
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movement of that of q and therefore is to the left of it and was processed before it).
In the latter case, we introduce the edge (p, q) with length lp in an auxiliary graph G

on the vertex set Q.
For every q ∈ Q, z′

x(q) can be read off any maximal path π in G that ends in q .
Denote the length of π , i.e., the sum of the lengths of its edges, by l(π). Then, if π

starts at p, we simply have z′
x(q) = xp − lp + l(π). The auxiliary graph G depends

on the original labeling (Q, zx) to which the normalization was applied. Even so, the
expression just found for z′

x(q) depends only on the sequence of the vertices on π ,
for which there are clearly no more than nn choices. It follows that for every 1SH-
labeling of I , in particular, for one of maximum weight, there is a 1MH-labeling of
(I,M) of the same weight for an easily computable set M with |M| ≤ nn.

The set M found so far, though finite, is much too large for our intended use,
which requires a set of size polynomial in n. If no path in G contains more than
g ≥ 0 edges, the number of such paths is bounded by ng+1, and we obtain a valid
set M of the same size. When g is a constant, the size of M is polynomial, as desired.
However, paths in G may contain many more than a constant number of edges.

Accepting a small deviation from optimality, as allowed by the constant ε, we
may try to bring the notion of graph trimming studied in Sect. 2 into play. Removing
a vertex p ∈ Q from G corresponds to excluding it from Q and losing its weight
wp in the solution—more intuitively, we will speak of dropping the label of p. With
t = �1/ε�, we can afford to remove vertices whose weight is 1/t of the total weight
from G, and we would like this to destroy all paths in G with more than g edges
for some constant g. If G belongs to a trimmable family of graphs, this is always
possible. The resulting situation may be as shown in Fig. 3b.

Apart from the question of whether the auxiliary graph G belongs to a trimmable
family, the approach outlined in the previous paragraph meets with the following
difficulty: After the trimming of G, i.e., after the dropping of some labels, the labeling
defined by the remaining labels must be renormalized. If this is not done, of course,
the labels have the positions that they had before the trimming, and the trimming
buys us nothing. The renormalization, on the other hand, may create new long paths
in the auxiliary graph of the resulting labeling, as shown in Fig. 3c for our running
example, thus defeating the original purpose of the trimming. Informally, the problem
stems from the fact that other labels may close the gap left by a dropped label. In
order to counter this, we introduce vertical stopping lines and redefine the process of
normalization to never push the left edge of a label past a stopping line (see Fig. 3d).

The exact choice of stopping lines is largely a technical matter that cannot be well
motivated at this point. Each feature p ∈ F gives rise to exactly three stopping lines,
one passing through the site of p and the other two to its left and right at a distance
of lp . Two labels that are (disjoint from and) separated by a stopping line before a
normalization can never influence each other in the normalization, so we redefine the
auxiliary graph G to not have any such edges.

Even with stopping lines, it can happen that an edge (p, q) that is not present in
the original auxiliary graph appears in the auxiliary graph of the labeling obtained by
dropping some labels and renormalizing. The creation of new edges is undesirable
because it may lead to new long paths. We therefore redefine the auxiliary graph one
last time by including all such potential edges from the outset and call the resulting
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graph the dependency graph of (Q, zx). It turns out that the dependency graph G is
planar and—if I is of bounded height ratio—of bounded degree, which implies that
it is trimmable, as needed above. If I is of bounded length ratio, we show that G is
trimmable by virtue of having bounded layer bandwidth.

We now make these ideas precise and begin with a formal definition of dependency
graphs.

Definition 3.3 Given a sliding-label instance I = (F, x, y, l, h,w), the dependency
graph of a 1SH-labeling (Q, zx) of I is a directed graph on the vertex set Q that,
for all p,q ∈ Q, contains the edge (p, q) exactly if xp < xq , p and q y-overlap, and
there is no x̄ ∈ SI = ⋃

r∈F {xr − lr , xr , xr + lr} with zx(p) + lp ≤ x̄ ≤ zx(q).

The set SI corresponds to the set of (vertical) stopping lines through the points
(x̄,0) for x̄ ∈ SI . With this correspondence in mind, we may also refer to SI as the
set of stopping lines of I .

If the label of a feature q ∈ Q, moving left, may hit that of another feature p ∈ Q

without crossing a stopping line, then certainly xp < xq holds, p and q y-overlap,
and there is no stopping line whose x-coordinate lies between zx(p) + lp and zx(q),
inclusive. Conversely, if an edge (p, q) is present in the dependency graph of (Q, zx)

according to Definition 3.3, the label of q will indeed hit the label of p if all labels
that y-overlap q and are (partially) located between the labels of p and q are dropped.

Lemma 3.4 Let (Q, zx) be a 1SH-labeling of a sliding-label instance of height ra-
tio ρ. The dependency graph of (Q, zx) is planar, and its in-degrees and out-degrees
are bounded by �ρ + 1�.

Proof To demonstrate the planarity of a graph G = (V ,E), it clearly suffices to map
each vertex u ∈ V to an open rectangle R(u) in R

2 and each edge in E to an open line
segment in R

2 in such a way that all of these rectangles and line segments are pairwise
disjoint and that each edge (u, v) ∈ E is mapped to a line segment with an endpoint
on the boundary of each of R(u) and R(v). The reason is that arbitrary points on the
boundary of an open rectangle R can be connected to an arbitrary point z in R (its
center, say) with closed line segments that intersect only in z.

In the case of a dependency graph G = (Q,E), such a mapping is immediate:
For each feature p ∈ Q, take R(p) to be the area occupied by the label of p, shrunk
slightly horizontally to allow for labels that touch, and map each edge (p, q) to a
part of a horizontal line � that intersects both R(p) and R(q), namely the open line
segment on � between R(p) and R(q) (see Fig. 4). That this line segment intersects
no R(r) with r ∈ Q follows from the fact that the stopping line through (xr , yr)

would prevent (p, q) from being an edge of G, a contradiction.
If the vertices in a set P ⊆ Q have a common out-neighbor or a common in-

neighbor r in G, some vertical line intersects R(p) for all p ∈ P . Otherwise R(p)

and R(q) could be separated by a vertical line for some p,q ∈ P , and the stopping
line through the site of one of the features p and q would prevent the other feature
from being a neighbor of r in G. If |P | ≥ 3, it is now easy to see that the height of
R(r) exceeds the total height of the |P | − 2 “middle” rectangles in {R(p) | p ∈ P }
(see Fig. 5), so that |P | − 2 < ρ and therefore |P | ≤ �ρ + 1�. �
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Fig. 4 A plane drawing of the
dependency graph of a
1SH-labeling

Fig. 5 A site with label height
ρ = 2.9 can have at most
�ρ + 1� = 4 out-neighbors with
label heights at least 1

Corollary 3.5 Let G be the dependency graph of a 1SH-labeling of a sliding-label
instance with height ratio ρ. Then for every integer t ≥ 1, G is (t, g)-trimmable,
where g = (ρt)O(t).

Proof According to Lemma 3.4, G is planar and of maximum degree at most
2(ρ + 2). Applying Corollary 2.3 now yields a (t, g)-trimming with g = (ρ2t)O(t) =
(ρt)O(t). �

Next we consider classes of sliding-label instances with bounded length ratio.

Lemma 3.6 Let G be the dependency graph of a 1SH-labeling of a sliding-label
instance with length ratio ρ. Then for every integer t ≥ 2, G is (t, g)-trimmable,
where g = �2ρ�(t − 1) − 1.

Proof Let G = (Q,E) be the dependency graph of a 1SH-labeling (Q, z) of a
sliding-label instance I = (F, x, y, l, h,w) with length ratio ρ. Without loss of
generality, we assume label lengths to lie between 1 and ρ, inclusive. Consider
the function f : Q → Z with f (p) = �zx(p)� for all p ∈ Q. Let (p, q) ∈ E.
Since p and q y-overlap, we have zx(q) − zx(p) ≥ lp ≥ 1. Moreover, the stop-
ping line through (xq − lq ,0) forces zx(p) + lp > xq − lq ≥ zx(q) − lq , implying
zx(q) − zx(p) < lp + lq ≤ 2ρ and �zx(q)� − �zx(p)� ≤ �2ρ�. We can conclude that
1 ≤ f (q) − f (p) ≤ �2ρ� for all (p, q) ∈ E. This shows that G has layer bandwidth
at most �2ρ�, and the claim now follows from Lemma 2.4. �
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3.3 Reduction to a Fixed-Position Model

After developing the necessary prerequisites in the previous subsection, in this
subsection we complete the description of the reduction from 1SH-labeling to
1MH-labeling.

Recall that the basic intention of the dependency graph G was that the position
of each label after normalization (which can be omitted), trimming and renormaliza-
tion should be given essentially by the length of a path in G. This correspondence
was invalidated by the introduction of stopping lines, but can be approximately re-
established by adding an additional vertex O and, for every stopping line �, passing
through (x̄,0), say, and for every feature p ∈ Q, an edge from O to p of length x̄.
The idea behind this new edge is simply that if the label of p moves to � and stops
there, it will be at a position of x̄.

Suppose that, after the removal of the vertices corresponding to dropped labels,
each label of a remaining feature p is moved to a position that is the largest length,
no larger than the original position of the label, of a path from O to p in what re-
mains of the graph. This procedure is closely related to the normalization discussed
in the previous subsection. In actual fact, it may move some labels a shorter distance
to the left than the normalization would. Nonetheless, it will be easy to establish the
pairwise disjointness of the labels in their resulting positions, and the process imme-
diately suggests a suitable set M of candidate label positions. The fact that the left
edge of a label crosses no stopping line in SI as it moves left—a property that we will
need in the proof of Theorem 3.14—can be expressed by saying that the movement
leaves invariant the rank in SI of the position of the label.

If I = (F, x, y, l, h,w) is a sliding-label instance and I ′ = (F, x, y′, l, h,w) dif-
fers from I only in the y-coordinates of the sites of an arbitrary (possibly empty)
subset of the features, we call I ′ a y-modification of I , with x-modifications de-
fined analogously. Of course, every sliding-label instance is an x-modification and a
y-modification of itself. By considering 1SH-labelings of all y-modifications of a
given sliding-label instance in the following lemma, we gain the additional flexibility
that allows us to apply the lemma also in the context of 2SH-labeling, as needed in
the proof of Lemma 3.11.

Lemma 3.7 Let a sliding-label instance I = (F, x, y, l, h,w) of size n and a t ∈ N

be given such that the dependency graph of every 1SH-labeling of a y-modification
of I is (t, g)-trimmable for some computable g = g(t) ≥ 0. Then, in O(ng+1) time,
we can compute a set M ⊆ R with |M| ≤ 3ng+1 that does not depend on the
y-coordinates of the sites of I and satisfies that, for every y-modification I ′ of I , the
fixed-position instance (I ′,M) has the following property: For every 1SH-labeling
(Q, zx) of I ′, there is a 1MH-labeling (Q′, z′

x) of (I ′,M) with Q′ ⊆ Q of weight at
least (1 − 1/t)w(Q) such that for all p ∈ Q′, z′

x(p) ≤ zx(p) and z′
x(p) and zx(p)

have the same rank in SI .

Proof Let I ′ = (F, x, y′, l, h,w) be a y-modification of I and let G be the depen-
dency graph of a 1SH-labeling (Q, zx) of I ′. We give each edge (p, q) of G the
length lp . Let U be a (t, g)-trimming of G and take Q′ = Q \ U . Moreover, let G be
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the multigraph obtained from G by adding a new vertex O and, for each x̄ ∈ SI and
each p ∈ Q, an edge from O to p of length x̄.

For all p ∈ Q′, let a p-path be a path in G[{O} ∪ Q′] from O to p and define the
length of a p-path as the sum of the lengths of its edges. For all p ∈ Q′, let z′

x(p) be
the largest length of a p-path that does not exceed zx(p)—this is well-defined since
zx(p) ≥ xp − lp , while there is an edge, and hence a path, in G from O to p of length
xp − lp . We will show that (Q′, z′

x) is a 1SH-labeling of I ′. First, for each p ∈ Q′,
the relation xp − lp ≤ z′

x(p) ≤ zx(p) ≤ xp was essentially argued above. Second,
we must show that the labels of the sites in Q′, if placed as indicated by z′

x, do not
overlap.

Let p and q be y-overlapping features in Q′ and assume, without loss of gener-
ality, that zx(p) < zx(q) and therefore zx(p) + lp ≤ zx(q). If G contains the edge
(p, q), then, since z′

x(p) is the length of a p-path, z′
x(p) + lp is the length of a

q-path and, by definition of z′
x, we have z′

x(q) ≥ z′
x(p) + lp . If G does not contain

the edge (p, q), there is an x̄ ∈ SI with zx(p) + lp ≤ x̄ ≤ zx(q). Again by defin-
ition of z′

x and since G contains an edge from O to q of length x̄, we then have
z′

x(q) ≥ x̄ ≥ zx(p) + lp ≥ z′
x(p) + lp . In either case, the labels of p and q , placed

according to z′
x, do not overlap.

We have w(Q′) ≥ (1 − 1/t)w(Q), and for each p ∈ Q′, z′
x(p) is the length of a

p-path. The length of every p-path belongs to the set M of all sums of an element
of SI and at most g elements of {lp | p ∈ F }. M is of size at most |SI |ng ≤ 3ng+1,
does not depend on the y-coordinates of the sites of the features in F , and can be
computed in O(ng+1) time. Let p ∈ Q′. Since for each x̄ ∈ SI there is a p-path of
length x̄, it is easy to see that stepping from zx(p) to z′

x(p) does not descend strictly
below any x̄ ∈ SI , i.e., z′

x(p) has the same rank in SI as zx(p). �

3.4 A Polynomial-Time Approximation Scheme for 4M-Labeling

We need to show how to solve the instances of weighted 1MH-labeling obtained us-
ing Lemma 3.7. Agarwal et al. [1] have given a PTAS that finds a near-maximum
independent set in the intersection graph of any given set of closed axes-parallel unit-
height rectangles. It is easy to see that their PTAS for maximum independent set at
the same time is a PTAS for maximizing the number of features labeled with unit-
height closed rectangular labels in a fixed-position model. The reason is simply that,
by definition, any two label candidates of the same feature must touch the site of the
feature. If label candidates are closed, one label candidate automatically excludes the
other one from the solution. Unfortunately, this is not the case if labels are open, as
we assume throughout; e.g., in the 1MH-model the leftmost and the rightmost la-
bel candidate of a site may not intersect, so an algorithm for maximum independent
set that treats the labels as open rectangles would not automatically yield a feasible
solution for the fixed-position labeling problem. Treating the labels as closed rectan-
gles does not work either, because in our models we allow labels of different sites
to touch. Fortunately, we can adapt the PTAS of Agarwal et al. to the fixed-position
models arising in our setting and even extend it to problems of bounded height or
length ratio. In fact, the adapted PTAS can deal with the most general fixed-position
problem, that is, 4M-labeling.
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Lemma 3.8 Given a fixed-position instance (I, M) of size n and with height or
length ratio ρ and an ε ∈ R with 0 < ε ≤ 1, a 4M-labeling of (I, M) of weight at
least 1 − ε times the weight of an optimal 4M-labeling of (I, M) can be computed in
nO(ρ/ε) time. For every fixed ρ ≥ 1, the weighted 4M-labeling problem for instances
of height or length ratio at most ρ therefore admits a PTAS.

Proof Let (I, M) with I = (F, x, y, l, h,w) be a fixed-position instance of size n.
We can assume without loss of generality that F is a set of integers and, in the light
of the mirroring transformation discussed in Sect. 3.1, that the height ratio of I is
at most ρ. Define an indexed rectangle to be an open rectangle R that is associ-
ated with an integer index i(R). Each placement of the label of a feature p ∈ F as
a rectangle R corresponds to an indexed rectangle R with i(R) = p. Two indexed
rectangles R1 and R2 intersect if R1 ∩ R2 �= ∅ or i(R1) = i(R2). Computing a 4M-
labeling of (I, M) of weight at least 1 − ε times the optimal weight is equivalent to
computing an independent set of weight at least 1 − ε times the optimal weight in the
intersection graph of a set R of at most n weighted indexed rectangles whose height
ratios are bounded by ρ and that have the following property: For each integer i, the
indexed rectangles with index i share a common point on their boundary. We show
how to solve the latter problem. Referring implicitly to the intersection graph, we will
say that a subset S of R is independent if its elements are pairwise nonintersecting,
and we denote its weight by w(S).

Assume, without loss of generality, that the height hR of every rectangle R in R
satisfies 1/ρ ≤ hR ≤ 1 and that no horizontal edge of a rectangle in R has an inte-
ger y-coordinate. For every integer j , we call the horizontal line through (0, j) the
stabbing line of index j . We apply the shifting technique [2, 8]. Let k = �1/ε� and,
for j = 0, . . . , k − 1, denote by Rj the set of indexed rectangles in R that do not
intersect any stabbing line whose index modulo k is j . Our algorithm computes a
maximum-weight independent subset of each of R0, . . . , Rk−1 and outputs a set of
maximum weight among the k sets obtained.

Let R∗ be a maximum-weight independent subset of R. Every indexed rec-
tangle in R is missing from at most one of the sets R0, . . . , Rk−1, so the sets
R∗ \ R0, . . . , R∗ \ Rk−1 are disjoint subsets of R∗. As a consequence, w(R∗ \ Rb) ≤
(1/k)w(R∗) and therefore w(R∗ ∩ Rb) ≥ (1 − 1/k)w(R∗) for some b ∈ {0, . . . ,

k − 1}. Since R∗ ∩ Rb is independent and ε ≥ 1/k, our algorithm indeed outputs an
independent subset of R of weight at least (1 − ε)w(R∗).

It remains to show how to compute a maximum-weight independent subset of Rb

efficiently for a fixed b ∈ {0, . . . , k − 1}. Since all indexed rectangles intersecting a
stabbing line whose index modulo k is b have been removed, Rb decomposes into
instances, each of which is completely contained between two stabbing lines at dis-
tance k. Because indexed rectangles from different instances do not intersect, an over-
all maximum-weight independent set can be obtained as the union of a maximum-
weight independent set of each instance.

To compute a maximum-weight independent subset of a nonempty set S ⊆ R of
indexed rectangles that are all contained in a horizontal slab of height k, we apply
a dynamic-programming approach. Intuitively, one can imagine moving a vertical
sweepline from left to right while considering all possible independent sets of indexed
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rectangles that intersect the sweepline in its current position. Formally, we translate
the problem into a longest-path problem in an acyclic auxiliary graph H .

Let x1 < · · · < xm be the distinct x-coordinates of the left edges of indexed rec-
tangles in S . For j = 1, . . . ,m, let Sj be the set of indexed rectangles in S whose left
edge lies to the left of or on the vertical line � through (xj ,0) and whose right edge
lies strictly to the right of �. Moreover, let Ij be the family of all independent subsets
of Sj . Since the indexed rectangles in R have height at least 1/ρ and two indexed
rectangles in Sj can be disjoint only if their projections on the y-axis are disjoint, the
cardinality of every set in Ij is bounded by kρ.

The directed auxiliary graph H is defined as follows. For j = 1, . . . ,m and for all
A ∈ Ij , H contains a vertex vj,A. In addition, H contains a start vertex s and a goal
vertex t . The edges of H are the following:

• For each A ∈ I1, H contains the edge (s, v1,A) with weight w(A).
• For j = 1, . . . ,m − 1, H contains every edge of the form (vj,A, vj+1,B), where

A ∈ Ij , B ∈ Ij+1, A ∪ B is independent and A and B are consistent in the sense
that every indexed rectangle in Sj ∩ Sj+1 is contained either in both A and B or in
none of them. The weight of (vj,A, vj+1,B) is w(B \ A).

• For each A ∈ Im, H contains the edge (vm,A, t) with weight 0.

For each R ∈ S , J (R) = {j | 1 ≤ j ≤ m and R ∈ Sj } is a nonempty set of con-
secutive integers. Given an s-t path π = (s, v1,A1 , . . . , vm,Am, t) in H , let A(π) =⋃m

j=1 Aj . Because of the consistency requirement in the definition of H , if some
R ∈ S belongs to A(π), it belongs to Aj for each j ∈ J (R). Now observe that
if R and R′ are intersecting indexed rectangles in S , then there are j ∈ J (R) and
j ′ ∈ J (R′) such that |j − j ′| ≤ 1 (with |j − j ′| = 1 needed only in case R and R′ are
disjoint but have the same index). If R and R′ both belong to A(π), we must have
R ∈ Aj and R′ ∈ Aj ′ , which contradicts the independence of Aj ∪ Aj ′ . Therefore
A(π) is independent for every s-t path π in H .

On the other hand, if A is an independent set in S , then π = (s, v1,A∩S1 , . . . ,

vm,A∩Sm
, t) is easily seen to be an s-t path in H with A(π) = A whose total edge

weight is w(A). Therefore finding a maximum-weight s-t path π in H and determin-
ing A(π) computes a maximum-weight independent set in S .

With N = |S|, H has O(m · Nkρ) vertices and O(m · N2kρ) edges. Since m ≤ N ,
H can be constructed in NO(kρ) time. By processing the vertices in H in topological
order, we can find a maximum-weight s-t path in H within the same time bound.
Therefore the algorithm computes a maximum-weight independent set in S in NO(kρ)

time and a maximum-weight independent set in Rb in nO(kρ) time, for b = 0, . . . ,

k − 1. The overall running time is nO(kρ) = nO(ρ/ε). �

3.5 Polynomial-Time Approximation Schemes for 1SH-Labeling

Clearly, the PTAS for 4M-labeling of Lemma 3.8 is also a PTAS for the more re-
stricted 1MH-labeling problem. Therefore we now have all the ingredients that we
need to obtain a PTAS for weighted 1SH-labeling. We first treat instances of bounded
height ratio and then instances of bounded length ratio.



632 Theory Comput Syst (2010) 47: 613–636

Theorem 3.9 Given a sliding-label instance I of size n and with height ratio ρ and
an ε ∈ R with 0 < ε ≤ 1, a 1SH-labeling of I of weight at least 1− ε times the weight
of an optimal 1SH-labeling of I can be computed in n(ρt)O(t)

time, where t = �2/ε�.
For every fixed ρ ≥ 1, the weighted 1SH-labeling problem for instances of height
ratio at most ρ therefore admits a PTAS.

Proof Let W ∗ be the weight of an optimal 1SH-labeling of I . By Corollary 3.5, the
dependency graph of every 1SH-labeling of a y-modification of I is (t, g)-trimmable,
where g = (ρt)O(t). By Lemma 3.7, we can compute a set M ⊆ R with |M| ≤ 3ng+1

such that the fixed-position instance (I,M) has a 1MH-labeling of weight at least
(1−1/t)W ∗. Applying the PTAS of Lemma 3.8 to (I,M), we obtain a 1MH-labeling
of (I,M), and therefore a 1SH-labeling of I , of weight at least (1 − 1/t)2W ∗ ≥
(1 − 2/t)W ∗ ≥ (1 − ε)W ∗ in time (ng+2)O(ρt) = n(ρt)O(t)

, which dominates the time
needed by the first step. �

Theorem 3.10 Given a sliding-label instance I of size n and with length ratio ρ and
an ε ∈ R with 0 < ε ≤ 1, a 1SH-labeling of I of weight at least 1− ε times the weight
of an optimal 1SH-labeling of I can be computed in nO(ρ2t2) time, where t = �2/ε�.
For every constant ρ ≥ 1, the weighted 1SH-labeling problem for instances of length
ratio at most ρ therefore admits a PTAS.

Proof Let W ∗ be the weight of an optimal 1SH-labeling of I . By Lemma 3.6, the de-
pendency graph of every 1SH-labeling of a y-modification of I is (t, g)-trimmable,
where g = �2ρ�(t − 1) − 1. By Lemma 3.7, we can compute a set M ⊆ R with
|M| ≤ 3ng+1 such that the fixed-position instance (I,M) has a 1MH-labeling of
weight at least (1 − 1/t)W ∗. Applying the PTAS of Lemma 3.8 to (I,M), we ob-
tain a 1MH-labeling of (I,M), and therefore a 1SH-labeling of I , of weight at least
(1 − 1/t)2W ∗ ≥ (1 − 2/t)W ∗ ≥ (1 − ε)W ∗ in time (ng+2)O(ρt) = nO(ρ2t2), which
dominates the time needed by the first step. �

3.6 Extension to Other Slider Models

Our results for 1SH-labeling can be extended with little additional effort to the other
slider models—2SH, 1SV, 2SV, and 4S. First, we adapt Lemma 3.7 to obtain a reduc-
tion from 2SH-labeling to 2MH-labeling.

Lemma 3.11 Let a sliding-label instance I = (F, x, y, l, h,w) of size n and a t ∈ N

be given such that the dependency graph of every 1SH-labeling of a y-modification
of I is (t, g)-trimmable for some computable g = g(t) ≥ 0. Then, in O(ng+2) time,
we can compute a function M : F → R

2 with |M(p)| ≤ 6ng+1 for all p ∈ F and
with the following property: For every 2SH-labeling (Q, z) of I , there is a 2MH-
labeling (Q′, z′) of (I, M) with Q′ ⊆ Q of weight at least (1 − 1/t)w(Q) such that
for all p ∈ Q′, z′

y(p) = zy(p), z′
x(p) ≤ zx(p) and z′

x(p) and zx(p) have the same
rank in SI .
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Proof Observe that every 2SH-labeling (Q, z) of I is a 1SH-labeling of the
y-modification IQ,z = (F, x, y′, l, h,w) of I , where for all p ∈ F , y′

p = yp − hp

if p ∈ Q and zy(p) = yp −hp (i.e., p is labeled with a rectangle that has the site of p

on its top edge), and y′
p = yp otherwise. Let M be the set of cardinality at most 3ng+1

that can be computed in time O(ng+1) by applying the algorithm of Lemma 3.7 to I .
Now let M(p) = {(x̄, yp) | x̄ ∈ M} ∪ {(x̄, yp − hp) | x̄ ∈ M} for all p ∈ F . Clearly,
|M(p)| = 2|M| ≤ 6ng+1 for all p ∈ F . Consider now an arbitrary 2SH-labeling
(Q, z) of I . As argued above, (Q, z) is a 1SH-labeling of the y-modification IQ,z

of I . By Lemma 3.7, there is a 1MH-labeling (Q′, z′) of (IQ,z,M) with Q′ ⊆ Q of
weight at least (1 − 1/t)w(Q) such that for all p ∈ Q′, z′

x(p) ≤ zx(p) and z′
x(p) and

zx(p) have the same rank in SI . That 1MH-labeling (Q′, z′) is a 2MH-labeling of
(I, M) with the required properties. �

Theorem 3.12 For every fixed ρ ≥ 1, there is a PTAS for weighted 2SH-labeling on
instances of height or length ratio at most ρ.

Proof Let a sliding-label instance I = (F, x, y, l, h,w) of size n and with height or
length ratio at most ρ and an ε with 0 < ε ≤ 1 be given and take t = �2/ε�.

The dependency graph of every 1SH-labeling of a y-modification of I is (t, g)-
trimmable, where g = (ρt)O(t) if the height ratio of I is at most ρ (Corollary 3.5) and
g = �2ρ�(t − 1) − 1 if the length ratio of I is at most ρ (Lemma 3.6). In either case,
apply Lemma 3.11 to I to obtain a fixed-position instance (I, M) with |M(p)| ≤
6ng+1 for all p ∈ F .

Then apply the PTAS of Lemma 3.8 to (I, M) to obtain a 2MH-labeling (Q̂, ẑ)

of (I, M) of weight at least 1 − 1/t times the weight of an optimal 2MH-labeling of
(I, M). Output (Q̂, ẑ) as a 2SH-labeling of I .

Let (Q∗, z∗) be an optimal 2SH-labeling of I . By Lemma 3.11, there is a 2MH-
labeling (Q′, z′) of (I, M) of weight at least (1−1/t)w(Q∗). As the weight of (Q̂, ẑ)

is at least 1 − 1/t times the weight of an optimal 2MH-labeling of (I, M), we have
that w(Q̂) ≥ (1 − 1/t)w(Q′) ≥ (1 − 1/t)2w(Q∗) ≥ (1 − ε)w(Q∗).

The running time of the algorithm is dominated by the application of the PTAS
of Lemma 3.8 to (I, M) and amounts to (ng+2)O(ρt), which is n(ρt)O(t)

if the height
ratio of I is at most ρ and nO(ρ2t2) if the length ratio of I is at most ρ. �

In conjunction with the mirroring transformation, Theorems 3.9, 3.10 and 3.12
immediately imply the following result concerning vertically sliding labels.

Corollary 3.13 For every fixed ρ ≥ 1, there are polynomial-time approximation
schemes for weighted 1SV- and 2SV-labeling on instances of height or length ratio at
most ρ.

A further generalization is to consider the most general slider model, 4S, in which
a label may have its site anywhere on its boundary. Informally, we deal with this case
as follows. Given a sliding-label instance I with height or length ratio at most ρ, we
apply to I two reductions, namely the one from 2SH-labeling to 2MH-labeling and
the one from 2SV-labeling to 2MV-labeling, and form for each feature the union of
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Fig. 6 Two labels overlap if
and only if each intersects the
“lane” (shown in gray) of the
other. As no label enters the lane
of another label during the
normalization, the pairwise
disjointness among the labels is
preserved

the two sets of anchor points obtained for it. Then we run the PTAS of Lemma 3.8 for
4M-labeling with the corresponding combined fixed-position instance as its input. To
analyze the algorithm, we consider an optimal 4S-labeling and partition its labeled
features into a 2SH-labeling and a 2SV-labeling depending on whether the site of a
feature lies on a horizontal or on a vertical edge of its label. The two corresponding
dependency graphs can be trimmed separately, and because our choice of stopping
lines prevents each horizontally moving label from entering the “lane” of a vertically
moving label, and vice versa (see Fig. 6), the union of the two resulting renormalized
labelings is a 4M-labeling of the combined fixed-position instance and therefore a
4S-labeling of the original instance I .

In the proof we need to consider dependency graphs also of 1SV-labelings. In-
tuitively, the dependency graph of a 1SV-labeling of a sliding-label instance I =
(F, x, y, l, h,w) is analogous to that of a 1SH-labeling, but models vertically in-
stead of horizontally sliding labels and horizontal stopping lines with y-coordinates
in

⋃
p∈F {yp − hp, yp, yp + hp}. Formally, we can define the dependency graph of

a 1SV-labeling (Q, z) of a sliding-label instance I = (F, x, y, l, h,w) to be the de-
pendency graph of the 1SH-labeling (Q, z̄) of the mirror image Ī = (F, y, x,h, l,w)

of I , where z̄(p) = (zy(p), zx(p)) is the mirror image of z(p) for all p ∈ Q.

Theorem 3.14 For every fixed ρ ≥ 1, there is a PTAS for weighted 4S-labeling on
instances of height or length ratio at most ρ.

Proof Let a sliding-label instance I = (F, x, y, l, h,w) of size n and an ε with 0 <

ε ≤ 1 be given and take t = �2/ε�. Without loss of generality (if necessary, apply the
mirroring transformation), we assume the height ratio of I to be at most ρ.

By Corollary 3.5, the dependency graph of every 1SH-labeling of a y-modification
of I is (t, g)-trimmable for some g = (ρt)O(t). Applying the algorithm of Lemma 3.11
to I , construct a fixed-position instance (I, Mh) of size O(ng+2). By Lemma 3.6, ap-
plied to the mirror image Ī = (F, y, x,h, l,w) of I , which has length ratio bounded
by ρ, the dependency graph of every 1SV-labeling of an x-modification of I is (t, ḡ)-
trimmable for ḡ = �2ρ�(t − 1)− 1. Applying the algorithm of a “mirrored” analogue
of Lemma 3.11 for 2SV-labeling to I , construct a fixed-position instance (I, Mv) of
size O(nḡ+2).

Now create a fixed-position instance (I, M) by letting M(p) = Mh(p)∪ Mv(p)

for all p ∈ F . Note that |M(p)| ≤ 6ng+1 + 6nḡ+1 for all p ∈ F . Applying the PTAS
of Lemma 3.8 to (I, M), obtain a 4M-labeling of (I, M) of weight at least 1 − 1/t
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times the weight of an optimal 4M-labeling of (I, M) and output it as the desired
4S-labeling of I .

To analyze the approximation ratio achieved, partition an optimal 4S-labeling
(Q∗, z∗) of I into a 2SH-labeling (Q∗

h, z
∗
h) and a 2SV-labeling (Q∗

v, z
∗
v) by defin-

ing Q∗
h = {p ∈ Q∗ | z∗

y(p) ∈ {yp, yp − hp}} and Q∗
v = Q∗ \ Q∗

h and letting z∗
h and z∗

v
be the restrictions of z∗ to Q∗

h and Q∗
v , respectively. By Lemma 3.11, there is a 2MH-

labeling (Qh, z
′) of (I, Mh) with Qh ⊆ Q∗

h of weight at least (1 − 1/t)w(Q∗
h) such

that for all p ∈ Qh, z′
y(p) = z∗

y(p), z′
x(p) ≤ z∗

x(p) and z′
x(p) and z∗

x(p) have the same
rank in SI = ⋃

p∈F {xp − lp, xp, xp + lp}. By the “mirrored” analogue of Lemma 3.11
for 2SV-labeling, there is a 2MV-labeling (Qv, z

′′) of (I, Mv) with Qv ⊆ Q∗
v of

weight at least (1 − 1/t)w(Q∗
v) such that for all p ∈ Qv, z′′

x(p) = z∗
x(p), z′′

y(p) ≤
z∗

y(p) and z′′
y(p) and z∗

y(p) have the same rank in SĪ = ⋃
p∈F {yp −hp, yp, yp +hp}.

Consider the pair (Q̂, ẑ) with Q̂ = Qh ∪ Qv, ẑ(p) = z′(p) for p ∈ Qh, and
ẑ(p) = z′′(p) for p ∈ Qv. The weight of (Q̂, ẑ) is at least (1 − 1/t)w(Q∗

h) +
(1−1/t)w(Q∗

v) = (1−1/t)w(Q∗). We claim that (Q̂, ẑ) is a 4M-labeling of (I, M).
Assume for a contradiction that the label of a feature p ∈ Qh overlaps the label of a
feature q ∈ Qv. The labels of p and q are disjoint in the labeling (Q∗, z∗). In step-
ping from (Q∗, z∗) to (Q̂, ẑ), the label of each p ∈ Qh reaches its position in (Q̂, ẑ)

by sliding left without crossing a stopping line in SI , and the label of each q ∈ Qv

reaches its position in (Q̂, ẑ) by sliding down without crossing a stopping line in SĪ .
By the definition of SI and SĪ , it is impossible for the two labels to end in overlapping
positions, so (Q̂, ẑ) is indeed a 4M-labeling of (I, M).

Applying the PTAS of Lemma 3.8 to (I, M) therefore gives a 4M-labeling of
(I, M) of weight at least (1 − 1/t)w(Q̂) ≥ (1 − 1/t)2w(Q∗) ≥ (1 − ε)w(Q∗).

The running time of the algorithm is dominated by the time needed for applying
the PTAS of Lemma 3.8 to (I, M). As (I, M) is of size O(ng+2 +nḡ+2), the running
time amounts to (n(ρt)O(t) + nO(ρt))O(ρt) = n(ρt)O(t)

. �

4 Open Problems

Corollary 2.2 states that a family of graphs is trimmable if it is of bounded treewidth
and bounded degree. We cannot exclude, however, that the bounded-degree condi-
tion is superfluous. In other words, is there a function g : N×N → N such that for all
k, t ∈ N, every weighted undirected graph of treewidth k has a (t, g(k, t))-trimming?
The answer is yes in the unweighted case, that is, if all weights are the same. If the
answer were generally yes, it would follow by the argument in the proof of Corol-
lary 2.3 that the family of planar graphs is also trimmable. This would then give a
general polynomial-time reduction from weighted 1SH-labeling to weighted 1MH-
labeling (albeit not, by itself, a PTAS for weighted 1SH-labeling), and similarly for
the other slider models. More generally, the question of which families of graphs are
trimmable deserves further study.
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