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On the Complexity of Matroid Isomorphism Problem
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Abstract

We study the complexity of testing if two given matroids are isomorphic. The
problem is easily seen to be in Eg. In the case of linear matroids, which are represented
over polynomially growing fields, we note that the problem is unlikely to be X5-complete
and is coNP-hard. We show that when the rank of the matroid is bounded by a
constant, linear matroid isomorphism, and matroid isomorphism are both polynomial
time many-one equivalent to graph isomorphism.

We give a polynomial time Turing reduction from graphic matroid isomorphism
problem to the graph isomorphism problem. Using this, we are able to show that
graphic matroid isomorphism testing for planar graphs can be done in deterministic
polynomial time. We then give a polynomial time many-one reduction from bounded
rank matroid isomorphism problem to graphic matroid isomorphism, thus showing that
all the above problems are polynomial time equivalent.

Further, for linear and graphic matroids, we prove that the automorphism problem
is polynomial time equivalent to the corresponding isomorphism problems. In addition,
we give a polynomial time membership test algorithm for the automorphism group of
a graphic matroid.

1 Introduction

Isomorphism problems over various mathematical structures have been a source of intriguing
problems in complexity theory (see [AT05]). The most important problem of this domain is
the well-known graph isomorphism problem. Though the complexity characterization of the
general version of this problem is still unknown, there have been various interesting special
cases of the problem which are known to have polynomial time algorithms [BGM82], [Luk80].
In this paper we talk about isomorphism problem associated with matroids.

A matroid M is a combinatorial object defined over a finite set S (of size m) called the
ground set, equipped with a non-empty family Z of subsets of S (containing the empty subset)
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which is closed under taking of subsets and satisfies the exchange axiom : for any Iy, I, € 7
such that |I1]| > |lz|, Jz € I} \ Iz, L, U{z} € Z. The sets in Z are called independent sets.
The rank of the matroid is the size of the maximal independent set. This provides useful
abstractions of many concepts in combinatorics and linear algebra [Whi35]. The theory of
matroids is a well studied area of combinatorics [Ox192]. We study the problem of testing
isomorphism between two given matroids.

Two matroids M; and M, are said to be isomorphic if there is a bijection between the
elements of the ground set which maps independent sets to independent sets, (or equivalently
circuits to circuits, or bases to bases, see section 2)). Quite naturally, the representation of
the input matroids is important in deciding the complexity of the algorithmic problem.

There are several equivalent representations of a matroid. For example, enumerating
the maximal independent sets (called bases) or the minimal dependent sets (called circuits)
also defines the matroid. These representations, although can be exponential in the size
of the ground set, indeed exist for every matroid, by definition. With this enumerative
representation, Mayhew [May08§| studied the matroid isomorphism problem, and shows that
the problem is equivalent to graph isomorphism problem. However, a natural question is
whether the problem is difficult when the representation of the matroid is more implicit?. In
a black-box setting, one can also consider the input representation in the form of an oracle
or a black-box, where the oracle answers whether a given set is independent or not.

More implicit (and efficient) representation of matroids have been studied. One natural
way is to identify the given matroid with matroids defined over combinatorial or algebraic
objects which have implicit descriptions. A general framework in this direction is the repre-
sentation of a matroid over a field. A matroid M = (S, Z) of rank r is said to be representable
over a field F if there is a map, ¢ : S — F" such that, VA C S, A € T <= ¢(A) is lin-
early independent over F" as a vector space. However, there are matroids which do not
admit linear representations over any field. (For example, the Vamds Matroid, See Proposi-
tion 6.1.10, [Ox192].). In contrast, there are matroids (called regular matroids) which admit
linear representations over all fields.

Another natural representation for a matroid is over graphs. For any graph X, we can
associate a matroid M (X)) as follows: the set of edges of X is the ground set, and the acyclic
subgraphs of the given graph form the independent sets. A matroid M is called a graphic
matroid (also called polygon matroid or cyclic matroid) if it is isomorphic to M (X) for some
graph X. It is known that graphic matroids are linear. Indeed, the incidence matrix of the
graph will give a representation over Fy. There are linear matroids which are not graphic.
(See [Ox192] for more details.)

The above definitions themselves highlight the importance of testing isomorphism be-
tween two given matroids. We study the isomorphism problem for the case of linear ma-
troids (Linear Matroid Isomorphism problem (LMI) and graphic matroids (Graphic Matroid
Isomorphism problem (GMI)).

From a complexity perspective, the general case of the problem is in 35. However, it
is not even clear a priori if the problem is in NP even in the above restricted cases where
there are implicit representations. But we note that for the case of graphic matroids the



problem admits an NP algorithm. Hence an intriguing question is about the comparison of
this problem to the well studied graph isomorphism problem.

At an intuitive level, in the graph isomorphism problem we ask for a map between
the vertices that preserves the adjacency relations, whereas in the case of graphic matroid
isomorphism, we ask for maps between the edges such that the set of cycles (or spanning
trees) in the graph are preserved. As an example, in the case of trees, any permutation
gives a 2-isomorphism, where as computing the isomorphism between trees is known to be
L-complete. This indicates that the reduction between the problems cannot be obtained by
a local replacement of edges with gadgets, and has to consider the global structure.

An important result in this direction, due to Whitney (see [Whi32]), says that in the case
of 3-connected graphs, the graphs are isomorphic if and only if the corresponding matroids
are isomorphic (see section []). Thus the problem of testing isomorphism of graphs and
the corresponding graphic matroids are equivalent for the case of 3-connected graphs are
equivalent. Despite this similarity between the problems, to the best of our knowledge,
there has not been a systematic study of GMI and its relationships to graph isomorphism
problem (GI). This immediately gives a motivation to study the isomorphism problem for
3-connected graphs. In particular, from the recent results on graph isomorphism problem
for these classes of graphs [DLNOS| [TWO0§]|, it follows that graphic matroid isomorphism
problem for 3-connected planar graphs L-complete.

In this context we study the general, linear and graphic matroid isomorphism problems.
Our main contributions in the paper are as follows:

e Matroid isomorphism problem is easily seen to be in ¥5. In the case of linear matroids
where the field is also a part of the input we observe that the problem is coNP-hard
(Proposition B.4]), and is unlikely to be 35-complete (Proposition3.2)). We also observe
that when the rank of the matroid is bounded, linear matroid isomorphism, and matroid
isomorphism are both equivalent to GI (Theorem BE])

e We develop tools to handle colouring of ground set elements in the context of isomor-
phism problem. We show that coloured version of the linear matroid isomorphism and
graphic matroid isomorphisms are as hard as the general version (Lemma [12] [.T]). As
an immediate application of this, we show that the automorphism problems for graphic
matroids and linear matroids are polynomial time Turing equivalent to the correspond-
ing isomorphism problems. In this context, we also give a polynomial time membership
test algorithm for the automorphism group of a graphic matroid (Theorem [6.5]).

e We give a polynomial time Turing reduction from graphic matroid isomorphism prob-
lem to the graph isomorphism problem by developing an edge colouring scheme which
algorithmically uses a decomposition given by [HTT73] (and [CE80]) and reduce the

'We note that, although not explicitly stated, the equivalence of bounded rank matroid isomorphism and
and graph isomorphism also follows from the results of Mayhew [May08]. However, it is not immediately
clear if the GI-hard instances are linearly representable. Our proofs are different and extends this to linear
matroids.



graphic matroid (Theorem [5.3]). Our reduction, in particular implies that the graphic
matroid isomorphism testing for planar graphs can be done in deterministic polynomial
time (Corollary [5.9)).

e Finally, we give a reduction from bounded rank matroid isomorphism problem to
graphic matroid isomorphism (Theorem [E.IT]), thus showing that all the above prob-
lems are poly-time equivalent.

Table [Il below summarizes the complexity of matroid isomorphism problem under various
input representations.

Repn. of M, M, Complexity Bounds for M1

List of Ind. sets GI-complete [MayOg]

Linear GI-hard, coNP-hard ([HI07, [(OW02]).
Linear (bounded rank) | GI complete

Graphic Turing equivalent to GI

Planar P

Planar 3-connected L-complete

Table 1: Complexity of MI under various input representations

2 Notations and Preliminaries

All the complexity classes used here are standard and we refer the reader to any standard
text book (for e.g. see [Gol08]). Now we collect some basic definitions on matroids (see also
[Ox192]). Formally, a matroid M is a pair (S5,Z), where S is a finite set called the ground
set of size m and Z is a collection of subsets of S such that: (1) the empty set ¢, is in Z. (2)
If I € I and I, C I, then I, € 7. (3) If L, Lel with |]1| < |IQ|, then dz € I \ I; such
that I; U {z} is in Z.

The RANK function of a matroid is a map rank: 2° — N, is defined for a T' C S, as the
maximum size of any element of Z that is contained in 7. The rank of the matroid is the
maximum value of this function. A circuit is a minimal dependent set. Spanning sets are
subsets of S which contains at least one basis as its subset. Notice that a set X C S is
spanning if and only if rank(X) = rank(S). Moreover, X is a basis set if and only if it is
a minimal spanning set. For any FF C S, cl(F) = {x € S : rank(FUx) = rank(F)}.
A set ' C Sis a flat if ¢cl(F) = F. Hyperplanes are flats which are of rank r — 1, where
r = RANK(S). X C S is a hyperplane if and only if it is a maximal non-spanning set.

An isomorphism between two matroids M; and M; is a bijection ¢ : S; — S5 such that
VO C S :C e <= ¢(C) € Cy, where C; and Cy are the family of circuits of the
matroids M; and M, respectively. Now we state the computational problems more precisely.



Problem 1 (MATROID ISOMORPHISM(MI)). Given two matroids My and My as their in-
dependent set oracles, does there exist an isomorphism between the two matroids?

Given a matrix A over a field F, we can define a matroid M|[A] with columns of A as the
ground set and linearly independent columns as the independent sets of M[A]. A matroid
M = (F,Z) with rank= r is said to be representable over F, if there is amap ¢ : £ — F"
such that [ € T <= &([) is linearly independent in F". Linear matroids are matroids
representable over fields. Without loss of generality we can assume that the representation
is of the form of a matrix where the columns of the matrix correspond to the ground set
elements. We assume that the field on which the matroid is represented is also a part of
the input, also that the field has at least m elements and at most poly(m) elements, where

m = poly(n).

Problem 2 (LINEAR MATROID ISOMORPHISM(LMI)). Given two matrices A and B over
a gwen field F does there exist an isomorphism between the two linear matroids represented
by them?.

As mentioned in the introduction, given a graph X = (V, E) (|V| = n,|E| = m), a
classical way to associate a matroid M (X) with X is to treat £ as ground set elements, the
bases of M(X) are spanning forests of X. Equivalently circuits of M(X) are simple cycles
in X. A matroid M is called graphic iff 3X such that M = M(X).

Evidently, adding vertices to a graph GG with no incident edges will not alter the matroid
of the graph. Without loss of generality we can assume that G does not have self-loops.

Problem 3 (GRAPHIC MATROID ISOMORPHISM(GMI)). Given two graphs X; and Xy does
there exist an isomorphism between M(X,) and M(X3)?.

Another associated terminology in the literature is about 2-ismorphism. Two graphs
X, and X, are said to 2-isomorphic (denoted by X; =5 Xs) if their corresponding graphic
matroids are isomorphic. Thus the above problem asks to test if two given graphs are
2-isomorphic.

In a rather surprising result, Whitney [Whi33] came up with a combinatorial character-
isation of 2-isomorpic graphs. We briefly describe it here. Whitney defined the following
operations.

e Vertex Identification: Let v and v" be vertices of distinct components of X. We modify
X by identifying v and v as a new vertex .

o Vertex Cleaving: This is the reverse operation of vertex identification so that a graph
can only be cleft at the a cut-vertex or at a vertex incident with a loop.

e Twisting: Suppose that the graph X is obtained from the disjoint graphs X; and Xs
by identifying vertices u; of X; and us of X5 as the vertex u of X, identifying vertices
vy of X7 and vy of X5 as the vertex v of X. In a twisting of X about {u,v}, we identify,
instead u; with vy and us with v; to get a new graph X'.



Theorem 2.1 (Whitney’s 2-ismorphism theorem). ([Whi33], see also [Oxl92]) Let X, and
Xy be two graphs having no isolated vertices. Then M(X;) and M(X3) are isomorphic if
and only if X1 can be transformed to a graph isomorphic to Xs by a sequence of operations
of vertex identification, cleaving and/or twisting.

The graphic matroids of planar graphs are called planar matroids. We now define the
corresponding isomorphism problem for graphic matroids,

Problem 4 (PLANAR MATROID ISOMORPHISM(PMI)). Given two planar graphs X, and
Xy does there exist an isomorphism between their graphic matroids 2.

As a basic complexity bound, it is easy to see that MI € 3. Indeed, the algorithm will
existentially guess a bijection o : S; — S5 and universally verify if for every subset C' C Sy,
C € <= o(C) € Cy using the independent set oracle.

3 Linear Matroid Isomorphism

In this section we present some observations and results on LINEAR MATROID ISOMORPHISM.
Some of these follow easily from the techniques in the literature. We make them explicit in
a form that is relevant to the problem that we are considering.

We first observe that using the arguments similar to that of [KST93|] one can show
LMI € BP.XF (Notice that an obvious upper bound for this problem is II,). We include
some details of this here while we observe some points about the proof.

Proposition 3.1. LMI € BP.X§

Proof. Let M; and M, be the given linear matroids having m columns each. We proceed as
in [KST93], for the case of GI. To give a BP.X5 algorithm for LMI, define the following set:

N(My, M) = {(N,¢) : (N = M)V (N = M) A ¢ € Aut(N)}

where Aut(H) contains all the permutations (bijections) which are isomorphisms of ma-
troid N to itself. The key property that is used in [KST93] has the following easy counterpart
in our context.

For any matroid M on a ground set of size m, if Aut(M) denote the automorphism group
of M, #M denotes the number of different matroids isomorphic to M, |Aut(M)| * (#M) =
|Sin |-

M, =M, = |N(M1,M2)‘ =m!

M, %l\—é My, — |N(M1,M2)‘ =2.m!

As in [KST93], we can amplify this gap and then using a good hash family and utilise
the gap to distinguish between the two cases. In the final protocol (before amplifying) the
verifier chooses a hash function and sends it to the prover, the prover returns a tuple (V, ¢)
along with a proof that this belongs to N(Mj, Ms). (Notice that this will not work over very
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large fields, especially over infinite fields.) Verifier checks this claim along with the hash
value of the tuple. This can be done in ¥5. Hence the entire algorithm gives an upper bound
of BP.3.3% = BP.X%, and thus the result follows. O

Now, we know that [Sch99], if II; C BP.X% then PH = BP.X5 = ¥%. Thus we get the
following;:

Theorem 3.2. LMI € 5. In addition, LMI is XF-hard = PH = Xf.

We notice that a special case of this is already known to be coNP-hard. A matroid of
rank k is said to be uniform if all subsets of size at most k are independent. Testing if a
given linear matroid of rank & is uniform is known to be coNP-complete [OW02]. We denote
them by Uy, ,,,, the uniform matroid whose ground set is of m elements. Now notice that the
above result is equivalent to checking if the given linear matroid of rank & is isomorphic to
Uk,m. To complete the argument, we use a folklore result that Uy ,, is representable over any
field F which has at least m non-zero elements. We give some details here since we have not
seen an explicit description of this in the literature.

Claim 3.3. Let |F| > m, Uy, has a representation over F.

Proof. Let {a, ..., ay} bedistinct elements of F, and {sy, ..., s,,} be elements of the ground

set of Uy, Assign the vector (1,4, a2,..., aF™) € F* to the element s;. Any k subset of
these vectors forms a Vandermonde matrix, and hence linearly independent. Any larger set

is dependent since the vectors are in F*. O
This gives us the following proposition.
Proposition 3.4. LMI is coNP-hard.

The above proposition also holds when the representation is over infinite fields. In this
case, the proposition also more directly follows from a result of Hlineny [HIi07], where it is
shown that the problem of testing if a spike (a special kind of matroids) represented by a
matrix over QQ is the free spike is coNP complete. He also derives a linear representation for
spikes.

Now we look at bounded rank variant of the problem. We denote by LMI, (MI,), the
restriction of LMI (MI) for which the input matrices have rank bounded by b. In the
following we use the following construction due to Babai [Bab78] to prove LMI, =F GI.

Given a graph X = (V. E) (3 < k < d, where, d is the minimum vertex degree of X),
define a matroid M = St,(X) of rank k with the ground set as E as follows: every subset of
k — 1 edges is independent in M and every subset of E' with k£ edges is independent if and
only if they do not share a common vertex. Babai proved that Aut(X) = Aut(Stx(X)) and
also gave a linear representation for St;(X) (Lemma 2.1 in [Bab78]) for all k£ in the above
range.

Theorem 3.5. For any constant b > 3, LMI, =P GI.



Proof. GI <P, LMI,: Let X; = (W4, E1) and X5 = (V4, Es) be the given GI instance. We
can assume that the minimum degree of the graph is at least 3 since otherwise we can attach
cliques of size n 4+ 1 at every vertex. We note that from Babai’s proof we can derive the
following stronger conclusion.

Lemma 3.6. X1 = X2 — Vke [3,d], Stk(X1> = Stk(XQ)

Proof. Suppose X; = X, via a bijection 7 : V; — V5. (The following proof works for any
k € [3,d].) Let o : By — E5 be the map induced by #. That is o({u,v}) = {7 (u), 7 (v)}.
Consider an independent set I C Ey in St (X;). If [I| < k—1 then |o(I)| < k—1 and hence
o(I) is independent in Sti(Xs). If |I| = k, and let o(I) be dependent. This means that the
edges in o(/) share a common vertex w in X,. Since 7 is an isomorphism which induces
o, ' (w) must be shared by all edges in I. Thus [ is independent if and only if o (1) is
independent. Suppose St.(X;) = Sti(Xs) via a bijection ¢ : By — FE,. By definition, any
subset H C FEj is a hyperplane of St,(X;) if and only if o(H) is a hyperplane of St;(X5).
Now we use the following claim which follows from [Bab7§].

Claim 3.7 ([Bab78]). For any graph X, any dependent hyperplane in Stx(X) is a mazimal
set of edges which share a common vertex (forms a star) in X, and these are the only
dependent hyperplanes.

Now we define the graph isomorphism 7 : V; — V5 as follows. For any vertex v, look at
the star Fj(v) rooted at v, we know that o(F;(v)) = E3(v') for some v'. Now set m(v) = v'.
From the above claim, 7 is an isomorphism. O

It remains to show that representation for St,(X) (X = (V, E)) can be computed in
polynomial time. We choose k = 3 (by the above proof, 3k and Vk in the Lemma are
equivalent). Now we show that the representation of St,(X) given in [Bab78] is computable
in polynomial time. The representation of St;(X) is over a field F such that |[F| > [V|?*~1.
For e = {u,v} € E assign a vector b, = [1, (zy + %0), (TuZs), Ye1s - - - s Ye 3] € F* where
Ty, T, and y.,; are distinct unknowns. To represent St,(X) we need to ensure that the k-
subsets of the columns corresponding to a basis form a linearly independent set, and all the
remaining k-subsets form a dependent set. Babai [Bab78] showed that by the above careful
choice of b, it will be sufficient to ensure only the independence condition. He also proved
the existence of a choice of values for the variables which achieves this if [F| > |V/[*~1,

We make this constructive. As k is a constant, the number of bases is bounded by
poly(m). We can greedily choose the value for each variable at every step, such that on
assigning this value, the resulting set of constant (k x k) size matrices are non-singular.
Since there exists a solution, this algorithm will always find one. Thus we can compute a
representation for Stx(X) in polynomial time.

LMI, <P GI: Let Axxm and By, be two matrices of rank b at the input. Now define
the following bipartite graph X4 = (Uga, Va4, F4) (similarly for Xg), where U4 has a vertex
for each column of A, and V4 has a vertex for each maximal independent set of A (Notice
that there are at most (') = O(m®) of them) and Vi € Ua, I € Vyu, {i,I} € B4 < i€ 1.
Now we claim that M(A) = M(B) <= X4 = Xjp where the isomorphism maps Vj to



Vg, and which is reducible to GI. It is easy to see that the matroid isomorphism can be
recovered from the map between the sets. O

Observe that the reduction LMI, <P GI can be done even if the input representation is
an independent set oracle. This gives the following corollary.

Corollary 3.8. LMI, = MI, =P GIL.

4 Isomorphism Problem of Coloured Matroids

Vertex or edge colouring is a classical tool used extensively in proving various results in graph
isomorphism problem. We develop similar techniques for matroid isomorphism problems too.

An edge-k-colouring of a graph X = (V, E) is a function f: £ — {1,...,k}. Given two
coloured graphs X; = (Vi, Ey, f1) and Xy = (V3, Es, f3), the COLOURED-GMI asks for an
isomorphism which preserves the colours of the edges. Not surprisingly, we can prove the
following.

Lemma 4.1. COLOURED-GMI is AC® many-one reducible to GMI.

Proof. Let X1 = (Vi, Ey, f1) and Xy = (Vs Es, f2), be the two k-coloured graphs at the
input, with n = |V;| = |V,|. For every edge e = (u,v) € E; (respectively E,), add a path
Po = {(w,ve,1), (Ve,1,Ve2)s - -, (Ventfi(e), V) } of length n+ f1(e) (respectively n+ fa(e))Where
Ve1s - - - Vet fi(e) are new vertices. Let X| and X3 be the two new graphs thus obtained. By
definition, any 2-isomorphism between X{ and X/ can only map cycles of equal length to
themselves. There are no simple cycles of length more than n in the original graphs. Thus,
given any 2-isomorphism between X and X}, we can recover a 2-isomorphism between X;
and X, which preserves the colouring and vice versa. O

Now we generalize the above construction to the case of linear matroid isomorphism.
COLOURED-LMI denotes the variant of LMI where the inputs are the linear matroids M,
and M, along with colour functions ¢; : {1,...,m} — N,i € {1,2}. The problem is to test
if there is an isomorphism between M; and M, which preserves the colours of the column
indices. We have,

Lemma 4.2. COoLOURED-LMI is AC® many-one reducible to LMI.

Proof. Let M; and M, be two coloured linear matroids represented over a field F. We
illustrate the reduction where only one column index of M; (resp. M) is coloured. Without
loss of generality, we assume that there are no two vectors in M (resp.Ms) which are scalar
multiples of each other.

We transform M; and M, to get two matroids M| and M. In the transformation, we
add more columns to the matrix (vectors to the ground set) and create dependency relations
in such a way that any isomorphism between the matroids must map these new vectors in
M to the corresponding ones M.



We describe this transformation in a generic way for a matroid M. Let {ey,...,e,} be
the column vectors of M, where e; € F". Let e = e; be the coloured vector in M.

Choose m’ > m, we construct £ = m~+m’ vectors fi,...f, € F"*™ as the columns of the
following (n + m’) x £ matrix. The i*" column of the matrix represents f;.

€11 €21 ... €Eml | €11 0 Ce 0 0 ... 0
€12 €22 ... €Em2 0 €12 ... 0 0 ... 0
€im €m --- €mm | O 0O ... egm O ... O
0 0 ... 0 1 -1 0 0 ...... 0
0 1 -1 0 ...... 0
0 0 ... 0 0 0 0 1 -1

| O o ... 0 |-1 0 0 0 1 |

where —1 denotes the additive inverse of 1 in F. Denote the above matrix as M’ = (é g) .

Let S ={fms1,---, fmem }- We observe the following:
1. Columns of B generate e;. Since C'is a 0-matrix f; € Span(S).

2. Columns of D are minimal dependent. Any proper subset of columns of D will split
the 1, —1 pair in at least a row and hence will be independent.

3. S is linearly independent. Suppose not. Let me/ a; fi = 0. Restricting this to the

=m

columns of B gives that o; = 0 for first j such that e;; # 0. Thus this gives a linearly
dependent proper subset of columns of B, and contradicts the above observation.

4. If forany f ¢S, f = ZfieS a; fi, then a;’s must be the same.

Now we claim that the newly added columns respect the circuit structure involving e;.
Let C and C’ denote the set of circuits of M and M’ respectively.

Claim 4.3.

{e1,€ip, .16, €C <= {f1,fi.--, fi,} €C and
{figv'"7fik7fm+17"'7fm+m'}Ec/

Proof. Suppose ¢ = {ey,e;y,...,¢€;, } is a circuit in M. Then clearly {fi, fi,,..., fi,} is a
cycle, since they are nothing but vectors in ¢ extended with Os. Since {fi,,..., fi,} and

{fm+1, -, fmame } both generate fi, the set F' ={f,,..., fi., fm+1,-- -, fm+mr } is & linearly
dependent set. Now we argue that F' is a minimal dependent set, and hence is a circuit.

Denote by G the set {f,,..., fi. }-
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Suppose not, let F’ C F' be linearly dependent. Since S is linearly independent (prop-
erty Blabove), we note that I & {fi41,.. ., finym }. Therefore, f;, € F” for some 0 < j < k.
Since F’ is dependent, express f; in terms of the other elements in F”:

fj = Zngg"i_ZésS

geG seS

Since G is linearly independent, at least one of the ds should be non-zero. Restrict this to
the matrices C' and D. This gives a non-trivial dependent proper subset of D and hence a
contradiction. O

From the above two observations and the fact that there is no other column in M which
is a multiple of e, the set f(e) = {f1, fm+1,-- - frmrm } 18 @ unique circuit of length m’ + 1 in
M’ where e is column which is coloured.

Now we argue about the isomorphism between M] and M obtained from the above
operation, and there is a unique circuit of length m’+1 > m in both M7 and M} corresponding
to two vectors e € M; and € € M,. Hence any matroid isomorphism should map these sets to
each other. From such an isomorphism, we can recover the a matroid isomorphism between
M, and M, that maps between e and €', thus preserving the colours. Indeed, if there is a
matroid isomorphism between M; and M,, that can easily be extended to M| and Mj.

For the general case, let k be the number of different colour classes and ¢; denote the size
of the ith colour class. Then for each vector e in the color class i, we add l; = m +m/' + 1
many new vectors, which also increases the dimension of the space by [;. Thus the total
number of vectors in the new matroid is Y ¢;(I;) < m3. Similarly, the dimension of the space
is bounded by m3. This completes the proof of Lemma Z.2]

O

5 Graphic Matroid Isomorphism

In this section we study GMI. Unlike in the case of the graph isomorphism problem, an NP
upper bound is not so obvious for GMI. We start with the discussion of an NP upper bound
for GMI.

As stated in Theorem 2.1, Whitney gave an exact characterization of when two graphs
are 2-isomorphic, in terms of three operations; twisting, cleaving and identification. Note
that it is sufficient to find 2-isomorphisms between 2-connected components of X; and Xo.
In fact, any matching between the sets of 2-connected components whose edges connect 2-
isomorphic components will serve the purpose. This is because, any 2-isomorphism preserves
simple cycles, and any simple cycle of a graph is always within a 2-connected component.
Hence we can assume that both the input graphs are 2-connected and in the case of 2-
connected graphs, twist is the only possible operation.

The set of separating pairs does not change under a twist operation. Despite the fact
that the twist operations need not commute, Truemper [Tru80] gave the following bound.
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Lemma 5.1 ([Tru80]). Let X be a 2-connected graph of n wvertices, and let Y be a graph
2-isomorphic to X, then: X can be transformed to graph X' isomorphic to Y through a
sequence at most n — 2 twists.

Using this lemma we get an NP upper bound for GMI. Given two graphs, X; and X5,
the NP machine just guesses the sequence of n — 2 separating pairs which corresponding to
the 2-isomorphism. For each pair, guess the cut w.r.t which the twist operation is to be
done, and apply each of them in sequence to the graph X; to obtain a graph X|. Now ask
if X] = X/J. This gives an upper bound of 3.GI C NP. Thus we have,

Proposition 5.2. GMI is in NP.

This can also be seen as an NP-reduction from GMI to GI. Now we will give a deter-
ministic reduction from GMI to GI. Although, this does not improve the NP upper bound,
it implies that it is unlikely that GMI is hard for NP (Using methods similar to that of
Proposition B.2] one can also directly prove that if GMI is NP-hard, then PH collapses to
the second level).

Now we state the main result of the paper:

Theorem 5.3. GMI <} GI

Let us first look into the case of 3-connected graphs. A separating pair is a pair of
vertices whose deletion leaves the graph disconnected. A 3-connected graph is a connected
graph which does not have any separating pairs. Whitney ([Whi32]) proved the following
equivalence,

Theorem 5.4 (Whitney, [Whi32]). X; and X, be 3-connected graphs, X; =y Xy <— X; =
Xs.

Before giving a formal proof of Theorem 5.3l we describe the idea roughly here:

Basic Idea: Let X; and X, be the given graphs. From the above discussion, we can
assume that the given graph is 2-connected.

In [HT73], Hopcroft and Tarjan proved that every 2-connected graph can be decomposed
uniquely into a tree of 3-connected components, bonds or polygonsld Moreover, [HT73]
showed that this decomposition can be computed in polynomial time. The idea is to then
find the isomorphism classes of these 3-connected components using queries to GI (see the-
orem [5.4]), and then colour the tree nodes with the corresponding isomorphism class, and
then compute a coloured tree isomorphism between the two trees produced from the two
graphs.

2Cunningham et al. [CE80] shows that any graphic matroid M (X) is isomorphic to M (X1)®M (Xs)...®
M(Xy)/{e1,e2,...,ex}, where M(X1),..., M(X}) are 3-connected components, bonds or polygons of M (X)
and ey, ..., e are the virtual edges. However, it is unclear if this can be turned into a reduction from GMI
to GI using edge/vertex colouring.
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A first mind block is that these isomorphisms between the 3-connected components need
not map separating pairs to separating pairs. We overcome this by colouring the separating
pairs (in fact the edge between them), with a canonical label of the two sub trees which
the corresponding edge connects. To support this, we observe the following. There may be
many isomorphisms between two 3-connected components which preserves the colours of the
separating pairs. However, the order in which the vertices are mapped within a separating
pair is irrelevant, since any order will be canonical up to a twist operation with respect to
the separating pair.

So with the new colouring, the isomorphism between 3-connected components maps a
separating pair to a separating pair, if and only if the two pairs of sub trees are isomorphic.
However, even if this is the case, the coloured sub trees need not be isomorphic. This creates
a simultaneity problem of colouring of the 3-connected components and the tree nodes and
thus a second mind block.

We overcome this by colouring again using the code for coloured sub trees, and then
finding the new isomorphism classes between the 3-connected components. This process is
iterated till the colours stabilize on the tree as well as on the individual separating pairs (since
there are only linear number of 3-connected components). Once this is ensured, we can re-
cover the 2-isomorphism of the original graph by weaving the isomorphism of the 3-connected
components guided by the tree adjacency relationship. In addition, if two 3-connected com-
ponents are indeed isomorphic in the correctly aligned way, the above colouring scheme, at
any point, does not distinguish between them.

Now we convert this idea into an algorithm and a formal proof.

Breaking into Tree of 3-connected components: We use the algorithm of Hopcroft
and Tarjan [HT73] to compute the set of 3-connected components of a 2-connected graph in
polynomial time. We will now describe some details of the algorithm which we will exploit.

Let X(V, E) be a 2-connected graph. Let Y be a connected component of X \ {a, b},
where a,b is a separating pair. X is an excisable component w.r.t {a,b} if X \ Y has at
least 2 edges and is 2-connected. The operation of excising Y from X results in two graphs:
Cy = X \ Y plus a virtual edge joining (a,b), and Cy = the induced subgraph on X U {a, b}
plus a wirtual edge joining (a, b). This operation may introduce multiple edges.

The decomposition of X into its 3-connected components is achieved by the repeated
application of the excising operation (we call the corresponding separating pairs as excised
pairs) until all the resulting graphs are free of excisable components. This decomposition
is represented by a graph Gx with the 3-connected components of X as its vertices and
two components are adjacent in Gx if and only if they share a virtual edge. In the above
explanation, the graph Gx need not be a tree as the components which share a separating
pair will form a clique.

To make it a tree, [HT73] introduces another component corresponding to the virtual
edges thus identifying all the virtual edges created in the same excising operation with each
other.

Instead, we do a surgery on the original graph X and the graph Gx. We add an edge
between all the ezcised pairs (excised while obtaining Gx) to get graph X’. Notice that,
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following the same series of decomposition gives a new graph Tx which is the same as Gx
except that the cliques are replaced by star centered at a newly introduced vertex (com-
ponent) corresponding to the newly introduced excised edges in X’. The newly introduced
edges form a 3-connected component themselves with one virtual edge corresponding to each
edge of the clique they replace.

We list down the properties of the tree Ty for further reference. (1) For every node in
t € Tx, there is exactly one 3-connected component in X’. We denote this by ¢. (2) For
every edge e = (u,v) € Tx, there are exactly two virtual edges, one each in the 3-connected
components ¢, and ¢,. We call these virtual edges as the twin edges of each other. (3) For any
given graph X, Ty is unique up to isomorphism (since Gx is unique [HT73]). In addition,
T'x can be obtained from Gx in polynomial time.

In the following claim, we prove that this surgery in the graphs does not affect the
existence of 2-isomorphisms.

Claim 5.5. X1 Xy — X{ =, Xé

Proof. Suppose X; =5 X, via a bijection ¢ : E; — FE,. This induces a map ¢ between
the sets of 3-connected components of X; and X,. By theorem [(£.4], for every 3-connected
component ¢ of X;, ¢ = ¢(c) (via say 7.; when c is clear from the context we refer to it as
7).

We claim that v is an isomorphism between G; and Gs. To see this, consider an edge
e = (u,v) € Ty. This corresponds to two 3-connected components ¢, and ¢, of X; which
share a separating pair s;. The 3-connected components 1(c,) and ¥(c,) must share a
separating pair say ss; otherwise, the cycles spanning across ¢, and ¢, will not be preserved
by ¢ which contradicts the fact that ¢ is a 2-isomorphism. Hence (¢ (c,), v (c,)) correspond
to an edge in GG5. Therefore, 1 is an isomorphism between G; and Gs. In fact, this also gives
an isomorphism between T and T3, which in turn gives a map between the excised pairs of
X, and X5. To define the 2-isomorphism between X| and X, we extend the map v to the
excised edges.

To argue the reverse direction, let X| =, X} via ¢. In a very similar way, this gives an
isomorphism between T} and T5. The edge map of this isomorphism gives the map between
the excised pairs. Restricting ¢ to the edges of X; gives the required 2-isomorphism between
X; and X5. This is because, the cycles of X;(X3) are anyway contained in X (X)), and the
excised pairs does not interfere in the mapping. O

Thus it is sufficient to give an algorithm to test if X| =5 X/, which we describe as follows.

INPUT: 2-connected graphs X{ and X} and tree of 3-connected components T and Tb.
OuTpUT: YEs if X| = X}, and No otherwise.

ALGORITHM:

Notation: CODE(T') denotes the canonical label for a tree T.

3When T is coloured, CODE(T) is the code of the tree obtained after attaching the necessary gadgets
to the coloured nodes. Notice that even after colouring, the graph is still a tree. In addition, for any T,
CODE(T) can be computed in L [Lin92].
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1. Initialize T = T, T3 = To.
2. REPEAT

(a) Set Th =17, Tr = Ty.

(b) For each edge e = (u,v) € T;, i € {1,2}:
Let T;(e,u) and T;(e,v) be subtrees of T; obtained by deleting the edge e, containing u
and v respectively.

Colour virtual edges corresponding to the separating pairs in the components ¢, and
¢, with the set {CODE(T; (e, u)), CODE(T;(e,v))}. From now on, ¢; denotes the coloured
3-connected component corresponding to node t € T7 U 1.

(c) Let S; and Sz be the set of coloured 3-connected components of X| and X} and let
S = 51USs. Using queries to GI (see observation [5.8)) find out the isomorphism classes
in . Let C1,...,C, denote the isomorphism classes.

(d) Colour each node t € T;, i € {1,2}, with colour ¢ if ¢; € Cy. (This gives two coloured
trees 77 and T7.)

UNTIL (CODE(T;) # CODE(T)), Vi € {1,2})

3. Check if T = T7 preserving the colours. Answer YES if 7] = T3, and NO otherwise.

First we prove that the algorithm terminates in linear number of iterations of the repeat-
until loop. Let ¢; denote the number of isomorphism classes of the set of the coloured
3-connected components after the i iteration. We claim that, if the termination condition
is not satisfied, then |g;| > |g;_1|. To see this, suppose the termination is not satisfied. This
means that the coloured tree T7 is different from 77. This can happen only when the colour
of a 3-connected component ¢,, v € T; U Ty changes. In addition, this can only increase
the isomorphism classes. Thus |¢;| > |g;_1|. Since ¢ can be at most 2n, this shows that the
algorithm exits the loop after at most 2n steps.

Now we prove the correctness of the algorithm. We follow the notation described in the
algorithm.

Lemma 5.6. X| =, X)), «<— T/ =T1T;.

Proof. (=) Suppose X| =y X}, via a bijection ¢ : E; — E,. This induces a map 1) between
the sets of 3-connected components of X| and X). By theorem [5.4] for every 3-connected
component ¢ of X|, ¢ = ¢(c) (via say 7.; when ¢ is clear from the context we refer to it as
7).

We claim that v is an isomorphism between 7T} and 7. To see this, consider an edge
e = (u,v) € Ty. This corresponds to two 3-connected components ¢, and ¢, of X| which
share a separating pair s;. The 3-connected components ¥ (c,) and ¥(c,) must share a
separating pair say ss; otherwise, the cycles spanning across ¢, and ¢, will not be preserved
by ¢ which contradicts the fact that ¢ is a 2-isomorphism. Hence (¢(c,), % (c,)) correspond
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to an edge in T5. Therefore, ¢ is an isomorphism between 77 and 7. So in what follows,
we interchangeably use 1) to be a map between the set of 3-connected components as well
as between the vertices of the tree. Note that 1 also induces (and hence denotes) a map
between the edges of T and Ts.

Now we prove that v preserves the colours attached to 77 and 75 after all iterations of
the repeat-until loop in step 2l To simplify the argument, we do it for the first iteration and
the same can be carried forward for any number of iterations. Let 77 and T3 be the coloured
trees obtained after the first iteration. We argue that 9 itself is an isomorphism between T}
and T7.

To this end, we prove that for any vertex u in T, ¢, = 1(c,) even after colouring as in
step 2Bl That is, the map preserves the colouring of the virtual edges in step 2Dl

Consider any virtual edge f; in ¢,, we know that fo = 7(f1) is a virtual edge in ¥(c,).
Let e; = (ug,v1) and ey = (ug,v9) be the tree edges in T} and T5 corresponding to f; and f,
respectively. We know that, e; = 1(ez). Since T7 = T via 1), we have

{CODE(Tl (61, U1>), CODE(T1 (61, Ul))} = {CODE(TQ(€2, UQ)), CODE(TQ(@Q, ’02))} .

Thus, in Step ROl the virtual edges f; and f; get the same colour. Therefore, ¢, and ¥(c,)
belong to the same colour class after step bl Hence v is an isomorphism between 7] and
T3.

(<) First, we recall some definitions needed in the proof. A center of a tree T' is defined as a
vertex v such that max,cr d(u, v) is minimized at v, where d(u, v) is the number of edges in
the unique path from u to v. It is known [Har69] that every tree T" has a center consisting of
a single vertex or a pair of adjacent vertices. The minimum achieved at the center is called
the height of the tree, denoted by ht(T).

Claim 5.7. Let ¢ be a colour preserving isomorphism between T| and Ty, and x; is an
isomorphism between the 3-connected components ¢, and cywy. Then, X =5 X3 via a map
o such that Vt € T], Ve € ¢, N Ey : o(e) = xi(e) where Ey is the set of edges in X}.

Proof. The proof is by induction on height of the trees h = ht(T]) = ht(T3), where the
height (and center) is computed with respect to the underlying tree ignoring colours on the
vertices.

Base case is when h = 0; that is, 77 and T3 have just one node (3-connected component)
without any virtual edges. Simply define ¢ = x. By Theorem [5.4], this gives the required
2-isomorphism.

Suppose that if h = ht(T]) = ht(T3) < k, the above claim is true. For the induction step,
suppose further that 7] = T; via ¢, and ht(T]) = ht(T3) = k. Notice that ¢ should map
the center(s) of 7} to that of 7. We consider two cases (we present one case here, and the
other in the appendix).

In the first case, 7] and Ty have unique centers « and (3. It is clear that () = 5. Let
c¢1 and ¢y be the corresponding coloured (as in step 2b]) 3-connected components. Therefore,
there is a colour preserving isomorphism y = x, between ¢, and cg. Let fi,... fi be the

16



virtual edges in ¢, corresponding to the tree edges e; = («,v1),...,er = (a,vx) where
vy, ..., v are neighbors of v in 77. Denote 1 (e;) by e}, and 1 (v;) by ..

Observe that only virtual edges are coloured in the 3-connected components in step 2bl
while determining their isomorphism classes. Therefore, for each i, x(f;) will be a virtual
edge in cg, and in addition, with the same colour as f;. That is,

{CcODE(T1 (e;, ), CODE(T1 (€1, vi)) } = {CODE(T»(e}, B)), CODE(T3 (€], v})))}

Since av and 3 are the centers of 7] and Ty, it must be the case that in the above set equality,
CODE(T1(e;,v;)) = CODE(T3(e},v})). From the termination condition of the algorithm, this

implies that CODE(T](e;,v;)) = CODE(T3(e}, v)). Hence, T} (e;,v;) = Th(el,vi). In addition,
ht(v;) = ht(vj) < k. Let X} and X, denote the subgraphs of X| and X; corresponding
to T7(ei, vi) and Ty(e}, v;) respectively. By induction hypothesis, the graphs X and X)’(( 1)
are 2-isomorphic via o; which agrees with the corresponding x; for ¢t € T(e;, v;). Define 7;
as a map between the set of all edges, such that it agrees with o; on all edges of X }(i) and
with x; (for ¢ € T{(e;,v;)) on the coloured virtual edges.

We claim that 7; must map the twin-edge of f; to twin-edge of 7(f;). Suppose not. By
the property of the colouring, this implies that there is a subtree of T} (e;, v;) isomorphic to
T] \ T} (e;,v;). This contradicts the assumption that ¢, is the center of T7.

For each edge e € Ei, define o(e) to be x(e) when e € ¢, and to be m;(e) when e €
Ey, (edges of Xy,). From the above argument, x = x, and o; indeed agrees on where it
maps f; to. This ensures that every cycle passing through the separating pairs of ¢, gets
preserved. Thus o is a 2-isomorphism between X/ and XJ.

For case 2, let 7] and T3 have two centers (aq, ae) and (1, B2) respectively. It is clear that
({1, as}) = {51, B2}. Without loss of generality, we assume that (ay) = f1, ¥(as) = Ba.
Therefore, there are colour preserving isomorphisms y; from c,, to cg, and x» from c,, and
cs,- Define x(e) as follows:

_ X1 (6) € € Coy
xle) = { xale)  c€ca,
Co = UiCy;, €5 = Ujcg,

With this notation, we can appeal to the proof in the case 1, and construct the 2-
isomorphism o between X| and XJ.
O

This completes the proof of correctness of the algorithm (Lemma [5.6]).
U

To complete the proof of Theorem [5.3] we need the following observation,
Observation 5.8. COLOURED-GMI for 3-connected graphs reduces to GI.

Observing that the above construction does not use non-planar gadgets, we get the
following.
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Corollary 5.9. Given two planar matroids, M (Xy) and M (X,), testing if M(X;) = M(X5)
can be performed in P.

Now we give a polynomial time many-one reduction from MI, to GMI. Let M; and M,
be two matroids of rank b over the ground set S; and S;. Let C; and C, respectively denote
the set of cycles of M; and M,. Note that |Cy], |Co|] < mb*t.

Define graphs X; = (Vi, Ey) (respectively for Xy = (V3, E3)) as follows. For each circuit
¢ = {Siy,...,s,} € Sy in My, X; contains a simple cycle {e(c,s;,),...,e(c, ;). Now
pairwise interconnect all the endpoints of the edges corresponding to each of the ground set
elements (these edges form a clique), and colour these edges as RED and the remaining edges
as BLUE. Now we claim the following.

Lemma 5.10. M1 = M2 Zf and OTlly Zf X1 ’5’2 Xg.

[a¥)

Proof. Suppose M; = My, via a map ¢ : S; — S;. This gives a map ¥ between the BLUE
edges of the graphs X; and X, which preserves BLUE cycles. Now we extend this to the RED
edges. Take a RED edge r, there are two BLUE edges e; and e, which share an endpoint with
r. We know that e; and ey are corresponding to the same ground set element (say s). Thus
¥(e1) and 1(ey) correspond to the same ground set element ¢(s), and hence shares a RED
edge in X5. Thus ¢ can be extended to preserve the RED edges. Hence X; =5 Xo.

Conversely, suppose X; =y X, via ¢ : E; — FE5. Define ¢ : S; — 95 as follows: For
s € 51 let Ry denote the clique in X; corresponding to s. Ry is either a single blue edge or
a clique on at least 4 vertices (in the latter case it is 3-connected). Thus ¢ should map R
to R, for some s’ in Sy.. Define ¢(s) = s’. Now we argue that ¢ is an isomorphism between
M; and Ms. Let ¢ = {s1,...,s:} € S; be a cycle in M;.

ceC <= ﬂ@b(Rsi) is a BLUE cycle in X}
= ﬂ Y(R.,) is a BLUE cycle in X,

<~ ¢(C) € Cy

From the above construction, we have the following theorem.
Theorem 5.11. MI, <?. GML
Thus we have,

Theorem 5.12. GI =} GMI =} MI, =/ LMI,

18



6 Matroid Automorphism Problem

With any isomorphism problem, there is an associated automorphism problem i.e, to find a
generating set for the automorphism group of the underlying object. Relating the isomor-
phism problem to the corresponding automorphism problem gives access to algebraic tools
associated with the automorphism groups. In the case of graphs, studying automorphism
problem has been fruitful.(e.g. see [Luk80, BGMS82 [AK02].) In this section we turn our
attention to Matroid automorphism problem.

An automorphism of a matroid M = (5,C) (where S is the ground set and C is the set
of circuits) is a permutation ¢ of elements of S such that VC' C S, C € C < ¢(C) € C.
Aut (M) denotes the group of automorphisms of the matroid M. When the matroid is graphic
we denote by Aut(X) and Aut(Mx) the automorphism group of the graph and the graphic
matroid respectively.

To begin with, we note that given a graph X, and a permutation 7 € §,,, it is not clear
apriori how to check if 7 € Aut(My) efficiently. This is because we need to ensure that 7
preserves all the simple cycles, and there could be exponentially many of them. Note that
such a membership test (given a m € S,,) for Aut(X) can be done easily by testing whether
7 preserves all the edges. We provide an efficient test for this problem.

We use the notion of a cycle bases of X. A cycle basis of a graph X is a minimal set of
cycles B of X such that every cycle in X can be written as a linear combination (viewing
every cycle as a vector in F3') of the cycles in B. Let # denote the set of all cycle basis of
the graph X.

Lemma 6.1. Letm € S,, B B:n(B) e B — VB B :n(B)c R

Proof. Let B = {by,...b;} € % such that w(B) = {m(b1),...,m(bs)} is a cycle basis. Now
consider any other cycle basis B/ = {b),...,b.} € A. Thus, b; = Zj a;b;. This implies,

m(b;) = Zaﬂr(b;).

Thus, 7(B') = {n(V)),...,n(t,)} forms a cycle basis. O
Lemma 6.2. Let m € Sy, and let B € B, then m € Aut(Mx) <= =n(B) € A.

Proof. Let B = {b,...,bs} be the given cycle basis.

For the forward direction, suppose m € Aut(Myx). That is, C' C E' is a cycle in X if and
only if 7(C) is also a cycle in X. Let C' be any cycle in X, and let D = 7#~!(C'). Since
B € %, we can write, D = ) . a;b;, and hence C = Y, a;7(b;). Hence n(B) forms a cycle
basis for X.

For the reverse direction, suppose m(B) is a cycle basis of X. Let C be any cycle in
X. We can write C' = >, a;b;. Hence, 7(C') = >, a;m(b;). As 7 is a bijection, we have
mw(b;Nb;) = 7(b;) Nm(b;). Thus 7(C) is also a cycle in X. Since 7 extends to a permutation
on the set of cycles, we get that C'is a cycle if and only if 7(C') is a cycle. O
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Using Lemmas [6.1] and it follows that, given a permutation , to test if 7 € Aut(Mx)
it suffices to check if for a cycle basis B of X, m(B) is also a cycle basis. Given a graph X
a cycle basis B can be computed in polynomial time (see e.g, [Hor87]). Now it suffices to
show:

Lemma 6.3. Given a permutation ™ € S,,, and a cycle basis B € A, testing whether w(B)
1s a cycle basis, can be done in polynomial time.

Proof. To check if w(B) is a cycle basis, it is sufficient to verify that every cycle in B =
{b1,...,be} can be written as a Fy-linear combination of the cycles in B’ = {b},...,b,} =
m(B). This can be done as follows.

For b; € B, let m(b;) = b;. View b; and b as vectors in Fy'. Let b;; (vesp. b);) denote
the j* component of b; (resp. b;). Construct the set of linear equations, bj; = 3, pTibk;
where x;;, are unknowns. There are exactly ¢ bs and each of them gives rise to exactly m
equations like this. This gives a system I of ¢m linear equations in ¢?> unknowns such that,
7(B) is a cycle basis if and only if I has a non-trivial solution. This test can indeed be done
in polynomial time. O

This gives us the following;:
Theorem 6.4. Given any m € S,,, the membership test for m in Aut(Mx) is in P.

Notice that similar arguments can also give another proof of Proposition 5.2l As in the
case of graphs, we can define automorphism problems for matroids.

MATROID AUTOMORPHISM(MA): Given a matroid M as independent set oracle, com-
pute a generating set for Aut(M).

We define GMA and LMA as the corresponding automorphism problems for graphic
and linear matroids, when the input is a graph and matrix respectively. Using the colouring
techniques from Section [l we prove the following equivalence.

Theorem 6.5. LMI =/ LMA, and GMI =} GMA.

Proof. This proof follows a standard idea due to Luks [Luk93]. We argue the forward direc-
tion as follows. Given two matrices M; and M, form the new matrix M as,

M, 0}

M:{o M,

Now using queries to LM A construct the generating set of Aut(M). Check if at least one of
the generators map the columns in M corresponding to columns of M; to those corresponding
to the columns of M.

To see the other direction, we use the colouring idea, and the rest of the details is
standard. The idea is to find the orbits of each element of the ground set as follows: For
every element of e € S, for each f € S, colour e and f by the same colour to obtain coloured
matroids M; and Ms. Now by querying to LMI we can check if f is in the orbit of e. Thus
we can construct the orbit structure of Aut(M) and hence compute a generating set.

Using similar methods we can prove GMI =}. GMA. O
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7 Conclusion and Open Problems

We studied the matroid isomorphism problem under various input representations and re-
striction on the rank of the matroid. We proved that graph isomorphism, graphic matroid
isomorphism and bounded rank version of matroid isomorphism are all polynomial time
equivalent.

In addition, we find it interesting that in the bounded rank case, MI, and LMI, are
equivalent, though there exist matroids of bounded rank which are not representable over
any field. Some of the open questions that we see are as follows:

e Our results provide new possibilities to attack the graph isomorphism problem. For
example, it will be interesting to prove a coNP upper bound for LMI,. Note that this
will imply that GI € NPNcoNP. Similarly, are there special cases of GMI (other than
what is translated from the bounds for GI) which can be solved in polynomial time?

e The representations of the matroid in the definition of LMI is over fields of size at least
m and at most poly(m), where m is the size of the ground set of the matroid. This is
critically needed for the observation of coNP-hardness. One could ask if the problem
is easier over fixed finite fields independent on the input. However, we note that, by
our results, it follows that this problem over I, is already hard for GI. It will still
be interesting to give a better (than the trivial ¥X5) upper bound for linear matroids
represented over fixed finite fields (even for Fy).

e Can we use the colouring technique of linear matroid isomorphism to reduce the gen-
eral instances of linear matroid isomorphism to isomorphism testing of “simpler com-
ponents” of the matroid?

e Can we make the reduction from GMI to GI many-one? Can we improve the com-
plexity of this reduction in the general case?
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A Proof of Claim 3.7

Claim |Bab78] For any graph X, any hyperplane of Stx(X) is a mazximal set edges
which share a common vertex (forms a star) in X, and these are the only hyperplanes.

Proof. To see the first part, note that since k is at most the min-degree of the graph, any
maximal set of edges which forms a star is a hyperplane. To argue that these are the only
hyperplanes, suppose H is a hyperplane whose edges do not share a common vertex in X.
Since any independent set cannot be a hyperplane, H has size at least k, and the rank of H
by definition is k — 1. Take any k sized subset S of H. It has to be a star (say at vertex v),
since otherwise H will have rank k. Since H by itself is not a star, there is an edge e which
does not have v as its end point. But then, H contains a k sized subset which is not a star,
and hence independent. This is a contradiction. O

B 3-connected COLOURED-GMI

By combining Lemma (. with Theorem (5.4 we prove the following corollary which we
present although we do not need it explicitly in the paper.

Corollary B.1. Let X; and X5 be two 3-connected graphs with given edge colourings, testing
if there is a colour preserving 2-isomorphism between X1 and Xs, can be reduced to GI.

Proof. We follow the notation in the proof of Lemma Il Let X| and X! be the two
graphs obtained from X; and X5 by attaching the colouring gadgets. Now we claim that
X = X, <—= X=X/,

One direction is easy to see. X| = X} = X| =, X/. To see the other direction, suppose

1 &9 X} via 0. By proof of Lemma [4.] this induces a 2-isomorphism between X; and Xo,
which in turn induces an isomorphism 7 between X; and X,. Observe that 7 also preserves
colours on the edges of X; and Xos.

Let m be the map between the vertices of X| and X} induced by 7. Note that 7 is
not defined on the new vertices introduced by the colouring gadgets. However, m already
preserves all the edges between X and X} except the newly introduced edges.

Since 7 preserves edge colours in X, any coloured edge e € X, the paths P, and Py,
introduced while constructing X{ and X are of the same length. Hence the vertex map =

can be extended to the vertices in these paths to an edge preserving vertex map between X
and XJ. O

C A hardness result for GMI

We show that known hardness results of GI ([Tor04]) can be adapted to the case of GMI.
This is subsumed by the many-one reduction from GI to GMI. But we state this observation
here anyway.
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Theorem C.1. GMI is NL-hard under AC® many one reductions.

The hardness is proved using ideas similar to that in [Tor04]. We include the details of
this modified part of the proof.
Consider the graph X (k) = (V, F) where,

V = {$Oa"'7$k—1>y07"'ayk—1a207"'azk—l}
Wuy | 0<4,5 <k—1}
U{(yj,uig) | 0<id,5 <k—1}
U{ (i, ziwy) | 0 <4, <k —1}

The following is easy to verify for the above graph.
Observation C.2. For k > 3, the graph X (k) is 3-connected.

Toran [Tor04] argued that for any a,b € {0,...,k — 1} the graph X (k) has a unique
automorphism which maps vertices x; — Z.e; and y; — Ypai, which also maps z; = Zigamp-
Combining this with Proposition 5.4 and the above observation, we get the following lemma.

Lemma C.3. For any k > 3, given any a,b € {0,...,k — 1}, there ezists a unique auto-
morphism for the matroid Mx gy which maps

(SCi,Ui,j) — (xiéBaau(iéBa,j))
(Y, wij) —  (Yieb, Ui, joa))

(ui,ja Ziij) — (ui@a,jEBbv Zi@j@a@b)
Lemma C.4. For k > 3, GMI is Mod E-hard under AC® many-one reductions.

Proof. Let C' be a circuit with Mod,, gates for k > 3. Without loss of generality, we assume
that each gate is of fan-in 2. We construct a new graph X as follows : For each gate g in C,
X contains a copy of the graph X (k), denoted by X,. Colour each edge of X, with colour g
(see Lemma [A.T]). If gate g has hy and hy as its inputs identify o, ... 251 and yo, ..., Yp_1
of Xy with zp,..., 2,1 of X3, and X}, respectively. Let r be the root gate of C, g1,...gm
be the gates which receive the inputs directly, then the following claim can be verified by
induction on the circuit structure.

Claim C.5. C evaluates to £ € {0,...,k — 1} on input ay, ..., a, if and only if Mx has an
automorphism which maps, for the gate g; receiving the input a; as its 'z’ input, i X,

(Iu ui,t) — (xi@aj )y U(iday ,t))
forall0 <t <k-—1,andin X,, foralla®b=1"{, jBt =1,

(Ut,ju Zz') — (utaaa,j@ba Zz'eaf)
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Proof. (of theorem [C.T]) Using ideas from [Tor(04], it is easy to see that we can write an NL
computation as a series ModiL computations, for 3 < k < 2n. Thus, the theorem follows. [

The following corollary is immediate as in (Theorem 4.4, [Tor04]), using Chinese remain-
dering, and the above reduction.

Corollary C.6. Every GapL-function is AC® many-one reducible to GMI.

D Testing Uniformity of Matroids

A problem of testing if a given matroid is uniform, is clearly as a special case of the matroid
isomorphism problem, where one of the matroid is uniform. The problem is known to be
coNP-complete as shown below.

Proposition D.1. Given a representable matroid of rank k (input is a k x n matriz A), the
problem of checking if the matroid is uniform is coNP-complete. In other words, testing if
the matroid M represented by columns of A is isomorphic to Uy, is coNP-complete.

Proof. This proof is due to Oxley and Welsh [OW02]. We make it more explicit. A set of
n points in d dimensions is linearly degenerate if there is a set of d points which is linearly
dependent. In other words, the set of n points is said to be in general position if all subsets
of size d are linearly independent. Khanchiyan [Kha95] proved that given n points testing if
they are in general position is NP-hard. Now notice that this exactly answers the question
of testing if the matroid is uniform. O
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