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GENERALIZED SEMIMAGIC SQUARES

FOR DIGITAL HALFTONING

AKITOSHI KAWAMURA

Abstract. Completing Aronov et al.’s study on zero-discrepancymatrices for digital
halftoning, we determine all (m,n, k, l) for which it is possible to put mn consecutive
integers on an m × n board (with wrap-around) so that each k × l region has the
same sum. For one of the cases where this is impossible, we give a heuristic method
to find a matrix with small discrepancy.

A semimagic square is a square matrix whose entries are consecutive integers and
which has equal row and column sums. One way to generalize this millennia-old concept
is to specify the sums on regions other than rows and columns. Ingenious constructions
of squares satisfying various sum constraints have been described by many professional
and amateur mathematicians. While most of them are interested in adding more and
more constraints to make their squares impressive, one can generally consider sum
conditions on any set of regions.
Aronov et al. [1] took up this problem for square regions: is there an n × n matrix

with entries 0, . . . , n2 − 1 such that every k × k region has the same sum? It is
amusing to note that this variant of the classical problem is motivated by an engineering
question of finding good dither matrices for digital halftoning, a method to approximate
a continuous-tone image by a binary image for printing (see their paper for details).
They showed [1, Theorem 1], using what they call constant-gap matrices, that the
answer is yes if k and n are even or if n is an integer power of k, and no if k and n are
relatively prime or if k is odd and n is even. We will solve this problem completely by
determining all (n, k) for which such matrices exist (Section 1). Our construction of the
matrices is much simpler even for the cases that have already been settled positively.
We also give counterexamples to Asano et al.’s conjecture on the smallest possible
discrepancy when n is odd and k = 2 (Section 2).

Definitions. For a positive integerN , we write [N ] = {0, 1, . . . , N−1}. The remainder
when an integer x is divided by N belongs to [N ] and is denoted by x mod N .
We consider the slightly generalized setting where the matrices and regions are rect-

angles instead of squares. Let m and n be positive integers. For an m × n matrix D
and index (i, j) ∈ [m] × [n], we denote the (i, j)th entry of D by D(i, j). Any set
R ⊆ [m] × [n] of indices is called a region. The sum of the numbers on R is denoted
by D(R) =

∑

(i,j)∈R D(i, j). The discrepancy of D with respect to a set R of regions

is the difference between the maximum and minimum D(R) as R varies in R. When
it is zero, D is said to be R-uniform.
The translate of R by (a, b) ∈ Z2 is denoted by

(1) R + (a, b) =
{ (

(i+ a) mod m, (j + b) mod n
)

: (i, j) ∈ R
}

⊆ [m]× [n].

The set of all translates of R is denoted by R =
{

R + (a, b) : (a, b) ∈ Z2
}

.
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14 1 21 0 18
16 13 9 22 4
5 17 12 7 19
20 2 15 11 8
6 24 3 23 10

Figure 1. This 5×5 table D has discrepancy 8 with respect to [2]× [2],
because 44 ≤ D(R) ≤ 52 for every 2× 2 region R.

By an m×n table we mean an m×n matrix in which each element of [mn] appears
exactly once. We are interested in tables with small (or zero) discrepancy with respect

to [k]× [l], the set of all k-by-l rectangles (Figure 1).

1. Zero discrepancy

The greatest common divisor of positive integers x and y is denoted by gcd(x, y).
The goal of this section is to show the following:

Theorem 1. Let m, n, k, l be positive integers with k < m and l < n. Let k′ =
gcd(k,m) and l′ = gcd(l, n). Then there exists a [k]× [l]-uniform m × n table if and

only if k′ and l′ are greater than 1 and k′l′(mn− 1) is even.

This is an immediate consequence of the following Lemmas 2 and 3.

Lemma 2. A [k]× [l]-uniform m× n matrix is [gcd(k,m)]× [gcd(l, n)]-uniform.

Proof. Let D be a [k]× [l]-uniform m × n matrix. We will show that D is [k′]× [l]-
uniform, where k′ = gcd(k,m). We get the conclusion of the lemma by repeating the
same argument with rows and columns switched.
For each (i, j) ∈ [m]× [n], the regions [k′]× [l] + (i, j) and [k′]× [l] + (i+ k, j) have

the same sum on D, because each of them combined with [k − k′] × [l] + (i + k′, j)
makes a k × l rectangle. Thus for each (i, j) ∈ [m]× [n], the rectangles

(2) [k′]× [l] + (i+ qk, j), q ∈ [m/k′],

all have the same sum on D. Since k′ = gcd(k,m), these m/k′ rectangles cover the
strip [m]× [l] + (0, j) without overlap. Hence,

m

k′
·D

(

[k′]× [l] + (i, j)
)

=
∑

q∈[m/k′]

D
(

[k′]× [l] + (i+ qk, j)
)

(3)

= D([m]× [l] + (0, j)) =
1

k

∑

r∈[m]

D([k]× [l] + (r, j)).

Since the rightmost side is a constant independent of (i, j) by [k]× [l]-uniformity, so

is the leftmost side. Thus D is [k′]× [l]-uniform. �

Lemma 3. Let m and n be positive integers, and let k < m and l < n be their positive

divisors, respectively. Then there exists a [k]× [l]-uniform m× n table if and only if k
and l are greater than 1 and kl(mn− 1) is even.



GENERALIZED SEMIMAGIC SQUARES FOR DIGITAL HALFTONING 3

0 1 2 3 4 5 6
6 5 4 3 2 1 0

(k, l, n) = (2, 1, 7)

0 1 2 3 4 5 6
3 4 5 6 0 1 2
6 4 2 0 5 3 1

(k, l, n) = (3, 1, 7)

0 4 1 5 2 6 3 7
0 4 1 5 2 6 3 7
7 6 5 4 3 2 1 0

(k, l, n) = (3, 2, 8)

Figure 2. Examples of matrices of Lemma 4.

One direction is a simple generalization of [1, Theorem 1 (b, c)]:

Proof of the “only if” part of Lemma 3. Let D be a [k]× [l]-uniform m × n table. It

is easy to see that D(R) = kl(mn−1)/2 for each R ∈ [k]× [l]. Since D(R) must be an
integer, the second claim follows. For the first claim, assume k = 1 for contradiction
(the case l = 1 is similar). Then D([1]× [l]) = D([1]× [l] + (0, 1)) and hence D(0, 0) =
D(0, l), contradicting the assumption that D is a table. �

For the converse, we use the building blocks provided by the following lemma:

Lemma 4. Let k > 1 and l > 0 be integers and let n be a positive multiple of l. If

kl(n− 1) is even, then there exists a [k]× [l]-uniform k × n matrix in which each row

is a permutation of [n].

Proof. A [k]× [l]-uniform k × n matrix and a [k′]× [l]-uniform k′ × n matrix stacked

vertically make a [k + k′]× [l]-uniform (k + k′) × n matrix. Also, a [k]× [l]-uniform

matrix is [k]× [l′]-uniform for any multiple l′ of l. Therefore, it suffices to construct
the desired matrix P for the cases (k, l) = (2, 1), (3, 1) and (3, 2) (Figure 2). If
(k, l) = (2, 1), let

P (0, j) = j, P (1, j) = n− 1− j.(4)

If (k, l) = (3, 1), then n is odd by the assumption; let

P (0, j) = j, P (1, j) =

(

j +
n− 1

2

)

mod n, P (2, j) = (−2j − 1) mod n.(5)

If (k, l) = (3, 2), let

P (0, j) = P (1, j) =
⌊j

2

⌋

+
n

2
(j mod 2), P (2, j) = n− 1− j.(6)

It is easy to verify that P is [k]× [l]-uniform in each case. �

Proof of the “if” part of Lemma 3. We may assume without loss of generality that
l(mn−1) is even. In this case, both kl(n−1) and l(m/k−1) are even, so by Lemma 4,

there are a [k]× [l]-uniform k × n matrix P whose rows are permutations of [n], and

a [l]× [1]-uniform l × (m/k) matrix Q whose rows are permutations of [m/k]. Define
an m× l matrix T by

(7) T (a, j) = Q(j, ⌊a/k⌋)k + (a mod k).

Then T is [k]× [l]-uniform and its columns are permutations of [m]. Define an m× n
matrix D by

(8) D(a, b) = P (a mod k, b)m+ T (a, b mod l)
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D =





P
P
P



× 9 +
[

T T T T
]

=

0 4 1 5 2 6 3 7
0 4 1 5 2 6 3 7
7 6 5 4 3 2 1 0
0 4 1 5 2 6 3 7
0 4 1 5 2 6 3 7
7 6 5 4 3 2 1 0
0 4 1 5 2 6 3 7
0 4 1 5 2 6 3 7
7 6 5 4 3 2 1 0

× 9 +

0 6 0 6 0 6 0 6
1 7 1 7 1 7 1 7
2 8 2 8 2 8 2 8
3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4
5 5 5 5 5 5 5 5
6 0 6 0 6 0 6 0
7 1 7 1 7 1 7 1
8 2 8 2 8 2 8 2

=

0 42 9 51 18 60 27 69
1 43 10 52 19 61 28 70
65 62 47 44 29 26 11 8
3 39 12 48 21 57 30 66
4 40 13 49 22 58 31 67
68 59 50 41 32 23 14 5
6 36 15 45 24 54 33 63
7 37 16 46 25 55 34 64
71 56 53 38 35 20 17 2

Figure 3. Construction of D for (k, l,m, n) = (3, 2, 9, 8).

(Figure 3). Since P and T are [k]× [l]-uniform, so is D. To see that D is a table,
suppose that D(a, b) = D(a′, b′). By (7) and (8) we see that

(9)











P (a mod k, b) = P (a′ mod k, b′),

Q(b mod l, ⌊a/k⌋) = Q(b′ mod l, ⌊a′/k⌋),

a mod k = a′ mod k.

Since P ’s rows are permutations, the first and the third equation imply that b = b′.
Since Q’s rows are permutations, this and the second equation imply that a = a′. �

In the above, we constructed the uniform table as a linear combination of two uniform
matrices with smaller entries. This idea is due to Euler [3] who gave a construction of

a semimagic square (that is, a ([1]× [n] ∪ [n]× [1])-uniform n × n table) from a pair

of special ([1]× [n] ∪ [n]× [1])-uniform matrices called Latin squares.

2. Finding low-discrepancy tables by ranking

In this section, we confine ourselves, as Asano et al. [2] did, to the case where
k = l = 2 and m = n. Theorem 1 states that in this case a uniform table exists if
and only if n is even. For odd n’s, they construct a table with discrepancy 2n, and
conjecture that it is the smallest possible. This is refuted by our Figures 1 and 4.
Figure 1 was discovered by an exhaustive search. We describe briefly how Figure 4
was obtained.
Define f : [0, 1]2 → R by f(x, y) = g(x) + g(y), where

g(x) =

{

1− (4x− 1)2 if x ≤ 1/2,

−1 + (4x− 3)2 if x ≥ 1/2
(10)

(Figure 5). Let α, β ∈ [0, 1] and define s : [n]2 → [0, 1]2 by

(11) s(i, j) =

(

i+ α

n
,
j + β

n

)

.
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433 523 439 519 445 511 453 507 460 497 465 490 472 486 478 480 482 476 487 470 492 462 500 458 508 450 515 442 520 437 525
616 348 603 362 592 378 576 393 556 411 543 427 524 449 494 479 471 505 441 529 422 547 403 564 387 581 374 594 357 607 345
283 675 298 655 312 634 337 614 356 590 383 560 416 531 451 483 498 436 538 405 570 377 595 350 622 327 643 306 662 292 678
727 241 716 253 692 278 669 305 637 340 604 375 569 418 522 475 454 535 401 580 361 615 329 646 300 677 273 701 249 721 238
198 762 206 747 225 720 255 686 293 649 328 608 376 559 428 488 517 413 578 358 625 320 660 279 695 248 729 218 751 201 765
797 166 786 180 769 207 733 245 698 282 652 330 602 385 539 469 434 558 371 621 315 670 270 706 233 746 199 775 173 790 163
132 823 141 813 160 782 196 745 237 703 284 648 342 588 414 491 530 388 606 324 668 269 714 223 755 185 792 156 818 137 827
856 109 848 120 826 150 793 191 749 239 696 294 635 359 553 464 425 583 341 653 275 712 221 764 174 802 140 831 116 852 107
82 876 88 862 113 833 145 796 192 744 247 684 307 610 397 496 541 370 633 291 704 226 761 172 810 131 843 102 867 84 879

898 61 893 78 869 103 836 147 791 197 732 258 667 339 572 461 417 598 310 685 242 752 177 808 130 851 94 880 73 895 58
43 916 50 900 71 872 104 832 152 781 210 718 280 632 381 504 550 347 658 259 736 193 798 136 849 91 884 65 906 48 919

933 30 924 46 903 72 868 114 824 161 768 229 688 317 586 456 402 623 290 715 209 783 148 839 100 883 59 912 37 928 28
14 941 25 927 47 899 79 861 123 811 181 742 256 651 369 509 561 331 682 234 766 162 825 111 871 68 911 36 934 20 943

953 10 944 26 923 51 892 89 846 144 784 208 713 299 597 448 394 638 267 734 190 804 126 859 80 901 42 930 18 950 8
2 955 11 940 31 915 64 873 112 821 169 757 244 671 354 514 571 314 699 215 778 153 838 95 889 54 921 24 946 6 958

960 3 952 17 932 44 896 83 853 134 794 200 725 289 609 444 384 647 257 743 179 814 117 866 70 909 34 939 12 956 0
1 957 9 942 29 917 60 875 110 822 167 759 243 673 351 516 574 311 702 214 779 149 840 93 890 52 925 22 949 4 959

954 7 947 21 926 49 894 87 850 139 788 205 717 297 599 446 389 642 264 737 186 809 124 863 76 904 39 936 15 951 5
13 945 19 931 41 905 75 864 118 815 175 748 251 656 366 510 563 326 687 228 770 158 829 105 878 62 914 32 937 16 948

938 27 929 38 910 67 874 106 830 157 774 222 694 309 591 455 400 626 285 722 203 789 142 845 90 887 56 918 33 935 23
35 920 45 907 66 882 99 841 146 787 202 726 276 639 379 506 551 344 666 252 741 184 806 128 855 85 891 57 913 40 922

908 55 897 69 881 97 847 135 799 189 739 250 672 334 575 459 415 605 304 691 232 760 170 817 121 857 86 886 63 902 53
74 885 81 870 101 844 133 805 178 753 236 690 301 618 392 499 544 365 641 281 710 216 772 164 819 122 854 92 877 77 888

865 98 858 115 834 138 801 176 756 227 705 287 644 355 557 463 423 587 335 661 265 724 212 773 165 816 129 842 108 860 96
119 835 127 820 151 795 183 754 224 711 274 657 333 593 410 493 532 382 613 313 676 260 728 213 771 171 803 143 828 125 837
812 155 800 168 780 195 750 231 707 272 665 323 611 380 545 468 432 566 360 628 302 679 261 723 219 758 187 785 159 807 154
182 776 194 763 211 731 246 700 277 664 321 620 367 567 424 489 521 406 584 349 630 303 674 268 708 235 740 204 767 188 777
738 220 730 240 709 263 681 295 650 325 619 364 577 408 527 474 447 542 395 589 352 627 316 659 286 689 254 719 230 735 217
262 693 271 680 296 654 318 629 343 601 372 573 404 536 443 485 503 430 548 396 582 363 612 336 640 308 663 288 683 266 697
645 322 631 338 617 353 596 373 579 391 554 419 533 438 502 477 466 513 431 540 409 562 386 585 368 600 346 624 332 636 319
390 565 399 552 412 546 421 534 429 526 440 512 457 495 473 481 484 467 501 452 518 435 528 426 537 420 549 407 555 398 568

Figure 4. A 31× 31 table whose discrepancy with respect to [2]× [2] is 27.

Let H be the n × n table whose (i, j)th entry is the rank of f(s(i, j)) (with some
tie-breaking rule):

H(i, j) =
∣

∣

{

(i′, j′) ∈ [n]2 : f
(

s(i′, j′)
)

< f
(

s(i, j)
)

or(12)
(

f
(

s(i′, j′)
)

= f
(

s(i, j)
)

and ni′ + j′ < ni+ j
) }

∣

∣.

Finally, define the desired matrix D by

(13) D
(

(i+ j) mod n, (i− j) mod n
)

= H(i, j).

Figure 4 was obtained by this method with n = 31 and (α, β) = (0.286, 0).
To see intuitively why D has small discrepancy, note that a 2 × 2 region in D

corresponds to the region in H (or its translate) shown in Figure 6. These four cells are
mapped by s to two nearby points (x±ε, y) and another two points (x+1/2, y+1/2±ε)
(the coordinates are modulo 1). Since f(x, y) = −f(x+ 1/2, y + 1/2), the sum of the
values of f at these four points is almost zero. Thus, assuming that taking the ranks
does not distort the distribution of values too much, we can expect that D has low
discrepancy. We add the displacement (α, β) in (11) in order to reduce the chance of
ties in the ranking which seem to work adversely.
As Aronov et al. [1] point out, our problem is analogous to a common situation in

discrete geometry where we try to arrange discrete objects so that they look close to
some “balanced” continuous distribution. The constraint peculiar to our problem is
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x

z

10

z = g(x)

x

yz

0

1

1
z = f(x, y)

Figure 5. The functions g and f .

•
•

• •

Figure 6. A region in H corresponding to a 2× 2 square in D (for n = 9).

that we have to use each number in [mn] exactly once. The ranking technique used
here may be applicable to other problems with this constraint. However, analyzing
its performance seems to be hard: although our computer experiment for several n’s
suggests that the above method achieves sublinear 2×2 discrepancy, we have no proof
yet.
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