
Regular Languages of Nested Words: Fixed Points,

Automata, and Synchronization ∗

Marcelo Arenas

Departamento de Ciencia de la Computación

Pontificia Universidad Católica de Chile

marenas@ing.puc.cl

Pablo Barceló

Departamento de Ciencia de la Computación

Universidad de Chile

pbarcelo@dcc.uchile.cl

Leonid Libkin

School of Informatics

University of Edinburgh

libkin@inf.ed.ac.uk

Abstract

Nested words provide a natural model of runs of programs with recursive procedure calls. The
usual connection between monadic second-order logic (MSO) and automata extends from words to
nested words and gives us a natural notion of regular languages of nested words.

In this paper we look at some well-known aspects of regular languages – their characterization
via fixed points, deterministic and alternating automata for them, and synchronization for defining
regular relations – and extend them to nested words. We show that mu-calculus is as expressive as
MSO over finite and infinite nested words, and the equivalence holds, more generally, for mu-calculus
with past modalities evaluated in arbitrary positions in a word, not only in the first position. We
introduce the notion of alternating automata for nested words, show that they are as expressive
as the usual automata, and also prove that Muller automata can be determinized (unlike in the
case of visibly pushdown languages). Finally we look at synchronization over nested words. We
show that the usual letter-to-letter synchronization is completely incompatible with nested words
(in the sense that even the weakest form of it leads to an undecidable formalism) and present an
alternative form of synchronization that gives us decidable notions of regular relations.

1 Introduction

Nested words, introduced by Alur and Madhusudan [6], extend finite or infinite words with a hierar-
chical nesting structure. The intuitive idea is that a nested word represents a model of execution of a
program with recursive procedure calls; the nesting relation then connects matching calls and returns,
while other elements correspond to internal operations. An example of a finite nested word is shown
in the picture below, where the ri’s are returns matching calls ci’s.

r1c1 c2 c3 r3 c4 r4 r2 c5 c6 r6 r5 c7 r7

∗This is the full version of the extended abstract presented at the 34th Intl. Colloquium on Languages, Automata,

and Programming, ICALP’07.

1

Such structures naturally appear in XML documents that are string representations of trees using
opening and closing tags [32, 8], or in software verification of programs with stack-based control flow
[4, 2]. A nested word automaton [6] runs from left to right, similarly to a finite state automaton, but
each time it encounters a “return” position, the next state depends not only on the current state but
also on the state of the matching “call”.

A nice property of nested words and their automata is that they share logical characterizations with
the usual (unnested) words: the finite-automaton model has the same expressiveness as monadic
second-order logic (MSO) [5, 6]. This gives us a natural and robust notion of regular languages of
nested words, with the expected closure properties, decision procedures, and logical characterizations.

For finite or infinite unnested words, an alternative way of describing regularity logically is via the
modal µ-calculus (cf. [7]). That is, µ-calculus formulae evaluated in the first position of a word
define precisely the regular languages. Moreover, µ-calculus formulae with past modalities evaluated
in an arbitrary position of a word have precisely the power of MSO formulae with one free first-order
variable. As our first result, we extend these equivalences to the case of finite and infinite nested
words.

We then look at automata characterizations of regular languages of nested words. Nondeterministic
and deterministic automata have previously been considered [5, 6, 25], and [5] showed that automata
can be determinized in the finite case, but in the infinite case this is impossible even for automata
with a Muller acceptance condition (unlike in the case of the usual ω-words). Then [25] introduced a
different automaton model and showed that it admits a determinization procedure over nested words.
We expand this in two ways. First we introduce alternation in the case of nested word automata, and
prove that alternating automata can still be translated into nondeterministic ones. Second, we refine
the determinization procedure for automata from [25] to show that over infinite nested words, every
regular language is definable by a deterministic Muller automaton. This also gives us some corollaries
about the structure of regular languages of nested ω-words.

We finally turn our attention to the notion of regular relations. Over words or trees, one moves from
sets to relations by using letter-to-letter synchronization. For example, over words, an automaton runs
over a tuple of words viewing the tuple of ith letters of the words as a single letter of an expanded
alphabet [18]. The same approach works for trees, ranked and unranked [11]. The notion of regular
relations also leads to a notion of automatic structures [13, 15, 10], i.e. decidable first-order structures
over words in which all definable relations are regular.

In the case of nested words, there are two ways of synchronizing them: either by considering their
linear structure, as for words, or by considering the tree structure imposed by the nesting relation.
While in the latter case we essentially deal with the known case of trees, we show that, in contrast,
the notion of letter-to-letter synchronization that uses the linear structure is incompatible with nested
words: the simplest extension of nested word automata with such synchronization is undecidable. We
also show how the tree synchronization can be interpreted over the linear structure, by presenting an
alternative call-return notion of synchronization.

Related work Regular languages of nested words are a special case of visibly pushdown languages
(VPL) [5], which are a restriction of the class of context-free languages that subsumes all regular
properties and some non-regular properties relevant in program analysis (e.g. stack-inspection prop-
erties and pre-post conditions). VPLs in many ways resemble regular languages: they have the same
closure properties, and most natural problems related to them are decidable. The idea of VPLs is
that the input alphabet Σ is partitioned into three parts, Σc,Σr,Σi, of symbols viewed as procedure

2

calls, returns, and internal operations. A machine model for VPLs is a special pushdown automaton
that pushes a symbol onto the stack in a call, pops one symbol in a return, and does not touch the
stack when reading an internal symbol.

VPLs were introduced in [5] and regular languages of nested words in [6]. Nested words can be
viewed as special classes of trees (and we shall use this often in the paper); such tree representations
were introduced in [5, 6] as well. Applications in program analysis are discussed, e.g., in [2, 4], and
applications in processing tree-structured data in [32, 8]. Alternating automata for nested words
were introduced independently, and at about the same time, in [14]. In this paper, we compare our
automata model with the automata model introduced in [14] and, in particular, we use a result from
[14] to prove that alternation can be eliminated in our case.

There are several related results on µ-calculus and MSO, e.g. their equality over infinite binary trees
[29] or finite unranked trees [9] or expressive-completeness of µ-calculus [21]. We explain in Section 3
why we cannot derive our result from those. Another fixed-point logic VPµ is defined in [2] to specify
properties of executions of programs. It differs from the standard versions of µ-calculus we look at as
its fixed points are evaluated not over sets of nodes but over sets of subtrees of the program; further,
its expressiveness is known to be different from MSO [3].

Nondeterministic automata for VPLs and regular languages of nested words were defined in [5, 6],
and [5] observed that Muller automata for VPLs (over infinite words) are not determinizable. Then
[25] noticed that this is due to VPLs having potentially arbitrarily many unmatched calls/returns,
and introduced a different automaton model (stair automata) that can be determinized. We use them
to show how to determinize finite-state Muller automata over nested ω-words. None of these papers
addresses alternating automata over nested words.

Letter-to-letter synchronization for defining regular relations is an old notion [18], and the concept of
universal automatic structures [15, 13] is based on it. Although such automatic structures exist for
both words and trees [10, 11], we show here that letter-to-letter synchronization is incompatible with
nesting structure. A very different notion of synchronization for pushdown automata (that generalizes
VPLs) was studied in [16].

Organization Basic definitions are given in Section 2. We describe MSO unary queries via µ-calculus
in Section 3. In Section 4 we study automata for nested words, define alternating automata, and
describe determinization for Muller automata. In Section 5 we look at synchronization and regular
relations for nested words.

2 Preliminaries

Words, ω-words, and automata Let Σ be a finite alphabet. A finite word w = a1 . . . an in Σ∗

is represented as a logical structure 〈 {1, . . . , n} , (Pa)a∈Σ , < 〉, where < is the usual linear order on
{1, . . . , n}, and Pa is the set of i’s such that ai = a. We shall use w to refer to both the word and its
logical representation. Infinite, or ω-words, are sequences a1a2 · · · of symbols in Σ indexed by positive
natural numbers, and are represented as structures 〈N+, (Pa)a∈Σ, <〉. The length of w is denoted by
|w|.

A (nondeterministic finite-state) automaton A over Σ is a tuple (Σ, Q,Q0, δ, F), where Q is a finite
set of states, Q0 ⊆ Q is a set of initial states, F ⊆ Q is a set of final states and δ : Q × Σ → 2Q is
a transition function. For automata over ω-words we shall use either a Büchi acceptance condition

3

(given by F ⊆ Q) or a Muller acceptance condition (given by F ⊆ 2Q). A run of A over a word
w of length n is a map ρ : {1, . . . , n + 1} → Q such that ρ(1) ∈ Q0 and ρ(i + 1) ∈ δ(ρ(i), ai), for
all i ≤ n. Equivalently, a run of A over an ω-word w is a map ρ : N

+ → Q such that ρ(1) ∈ Q0

and ρ(i + 1) ∈ δ(ρ(i), ai), for all i. The run ρ on a finite word w is accepting if ρ(|w| + 1) ∈ F .
We let Inf (ρ) be the set of states that occurs infinitely often in a run ρ over an ω-word; that is,
Inf (ρ) = {q ∈ Q | there exist infinitely many i ∈ N

+ such that ρ(i) = q}. Then ρ is accepting for a
Büchi condition F if Inf (ρ) ∩ F 6= ∅, and it is accepting for a Muller condition F if Inf (ρ) ∈ F . A
word is accepted iff there exists an accepting run on it. Sets of (ω-)words accepted by automata are
called regular.

A is deterministic if |Q0| = 1, and |δ(q, a)| = 1 for for every a ∈ Σ and q ∈ Q. Nondeterministic
automata over ω-words with Büchi and Muller conditions are equivalent, and automata with Muller
acceptance conditions can be determinized, cf. [34].

Nested words A finite nested word over Σ is a pair w̄ = (w, η), where w ∈ Σ∗ and η is a binary
matching relation on {1, . . . , |w|} that satisfies: (1) η(i, j) implies i < j; (2) η(i, j) and η(i, j′) imply
j = j′ and η(i, j) and η(i′, j) imply i = i′; and (3) if η(i, j), η(i′, j′), and i < i′ then either j < i′ or
j′ < j.

A nested ω-word is a pair w̄ = (w, η), where w is an ω-word and η is a matching on N
+ satisfying

conditions (1)-(3) above. We also refer to them as infinite nested words. We represent nested words as
logical structures over the vocabulary {(Pa)a∈Σ, <, η}, i.e. words expanded with a matching relation.
For a nested word w̄ and two positions i < j, we let w̄[i, j] be the substructure of w̄ induced by
positions ℓ such that i ≤ ℓ ≤ j.

A position i of a nested word w̄ is: (1) a call position if there is j such that η(i, j) holds; (2) a return
position if there is j such that η(j, i) holds; and (3) an internal position if it is neither a call nor a
return. Clearly, the sets of call, return and internal positions of a nested word are pairwise disjoint.
Whenever η(i, j) holds we say that i is the call of j, and j is the return of i.

Nested word automata A nested word automaton, or NWA [6], A over Σ is defined as a usual
automaton, except that δ is a triple (δc, δι, δr) of transition functions δc, δι : Q × Σ → 2Q, and
δr : Q × Q × Σ → 2Q. A run of A over w̄ = (a1 · · · , η) is a mapping ρ : {1, . . .} → Q such that
ρ(1) ∈ Q0 and for every i ∈ N

+ (or i ∈ [1, |w̄|] for finite nested words),

• if i is a call position, then ρ(i+ 1) ∈ δc(ρ(i), ai);

• if i is an internal position, then ρ(i+ 1) ∈ δι(ρ(i), ai);

• if i is a return position whose matching call is j, then ρ(i+ 1) ∈ δr(ρ(i), ρ(j), ai).

Büchi and Muller acceptance conditions can then be defined in exactly the same way as for the usual
automata (and are easily shown to be equivalent over nested words, for nondeterministic automata).
We refer to such automata as ω-NWAs. An NWA is deterministic if the values of all transition
functions are singletons.

A set of nested (ω-)words accepted by an (ω-)NWA is called regular.

Monadic second-order logic and µ-calculus Monadic second-order logic (MSO) extends first-
order logic with quantification over sets. Over nested words, its vocabulary contains predicates Pa

(a ∈ Σ), < and η. That is, MSO over nested words is defined as:

ϕ,ϕ′ := Pa(x) | X(x) | x ≤ y | η(x, y) | ϕ ∨ ϕ′ | ¬ϕ | ∃xϕ | ∃Xϕ,

4

where a ranges over Σ, x ranges over a countably infinite set of first-order variables {x, y, . . . }, and X
ranges over a countably infinite set of monadic second-order variables {X,Y, . . . }.

Intuitively, first-order variables in MSO formulas are interpreted as positions in a nested word, while
monadic second-order variables range over sets of positions in a nested word. Given a nested word w̄,
a valuation σ that assigns a position in w̄ to each first-order variable x, and a valuation v that assigns
a set of positions in w̄ to each monadic second-order variable X, we formally define the semantics of
MSO formulas over nested words as follows (omitting the rules for Boolean connectives):

• (w̄, σ, v) |= Pa(x) iff σ(x) belongs to the interpretation of Pa in w̄;

• (w̄, σ, v) |= x ≤ y iff σ(x) ≤ σ(y) holds in w̄;

• (w̄, σ, v) |= η(x, y) iff η(σ(x), σ(y)) holds in w̄;

• (w̄, σ, v) |= X(x) iff σ(x) ∈ v(X);

• (w̄, σ, v) |= ∃xϕ iff there exists a position i in w̄ such that (w̄, σ[x → i], v) |= ϕ, where σ[x → i]
extends the valuation σ by assigning position i to the variable x; and

• (w̄, σ, v) |= ∃Xϕ iff (w̄, σ, v[X → I]) |= ϕ, for some set I of positions in w̄, where v[X → I]
extends the valuation v by assigning the set I to the variable X.

Let ϕ be an MSO formula without free second-order variables. As usual, we write ϕ(x1, . . . , xn) to
denote that x1, . . . , xn are the free first-order variables of ϕ. Further, if σ(xj) = ij (1 ≤ j ≤ n) then
we write w̄ |= ϕ(i1, . . . , in) instead of (w, σ) |= ϕ(x1, . . . , xn).

Notice that it is not necessary to extend the MSO vocabulary of nested words with unary predicates
that identify which positions are calls, returns, and internals, since they are easily definable in the
language by means of the formulas ∃yη(x, y), ∃yη(y, x), and ¬∃y(η(x, y) ∨ η(y, x)), respectively.

It follows from [5, 6] that Büchi’s theorem – showing that in the absence of nesting a language (of
words or ω-words) is regular iff it is MSO definable – extends to nested words. That is, a set of nested
words or nested ω-words is regular (accepted by an (ω-)NWA) iff it is definable by an MSO sentence
(an MSO formula without free variables).

The µ-calculus over nested words, denoted by Lµ, is defined by the grammar:

ϕ,ϕ′ := a | X | ϕ ∨ ϕ′ | ϕ ∧ ϕ′ | ¬ϕ | 3ϕ | 3ηϕ | µX.ϕ(X)

with X occurring positively in ϕ(X) (i.e. X occurs in ϕ(X) under the scope of an even number of
negations), and a ∈ Σ ∪ {call, int, ret}. Given a nested (ω-)word w̄ (finite or infinite), a position i
in w̄, and a valuation v assigning to each free variable X a set v(X) of positions of w̄, the semantics
is as follows (omitting the rules for Boolean connectives):

• (w̄, v, i) |= int iff i is an internal position; (w̄, v, i) |= call iff i is a call position; and (w̄, v, i) |=
ret iff i is a return position.

• (w̄, v, i) |= a, for a ∈ Σ, iff i is labeled a.

• (w̄, v, i) |= X iff i ∈ v(X).

5

• (w̄, v, i) |= 3ϕ iff i+ 1 belongs to w̄ and (w̄, v, i + 1) |= ϕ.

• (w̄, v, i) |= 3ηϕ iff there is an ℓ such that η(i, ℓ) holds and (w̄, v, ℓ) |= ϕ.

• (w̄, v, i) |= µX.ϕ(X) iff i is in the least fixed point of the operator defined by ϕ; in other words,
if i ∈

⋂
{P | {i′ | (w̄, v[P/X], i′) |= ϕ} ⊆ P}, where v[P/X] extends the valuation v by assigning

to X the set of positions P .

The µ-calculus over words mentions neither the modality 3ηϕ nor the predicates call, ret and int.

We include conjunction in our definition of Lµ, in addition to negation and disjunction, since later
we will need to talk about the restriction of Lµ without negation, but in which both disjunction and
conjunction are used. Notice that the predicate call is only syntactic sugar, as it can easily be defined
in the logic by 3η(a ∨ ¬a). On the other hand, both ret and int add expressive power, as without
them the language lacks the ability to talk about the past. In order to overcome this lack of expressive
power, we shall also work with the full µ-calculus [37] (denoted by Lfull

µ), which is an extension of Lµ

with the past modalities 3
−ϕ and 3

−
η ϕ:

• (w̄, v, i) |= 3
−ϕ iff i > 1 and (w̄, v, i − 1) |= ϕ.

• (w̄, v, i) |= 3
−
η ϕ iff there is an ℓ such that η(ℓ, i) holds and (w̄, v, ℓ) |= ϕ.

Greatest fixed-points νX.ϕ(X) are definable in Lµ as ¬µX.¬ϕ(¬X). Using greatest fixed-points and
2ϕ (defined as ¬3¬ϕ), one can push all negations to atoms in Lµ formulae. For resulting formulae, an
important parameter is the alternation-depth of least and greatest fixed-points [7]. We refer to Lk

µ as
the fragment of Lµ that consists of formulae of alternation depth at most k (e.g., the alternation-free
fragment is L0

µ).

Languages and unary queries Formulae of Lµ (without free variables) are satisfied in positions of
a nested word, and thus they naturally give rise to classes of unary queries that return, for w̄, the set
{i | (w̄, i) |= ϕ}. Every Lµ formula ϕ without free variables also defines a language (i.e. a class of
nested words) {w̄ | (w̄, 1) |= ϕ}. Likewise, every MSO formula ϕ(x) with one free first-order variable
defines a unary query, and every MSO sentence defines a language. In the absence of nesting, it is
well-known (see, e.g., [7, 29]) that a language (of words or ω-words) is definable by a Lµ formula iff it
is definable by an MSO sentence (not using the nesting relation η).

3 Mu-calculus over nested words

Since NWA generalize finite state automata, the translation from MSO over nested words to NWAs is
non-elementary. But just as for finite words or trees, one can find equally expressive logical formalisms
with better model-checking complexity. We show that the equivalence MSO = Lµ extends from words
and trees to nested words. It applies not only in sentences evaluated in the first position of a nested
word, but more generally to unary queries that select a set of positions in which a temporal formula is
true. This is relevant for finite nested words viewed as streaming XML documents: while theoretical
investigations have mostly looked at the case of sentences [32, 8], in practical application one typically
needs to evaluate unary queries (e.g. XPath) over such streams [30]. To deal with unary queries, we
look at Lµ with the past, i.e. Lfull

µ , and prove that it is equivalent to MSO unary queries. That is:

6

Theorem 3.1 For finite nested words and nested ω-words, MSO and Lfull
µ define the same classes of

unary queries.

As a corollary to the proof, we obtain the fact that if we only want to define languages of nested words
expressible in MSO then we can get rid of the past modalities:

Corollary 3.2 The languages of nested words (resp. nested ω-words) definable in MSO and Lµ are
the same.

We can tighten this for finite nested words. Let (Lfull
µ)+ be the negation-free (and thus alternation-free)

fragment of Lfull
µ that has two additional constants “first” and “last” with their intuitive meanings:

“first” holds only at the first position of a nested word, and “last” holds at the last position. Likewise
we define (Lµ)+ from Lµ.

Corollary 3.3 For unary queries over finite nested words, MSO = Lfull
µ = (Lfull

µ)+. Furthermore,
MSO, Lµ, and (Lµ)+ define the same languages of finite nested words.

From [17], we conclude that for every (Lfull
µ)+ formula ϕ and every finite nested word w̄, the set

{i | (w̄, i) |= ϕ} can be computed in time O(|ϕ| · |w̄|).

We make a couple of remarks before proving Theorem 3.1. Nested words are naturally translated
into trees, (in fact we shall use this translation in our proof), and there is a closely related result
in the literature, Niwinski’s theorem, showing that over the full infinite binary tree, MSO and Lµ,
evaluated at the root of the tree, are equally expressive [29]. Despite this, there does not seem to be
any easy adaptation of proof techniques in [29] that yields a proof of Theorem 3.1. Not only do we
need a stronger result for unary queries and an extension with the past modalities, but in addition
translations of infinite nested words are not complete binary trees (in fact, they have only one infinite
path).

Another natural attempt at a proof is to use the expressive-completeness result of Janin and
Walukiewicz: every bisimulation-invariant MSO property is definable in Lµ [21]. Then we could
express runs of tree automata on tree encodings of nested words by bisimulation-invariant MSO sen-
tences, apply [21] to get an equivalent Lµ formula for trees, and translate it into an Lµ formula over
nested words. This sketch indeed can be turned into a proof of MSO = Lµ for languages of nested
words, but it breaks already for unary queries over finite nested words, where one needs to encode a
more complicated run of a query automaton [28, 26], and it is even harder to adapt this argument to
infinite nested words for which we do not have an automaton model capturing unary queries. Thus,
we shall give a direct proof, based on the composition method [27] and a translation from nested words
w̄ into binary trees Tw̄ which is a slight modification of the one in [5].

Let us recall the following before proving Theorem 3.1. A Σ-labeled binary tree is a structure T =
(D,≺0,≺1, (Pa)a∈Σ), where D is a prefix-closed subset of {0, 1}∗, s ≺0 s ·0 for each s ·0 ∈ D, s ≺1 s ·1
for each s · 1 ∈ D, and Pa is the set of nodes in D that are labeled a. We say that T is finite if D is
finite; otherwise it is infinite. For a binary tree T and a node s of T , we denote by Ts the subtree of
T rooted at s, and by T s the envelope of s in T , that is, the subtree of T obtained by removing all
proper descendants of s in T . Thus, Ts and T s only have the node s in common.

MSO over binary trees can be defined in the usual way over the vocabulary that contains binary
relations ≺0 and ≺1 and unary relations (Pa)a∈Σ. The µ-calculus over binary trees is defined by

7

means of the following grammar:

ϕ,ϕ′ := a | X | ϕ ∨ ϕ′ | ¬ϕ | 3(≺0)ϕ | 3(≺1)ϕ | µX.ϕ(X)

with X occurring positively in ϕ(X), and a ∈ Σ. Intuitively, the modalities 3(≺i), i ∈ [0, 1], check
whether a node of the binary tree has an i-th child and such an i-th child satisfies ϕ. The full µ-
calculus over binary trees is its extension with past modalities 3(≺−i)ϕ, i = 0, 1, that check whether
a node in a binary tree is an i-th child and its parent satisfies ϕ. We denote by MSO(T), Lµ(T), and
Lfull

µ (T) the versions of MSO, the µ-calculus, and the full µ-calculus over binary trees, respectively,
for not confusing them with their respective counterparts over nested words.

It will be convenient during the proof of Theorem 3.1 to work with an extended version of both
Lµ(T) and Lfull

µ (T) that uses simultaneous fixed points, and thus, allows to iterate several formulas at
once. The syntax is thus enriched with the following rule: If ϕi(X1, . . . ,Xn), 1 ≤ i ≤ n, are formulas
where all Xi appear positively, then µX1 . . . µXn. (ϕ1, . . . , ϕn)[j] is also a formula, for each 1 ≤ j ≤ n.
In order to define its semantics, let T be a binary tree, s a node in T , and P the set of all those
{P1, . . . , Pn} such that for each i ∈ [1, n],

{s′ | (T, v[P1/X1, . . . , Pn/Xn], s′) |= ϕi} ⊆ Pi.

Then
(T, v, s) |= µX1, . . . , µXn. (ϕ1, . . . , ϕn)[j] ⇔ s ∈

⋂

{P1,...,Pn}∈P

Pj .

Simultaneous fixed points are often convenient for expressing complex properties, that involve several
sets to be defined at once, in a rather simple way. One can prove (using Bekic’s principle) that the
presence of simultaneous fixed points does not enrich the expressiveness of the logic, and thus, that
they can be used (without loss of generality) at any point in the proofs for the sake of simplicity.

Given a binary tree T and a distinguished node s ∈ D, we define its rank-k MSO(T) type, for k ≥ 0,
as the set of unary MSO(T) formulas ϕ(x) of quantifier rank ≤ k such that T |= ϕ(s). It is well-known
that for each k ≥ 0 there are finitely many rank-k MSO(T) types, that each rank-k MSO(T) type is
definable by a unary MSO(T) formula of quantifier rank k, and that each unary MSO(T) formula of
quantifier rank k is a finite union of rank-k MSO(T) types. We normally associate types with formulas
that define them. In the proof we also make use of rank-k MSO types of words and ω-words with a
distinguished position i, that can be defined in a similar way.

We also define a translation from nested words to binary trees that is a slight modification of the
translation shown in [5]. We do it for nested ω-words, but the same definition can also be applied to
finite nested words. Let w̄ = (a1 · · · , η) be a nested ω-word. Then for every pair (i, j), where i ∈ N

+

and j ∈ N
+ ∪ {∞}, we define a tree T [i, j] as follows. If i > j, then T [i, j] is the empty tree. If i = j,

then T [i, j] has only one node, which is labeled ai. If i < j, then we consider three cases.

• If there is no k such that i < k ≤ j and η(i, k) holds, then T [i, j] has its root labeled ai, no
1th-child, and the subtree rooted at its 0th-child isomorphic to T [i+ 1, j].

• If there is k such that i < k < j and η(i, k) holds, then T [i, j] has its root labeled ai, the subtree
rooted at its 1th-child isomorphic to T [i+1, k], and the subtree rooted at its 0th-child isomorphic
to T [k + 1, j].

• If η(i, j) holds, then T [i, j] has its root labeled ai, the subtree rooted at its 1th-child isomorphic
to T [i+ 1, j], and no 0th-child.

8

5
1 2 3 4 5 6

1

6 2

34

Figure 1: A nested word and its tree translation

The translation Tw̄ of a nested ω-word w̄ is T [1,∞]. If w̄ is a finite nested word (a1 · · · an, η), then Tw̄

is defined as T [1, n]. Notice that each position i of a nested word w̄ has a unique associated node s(i)
in Tw̄ and that each node s of Tw̄ is of the form s(i) for some position i of w̄. Further, if w̄ is a nested
ω-word then Tw̄ will be infinite, with the property that the path going down from the root obtained
by always taking the 0th-child of a node is the only infinite path in the tree. Figure 1 shows a nested
word and its tree translation.

Proof of Theorem 3.1: Translations from Lfull
µ to MSO are standard. We provide here a translation

from MSO to Lfull
µ over nested words. We only prove the infinite case, as the finite case uses the same

techniques.

To translate an MSO-formula ϕ(x) into an equivalent Lfull
µ -formula ψ, we do three things: (A) First,

translate unary MSO queries over nested ω-words into unary MSO(T) queries over the class of infinite
binary trees of the form Tw̄, where w̄ ranges over nested ω-words. (B) Then we show that over the
class of infinite binary trees of the form Tw̄, unary MSO(T) formulas are precisely those definable in
the full µ-calculus Lfull

µ (T). (C) Finally, we translate each Lfull
µ (T) formula over binary trees of the

form Tw̄ into an equivalent Lfull
µ formula over nested words.

(A) Let us start by proving that for every unary MSO formula ϕ(x) over nested words there is an
MSO(T) formula ϕ′(x) over binary trees such that w̄ |= ϕ(i) ⇔ Tw̄ |= ϕ′(s(i)), for each nested ω-word
w̄ and position i in w̄. We first define ≺ as ≺0 ∪ ≺1, and ≺∗ as the transitive closure of ≺. Both
relations are MSO definable. Then to construct ϕ′(x) from ϕ(x) it is enough to do the following:

• Replace in ϕ(x) each subformula of the form x < y with the formula x <d y, where <d is the
linear order obtained from the tree by doing a depth-first search from right-to-left. That is,

x <d y ⇔
(
(x ≺∗ y)∨ ∃z1z2z3((z1 ≺0 z2)∧ (z1 ≺1 z3)∧ (z3 = x∨ z3 �∗ x)∧ (z2 = y ∨ z2 �∗ y))

)
.

Indeed, from the tree encoding of a nested word as stated above one immediately sees that i < i′

for two positions i, i′ in a nested ω-word w̄ iff s(i) <d s(i
′) in the infinite binary tree Tw̄; and

9

• replace each subformula η(x, y) with the formula

∃z (x ≺1 z ∧ ((z = y ∨ z ≺∗0 y) ∧ ¬∃w(y ≺0 w)),

where ≺∗0 is the transitive closure of ≺0 (which is definable in MSO from ≺0). Indeed, j is the
matching return of position i in a nested ω-word w̄ iff s(i) has a 1th-child in the binary tree Tw̄

and s(j) is the unique leaf that can be reached from s(i) · 1 by always taking the 0th-child of a
node.

(B) We prove next that over the class of infinite binary trees of the form Tw̄, as w̄ ranges over nested
ω-words, unary MSO(T) formulas are precisely those definable in the full µ-calculus Lfull

µ (T). Let
Γk be the set of all rank-k MSO(T) types of binary trees with one distinguished node. Let T be a
binary tree and Π the maximal path in T that satisfies the following: Π contains the root, and for
each node s that belongs to Π the node s · 0 also belongs to Π. Assume that Π is the path s0, s1, . . .
of nodes in T . With each position si of Π we associate a symbol mi in the alphabet Σ × (Γk ∪ {#}),
for # a fresh symbol not in Σ ∪ Γk, such that mi = (a, τ) iff the label of si in T is a and the rank-k
MSO type of the subtree of T rooted at si · 1, with the root as a distinguished node, is τ (if si · 1
does not belong to T we assume that τ = #). Further, with each position si in Π we associate two
words ρ→Π (T, si) and ρ←Π (T, si) over alphabet Σ× (Γk ∪{#}) such that ρ→Π (T, si) = m0m1 · · ·mi−1 and
ρ←Π (T, si) = mimi+1 · · · . Note that if si = s0, then ρ→Π (T, si) is the empty string.

Let s be a node of T . If s is not in Π we denote by s′ the nearest ancestor of s that is in Π. We define
a tuple πk(T, s) composed by 4 elements as follows (assuming ⊥ is a fresh element):

• The first component of πk(T, s) is the rank-k MSO type of ((Ts′·1)
s, s) if s is not in Π; and it is

the symbol ⊥ otherwise.

• The second component of πk(T, s) is the rank-k MSO type of (Ts, s) if s is not in Π; and it is
the symbol ⊥ otherwise.

• The third component of πk(T, s) is the rank-k MSO type of (ρ→Π (T, s′), s′) if s is not in Π; and
it is the rank-k MSO type of (ρ→Π (T, s), s) otherwise.

• The fourth component of πk(T, i) is the rank-k MSO type of (ρ←Π (T, s′), s′) if s′ is not in Π; and
it is the rank-k MSO type of (ρ←Π (T, s), s) otherwise.

The following lemma is a standard composition argument that can be proved via Ehrenfeucht-Fräıssé
games for MSO (c.f. [24]):

Lemma 3.4 Let k ≥ 0. Let T1, T2 be binary trees, and s1 and s2 nodes in T and T ′, respectively. If
πk(T1, s1) = πk(T2, s2) then the rank-k MSO types of (T1, s1) and (T2, s2) are the same.

Let ϕ(x) be an arbitrary unary MSO(T) formula, and assume that the depth of quantifier nesting
of ϕ is k ≥ 0. From the previous lemma it follows that there is a finite set S of tuples of the form
πk(Tw̄, s(i)) such that Tw̄′ |= ϕ(s(i′)) ⇔ πk(Tw̄′ , s(i′)) ∈ S, for each nested ω-word w̄′ and position i′ in
w̄′. Fix a tuple (χ, χ0, ξ, ξ0) ∈ S. Thus, in order to prove that for every unary MSO(T) formula we can
construct an equivalent Lfull

µ (T) formula over infinite binary trees of the form Tw̄, it is enough to show

that there is an Lfull
µ (T) formula α(χ,χ0,ξ,ξ0) over binary trees, such that (Tw̄, s(i)) |= α(χ,χ0,ξ,ξ0) ⇔

πk(Tw̄, s(i)) = (χ, χ0, ξ, ξ0), for each nested ω-word w̄ and position i of w̄.

10

Note first that each first or second component of a tuple of the form πk(Tw̄, s(i)), for a nested ω-word
w̄ and position i in w̄, is the symbol ⊥ or the rank-k MSO(T) type of a finite binary tree. Further,
each letter in the word ρ←Π (Tw̄, s(j)) or ρ→Π (Tw̄, s(j)), for a nested ω-word w̄ and a position j of Π, is
of the form (a,#) or (a, τ), where τ is the rank-k MSO(T) type of a finite binary tree. Further, the
only infinite path in Tw̄ is Π itself.

The following remarks will be important for the rest of the proof:

• There is an Lfull
µ (T) formula βΠ over binary trees of the form Tw̄, defined as

µX.
(
root ∨ 3(≺−0)X

)
,

where root is the Lfull
µ (T) formula (¬3(≺−0)true∧¬3(≺−1)true) that identifies the root of the

tree, such that a node s(i) of a binary tree Tw̄ satisfies βΠ iff s(i) belongs to the unique infinite
path Π of Tw̄.

• Each rank-k MSO(T) type τ of a finite binary tree with the root as a distinguished node is
expressible by a Lµ(T) formula τ∗ (i.e. τ∗ does not mention any past modalities). That is, for
each finite binary tree T and node s of T it is the case that (T, s) |= τ∗ iff the rank-k MSO type
of (Ts, s) is τ . This can be proved by a simple coding in Lµ(T) of the run of a bottom-up tree
automaton on a binary tree.

We first show that there is a Lfull
µ (T) formula ψξ over binary trees, such that a node s(j) of Tw̄ satisfies

ψξ iff s(j) is in the path Π of Tw̄, and the rank-k MSO type of (ρ→Π (Tw̄, s(j)), s(j)) is ξ. Since ξ is
equivalent to an MSO sentence over finite words with alphabet Σ×(Γk∪{#}), there is a deterministic
automaton Aξ = (Q, q0, δ, F) that accepts exactly those finite words over alphabet Σ × (Γk ∪ {#})
whose rank-k MSO type is ξ. Assume Q = {q0, . . . , qp}. Consider the following Lfull

µ (T) formula over
binary trees: µX0, . . . , µXp. (αX0 , . . . , αXp), where the formulas αXi

, for i ≤ p, are defined as follows
(τ ranges over Γk):

∨

δ(q0,(a,τ))=qi

(¬3(≺−0)true ∧ ¬3(≺−1)true ∧ a ∧ 3(≺1)τ
∗) ∨

∨

δ(q0,(a,#))=qi

(¬3(≺−0)true ∧ ¬3(≺−1)true ∧ a ∧ ¬3(≺1)true) ∨

∨

δ(qj ,(a,τ))=qi

(3(≺−0)Xj ∧ a ∧ 3(≺1)τ
∗) ∨

∨

δ(qj ,(a,#))=qi

(3(≺−0)Xj ∧ a ∧ ¬3(≺1)true).

It is not hard to see that if a node s(j) in Tw̄ belongs to the least fixed point of some Xi, for i ≤ p, then
s(j) is in the unique infinite path Π of Tw̄. Further, if s(j)·0 is an element in Π, then s(j) is in the least
fixed point of Xi, where qi ∈ F , iff the rank-k type of ρ→Π (Tw̄, s(j) ·0) is ξ. Therefore, ψξ can be defined
as the Lfull

µ (T) formula that computes the projection of the formula µX0, . . . , µXp. (αX0 , . . . , αXp) over
all those Xi such that qi ∈ F .

In a similar way, and using the fact that over words and ω-words MSO sentences are precisely those
definable in the µ-calculus without past modalities, one can show that there is a Lµ(T) formula λξ0

over binary trees (that is, λξ0 does not mention any past modalities), such that a node s(j) of Tw̄

11

satisfies λξ0 iff s(j) is in the path Π of Tw̄, and the rank-k MSO type of (ρ←Π (Tw̄, s(j)), s(j)) is ξ0. We
can make sure that each s(j) that satisfies the formula λξ0 is in the path Π by using the formula βΠ as
defined above. We actually prove a stronger result. Let ϕ(X̄) be an arbitrary µ-calculus formula over
words over the alphabet Σ×(Γk∪{#}). There is an Lµ(T) formula ϕ′(X̄) over binary trees, such that
for each nested ω-word w̄, valuation v of the free variables, and position j of w̄, (Tw̄, v, s(j)) |= ϕ′(X̄)
iff s(j) is in the unique infinite path Π of Tw̄, and (ρ←Π (Tw̄, s(j)), v

′, s(j)) |= ϕ(X̄), where for each
X ∈ X̄ , v′(X) is the restriction of v(X) to the elements in Π that are descendants of s(j) (including
j). Note that this immediately implies the existence of λξ0 since ξ0 is expressible by a formula without
free variables in the µ-calculus over words.

The translation ϕ′(X̄) is defined as follows:

• If ϕ is (a, τ), τ ∈ Γk, then ϕ′ is (βΠ∧a∧3(≺1)τ
∗), where τ∗ is the µ-calculus formula over finite

binary trees that is equivalent to τ .

• If ϕ is (a,#), then ϕ′ is (βΠ ∧ a ∧ ¬3(≺1)true).

• If ϕ is X, then ϕ′ is (X ∧ βΠ).

• If ϕ is ¬ψ, then ϕ′ is ¬ψ′ ∧ βΠ.

• If ϕ is (ψ ∨ ζ), then ϕ′ is (ψ′ ∨ ζ ′).

• If ϕ is 3ψ, then ϕ′ is 3(≺0)ψ
′.

• If ϕ is µY.ψ(Y), then ϕ′ is µY.ψ′(Y).

This finishes the proof of the existence of λξ0 .

Further, by adapting techniques in [28, 20, 9] one can show that there is a full µ-calculus formula χ∗
over binary trees such that a node s(j) of Tw̄ satisfies χ∗ iff s(j) is not in the path Π of Tw̄, and the
rank-k MSO type of ((Ts(ℓ)·1)

s(j), s(j)) is χ, where s(ℓ) is the nearest ancestor of s(j) that is in Π. The
intuitive idea is to run a simultaneous fixed point formula downwards that starts at each node of the
form s(ℓ) · 1, where s(ℓ) is in Π, and that labels each node s(j) not in Π that is a descendant of s(ℓ) in
the direction of s(ℓ) · 1 with the rank-k MSO type of ((Ts(ℓ)·1)

s(j), s(j)). This can be done as it follows

from [28, 20] that the rank-k MSO type of ((Ts(ℓ)·1)
s(j)·(1−p), s(j) · (1− p)), where p = 0, 1, is uniquely

determined from the rank-k MSO type of ((Ts(ℓ)·1)
s(j), s(j)), which is obtained in the previous step

of the evaluation of the simultaneous fixed point, and the rank-k MSO type of Ts(j)·p, which, as we
mentioned earlier, is expressible in the µ-calculus over binary trees.

The definition of α(χ,χ0,ξ,ξ0) is given by cases (here Pα is an abbreviation for “somewhere in the past

α”, that is expressible in Lfull
µ (T) by the formula µX.(α ∨ 3(≺−0)X ∨ 3(≺−1)X)):

• α(χ,χ0,ξ,ξ0) is the formula

¬βΠ ∧ χ∗ ∧ (χ0)
∗ ∧ P (¬βΠ ∧ 3(≺−1)(βΠ ∧ λξ0 ∧ ¬root ∧ 3(≺−0)ψξ))

if χ, χ0 6= ⊥ and ξ is not the type of the empty string;

• α(χ,χ0,ξ,ξ0) is the formula

¬βΠ ∧ χ∗ ∧ (χ0)
∗ ∧ P (¬βΠ ∧ 3(≺−1)(βΠ ∧ λξ0 ∧ root))

if χ, χ0 6= ⊥ and ξ is the type of the empty string;

12

• α(χ,χ0,ξ,ξ0) is the formula

βΠ ∧ λξ0 ∧ ¬root ∧ 3(≺−0)ψξ

if χ, χ0 = ⊥ and ξ is not the type of the empty string;

• and α(χ,χ0,ξ,ξ0) is the formula
βΠ ∧ λξ0 ∧ root

if χ, χ0 = ⊥ and ξ is the type of the empty string.

(C) In order to finish the proof we show that each full µ-calculus formula over binary trees can be
translated into an equivalent Lfull

µ -formula ψ over nested ω-words. We prove something stronger. We

show by induction on the structure of formulas that for each ζ(X̄) in Lfull
µ (T) there is an Lfull

µ -formula
ζ◦(X̄) over nested words, such that (Tw̄, v, s(i)) |= ζ(X̄) ⇔ (w̄, v, i) |= ζ◦(X̄), for each nested ω-word
w̄, valuation v of the variables, and position i of w̄.

The only nontrivial inductive cases are: (1) 3(≺1)ζ, (2) 3(≺0)ζ, (3) 3(≺−1)ζ, and (4) 3(≺−0)ζ. These
cases can be translated as: (1) (call ∧ 3ζ◦), (2) (int ∧ 3ζ◦) ∨ (call ∧ 3η3ζ

◦), (3) 3
−(call ∧ ζ◦),

and (4) 3
−(ret∧3

−
η ζ
◦)∨3

−(int∧ ζ◦), respectively, where ζ◦ is the translation of ζ that is obtained
by induction hypothesis. This concludes the proof of the theorem. 2

Proof of Corollary 3.2: The rank-k MSO type of a tree Tw̄ with the root as a distinguished node, only
depends on the rank-k MSO type of (ρ←Π (Tw̄, ε), ε), where ε is the root of Tw̄. Thus, in part (B) of the
proof of Theorem 3.1 we only need to translate into Lfull

µ (T) tuples of the form (⊥,⊥, ξ, ξ0), where χ
is the type of the empty string. It follows from the proof that this can be done without the help of
past modalities, i.e. each one of these tuples can be expressed by a Lµ(T) formula. From part (C) of
the proof of Theorem 3.1 it easily follows that each Lµ(T) formula over trees can be translated into
an equivalent Lµ formula over nested words. 2

Proof of Corollary 3.3: First, by an easy coding of a query automaton on binary trees [28] one can show
that each unary MSO(T) formula over finite binary trees is equivalent to an Lfull

µ (T) formula that does
not use negation but uses additional constants root, leaf, no− 0th− child, and no− 1th− child,
interpreted in the obvious way (e.g. a node s satisfies no− 0th− child iff s ·0 does not belong to D).
It is then easy to translate each formula ϕ in this logic into an (Lfull

µ)+ formula ψ over nested words
such that (Tw̄, s(i)) |= ϕ⇔ (w̄, i) |= ψ, for each finite nested word w̄ and position i in w̄. 2

Final remark Every translation from MSO over nested words into the µ-calculus shown in this
section is effective. Consider the more general case, that of unary queries over nested ω-words. The
proof of Theorem 3.1 proceeds as follows. It first translates each unary MSO query over nested ω-
words into a unary MSO query over the class of infinite binary trees that code nested ω-words. This
translation is clearly effective. Afterwards, it translates each unary MSO query over this class of trees
into an equivalent full µ-calculus formula. The translation first defines from the MSO formula ϕ(x) a
finite set S of tuples of the form πk(Tw̄, s(i)) such that Tw̄′ |= ϕ(s(i′)) iff πk(Tw̄′ , s(i′)) ∈ S, for each
nested ω-word w̄′ and position i′ in w̄′, and then defines for each πk(Tw̄, s(i)) ∈ S a formula ψ in the
full µ-calculus over infinite binary trees such that πk(Tw̄′ , s(i′)) = πk(Tw̄, s(i)) iff (Tw̄′ , s(i′)) |= ψ. The
construction of the set S from ϕ can be done effectively, simply because the MSO theory of the class of
labeled infinite binary trees is decidable and the class of labeled infinite binary trees that code nested
ω-words is MSO definable. The construction of the formula ψ from πk(Tw̄, s(i)) is effective essentially

13

for the same reasons. Finally, the proof of Theorem 3.1 translates each full µ-calculus formula without
free variables over infinite binary trees that code nested ω-words into a full µ-calculus formula over
nested ω-words. Again, this translation is effective, and, thus, the whole translation is effective.

4 Automata models for nested ω-words

4.1 Nested ω-word automata

Visibly pushdown automata (VPA), with both Büchi and Muller acceptance conditions, were intro-
duced in [5]. These automata are a subclass of pushdown automata, and accept words over a pushdown
alphabet, where the nesting structure is implicit, and there can be unmatched calls. In [5], VPAs were
shown to be equivalent to MSO extended with a binary matching predicate, but not necessarily de-
terminizable. The example of a visibly pushdown language (VPL) over infinite words that cannot
be accepted by a deterministic automaton [5] can use arbitrarily many calls without matching re-
turns, something that cannot happen in nested words. Then [25] introduced a notion of stair visibly
pushdown automata (stair VPA) to control such unmatched calls and showed that stair VPAs are
determinizable. These models were defined for VPLs, so we first specialize a particular class of stair
VPAs [25] to nested words, thereby obtaining a notion of combined nested word automata, that admit
determinization. We then use such automata to show that over nested words, for every ω-NWA (with
a Büchi or a Muller acceptance condition), there exists an equivalent deterministic Muller ω-NWA.

A combined nested word automaton (CNWA) puts together an ω-word automaton A1 with a Muller
acceptance condition and an NWA A2 over finite nested words. It runs A1 over all positions that
are not inside a call. Every time A1 finds a call position i, it invokes A2 to process the finite nested
word formed by the elements between i and its matching return j, and then it uses its final state to
determine what state to assign to j+ 1, and continues its run from position j+ 1. Formally, a CNWA
A over Σ is a pair (A1,A2), where:

• A2 = (Σ, Q2, Q
0
2, δ2 = (δ2c , δ

2
ι , δ

2
r)) is an NWA without accepting states;

• A1 = (Σ ∪ Q2, Q1, Q
0
1, δ1,F1) is an ω-word automaton with Muller acceptance condition over

alphabet Σ ∪Q2 (we assume, of course, that Σ and Q2 are disjoint).

Given a nested ω-word w̄ and i ≥ 1, we define the set of external positions E(w̄) as positions i such
that there are no j, k ≥ 1 such that j < i ≤ k and η(j, k) holds. Note that 1 ∈ E(w̄) and E(w̄) is
infinite. If i ∈ E(w̄) is not a call, then i + 1 ∈ E(w̄). If i ∈ E(w̄) is a call with j being its matching
return, then the next, after i, element of E(w̄) is j + 1. With this, we define a run of A over a nested
ω-word w̄ = (a1a2 · · · , η) as a mapping ρ : E(w̄) → Q1 such that ρ(1) ∈ Q0

1 and for every i ∈ E(w̄):

• if i is not a call (and i+ 1 ∈ E(w̄)), then ρ(i+ 1) ∈ δ1(ρ(i), ai);

• if i is a call with return j (and the successor of i in E(w̄) is j + 1), then ρ(j + 1) ∈ δ1(ρ(i), q),
where q is a state in Q2 such that there exists a run ρ2 of A2 over w̄[i, j] having q as the last
state.

A CNWA A accepts w̄ if there is a run ρ of A over w̄ such that Inf (ρ) ∈ F1. We say that CNWA
A = (A1,A2) is deterministic if both A1 and A2 are deterministic. Then results in [25] can be restated
in this terminology as:

14

Proposition 4.1 ([25]) Over nested ω-words, CNWAs and deterministic CNWAs are equivalent.

Next we extensively use the notion of combined nested word automaton to prove the main result of
this section:

Theorem 4.2 Over nested ω-words, MSO, ω-NWA with Büchi acceptance condition and determin-
istic ω-NWA with Muller acceptance condition, define precisely the regular languages. Moreover,
translations between these formalisms are effective.

Now we proceed to prove Theorem 4.2. In the proof, we use the intermediate results presented below.

Lemma 4.3 For every ω-NWA A with n states, one can construct an CNWA B such that B has
O(n2) states and L(A) = L(B).

Proof: Assume that A = (Σ, Q,Q0, δ = (δc, δι, δr), F). The idea behind the definition of CNWA
B = (B1,B2) is very simple. Let i be an external position of a nested ω-word w̄ and assume that B has
assigned state q to this position. If i is not a call, then B uses δι to determine the successor state. If
i is call position with matching return j, then B runs B2 over w̄[i, j] to determine the successor state.
Automaton B2 works as A and has states of the form (q1, q2, x), where q1, q2 ∈ Q and x is either t

or f. In a triple (q1, q2, x), q1 is the initial state of the execution of A, q2 is the current state of the
execution of A and x indicates whether a final state has been visited in the execution of automaton
A (x = t if and only if q2 is a final state or a final state occurred previously). Once the execution of
B2 has terminated, B chooses a run ρ of B2 over w̄[i, j] where all the states are of the form (q, q′, x),
since the state of call position i was q. Furthermore, B uses flag x to know whether a final state of A
was visited when processing w̄[i, j]. This is an important issue because the acceptance condition of A
depends on the states visited in any position of w̄, while it depends only on the external positions for
the case of B. Thus, B uses flag x to handle the case where a nested ω-word is accepted by A because
some final state is visited infinitely often in the non-external positions, while final states are visited
only a finite number of times in the external positions.

Formally, nested word automaton B2 is defined as (Σ, Q2, Q
0
2, δ2 = (δ2c , δ

2
ι , δ

2
r)), where Q2 = Q×Q×

{t, f}, Q0
2 = {(q, q, t) | q ∈ F} ∪ {(q, q, f) | q ∈ Q \ F} and δ2 is defined as follows:

• For every q1, q2 ∈ Q and a ∈ Σ:

δ2c ((q1, q2, t), a) = {(q1, q3, t) | q3 ∈ δc(q2, a)},

δ2c ((q1, q2, f), a) = {(q1, q3, x) | q3 ∈ δc(q2, a) and x = t if q3 ∈ F, and x = f otherwise},

δ2ι ((q1, q2, t), a) = {(q1, q3, t) | q3 ∈ δι(q2, a)},

δ2ι ((q1, q2, f), a) = {(q1, q3, x) | q3 ∈ δι(q2, a) and x = t if q3 ∈ F, and x = f otherwise}

• For every q1, q2, q3 ∈ Q, x ∈ {t, f} and a ∈ Σ:

δ2r ((q1, q2, t), (q1, q3, x), a) = {(q1, q4, t) | q4 ∈ δr(q2, q3, a)},

δ2r ((q1, q2, f), (q1, q3, x), a) = {(q1, q4, y) | q4 ∈ δr(q2, q3, a) and

y = t if q4 ∈ F, and y = f otherwise}.

15

Moreover, ω-word automaton B1 is defined as (Σ ∪Q2, Q1, Q
0
1, δ1,F1), where Q1 = Q ∪ (Q× {int}),

Q0
1 = Q0, F1 = {X ⊆ Q1 | X ∩ (F ∪ (Q × {int})) 6= ∅} (F1 is a Muller acceptance condition that

represents Büchi acceptance condition F1 = F ∪ (Q×{int})), and δ1 : Q1× (Q2∪Σ) → 2Q1 is defined
as follows:

• If q ∈ Q and a ∈ Σ, then

δ1(q, a) = δι(q, a),

δ1((q, int), a) = δι(q, a).

• If q ∈ Q and (q1, q2, x) ∈ Q2, then

δ1(q, (q1, q2, x)) =






∅ q 6= q1

{q2} q = q1 and x = f

{(q2, int)} q = q1 and x = t

δ1((q, int), (q1, q2, x)) =






∅ q 6= q1

{q2} q = q1 and x = f

{(q2, int)} q = q1 and x = t

It is not difficult to prove that L(A) = L(B). This concludes the proof of the lemma. 2

Lemma 4.4 For every deterministic CNWA A with n states, one can construct a deterministic ω-
NWA B with Muller acceptance condition such that B has O(n) states and L(A) = L(B).

Proof: Assume that A = (A1,A2), where A2 = (Σ, Q2, q2, δ2 = (δ2c , δ
2
ι , δ

2
r)), A1 = (Σ ∪

Q2, Q1, q1, δ1,F1), both A1 and A2 are deterministic and Q1 ∩ Q2 = ∅. We define a deterministic
ω-NWA B = (Σ, Q, q0, δ = (δc, δι, δr),F) as follows. The set of states Q, the initial state q0 and the ac-
ceptance condition F are defined as (Q1 ∪Q2 ∪{qN}), q1 and F1, respectively, where qN 6∈ (Q1 ∪Q2).
Transition function δ is defined in such a way that for every position i of an ω-word w̄ such that
i ∈ E(w̄): (1) if i is not a call position, then B works on this position as A1, and (2) if i is a call
position with return j, then B works on the word w̄[i, j] as the NWA A2. More precisely, for every
state q ∈ Q1 and a ∈ Σ:

δι(q, a) = δ1(q, a),

δc(q, a) = δ2c (q2, a).

It should be noticed that δc(q, a) is defined as δ2c (q2, a) since B launches a computation of A2 in every
call position that belongs to E(w̄), and q2 is the initial state of A2. For every state q ∈ Q2 and a ∈ Σ:

δι(q, a) = δ2ι (q, a),

δc(q, a) = δ2c (q, a).

For every q, q′ ∈ Q1 and a ∈ Σ:

δr(q, q
′, a) = qN .

16

We note that the state qN is used to mark the runs of B that cannot represent a valid run of A. For
example, it could not be the case that the transition function δ2r uses two states of A1 and, thus,
δr(q, q

′, a) = qN for every q, q′ ∈ Q1 and a ∈ Σ. Furthermore, for every q, q′ ∈ Q2 and a ∈ Σ:

δr(q, q
′, a) = δ2r (q, q′, a).

For every q ∈ Q1, q
′ ∈ Q2 and a ∈ Σ:

δr(q
′, q, a) = δ1(q, δ

2
r (q′, q2, a)),

δr(q, q
′, a) = qN .

It should be noticed that δr(q
′, q, a) is defined as δ1(q, δ

2
r (q′, q2, a)) since the last state in the run of

A2 on a sub-word is obtained by executing δ2r (q
′, q2, a). Finally, for every q ∈ (Q1 ∪Q2 ∪ {qN}) and

a ∈ Σ:

δι(qN , a) = qN ,

δc(qN , a) = qN ,

δr(qN , q, a) = qN ,

δr(q, qN , a) = qN .

It is not difficult to prove that L(A) = L(B). This concludes the proof of the lemma. 2

Proof of Theorem 4.2: From Lemma 4.3, Proposition 4.1, Lemma 4.4 and the fact that every ω-NWA
with Muller acceptance condition can be translated into an equivalent ω-NWA with Büchi acceptance
condition, we conclude that over nested ω-words, all the following define precisely the class of regular
languages: ω-NWA with Büchi acceptance condition, CNWA and deterministic ω-NWA with Muller
acceptance condition. Moreover, the equivalence of these automata models with MSO is a corollary
of the results in [5] and [25], which concludes the proof of the theorem. 2

By using the machinery developed in this section, one can also prove that (note that the bound is the
same as for determinization of stair VPAs for VPLs [25]):

Corollary 4.5 For every ω-NWA with n states, one can construct an equivalent deterministic ω-NWA
with a Muller acceptance condition and with 2O(n2) states.

Proof: To prove the corollary, we need a more technical version of Lemma 4.3, which can be proved by
combining the idea in the proof of Lemma 4.3 with the determinization algorithm for NWAs proposed
in [6]:

Lemma 4.6 For every ω-NWA A with n states, one can construct an CNWA B = (B1,B2) such that
B1 has O(n) states, B2 has 2O(n2) states, B2 is a deterministic NWA and L(A) = L(B).

Now assume that A is an ω-NWA with n states. By using Lemma 4.6, one obtains an equivalent
CNWA B = (B1,B2) such that B1 has O(n) states, B2 has 2O(n2) states and B2 is a deterministic
NWA. Then a deterministic CNWA C = (C1,B2) equivalent to B is obtained by determinizing ω-word
automaton C1 using a 2O(n log n) Safra construction [31]. Finally, a deterministic ω-NWA D with

17

Muller acceptance condition is obtained from C by using Lemma 4.4. Automaton D is equivalent
to A, and it has 2O(n2) states as C1 has 2O(n log n) states, B2 has 2O(n2) states, and the number of
states in D is linear in the number of states in C = (C1,B2). This concludes the proof of the corollary.2

It is well-known that a language of ω-words is regular (accepted by a Büchi or a Muller automaton) iff
it is a finite union of languages of the form UV ω, where U, V ⊆ Σ∗ are regular languages. Automata
characterizations imply a similar result for nested ω-words.

Corollary 4.7 A language of nested ω-words is regular iff it is a finite union of languages of the form
UV ω, where U and V are regular languages of finite nested words.

Proof: First, it follows from any of the characterizations of regular languages of nested ω-words that
sets of the form UV ω, where U and V are regular languages of finite nested words, are regular. For the
converse, let A = (A1,A2) be a deterministic CNWA accepting a regular language of nested ω-words.
Assume that L is a regular language of usual finite words over Σ ∪ Q2, where Q2 is the set of states
of A2. Define W (L) as the set of finite nested words obtained from words s ∈ L as follows: each
letter q ∈ Q2 is replaced by a finite nested word whose first position is a call, whose last position is
its matching return, and over which the unique run of A2 ends in q. It follows immediately from the
automata (or MSO) characterizations that W (L) is a regular language of finite nested words.

Now consider the language of ω-words over Σ ∪ Q2 accepted by A1. Since it is regular, it is of the
form

⋃
i L
′
iL

ω
i , where L′i, Li are regular languages of finite words. But then it follows immediately

that the language accepted by A is
⋃

iW (L′i)W (Li)
ω, proving the corollary. 2

A basic problem in automata theory, that plays a crucial role in verification of properties of infinite
computations [36], is the nonemptiness problem: is the language accepted by an automaton nonempty?
It was shown in [5] that nonemptiness, and more generally the reachability problem for visibly push-
down ω-automata is polynomial. Combining this with a NLOGSPACE algorithm for nonemptiness
of ω-word automata, we get polynomial nonemptiness algorithms for ω-NWA and CNWA. Further, a
slight modification of the PTIME-hardness reduction for emptiness for context-free grammars in [22]
gives us:

Corollary 4.8 The nonemptiness problem for both ω-NWA and CNWA is PTIME-complete.

Finally, by coding a deterministic automaton with an L1
µ formula, we obtain the following:

Corollary 4.9 Over nested ω-words, Lµ collapses to L1
µ.

Proof: It follows from [6] that (deterministic) NWA and MSO define the same class of finite nested
words. On the other hand, from Corollary 3.3, each language of finite nested words defined by an
MSO sentence can also be defined by an (Lµ)+ formula. Since (Lµ)+ formulas do not use negation,
they can be expressed in the alternation-free fragment L0

µ of Lµ. We conclude that over finite nested
words, acceptance by a (deterministic) NWA can be described by an L0

µ formula. Moreover, we know
that acceptance by a Muller automaton on (unnested) ω-words can be expressed by an L1

µ formula
[7]. Using that L1

µ formula and plugging in a L0
µ formula for acceptance by an NWA we can thus

simulate acceptance by a CNWA in L1
µ. 2

18

4.2 Alternating automata for nested ω-words

In the context of formal verification, alternating automata have proved to be the key to a comprehen-
sive automata-theoretic framework for temporal logics [36]. With the development of temporal logics
for nested words [4, 2, 1], it is natural to develop alternating automata for nested words, with the
hope that they can simplify the process of translating temporal logics into automata.

We now define (finite-state) alternating automata for both finite and infinite nested words, and show
that they are equivalent to NWAs. We note that this is in sharp contrast with the theory of alter-
nating automata for nested trees, where alternating automata are known to be more expressive than
nondeterministic automata [3].

First recall the definition of alternating automata for usual finite and infinite words. Given a set of
states Q, let B+(Q) be the set of positive Boolean combinations of elements from Q. Given X ⊆ Q
and ϕ ∈ B+(Q), we say that X satisfies ϕ if the truth assignment σX satisfies ϕ, where σX is defined
as σX(q) = 1 iff q ∈ X. Then an alternating (ω-)word automaton A is a tuple (Σ, Q,Q0, δ, F), where
Q, Q0 and F are defined as for the case of word automata, and δ : Q × Σ → B+(Q) is a transition
function. A run of such an automaton is a labeled tree. A Σ-labeled tree T is a pair (D,λ), where
λ : D → Σ and D is a prefix-closed subset of N

∗ such that (1) if x · i ∈ D and 0 ≤ j < i, then x · j ∈ D,
and (2) for every x ∈ D, there exists a finite number of strings of the form x · i in D (finite branching).
For x ∈ N∗, its length is denoted by |x|. The depth of a tree is maxx∈D |x|.

A run of an alternating word automaton A = (Σ, Q,Q0, δ, F) over a finite word w = a1 · · · an is a
finite Q-labeled tree T = (D,λ) of depth n such that λ(ε) ∈ Q0 and for every x ∈ D that has children
x · 0, . . ., x · ℓ of length i, we have that {λ(x · 0), . . . , λ(x · ℓ)} satisfies δ(λ(x), ai). An alternating word
automaton A accepts a word w = a1 · · · an if there is a run T = (D,λ) of A over w such that λ(x) ∈ F
for every node x in T of length n. The run of an alternating ω-word automaton A = (Σ, Q,Q0, δ, F)
over an ω-word w = a1a2 · · · is defined in exactly the same way as an infiniteQ-labeled tree T = (D,λ).
Then A accepts ω-word w if there is an accepting run T = (D,λ) of A over w, i.e. such that every
infinite branch of T visits infinitely often nodes labeled by states in F .

An alternating nested word automaton (or alternating NWA, or ANWA) is an NWA that admits
alternation in call, return, and internal transitions. Formally, an ANWA A is a tuple (Σ, Q,Q0, δ, F),
where Q, Q0 and F are defined as for the case of alternating word automata, and δ is a triple
(δc, δι, δr) of transition functions δc, δι : Q× Σ → B+(Q), and δr : Q×Q× Σ → B+(Q). A run of A
over w̄ = (a1 · · · an, η) is a Q-labeled finite tree T = (D,λ) of depth n such that λ(ε) ∈ Q0 and for
every x ∈ D with children x · 0, . . ., x · ℓ of length i ≤ n:

• if i is a call position, then {λ(x · 0), . . . , λ(x · ℓ)} satisfies δc(λ(x), ai);

• if i is an internal position, then {λ(x · 0), . . . , λ(x · ℓ)} satisfies δι(λ(x), ai);

• if i is a return position with matching call j and y is the prefix of x with |y| = j − 1, then
{λ(x · 0), . . . , λ(x · ℓ)} satisfies δr(λ(x), λ(y), ai).

An alternating nested word automaton A accepts a nested word w̄ = (a1 · · · an, η) if there is a run
T = (D,λ) of A over w̄ such that λ(x) ∈ F for every node x in T of length n.

As for the case of nested word automata, alternating automata can also be considered for the case
of nested ω-words. More precisely, an alternating nested ω-word automaton (ω-ANWA) A is a tuple
(Σ, Q,Q0, δ, F), where Q, Q0, δ and F are defined exactly as for ANWA. A run is defined in the same

19

way as above, and the acceptance condition again states that along each infinite branch, states from
F are seen infinitely often.

We now show that alternating nested word automata, for both finite and infinite nested words, are
equivalent to nested word automata. We start with the infinite case.

Theorem 4.10 For every ω-ANWA of size n, there exists (and can be effectively constructed) an

equivalent ω-NWA with a Büchi acceptance condition and of size 22nO(1)

.

Proof: We start by introducing the necessary terminology to state a result in [14] that is used to prove
the theorem. In particular, we introduce the notions of nondeterministic visibly pushdown automaton
with Büchi acceptance condition and alternating visibly pushdown automaton with Büchi acceptance
condition 1.

A visibly pushdown alphabet Σ is an alphabet which is partitioned into three pairwise disjoint sets
Σc (call symbols), Σr (return symbols) and Σι (internal symbols). Given a visibly pushdown alphabet
Σ = Σc ∪ Σr ∪ Σι, a nondeterministic visibly pushdown automaton with Büchi acceptance condition
(Büchi NVPA) on ω-words over Σ is a tuple A = (Σ, Q,Q0,Γ,∆, F), where Q is a finite set of states,
Q0 ⊆ Q is a finite set of initial states, F ⊆ Q is a finite set of accepting states, Γ is the alphabet of
the stack and

∆ ⊆

(
Q× Σc ×Q× Γ

)
∪

(
Q× Σr × (Γ ∪ {⊥}) ×Q

)
∪

(
Q× Σι ×Q

)
, (†)

with ⊥ a special stack bottom symbol not contained in Γ [14]. A run ρ of A over an ω-word w = a1a2 · · ·
is a function that indicates what the state and the content of the stack are in each step of the execution
of A. More precisely, ρ is a function from N

+ into Q×(Γ∗ ·{⊥}) such that ρ(1) = (q,⊥), where q ∈ Q0,
and for every i ≥ 1:

• If ρ(i) = (q, α) and ai ∈ Σc, then there exist B ∈ Γ and q′ ∈ Q such that (q, ai, q
′, B) ∈ ∆ and

ρ(i+ 1) = (q′, B · α);

• If ρ(i) = (q, α) and ai ∈ Σr, then there exist B ∈ (Γ∪{⊥}) and q′ ∈ Q such that (q, ai, B, q
′) ∈ ∆

and

ρ(i+ 1) =

{
(q′,⊥) B = ⊥ and α = ⊥,

(q′, β) B ∈ Γ and α = B · β;

• If ρ(i) = (q, α) and ai ∈ Σι, then there exists q′ ∈ Q such that (q, ai, q
′) ∈ ∆ and ρ(i+1) = (q′, α).

Given a run ρ of A over w, define Inf (ρ) as the set of states from Q that occur infinitely often in ρ.
Then A accepts w if and only if there exists a run ρ of A over w such that Inf (ρ) ∩ F 6= ∅.

Now assume given a visibly pushdown alphabet Σ = Σc ∪ Σr ∪ Σι. Then an alternating visibly
pushdown automaton with Büchi acceptance condition (Büchi AVPA) on ω-words over Σ is a tuple
A = (Σ, Q,Q0,Γ, δ, F), where Q, Q0, F and Γ are defined as for the case of Büchi NVPAs and

δ : Q× Σ × (Γ ∪ {⊥}) → B+(Q) ∪ B+(Q× Γ),

1It is important to notice that alternating visibly pushdown automata were introduced in [14] by considering a parity
acceptance condition. We reformulate here some of the results of [14] for alternating visibly pushdown automata with a
Büchi acceptance condition.

20

where (1) for every q ∈ Q, a ∈ Σc and B ∈ (Γ ∪ {⊥}), δ(q, a,B) ∈ B+(Q × Γ), (2) for every
q ∈ Q, a ∈ Σr ∪ Σι and B ∈ (Γ ∪ {⊥}), δ(q, a,B) ∈ B+(Q), and (3) for every q ∈ Q, a ∈ Σc ∪ Σι

and B,B′ ∈ (Γ ∪ {⊥}), δ(q, a,B) = δ(q, a,B′) [14]. A run ρ of A over an ω-word w = a1a2 · · ·
is a Q × (Γ∗ · {⊥})-labeled tree T = (D,λ) satisfying the following properties. Given X ⊆ Q and
ϕ ∈ B+(Q), X is said to exactly satisfy ϕ if X satisfies ϕ and no proper subset of X satisfies ϕ, and
likewise for a subset Y of B+(Q × Γ). Then λ(ε) = (q,⊥), where q ∈ Q0, and for every i ≥ 1 and
x ∈ D with children x · 0, . . ., x · ℓ of length i:

• If λ(x) = (q,B · α) and ai ∈ Σc, then there exists a set {(q0, B0), . . . , (qℓ, Bℓ)} exactly satisfying
δ(q, ai, B) and such that λ(x · i) = (qi, Bi · B · α), for every i ∈ {0, . . . , ℓ}.

• If λ(x) = (q,B · α) and ai ∈ Σr, then there exists a set {q0, . . . , qℓ} exactly satisfying δ(q, ai, B)
and such that for every i ∈ {0, . . . , ℓ}:

λ(x · i) =

{
(qi,⊥) B = ⊥,

(qi, α) B ∈ Γ.

• If λ(x) = (q,B · α) and ai ∈ Σι, then there exists a set {q0, . . . , qℓ} exactly satisfying δ(q, ai, B)
and such that λ(x · i) = (qi, B · α), for every i ∈ {0, . . . , ℓ}.

It should be noticed that every infinite path ρ of T starting at the root corresponds to a run of a
Büchi NVPA. Then Büchi AVPA A is said to accept an ω-word w if and only if there exists a run T
of A over w such that for every infinite path ρ in T starting at the root, Inf (ρ) ∩ F 6= ∅.

In [14], it is proved that:

Theorem 4.11 ([14]) For every Büchi AVPA A of size n, there exists (and can be effectively con-

structed) an equivalent Büchi NVPA B of size 22nO(1)

.

Next we use this result to prove our theorem. More precisely, given an alphabet Σ, define 〈Σ as
{〈a | a ∈ Σ} and Σ〉 as {a〉 | a ∈ Σ}, and then define a visibly pushdown alphabet Σ̂ = Σ̂c ∪ Σ̂r ∪ Σ̂ι

as Σ̂c = 〈Σ, Σ̂r = Σ〉 and Σ̂ι = Σ [6]. Moreover, given a nested ω-word w̄ = (a1a2 · · · , η) over an
alphabet Σ, define 〈w̄〉 as the ω-word b1b2 · · · over Σ̂ such that for every i ≥ 1:

bi =






ai i is an internal position in w̄

〈ai i is a call position in w̄

ai〉 i is a return position in w̄

Thus, a symbol 〈a is used to indicate a call in a nested word, while a symbol b〉 is used to indicate a
return in a nested word. In particular, if w̄ is a nested ω-word, then the angular brackets in 〈w̄〉 are
balanced.

As a first step in the proof of the theorem, we show in the following lemma that an ω-ANWA over an
alphabet Σ can be translated in polynomial time into a Büchi AVPA over the alphabet Σ̂.

Lemma 4.12 There exists a polynomial time algorithm that, given an ω-ANWA A over an alphabet
Σ, constructs a Büchi AVPA B over Σ̂ such that for every nested ω-word w̄ over Σ, it holds that
w̄ ∈ L(A) if and only if 〈w̄〉 ∈ L(B).

21

Proof: Assume that A = (Σ, Q,Q0, δ, F), where δ = (δc, δι, δr), δc, δι : Q×Σ → B+(Q) and δr : Q×Q×
Σ → B+(Q). Then let B = (Σ̂, Q,Q0,Γ, δ

′, F), where Γ = Q and δ′ is defined as follows. First, define
a function τ : B+(Q) × Q → B+(Q ×Q) by using the following recursive rules: (a) τ(q1, q) = (q1, q)
for every q1, q ∈ Q, (b) τ(ϕ ∨ ψ, q) = τ(ϕ, q) ∨ τ(ψ, q), and (c) τ(ϕ ∧ ψ, q) = τ(ϕ, q) ∧ τ(ψ, q). For
example, of ϕ = (q1∨ q2)∧ q3, then τ(ϕ, q) = ((q1, q)∨ (q2, q))∧ (q3, q). Then define transition function
δ′ by considering the following three cases:

• If q1 ∈ Q, a ∈ Σ and q2 ∈ (Q ∪ {⊥}), then δ′(q1, a, q2) = δι(q1, a).

• If q1 ∈ Q, 〈a ∈ 〈Σ and q2 ∈ (Q ∪ {⊥}), then δ′(q1, 〈a, q2) = τ(δc(q1, a), q1).

• If q1 ∈ Q, a〉 ∈ Σ〉 and q2 ∈ Q, then δ′(q1, a〉, q2) = δr(q1, q2, a).

Thus, given a nested ω-word w̄, automaton B uses its stack to store the nested structure of w̄. In
particular, if B is in a state q reading a symbol 〈a, then it knows that automaton A has reached a
call position, and so B stores state q in its stack and moves into a set of states that exactly satisfies
δc(q, a). For example, if δc(q, a) = (q1 ∨ q2) ∧ q3, then τ(δc(q, a), q) = ((q1, q) ∨ (q2, q)) ∧ (q3, q), which
indicates that q should be stored in the stack of B and the automaton should move to a set of states
that exactly satisfies (q1 ∨ q2) ∧ q3. Moreover, if B is in a state q reading a symbol a〉, then it knows
that automaton A has reached a return position, and so B uses q and the state q′ at the top of the
stack to continue with its execution. In particular, q′ corresponds to the state of the matching call of
the return position, so B moves to a set of states that exactly satisfies δr(q, q

′, a) to continue simulating
automaton A.

The ideas in the previous paragraph can be used to prove that for every nested ω-word w̄ over Σ,
one can construct an accepting run of B over 〈w̄〉 from an accepting run of A over w̄, and vice-versa.
Thus, it is possible to prove that for every nested ω-word w̄ over Σ, it holds that w̄ ∈ L(A) if and
only if 〈w̄〉 ∈ L(B). 2

As a second step in our proof, we need to show that Büchi NVPA can be translated in polynomial
time into ω-NWA.

Lemma 4.13 There exists a polynomial time algorithm that, given a Büchi NVPA A over an alphabet
Σ̂, constructs an ω-NWA B over Σ such that for every nested ω-word w̄ over Σ, it holds that 〈w̄〉 ∈ L(A)
if and only if w̄ ∈ L(B).

Proof: Assume that A = (Σ̂, Q,Q0,Γ,∆, F), where ∆ is as in (†). Then define an ω-NWA B =
(Σ, Q′, Q′0, δ, F

′) as follows: Q′ = Q× (Γ ∪ {⊥}), Q′0 = Q0 × {⊥}, F ′ = F × (Γ ∪ {⊥}) and

• for every (q,B) ∈ Q× (Γ ∪ {⊥}) and a ∈ Σ:

δc((q,B), a) = {(q′, B′) | (q, 〈a, q′, B′) ∈ ∆},

δι((q,B), a) = {(q′, B) | (q, a, q′) ∈ ∆},

• for every (q1, B1) ∈ Q× (Γ ∪ {⊥}), (q2, B2) ∈ Q× (Γ ∪ {⊥}) and a ∈ Σ:

δr((q1, B1), (q2, B2), a) = {(q,B2) | (q1, a〉, B1, q) ∈ ∆}.

22

Thus, automaton B uses its nested structure to store the content of the stack of A: B is in state (q,B)
at the position i of a nested ω-word w̄ if and only if A is in state q and has symbol B at the top of
its stack at the position i of 〈w̄〉. To see why this is the case, notice first that if i is a call position in
a nested ω-word w̄, and B is in state (q,B) reading symbol a at that position, then B moves into a
state (q′, B′) such that (q, 〈a, q′, B′) ∈ ∆, which simulates the fact that A at position i moves to state
q′ and places B′ at the top of its stack. Moreover, if i is a return position with matching call j in the
nested ω-word w̄, and B is in state (q1, B1) reading symbol a at position i, then B uses (q1, B1), a and
its state (q2, B2) at position j to determine where to move. More precisely, B knows in this case that
A will remove B1 from the top of its stack, leaving B2 at the top of it. Thus, B moves in this case to
a state (q,B2) such that (q1, a〉, B1, q) ∈ ∆.

The ideas in the previous paragraph can be used to prove that for every nested ω-word w̄ over Σ,
one can construct an accepting run of B over w̄ from an accepting run of A over 〈w̄〉, and vice-versa.
Thus, it is possible to prove that for every nested ω-word w̄ over Σ, it holds that 〈w̄〉 ∈ L(A) if and
only if w̄ ∈ L(B). 2

As a final step of the proof, we just notice that our theorem is a corollary of Theorem 4.11, and
Lemmas 4.12 and 4.13. 2

We conclude this section by showing that Theorem 4.10 also holds in the finite case, that is, by proving
that every alternating NWA can be translated into an NWA.

Proposition 4.14 For every alternating NWA of size n, there exists (and can be effectively con-

structed) an equivalent NWA of size 22nO(1)

.

Proof: This proposition can be proved by using Theorem 4.10 and a standard padding argument,
where an extra symbol # is used to encode (finite) nested words as nested ω-words (a nested word
w̄ = (a1 · · · an, η) is represented as a nested ω-word w̄ = (a1 · · · an#ω, η)). 2

5 Synchronization of nested words

Synchronization of words and trees leads to a concept of regular relations. The idea is that positions
in several words or trees are tied together (synchronized) according to some criterion, and then an
automaton runs over such synchronized words and trees [18, 19]. To be concrete, we describe the word
model. Let w1, . . . , wk be words from Σ∗. Assume that # is a letter that is not in Σ. Let n = maxi |wi|,
and let [(w1, . . . , wk)] be a word of length n constructed as follows. It is over the alphabet (Σ∪{#})k,
and its ith letter is a k-tuple ~ai = (ai

1, . . . , a
i
k), where each ai

j is the ith letter of wj if i ≤ |wj|, and
if i > |wj |. That is, we pad words shorter than n with #’s to make them all of length n, and then
take the ith letter of [(w1, . . . , wk)] to be the tuple of the ith letters of these padded words.

Then regular k-ary relations over Σ are defined as sets R ⊆ (Σ∗)k such that the set {[(w1, . . . , wk)] |
(w1, . . . , wk) ∈ R} is accepted by an automaton over the alphabet (Σ ∪ {#})k [19, 15, 13]. Such au-
tomata are called letter-to-letter automata. Regular relations are closed under Boolean combinations,
product, and projection. This makes it possible to find infinite structures over Σ∗ with decidable first-
order theories whose definable sets are precisely the regular relations (these are universal automatic

23

structures, cf. [15, 13]). The most commonly used such structure is 〈Σ∗,≺, (Pa)a∈Σ, el〉, where ≺ is
the prefix relation, Pa(w) is true iff the last letter of w is a, and el(w,w′) (the equal-length predicate)
holds iff |w| = |w′| [15, 13, 10].

We now study synchronization for nested words. There are two ways to apply synchronization to them.
One, as in words, is to use the linear structure of nested words to synchronize positions. We show
that such linear letter-to-letter synchronization for words is completely incompatible with the nesting
structure because even the simplest nested extension of letter-to-letter automata is undecidable. An
alternative is to use synchronization based on the tree representation of nested words. This, as follows
from [11], leads to a decidable model. We present it as well, and explain it in terms of the linear
structure of nested words.

5.1 Letter-to-letter nested word automata

Assume that we have k nested words w̄1, . . . , w̄k, and we again pad the shorter words with a special
symbol # so that all of them are of the same length n. By [(w̄1, . . . , w̄k)] we denote the structure
obtained by tying together w̄1, . . . , w̄k. Technically, this is a word over the alphabet (Σ∪ {#})k, with
k nesting relations, one from each of the w̄i’s. Let ~ai be the ith letter of it. The letter-to-letter
automaton runs from left to right on [(w̄1, . . . , w̄k)], as an NWA. The main difference with NWAs is
that each position i may now be a return position in several of the w̄j ’s, and thus states in several call
positions determine the next state.

That is, in a k-letter-to-letter NWA over k-tuples of nested words, we have multiple return transitions
δX
r : Q×Q|X|×(Σ∪{#})k → 2Q, indexed by nonempty X ⊆ {1, . . . , k}. Suppose i is a return position

in w̄l1 , . . . , w̄lm , where 1 ≤ l1 < . . . < lm ≤ k and m > 0. In the definition of a run ρ, we require that
if j1, . . . , jm are the matching calls, i.e. ηl1(j1, i), . . . , ηlm(jm, i) hold, then ρ(i + 1) must depend on
ρ(i), ~ai, and the states in positions j1, . . . , jm:

ρ(i+ 1) ∈ δ{l1,...,lm}
r (ρ(i), ρ(j1), . . . , ρ(jm),~ai).

For positions without returns, we have one transition δ : Q× (Σ ∪ {#})k → 2Q.

We show that even a much simpler automaton is undecidable. We call this model a simplified k-
letter-to-letter NWA. Syntactically, this is just an NWA, with an internal transition and one return
transition δr : Q ×Q× (Σ ∪ {#})k → 2Q. The internal transitions are handled exactly as in NWAs.
The condition on the runs ρ for return transitions is as follows: if i is a return position in words
w̄l1 , . . . , w̄lm , for 1 ≤ l1 < . . . < lm ≤ k, then ρ(i + 1) ∈ δr(ρ(i), ρ(j1),~ai), where j1 is the call of i in
w̄l1 . In other words, we look at the state of only one call position, corresponding to the word with the
smallest index. For all other positions we have a single transition δ : Q× (Σ ∪ {#})k → 2Q.

If k = 1, these are the usual NWAs. But, as one might expect, even if k = 2, they are undecidable2.

Theorem 5.1 The nonemptiness problem is undecidable for simplified 2-letter-to-letter NWAs (and
thus for k-letter-to-letter NWAs for k > 1).

Proof: We reduce Post’s Correspondence Problem (PCP) to our problem. Given an alphabet Σ, an
instance of PCP is a pair of sequences of words u1, . . ., uℓ and v1, . . ., vℓ over Σ. Then the problem is

2In fact, a closely related result is proved in a technical report [12] which appeared at the same time as the first
version of this paper.

24

to find a sequence of integers i1, i2, . . ., in in the interval [1, ℓ] such that ui1ui2 · · · uin = vi1vi2 · · · vin .
PCP is known to be undecidable.

Let u1, . . ., uℓ and v1, . . ., vℓ be an instance of PCP over an alphabet Σ. Next we define a simplified
letter-to-letter NWA A such that L(A) is not empty iff there is a sequence of integers i1, i2, . . ., in
from the interval [1, ℓ] such that ui1ui2 · · · uin = vi1vi2 · · · vin .

We now explain how A works. The alphabet of A is Γ4, where

Γ = (Σ × {c, i, r}) ∪ {#, 1, . . . , ℓ}

(assuming that {1, . . . , ℓ} ∩ Σ = ∅). Thus, A is a synchronized automaton that works over 4 nested
words. Intuitively, on two of these words A will guess a solution to PCP, and on the other words
it will guess a sequence of indices of words, and then will use matching relations to relate indices of
words with their start positions in ui1ui2 · · · uin and vi1vi2 · · · vin .

More precisely, in the first nested word, A stores a sequence of words ui1 , . . ., uin , where each ik ∈ [1, ℓ]
(1 ≤ k ≤ n), and in its third nested word, A stores a sequence of words vj1, . . ., vjm, where each
jk ∈ [1, ℓ] (1 ≤ k ≤ m). In these two nested words, A uses a symbol c to indicate the starting point of
a word, r to indicate the end point of a word and i to indicate that a position is neither the starting
point nor the end point of a word. Thus, for example, if u1 = aba and u2 = aaab, and A decides to
store u2u1, then the first nested word of A will be (a, c)(a, i)(a, i)(b, r)(a, c), (b, i)(a, r). In the first
and third nested word, A is trying to guess sequences that satisfy the condition for PCP. Thus, A
first checks whether ui1 · · · uin = vj1 · · · vjm, and then uses its second and fourth nested word to verify
whether for the previous sequences, it is the case that n = m and ik = jk for every k ∈ [1, n]. Next
we show how this is done for the following example: u1 = aba, u2 = aaab, v1 = aaa and v2 = baba.
Assume that i2 = j1 = 1 and i1 = j2 = 2. Then the following is the letter-by-letter word accepted by
A that represents these sequences:

#(a, c) (a, i) (a, r) (a, i) (a, r)(b, c) (b, i)

1 2# # # # # # # # #

#(a, c) (a, i) (a, i) (a, c) (a, r)(b, r) (b, i)

1 2#

#

We note that ui1ui2 = vj1vj2 and that ui1ui2, vj1vj2 have been stored in the first and third nested
word of A, respectively. The nesting structure of the second nested word is used to store the sequence

25

of indexes used in the first nested word. More precisely, every position p in the first nested word
with label (x, c) corresponds to a call position in the second nested word, whose matching return is
a position with label y ∈ {1, . . . , ℓ}, which indicates what is the index associated with the word with
starting point p. The fourth nested word is constructed in the same way but considering the third
nested word. Since A is a simplified letter-to-letter NWA, the return positions in the fourth nested
word are displaced by one letter to the right, so that return positions in different nested words do
not coincide. Let p be the first position in the first nested word with label #, and let w2 and w4 be
the suffixes from position p of the words in the second and fourth nested word, respectively. Then to
check whether i1 = j1 and i2 = j2, automaton A just has to check whether w2 and w4 are of the form
i1#i2# and #i1#i2, respectively.

Automaton A is constructed as the product of several simplified letter-to-letter NWA that verify the
conditions described above. Each of these automata is straightforward to construct. Note also that
simplified k-letter-to-letter automata are closed under product. In the construction above, we defined
A as a synchronized automaton that works over four nested words. It easy to see that the first and
the second nested word can combined into a single one, as well as the third and the fourth nested
word. This show that the emptiness problem is undecidable even for simplified letter-to-letter NWA
working over 2 nested words. 2

Thus, there is no hope to use even the simplest possible form of letter-to-letter synchronization in
nested words. As another example of such incompatibility, we show that there are no natural decidable
extensions of universal automatic structures on words to nested words. We look at structures M =
〈Σ∗nw,Θ〉 (where Σ∗nw is the set of all finite nested words over Σ) of a vocabulary Θ. We assume that
Θ includes some basic relations. One is a prefix relation w̄ �nw w̄′ iff w̄ = w̄′[1,m] for some m ≤ |w̄′|
(so we can refer to the linear structure of nested words). The other allows us to refer to the nesting
structure: we relate a prefix w̄ of w̄′ so that in w̄′, there is a call-return edge from the last position of
w̄ to the last position of w̄′. That is, w̄ �η w̄

′ iff w̄ = w̄′[1,m], and η(m, |w̄′|) holds in w̄′. We say that
M defines all regular languages of nested words if for each such language L, there is a formula ϕL(x)
such that L = {w̄ ∈ Σ∗nw | M |= ϕ(w̄)}. We say that M defines all regular relations over words if for
each regular relation R ⊆ (Σ∗)k, there is a formula ψR(x1, . . . , xk) such that M |= ψR(w̄1, . . . , w̄k) iff
(w1, . . . , wk) ∈ R (recall that wi is a word from Σ∗ obtained by removing the nesting structure from
w̄i).

Proposition 5.2 There is no structure M = 〈Σ∗nw,�nw,�η, . . .〉 that defines all regular languages of
nested words, all regular relations over words, and has a decidable first-order theory.

Proof: By the assumption that every regular relation is definable in M, there is a formula ψel(x, y) such
that M |= ψel(w̄1, w̄2) iff |w1| = |w2|, and a formula ψLa(x), for each a ∈ Σ, such that M |= ψLa(w̄) iff
the last element of w is labeled a.

It is known [23] that for every context-free language L, one can effectively construct a second-order
sentence αL = QM1 . . .QMkβ(M1, . . . ,Mk) where each Q is ∃ or ∀, Mi’s range over binary matching
relations, and β is a first-order formula of the vocabulary of words (i.e., < and the Pa’s unary pred-
icates) such that a word w satisfies αL iff it belongs to L. Thus, it suffices to model such a sentence
over M (i.e. define a formula α′L(x) such that M |= α′L(w̄) iff w ∈ L) – then ∃x α′L1

(x) ∧ α′L2
(x) will

encode the intersection of two context-free languages.

Assume x is a variable not mentioned in αL. To construct α′L(x) from αL, we first replace each

26

second-order quantifier ∃Mi in αL by

∃mi

(
ψel(x,mi) ∧ · · ·

)

and each first-order quantifier ∃y in αL with

∃y
(
y �nw x ∧ · · ·

)
.

That is, each matching relation is modeled by a nested word of the same length as x (whose labeling is
irrelevant; we shall only look at the matching relation), and each first-order quantifier (i.e. a position)
is modeled by a prefix of x. Then, to obtain α′L, we replace each atom of the form Pa(y) in β by
ψLa(y), and each atom of the form y < z with y �nw z. Finally, we replace each atom of the form
Mi(y, z) with

∃u∃u′
(
ψel(u, y) ∧ ψel(u

′, z) ∧ u �nw x ∧ u′ �nw x ∧ u �η u
′
)
.

This concludes the proof of the proposition. 2

5.2 Call-return synchronization

As the usual letter-to-letter synchronization over the linear structure is incompatible with nested
words, we propose a different model, that is based on viewing nested words as trees. Then known
results on tree-automatic structures will imply decidability [11]. In line with the previous notion of this
section, we shall present this notion using the linear structure as well (although the synchronization
procedure will behave differently in internal and call positions).

The idea of this call-return synchronization is that, instead of synchronizing positions with the same
index i in different words, we synchronize positions for which the shortest paths to them (from the first
position) are the same. To formalize this, we use a notion of a summary path introduced recently in
connection with the study of LTL-like logics on nested ω-words [1]. A summary path to a position i in
a nested word w̄ = (w, η) is the shortest path from 1 to i that combines both successor and matching
edges. That is, it is a sequence 1 = i0 < i1 < . . . < ik = i such that, if il is a call with η(il, j) and
i ≥ j, then η(il, il+1) holds, and otherwise il+1 = il + 1. We represent this summary path as a word
a1 . . . ak over the alphabet Λ = {i, c,m}:

1. if il = il−1 + 1 and il−1 is not a call, then al = i (path goes via an internal edge);

2. if il = il−1 + 1 and il−1 is a call, then al = c (path goes via a call edge);

3. if η(il−1, il) holds, then al = m (path goes via a matching edge).

If both i1 = il−1 + 1 and η(il−1, il) hold, we let al be m. The unique summary path to position i will
be denoted by πw̄(i) ∈ Λ∗, and the set of all summary paths by Π(w̄). The label of πw̄(i) is the label
of i in w̄. Note that Π(w̄) is closed under prefix.

The idea of the call-return synchronization is that now with each position i, we keep its summary paths
πw̄(i), to remember how it was reached in different nested words. That is, a call-return synchronization
of nested words w̄1, . . . , w̄k is a pair (Π(w̄1, . . . , w̄k), λ) where Π(w̄1, . . . , w̄k) =

⋃
l Π(w̄l), and λ :

Π(w̄1, . . . , w̄k) → (Σ∪{#})k is a labeling function that labels each summary path with its label in w̄i

27

if it occurs in w̄i, and with # otherwise, for each i ≤ k. This synchronization can naturally be viewed
as a tree.

As an example, consider two nested words below, w̄1 (on the left) and w̄2 (on the right), with summary
paths shown above positions.

61 2 3 4 5 6 1 2 3 4 5

ε i ic ici im imi ε i ic im imi imii

The synchronization occurs in the first and the second position, and we recursively synchronize the
calls (from i) and what follows their returns (from im). Intuitively, this results in adding a dummy
internal node ici inside the call for w̄2, and adding a dummy last internal position imii for w̄2. Note
that position 4 (i.e. ici) in w̄1 is in no way related to position 4 (im) in w̄2, as it would have been in
letter-to-letter synchronization.

We now say that R ⊆ (Σ∗nw)k is a regular k-ary relation of nested words iff there is a tree automaton
on ternary trees over (Σ ∪ {#})k that accepts precisely (Π(w̄1, . . . , w̄k), λ), for (w̄1, . . . , w̄k) ∈ R. The
following is an immediate consequence of coding tree representations in MSO, and of the work on
automatic structures over trees [11]:

Proposition 5.3 • Regular relations of nested words are closed under union, intersection, com-
plementation, product, and projection.

• Regular 1-ary relations of nested words are precisely the regular nested languages.

• There is a finite collection Θ of unary and binary predicates on Σ∗nw such that 〈Σ∗nw,Θ〉 is
a universal automatic structure for nested words, i.e. its definable relations are precisely the
regular relations of nested words, and its theory is decidable.

Acknowledgments

We thank Rajeev Alur, Kousha Etessami, and Neil Immerman for helpful discussions. We are very
grateful to the anonymous referees for their careful reading of the paper and numerous suggestions.
Arenas was supported by FONDECYT grants 1050701, 7060172 and 1070732; Barceló by Fondecyt
grant 11080011; Libkin by EPSRC grants E005039 and G049165 and FET-Open project FoX (grant
agreement 233599).

References

[1] R. Alur, M. Arenas, P. Barceló, K. Etessami, N. Immerman, L. Libkin. First-order and temporal
logics for nested words. Logical Methods in Computer Science 4(4): (2008).

[2] R. Alur, S. Chaudhuri, P. Madhusudan. A fixpoint calculus for local and global program flows.
In POPL 2006, pages 153–165.

[3] R. Alur, S. Chaudhuri, P. Madhusudan. Languages of nested trees. In CAV 2006, 329–342.

[4] R. Alur, K. Etessami and P. Madhusudan. A temporal logic of nested calls and returns. In
TACAS’04, 467-481.

28

[5] R. Alur and P. Madhusudan. Visibly pushdown languages. In STOC’04, 202-211.

[6] R. Alur and P. Madhusudan. Adding nesting structure to words. J. ACM 56(3) (2009). Extended
version of DLT’06, pages 1–13.

[7] A. Arnold and D. Niwinski. Rudiments of µ-calculus. North-Holland, 2001.

[8] V. Bárány, C. Löding, O. Serre. Regularity problems for visibly pushdown languages. STACS’06,
420–431.

[9] P. Barceló and L. Libkin. Temporal logics over unranked trees. In LICS’05, 31-40.

[10] M. Benedikt, L. Libkin, T. Schwentick, L. Segoufin. Definable relations and first-order query
languages over strings. J. ACM 50(5): 694–751, 2003.

[11] M. Benedikt, L. Libkin, F. Neven. Logical definability and query languages over ranked and
unranked trees. ACM TOCL, 8(2), 2007.

[12] A. Blass, Y. Gurevich. A note on nested words. Technical report MSR-TR-2006-139, Microsoft
Research, October 2006.

[13] A. Blumensath and E. Grädel. Automatic structures. In LICS’00, pages 51–62.

[14] L. Bozzelli. Alternating automata and a temporal fixpoint calculus for visibly pushdown lan-
guages. In CONCUR 2007, pages 476–491.

[15] V. Bruyère, G. Hansel, C. Michaux, R. Villemaire. Logic and p-recognizable sets of integers. Bull.
Belg. Math. Soc. 1 (1994), 191–238.

[16] D. Caucal. Synchronization of pushdown automata. In DLT’06, pages 120–132.

[17] R. Cleaveland, B. Steffen. A linear-time model-checking algorithm for the alternation-free modal
mu-calculus. CAV’91, pages 48–58.

[18] C. Elgot and J. Mezei. On relations defined by generalized finite automata. IBM J. Res. Develop.
9 (1965), 47–68.

[19] C. Frougny and J. Sakarovitch. Synchronized rational relations of finite and infinite words. TCS
108 (1993), 45–82.

[20] G. Gottlob, C. Koch. Monadic datalog and the expressive power of languages for web information
extraction. Journal of the ACM 51 (2004), 74–113.

[21] D. Janin, I. Walukiewicz. On the expressive completeness of the propositional mu-calculus with
respect to monadic second order logic. CONCUR 1996, pages 263–277.

[22] N. D. Jones, W. T. Laaser. Complete problems for deterministic polynomial time. Theor. Comput.
Sci. 3(1): 105-117, 1977.

[23] C. Lautemann, T. Schwentick, D. Thérien. Logics for context-free languages. CSL’94, 205–216.

[24] L. Libkin. Elements of Finite Model Theory. Springer-Verlag, 2004.

[25] C. Löding, P. Madhusudan, O. Serre. Visibly pushdown games. In FSTTCS 2004, 408–420.

[26] P. Madhusudan, M. Viswanathan. Query automata for nested words. In MFCS 2009, pages
561–573.

[27] J. Makowsky. Algorithmic aspects of the Feferman-Vaught Theorem. Annals of Pure and Applied
Logic, 126 (2004), 159–213.

[28] F. Neven, Th. Schwentick. Query automata over finite trees. TCS 275 (2002), 633–674.

[29] D. Niwinski. Fixed points vs. infinite generation. In LICS 1988, pages 402–409.

29

[30] F. Peng and S. Chawathe. Xpath queries on streaming data. In SIGMOD’03, pages 431–442.

[31] S. Safra. On the complexity of omega-automata. In FOCS 1988, pages 319–327.

[32] L. Segoufin, V. Vianu. Validating streaming XML documents. In PODS’02, pages 53–64.

[33] H. Seidl. Deciding equivalence of finite tree automata. SICOMP 19(3): 424-437 (1990).

[34] W. Thomas. Languages, automata, and logic. In Handbook of Formal Languages, Vol. 3, Springer-
Verlag, 1997, pages 389–455.

[35] W. Thomas. Infinite trees and automaton-definable relations over ω-words. TCS 103 (1992),
143–159.

[36] M. Y. Vardi. An automata-theoretic approach to linear temporal logic. Banff Higher Order
Workshop 1995, pages 238-266.

[37] M. Y. Vardi. Reasoning about the past with two-way automata. In ICALP 1998, 628–641.

30

