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Abstract

The Tile Assembly Model is a Turing universal model that Winfree introduced in or-
der to study the nanoscale self-assembly of complex (typically aperiodic) DNA crystals.
Winfree exhibited a self-assembly that tiles the first quadrant of the Cartesian plane
with specially labeled tiles appearing at exactly the positions of points in the Sierpinski
triangle. More recently, Lathrop, Lutz, and Summers proved that the Sierpinski trian-
gle cannot self-assemble in the “strict” sense in which tiles are not allowed to appear
at positions outside the target structure. Here we investigate the strict self-assembly of
sets that approximate the Sierpinski triangle. We show that every set that does strictly
self-assemble disagrees with the Sierpinski triangle on a set with fractal dimension at
least that of the Sierpinski triangle (≈ 1.585), and that no subset of the Sierpinski
triangle with fractal dimension greater than 1 strictly self-assembles. We show that
our bounds are tight, even when restricted to supersets of the Sierpinski triangle, by
presenting a strict self-assembly that adds communication fibers to the fractal structure
without disturbing it. To verify this strict self-assembly we develop a generalization of
the local determinism method of Soloveichik and Winfree.
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1 Introduction

Self-assembly is a process in which simple objects autonomously combine to form complex
structures as a consequence of specific, local interactions among the objects themselves.
It occurs spontaneously in nature as well as in engineered systems and is a fundamental
principle of structural organization at all scales. Since the pioneering work of Seemen [13],
the self-assembly of DNA molecules has developed into a field with rich interactions between
the theory of computing (the information processing properties of DNA) and geometry (the
structural properties of DNA), and with many applications to nanotechnology [14].

Winfree [19] introduced the Tile Assembly Model (TAM) as a mathematical model
of DNA self-assembly in order to study the nanoscale self-assembly of complex (typically
aperiodic) DNA crystals. It is a constructive version of Wang tiling [18, 17] that models
the self-assembly of unit square tiles that can be translated, but not rotated. A tile has
a glue on each side that is made up of a color and an integer strength (usually 0, 1, or
2). Intuitively, a tile models a DNA double crossover molecule and the glues correspond to
the “sticky ends” on the four arms of the molecule. Two tiles with the same glue on each
side are of the same tile type. Two tiles placed next to each other interact if the glues on
their abutting sides match in both color and strength. A tile assembly system (TAS) is a
finite set of tile types, a single tile for the seed, and a specified integer temperature (usually
2). The process starts with the seed tile placed at the origin and growth occurs by single
tiles attaching one at a time. A tile can attach at a site where the summed strength of
the glues on sides that interact with the existing structure is at least the temperature. The
assembly is terminal when no more tiles can attach. A TAS is directed if it always results
in a unique terminal assembly. Winfree proved the TAM is Turing universal [19]. The TAM
is described formally in Section 2.2.

This paper is concerned with the self-assembly of fractals. Structures that self-assemble
in naturally occurring biological systems are often fractals of low dimension, which have
advantages for materials transport, heat exchange, information processing, and robustness
[7]. Fractals are normally bounded and have the same detail at arbitrarily small scales.
But, the TAM models the bottom-up self-assembly of tiles which are discrete objects. So,
structures that self-assemble in the TAM are fundamentally discrete. Thus, we consider
the self-assembly of discrete fractals which are unbounded and have the same detail at
arbitrarily large scales. There are two main notions of the self-assembly of a fractal. In
weak self-assembly, one typically causes a two-dimensional surface to self-assemble with the
desired fractal structure appearing as a labeled subset of the surface. In contrast, strict self-
assembly requires only the fractal structure, and nothing else, to self-assemble. For many
purposes, strict self-assembly is needed in order to achieve the above mentioned advantages
of fractal structures.

The Sierpinski triangle is a canonical “toy” problem for self-assembly. Winfree [19]
showed that the Sierpinski triangle weakly self-assembles, and Rothemund, Papadakis, and
Winfree [10] achieved a molecular implementation of this self-assembly. Lathrop, Lutz, and
Summers [7] proved that the Sierpinski triangle cannot strictly self-assemble. Patitz and
Summers [9] exhibited a large class of fractals that cannot strictly self-assemble. It is an
open question whether any self-similar fractal strictly self-assembles. Thus, techniques are
needed to approximate self-similar fractals with strict-self-assembly. The only previously
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known technique, introduced by Lathrop, Lutz, and Summers [7], and generalized by Patitz
and Summers [9], enables strict self-assembly by adding communication fibers that shift
successive stages of the fractal causing the result to only visually resemble, but not contain,
the intended fractal structure.

In this paper we address a quantitative question: given that the Sierpinski triangle S
cannot strictly self-assemble, how closely can strict self-assembly approximate S? That is,
if X is a set that does strictly self-assemble, how small can the fractal dimension of the
symmetric difference X∆S be? Our first main theorem says that the fractal dimension of
X∆S is at least the fractal dimension of S. To gain further insight, we restrict our attention
to subsets of S and show that here the limitation is even more severe. Any subset of the
Sierpinski triangle that strictly self-assembles must have fractal dimension 0 or 1. Roughly
speaking, the axes that bound S form the largest subset of S that strictly self-assembles.
Hence, S cannot even be approximated “closely” with strict self-assembly.

Our second main theorem shows that our first main theorem is tight, even when re-
stricted to supersets of S. To prove this we demonstrate the existance of a set X with the
following three properties.

(1) S ⊆ X.

(2) The fractal dimension of X∆S is the fractal dimension of S.

(3) X strictly self-assembles in the Tile Assembly Model.

What we have achieved here is a means of fibering S in place, i.e., adding the needed
communication fibers (the set X \ S) without disturbing the set S.

The local determinism method of Soloveichik and Winfree [16] is a common technique
for proving a TAS is directed. However, the TAS in the proof of our second main theorem
uses a blocking technique that prevents it from being locally deterministic. We thus intro-
duce conditional determinism, a generalization of local determinism, to verify this TAS is
directed.

The proof techniques used here, along with our blocking technique (and thus our gen-
eralization of local determinism), are likely to be useful in the design and analysis of other
tile assembly systems that approximate self-similar fractals. Our fibering technique may be
a useful example for other contexts where one seeks to enhance the “internal bandwidth”
of a set in a distortion-free manner. We hope that our results lead to a more general under-
standing of the limitations of self-assembly and the approximate self-assembly of self-similar
fractals.

2 Preliminaries

2.1 Notation and Terminology

We work in the discrete Euclidean plane Z2. We write U2 for the set of all unit vectors in
Z2. We often refer to the elements of U2 as the cardinal directions, and write ~uN for (0, 1),
~uS for (0,−1), ~uE for (1, 0), and ~uW for (−1, 0).

Let X and Y be sets. We write [X]2 for the set of all 2-element subsets of X. For a
partial function f : X 99K Y , we write f(x)↓ if x ∈ dom f and f(x)↑ otherwise. We write
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X∆Y for the symmetric difference of X and Y . For a Boolean expression φ, [[φ]] = 1 if φ
is true, and [[φ]] = 0 otherwise.

All graphs here are undirected graphs of the form G = (V,E), where V ⊆ Z2 is a set
of vertices and E ⊆ [V ]2 is a set of edges. A grid graph is a graph where each {~m,~n} ∈ E
satisfies ~m− ~n ∈ U2. If E contains every {~m,~n} ∈ [V ]2 such that ~m− ~n ∈ U2, we say it is

the full grid graph on V , written G#
V . A cut of a graph is a partition of V into two subsets.

A binding function on a graph is a function β : E → N. If β is a binding function on G and
C is a cut of G, then the binding strength of β on C is

βC =
∑
{β(e) | e ∈ E and e ∩ C0 6= ∅ and e ∩ C1 6= ∅} ,

and the binding strength of β on G is

min {βC | C is a cut of G}.

A binding graph is an ordered triple (V,E, β), where β is a binding function on (V,E). For
τ ∈ N, a binding graph (V,E, β) is τ -stable when β(V,E) ≥ τ .

We now review finite-tree depth [7]. Let G= (V,E) be a graph and let D ⊆ V . For
r ∈ V , the D-r-rooted subgraph of G is the graph GD,r=(VD,r, ED,r), where

VD,r = {v ∈ V | r is on every path from v to (any vertex in) D}

and ED,r = E ∩ [VD,r]
2. A D-subtree of G is a rooted tree B with root r ∈ V such that

B = GD,r. The finite-tree depth of G relative to D is

ft−depthD(G) = sup {depth(B) | B is a finite D-subtree of G} .

Intuitively, given a set D of vertices of G (which is in practice the domain of the seed
assembly), the D-subtree of G is a rooted tree in G that consists of all vertices of G that
lie at or on the far side of the root from D.

2.2 The Tile Assembly Model

We now review the Tile Assembly Model [19, 12, 11]. Our notation follows that of [7] but
is tailored somewhat to our objectives.

A tile t is a unit square that can be translated, but not rotated, so it has a well defined
“side ~u ” for each ~u ∈ U2. Each side ~u of t has a glue t(~u) = (colt(~u), strt(~u)) where
colt(~u) ∈ Σ∗, for some fixed alphabet Σ, is the glue color, and strt(~u) ∈ N is the glue
strength. Two tiles with the same glue on each side are of the same tile type. See Figure 1
for an example illustration of a tile.

Let T be a set of tile types. A T -configuration is a partial function α : Z2 99K T . For
~m,~n ∈ domα, the tiles at these locations interact with strength

strα(~m,~n) = [[~n− ~m ∈ U2]] · strα(~m)(~n− ~m) · [[α(~m)(~u) = α(~n)(−~u)]].

The binding graph of α is Gα = (domα,E, β), where

E =
{
{~m,~n} ∈ [V ]2 | strα(~m,~n) > 0

}
,
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a

bc

t(~uN)

t(~uE)

t(~uS)

t(~uW)

label (optional)

Figure 1: An example illustration of a tile. Glue strengths are represented by lines
that are dotted for 0, solid for 1, and solid with notches for 2. Glue colors are drawn
in the interior of the tile on the corresponding side. In this example t(~uN) = (a, 1),
t(~uE) = (b, 1), t(~uS) = (λ, 0) where λ represents the empty string, and t(~uW) = (c, 2).
Also, we sometimes give a label to a tile type. This label does not play a role in the
TAM, it is only to make referring to tiles of that type more convenient.

and for all {~m,~n} ∈ E, β({~m,~n}) = strα(~m,~n). For τ ∈ N, α is τ -stable if Gα is τ -stable.
We write AτT for the set of all τ -stable T -configurations. Let α, α′ ∈ AτT . If domα ⊆ domα′

and α(~m) = α′(~m) for all ~m ∈ domα, then α is a subconfiguration of α′ and we write α v α′.
If |domα′ \domα| = 1, then α′ is a single-tile-extension of α and we write α′ = α+(~m 7→ t)
where {~m} = domα′ \ domα and t = α′(~m). For each t ∈ T , the τ -t-frontier of α is

∂τt α =
{
~m ∈ Z2\domα | (Σ~u∈U2

strα+(~m 7→t)(~m, ~m+ ~u)) ≥ τ
}
, and

the τ -frontier of α is

∂τα =
⋃
t∈T

∂τt α.

We say α is terminal when ∂τα = ∅.
A tile assembly system (TAS) is an ordered triple T =(T, σ, τ) where T is a finite set of

tile types, the seed assembly σ ∈AτT is such that domσ=~0, and τ ∈N is the temperature.
An assembly sequence in T is a sequence ~α=(αi | 0 ≤ i < k) where α0∈AτT , k∈Z+∪{∞}
and for each 0≤ i< k, αi+1 =αi + (~m 7→ t) for some t∈T and ~m∈ ∂τt αi. The result of ~α,
written res ~α, is the unique α ∈ AτT satisfying domα=

⋃
0≤i<kdomαi and for each 0≤ i<k,

αi v α. We write α0 −→ res ~α if an assembly sequence from α0 to res ~α exists. The set
of producible assemblies is A [T ] = {α∈AτT | σ−→α} and the set of terminal assemblies is
A� [T ]={α ∈ A [T ] | ∂τα=∅}. T is directed if |A� [T ] |=1. A set X strictly self-assembles
in T if every α∈A� [T ] satisfies domα=X. We say X strictly self-assembles if X strictly
self-assembles in some TAS.

Let T = (T, σ, τ) be a TAS, ~α = (αi | 0 ≤ i < k) be an assembly sequence in T , and
α = res ~α. For each ~m ∈ Z2, the ~α-index of ~m is i~α(~m) = min {i ∈ N | ~m ∈ domαi}. If
~m,~n ∈ domα and i~α(~m) < i~α(~n), we say ~m precedes ~n in ~α, and write ~m ≺~α ~n. For
X ⊆ domα, α restricted to X, written α � X, is the unique T -configuration satisfying
(α�X)vα and dom (α�X)=X.

Winfree and Soloveichik [16] introduced local determinism as a convenient way to prove
a TAS is directed. Let T = (T, σ, τ) be a TAS, ~α = (αi | 0 ≤ i < k) be an assembly
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sequence in T , and α = res ~α. For each ~m ∈ domα, define [16] the sets

IN~α(~m) = {~u ∈ U2 | ~m+ ~u ≺~α ~m and strαi~α(~m)
(~m, ~m+ ~u) > 0}, and

OUT~α(~m) = {~u ∈ U2 | −~u ∈ IN~α(~m+ ~u)}.
Then, ~α is locally deterministic [16] if the following three conditions hold.

(1) For all ~m ∈ domα \ domα0,∑
~u∈IN~α(~m)

strαi~α(~m)
(~m, ~m+ ~u) = τ.

(2) For all ~m ∈ domα \ domα0 and t ∈ T \ {α(~m)},
~m 6∈ ∂τt (α � (domα \ ({~m} ∪ (~m+ OUT~α(~m))))).

(3) ∂τα = ∅.
Conceptually, (1) requires that each tile added in ~α “just barely” binds to the existing
assembly; (2) holds when the tiles at ~m and ~m+ OUT~α(~m) are removed from α, no other
tile type can attach to the assembly at location ~m; and (3) requires that α is terminal. A
TAS is locally deterministic if it has a locally deterministic assembly sequence. Soloveichik
and Winfree [16] proved every locally deterministic TAS is directed.

2.3 Zeta-Dimension

A fractal dimension is a measure of how completely a fractal fills space. The most commonly
used fractal dimension for discrete fractals is zeta-dimension. Although the origins of zeta-
dimension lie in eighteenth and nineteenth century number theory, namely Euler’s zeta-
function [4], it has been rediscovered many times by researchers in a variety of fields. See
[3] for a review of the origins of zeta-dimension, the development of its basic theory, and
the connections between zeta-dimension and classical fractal dimensions.

In this paper we use the entropy characterization of zeta-dimension [2]. For each ~m ∈
Z2, let ||~m|| be the Euclidean distance from the origin to ~m, i.e., if ~m = (m1,m2) then
||~m|| =

√
m2

1 +m2
2. For A ⊆ Z2 and I ⊆ [0,∞), let AI = {~m ∈ A | ||~m|| ∈ I}. Then, the

ζ-dimension (zeta-dimension) of a set A ⊆ Z2 is

Dimζ(A) = lim sup
n→∞

log2 |A[0,n]|
log2 n

.

By routine calculus it follows that

Dimζ(A) = lim sup
n→∞

log2 |A[0,2n)|
n

. (2.1)

Note that ζ-dimension has the following functional properties of a fractal dimension [3].

Observation 2.1. Let A,B ⊆ Z2. Then,

(1) A ⊆ B =⇒ Dimζ(A) ≤ Dimζ(B) (monotonicity), and

(2) Dimζ(A ∪B) = max {Dimζ(A),Dimζ(B)} (stability).
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2.4 The Sierpinski Triangle

The Sierpinski triangle, a.k.a. the Sierpinski gasket or the Sierpinski sieve, is a self-similar
fractal named after the Polish mathematician Waclaw Sierpiński who first described it [15].
It is formed by starting with a solid triangle and removing the middle fourth. This process
is continued ad infinitum on all remaining triangles. See Figure 2 for an illustration of the
this process.

Figure 2: The first five stages of the continuous Sierpinski triangle.

This continuous version of the Sierpinski triangle is bounded and has the same detail
at arbitrarily small scales. But, because the TAM models the bottom-up self-assembly of
tiles, which are discrete objects, structures that self-assemble in the TAM are fundamentally
discrete. Therefore, we shall focus on the strict self-assembly of a discrete version of the
Sierpinski triangle that is unbounded and has the same detail at arbitrarily large scales.

Formally, the discrete Sierpinski triangle is a set of points in Z2. Let V = {(1, 0), (0, 1)}
and define the sets S0,S1, . . . by the recursion

S0 = {(0, 0)} , and

Si+1 = Si ∪ (Si + 2iV ),
(2.2)

where A+ cB = {~m+ c~n | ~m ∈ A and ~n ∈ B}. The discrete Sierpinski triangle is the set

S =

∞⋃
i=0

Si. (2.3)

We often refer to Si as the ith stage of S. Note that S can also be defined as the nonzero
residues modulo 2 of Pascal’s triangle [1]. It is also a numerically self-similar fractal [6]. See
Figure 3 for an illustration.

Figure 3: The first five stages of the discrete Sierpinski triangle.

Using equation 2.2 it is easy to give a formula for the cardinality of the ith stage of S.

Observation 2.2. For each n ∈ N, |Sn| = 3n.

Then, using Observation 2.2 and Equations (2.1) and (2.2), we can easily calculate the
ζ-dimension of S.
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Observation 2.3. Dimζ(S) = log2 3.

Winfree [19] proved that S weakly self-assembles in the TAM, and Rothemund, Pa-
padakis, and Winfree [10] achieved a molecular implementation of this self-assembly. More
recently, Lathrop, Lutz, and Summers [7] proved that S cannot strictly self-assemble in the
TAM.

Theorem 2.4 (Lathrop, Lutz, and Summers [7]). S cannot strictly self-assemble in the
Tile Assembly Model.

3 Limitations on Approximating the Sierpinski Triangle

In this section we present our first main theorem. We show that every set that strictly
self-assembles disagrees with S on a set with ζ-dimension at least that of S. We then show
that for subsets of S, the limitation is even more severe.

We first establish a bound on the number of tile types needed for Sn to strictly self-
assemble. Our first lemma follows easily from the tree like structure of S.

Lemma 3.1. Let T be a set of tile types and τ ∈ N. If α ∈ AτT and domα = Sn for some
n ∈ N, then for each ~m ∈ domα and ~u ∈ U2,

~m+ ~u ∈ domα =⇒ α(~m)(~u) = α(~m+ ~u)(−~u) and strα(~m)(~u) ≥ τ.

Proof. Assume the hypothesis with T , τ , α, and n as witness. Let ~m ∈ domα and ~u ∈ U2

such that ~m+ ~u ∈ domα. It suffices to show that strα(~m, ~m+ ~u) ≥ τ . Let Gα = (V,E, β)
be the binding graph of α. Note that since domα = Sn, (V,E) is a tree rooted at the origin
and since α is τ -stable, β(V,E) ≥ τ . So, it suffices to show that β((~m, ~m+ ~u)) ≥ τ .

Since (V,E) is a tree, and ~m and ~m+ ~u are adjacent in (V,E), either ~m is on the path
from the origin to ~m + ~u or ~m + ~u is on the path from the origin to ~m. Without loss of
generality, assume ~m is on the path from the origin to ~m + ~u (otherwise, the the theorem
holds for ~m′ = ~m+ ~u and ~u′ = −~u). Let C = (C0, C1) be the unique cut of G such that

C1 = {~n ∈ domα | ~m+ ~u is on a path in G from the origin to ~n} , and

C0 = V \ C1.

Then, ~m ∈ C0 and ~m + ~u ∈ C1. Furthermore, since (V,E) is a tree, (~m, ~m + ~u) ∈ E is
the unique edge across C. But then, βC = β((~m, ~m + ~u)), and since βC ≥ β(V,E) ≥ τ ,
β((~m, ~m+ ~u)) ≥ τ .

Lemma 3.2. If Sn strictly self-assembles in a TAS (T, σ, τ), then |T | ≥ 2n+1 − 1.

Proof. Assume the hypothesis with n ∈ N and TAS T = (T, σ, τ) as witness. Let α ∈
A� [T ]. If n = 0 the lemma is trivially true, so assume n > 1. Let A = Ah ∪ Av,
where Ah = {(i, 0) | 0 ≤ i < 2n} and Av = {(0, i) | 0 ≤ i < 2n} . Conceptually, Ah (and Av)
represent the left (and right) boundary of Sn. Let TA = {α(~m) | ~m ∈ A} be the set of all tile
types placed at locations in A. Clearly, TA ⊆ T , so it suffices to show that |TA| ≥ 2n+1− 1.
Suppose |TA| < 2n+1 − 1. By (2.2) and α ∈ A� [T ], ~m ∈ domα for all ~m ∈ A. Then, there
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~m ~n ~m ~n

6∈ S3

(a) Case 1. The figure on the left shows an example
α where ~m = (2, 0) and ~n = (5, 0). The tiles α(~m)
and α(~n) are blue. The tile α(~m+~uE) is red and the
tile α(~m + 2~uE) is orange. The figure on the right
shows the β for this α.

~m

~n ~n

6∈ S3

(b) Case 3. The figure on the left
shows an example α where ~m =
(2, 0) and ~n = (0, 5).The tiles α(~m)
and α(~n) are blue. The tile α(~m+
~uW) is red. The figure on the right
shows the β for this α.

Figure 4: Illustrating the proof of Lemma 3.2 for n = 3.

exist a ~m,~n ∈ A such that ~m 6= ~n and α(~m) = α(~n). Either ~m,~n ∈ Ah, ~m,~n ∈ Av, or
~m ∈ Ah \{~0} and ~n ∈ Av \{~0}. In each case we show that Sn does not strictly self-assemble
in T .

Case 1. Suppose ~m,~n ∈ Ah. Without loss of generality, let ~m = (i, 0) and ~n = (j, 0)
where 0 ≤ i < j < 2n. Let β be the unique T -configuration such that for all ~k =
(k1, k2) ∈ N,

β(~k) =


↑ if k1 > 2n or k2 6= 0

α(~k) if k1 < j

α(~m+ ((k1 − j) mod (j − i), 0)) otherwise.

See Figure 4a for an illustration. By (2.2) and j > 0, ~n+~uW ∈ domα. So, by Lemma
3.1, α(~n)(~uW) = α(~n + ~uW)(~uE) and strα(~n)(~uW) ≥ τ . But since α(~n) = α(~m),
α(~m)(~uW) = α(~n+ ~uW)(~uE) and strα(~m)(~uW) ≥ τ . So, β ∈ A [T ]. Then, there exists
a γ ∈ A� [T ] such that β v γ and since β((2n, 0)) ↓, γ((2n, 0)) ↓. But (2n, 0) 6∈ Sn.
So, Sn does not strictly self-assemble in T .

Case 2. The case for ~m,~n ∈ Av is similar to Case 1.

Case 3. Suppose ~m ∈ Ah \ {~0} and ~n ∈ Av \ {~0}. Let ~m = (i, 0) and ~n = (0, j),
where i, j ∈ {1, . . . , 2n − 1}. Let β be the unique T -configuration such that for all
~k = (k1, k2) ∈ N,

β(~k) =


α(~k) if k1 = 0 and k2 ≤ j or k2 = 0 and k1 ≤ i
α(~m+ ~uW) if k1 = −1 and k2 = j

↑ otherwise.

See Figure 4b for an illustration. By (2.2) and i > 0, ~m+~uW ∈ domα. So, by Lemma
3.1, α(~m)(~uW) = α(~m + ~uW)(~uE) and strα(~m)(~uW) ≥ τ . But since α(~m) = α(~n),
α(~n)(~uW) = α(~m + ~uW)(~uE) and strα(~n)(~uW) ≥ τ . So, β ∈ A [T ]. Then, there exists
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a γ ∈ A� [T ] such that β v γ and since β((−1, j)) ↓, γ((−1, j)) ↓. But (−1, j) 6∈ Sn.
So, Sn does not strictly self-assemble in T .

Even if we only require that Sn appear somewhere in the terminal assembly (not nec-
essarily at the origin), we still have an exponential lower bound on the minimum number
of tile types needed. To show this we use the ruler function ρ : Z+ → N defined by the
recurrence ρ(2k + 1) = 0 and ρ(2k) = ρ(k) + 1 for all k ∈ N. The value of ρ(n) is the
exponent of the largest power of 2 that divides n, or equivalently, ρ(n) is the number of 0’s
lying to the right of the rightmost 1 in the binary representation of n [5]. Now, for each
i ∈ N, the width of the longest horizontal bar rooted at (0, i) and the height of the tallest
vertical bar rooted at (i, 0) in S is 2ρ(i) − 1 [7].

Lemma 3.3. Let n ∈ N and ~m ∈ Z2. If T = (T, σ, τ) is a TAS such that for every
α ∈ A� [T ], domα ∩ (~m+ {0, . . . , 2n − 1}2) = ~m+ Sn, then |T | ≥ 2n − 2.

Proof. Assume the hypothesis with n ∈ N, ~m = (m1,m2) ∈ Z2, and TAS T = (T, σ, τ) as
witness. Suppose |T | < 2n− 2. Then we can construct the TAS T ′ = (T ′, σ′, τ) as follows.

(1) For each 0 < i < 2n−1, there are tile types vi, hi ∈ T ′ such that

vi = α(~m+ (2n−1, i)) and hi = α(~m+ (i, 2n−1)).

(2) For each 2n−1 ≤ i < 2n, there are a tile types vi, hi ∈ T ′ such that

vi(~uN) =

{
vi−1(~uS) if i = 2n−1

(i− 1, τ) if i > 2n−1
hi(~uE) =

{
hi−1(~uW) if i = 2n−1

(i− 1, τ) if i > 2n−1

vi(~uE) = (h2ρ(i)−1(~uW), τ) hi(~uN) = (v2ρ(i)−1(~uS), τ)

vi(~uS) = hi(~uW) = (i, τ) vi(~uW) = hi(~uS) = (0, 0).

(3) There is a tile type t0 ∈ T ′ such that σ′ = t0, t0(~uN) = t0(~uE) = (2n−1, τ) and t0(~uS) =
t0(~uW) = (nil, 0).

v1

h1

v2

h2

v3

h3

(a) The assembly α for some ar-
bitrary ~m. Tile types added to
T ′ in step (1) are blue.

t0

v7

h7

v6

h6

v5

h5

v4

h4

v3

v3

h3

h3

v2

v2

h2

h2

v1

v1

h1

h1

h1 h1

h1

v1

v1

v1

(b) The assembly α′ such that
domα′ = Sn. Tile types added
to T ′ in steps (2) & (3) are gray.

Figure 5: Illustrating the proof of Lemma 3.3 for n = 3.
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Each tile type added to T ′ in step (1) is also a tile type in T , so we add at most 2n − 3 tile
types to T ′ in step (1). We add a total of 2n tile types to T ′ in step (2) and we add 1 tile
type to T ′ in step (3). Thus, |T ′| ≤ 2n+1 − 2. But, by using (2.2) and the ruler function
properties, it is easy to verify that Sn strictly self-assembles in T ′. This contradicts Lemma
3.2. Thus, no such TAS exists.

We now have the necessary machinery to prove our first main theorem which says that
every set that strictly self-assembles disagrees with S on a set with fractal dimension at
least that of S. Hence, S cannot even be approximated closely with strict self-assembly.

Theorem 3.4. If X ⊆ Z2 strictly self-assembles, then Dimζ(X∆S) ≥ Dimζ(S).

Proof. Assume the hypothesis with X ⊆ Z2 and TAS T = (T, σ, τ) as witness. Let

V = {(0, 0), (0, 1), (1, 0)}

and n = dlog2 (|T |+ 2) + 1e. Since X strictly self-assembles in T , for every α ∈ A� [T ],
X = domα. Let d : Z2 × N→ N where

d(~m, k) =
∣∣∣(X ∩ (~m+ {0, . . . , 2n+k − 1}2)) ∆ (~m+ Sn+k)

∣∣∣ (3.1)

for all ~m ∈ Z2 and k ∈ N. Then, by (2.2), d(~m, k) ≥ ∑~v∈V d(~m + 2n+k−1~v, k − 1). Since

|T | < 2n − 2, by Lemma 3.3, for all ~m ∈ Z2, X ∩ (~m+ {0, . . . , 2n − 1}2) 6= ~m+ Sn. So, for
all ~m ∈ Z2, d(~m, 0) ≥ 1. Then, the recurrence solves to

d(~m, k) ≥ 3k (3.2)

for all ~m ∈ Z2. So,

Dimζ(X∆S)
(2.1)
= lim sup

n→∞

log2 |X[0,2n)|
n

= lim sup
k→∞

log2 d(~0, k)

n+ k
by Equation (3.1)

≥ lim sup
k→∞

log2 3k

n+ k
by Equation (3.2)

= log2 3.

But, by Observation 2.3, Dimζ(S) = log2 3.

To gain further insight, we now consider the strict self-assembly of subsets of S, and
show that here the limitation is even more severe. We first give an upper bound on the
number of tiles located within a given distance of the seed tile in any strict self-assembly of
a subset of S. We use the a theorem from [7] that for any structure to strictly self-assemble,
the number of tile types used is at least the finite-tree depth of the structure.

Theorem 3.5 (Lathrop, Lutz, and Summers [7]). If X ⊆ Z2 strictly self-assembles in a

TAS (T, σ, τ), then |T | ≥ ft−depthdomσ(G#
X).

11



It easily follows that in any strict self-assembly of a subset of S, not to many tiles can
be placed far from the boundary.

Corollary 3.6. If X ⊆ S strictly self-assembles in a TAS (T, σ, τ), then for all ~m =
(m1,m2) ∈ Z2 such that m1 ≥ |T | and m2 ≥ |T |, ~m 6∈ X.

Lemma 3.7. If X ⊆ S strictly self-assembles in a TAS (T, σ, τ), then for every n ∈ N,
|X[0,n]| ≤ 2|T |(n+ 1).

Proof. Assume the hypothesis with X ⊆ Z2 and T = (T, σ, τ) as witness. Let α ∈ A� [T ]
and let n ∈ N. If n ≤ |T | the theorem is trivially true, so assume n > |T |. Let A =
{0, . . . , |T | − 1}2, B = {0, . . . , |T | − 1} × {|T |, . . . , n}, C = {|T |, . . . , n} × {0, . . . , |T | − 1},
and D = {|T |, . . . , n}2. It is clear that A,B,C,D is a partition of {0, . . . , n}2. Then,

|X[0,n]| = | {0, . . . , n}2 ∩ domα| since X ⊆ N2

= |A ∩ domα|+ |B ∩ domα|+ |C ∩ domα| by Corollary 3.6

≤ |T |2 + 2|T |(n− |T |+ 1)

≤ 2|T |(n+ 1).

|T |

|T |

A

B

C

D

Figure 6: Illustrating the partition used in the proof of Lemma 3.7

Theorem 3.8. If X ⊆ S strictly self-assembles, then Dimζ(X) ∈ {0, 1}.

Proof. Assume the hypothesis with X ⊆ S and TAS (T, σ, τ) as witness. By Lemma 3.7,
|X[0,n]| ≤ 2|T |(n+ 1). Then, Dimζ(X) ≤ 1. But, the binding graph of any α ∈ AτT must be
connected and any infinite connected structure has ζ-dimension at least 1, it follows that
either Dimζ(X) = 1 or X is finite, in which case X has ζ-dimension 0. So, Dimζ(X) ∈
{0, 1}.

Note that boundary of S is a subset of S that strictly self-assembles and has ζ-dimension
1. A single tile placed at the origin is a subset of S that strictly self-assembles and has ζ-
dimension 0. Hence, Theorem 3.8 is trivially tight.
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4 Conditional Determinism

The method of local determinism introduced by Soloveichik and Winfree [16] is a common
technique for showing that a TAS is directed. However, there exists very natural construc-
tions that are directed but not locally deterministic. Consider the TAS TB = (TB, σB, 1) of
Figure 7. Clearly, there is only one assembly sequence ~α in TB such that res ~α is terminal.
Hence, TB is directed. However, ~α fails condition (2) of local determinism at the location
(0, 1). The culprit is the blocking technique used by this TAS which is marked by a red X
in Figure 7b. Since ~α is the only possible locally deterministic assembly sequence in TB,
then TB is not a locally deterministic TAS. Thus, new techniques are needed to show this
TAS is directed.

4
3

2

1
3

2

σB
1 4

5 5

(a) The tile set TB .

3
2 4

3

2

1

4
5

σB
1

(b) res (~α). The site of the block-
ing is marked with a red X.

5
OUT

IN

4
3

4
5

σB
1

(c) ~α fails condition (2) of local deter-
minism for the location (0, 1).

Figure 7: The TAS TB = (TB, σB, 1) which uses a blocking technique.

In this section we give sufficient conditions for proving such a TAS is directed. First,
we introduce some new notation. For ~m,~n ∈ Z2, if ~m ≺~α ~n for every assembly sequence ~α
in a TAS T , then we say ~m precedes ~n in T , and we write ~m ≺T ~n. For each ~m ∈ Z2, we
define the set

DEPT (~m) = {~u ∈ U | ~m ≺T ~m+ ~u} .
Now, let T be a TAS, ~α an assembly sequence in T , and α = res ~α. Then, ~α is conditionally
deterministic if the following three conditions hold.

(1) For all ~m ∈ domα \ domα0,
∑

~u∈IN~α(~m) strαi~α(~m)
(~m, ~m+ ~u) = τ .

(2) For all ~m ∈ domα \ domα0 and all t ∈ T \ {α(~m)},
~m 6∈ ∂τt (α � (domα \ ({~m} ∪ (~m+ (OUT~α(~m) ∪DEPT (~m)))))).

(3) ∂τα = ∅.
Note that conditions (1) and (3) are the same as in the definition of local determinism.
Conceptually, (1) requires that each tile added in ~α “just barely” binds to the existing
assembly; (2) holds when the tiles at ~m and ~m+ OUT~α(~m) + DEPT (~m) are removed from
α, no other tile type can attach to the assembly at location ~m; and (3) requires that α
is terminal. A TAS is conditionally deterministic if it has a conditionally deterministic
assembly sequence.

Our first theorem shows that conditional determinism is a weaker notion than local
determinism.
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Theorem 4.1. Every locally deterministic TAS is conditionally deterministic.

Proof. Let T be a locally deterministic TAS with ~α = (αi | 0 ≤ i < k) as witness. Let
α = res (~α). It suffices to show that ~α is a conditionally deterministic assembly sequence.
Since conditions (1) and (3) in the definitions of both local determinism and conditional
determinism are the same, it suffices to show that condition (2) in the definition of con-
ditional determism holds for ~α. Since ~α is locally deterministic, by condition (2) of local
determinism, for all ~m ∈ domα \ domα0 and all t ∈ T \ {α(~m)},

~m 6∈ ∂τt (α � (domα \ ({~m} ∪ (~m+ OUT~α(~m))))).

Then, since OUT~α(~m) ⊆ OUT~α(~m)∪DEPT (~m), it follows that for all ~m ∈ domα \ domα0

and all t ∈ T \ {α(~m)},

~m 6∈ ∂τt (α � (domα \ ({~m} ∪ (~m+ (OUT~α(~m) ∪DEPT (~m)))))).

Hence, ~α is a conditionally deterministic assembly sequence in T .

We now show that although conditional determinism is weaker than local determinism,
it is strong enough to show a TAS is directed.

Theorem 4.2. Every conditionally deterministic TAS is directed.

Proof. Our proof is similar to the proof in [16] that every locally deterministic TAS is
directed. Let T = (T, σ, τ) be a conditionally deterministic TAS with ~α = (αi | 0 ≤ i < k)
as witness. Let α = res (~α) and note that α ∈ A� [T ]. To see that T is directed, it suffices
to show that for all β ∈ A� [T ], β v α.

Let β ∈ A� [T ]. Then, there is an assembly sequence ~β = (βj | 0 ≤ j < l) in T such

that β0 = σ and β = res (~β). To see that β v α, it suffices to show that for each 0 ≤ j < k,
the following conditions hold:

(1) IN
~β(domβj+1 \ domβj) = IN~α(domβj+1 \ domβj), and

(2) β(domβj+1 \ domβj) = α(domβj+1 \ domβj).

Suppose there exists a 0 ≤ j < k such that either condition (1) or condition (2) fails.
Let i be the smallest such j. To prove the theorem, it suffices to show no such i exists. Let
~bi = domβi+1 \ domβi. Consider any ~u ∈ IN

~β(~bi). It is clear that −~u ∈ OUT
~β(~bi + ~u), so

−~u 6∈ IN
~β(~bi + ~u). Either ~bi + ~u ∈ domσ or there exists an h < i such that ~bh = ~bi + ~u.

Case 1. Suppose ~bi + ~u ∈ domσ. Then, since both ~α and ~β are assembly sequences in

T , IN
~β(~bi + ~u) = IN~α(~bi + ~u) = ∅. Then, −~u 6∈ IN~α(~bi + ~u). So, ~u 6∈ OUT~α(~bi). Also,

i~β(~bi + ~u) = 0, so ~bi 6≺T ~bi + ~u. Then, ~u 6∈ DEPT (~bi).

Case 2. Suppose there exists an h < i such that ~bh = ~bi + ~u. Then, by condition (1),

IN
~β(~bi + ~u) = IN~α(~bi + ~u). Then, −~u 6∈ IN~α(~bi + ~u). So, ~u 6∈ OUT~α(~bi). Also, h ≺~β i,

so ~bi 6≺T ~bi + ~u. Then, ~u 6∈ DEPT (~bi).
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In either case,

IN
~β(~bi) ∩ (OUT~α(~bi) ∪DEPT (~bi)) = ∅. (i)

Since for all ~m ∈ domβi, βi(~m) = α(~m), then for all ~u ∈ U2,

strβi+1
(~bi,~bi + ~u) ≤ strα(~bi,~bi + ~u). (ii)

Then, by (i) and (ii),

Σ
~u∈IN~β(~bi)

strβi+1
(~bi,~bi + ~u) ≤ Σ

~u∈U2\(OUT~α(~bi)∪DEPT (~bi))
strα(~bi,~bi + ~u).

But, by property (2) of conditional determinism, the only type of tile that can attach to βi
at location ~bi is α(~bi). Thus, β(~bi) = α(~bi).

So it must be the case that IN
~β(~bi) 6= IN~α(~bi). By property (1) of conditional deter-

minism, there must be some ~u ∈ IN
~β(~bi) \ IN~α(~bi). Since ~u ∈ IN

~β(~bi), ~bi + ~u ∈ domβi, so
β(~bi + ~u) = α(~bi + ~u). We’ve already established that β(~bi) = α(~bi). So, By property (2) of
conditional determinism, it must be the case that i~α(~bi + ~u) > i~α(~bi). So, ~u 6∈ IN~α(~bi). But
then −~u ∈ IN~α(~bi + ~u), and so ~u ∈ OUT~α(~bi). But, by (i), this is impossible. Therefore, no
such i exists.

It is now a straightforward task to show that the TAS of Figure 7 is directed.

5 Fibering the Sierpinski Triangle in Place

In this section we present our second main theorem. We construct a TAS in which a superset
of S with the same ζ-dimension strictly self-assembles. Thus, our first main theorem is
tight, even when restricted to supersets of S. To prove this we define a new fractal, the
laced Sierpinski triangle, denoted L. We show that S ⊆ L, Dimζ(L∆S) = Dimζ(S), and
that L strictly self-assembles in the Tile Assembly Model.

Formally, the laced Sierpinski triangle is a set of points in Z2. Our goal is to define the
sets L0,L1, . . . such that each Li is the ith stage in our construction of L. We will break
each Li up into disjoint subsets representing the different “types” of fibers added to S that
allow L to strictly self-assemble. Let V = {(0, 1), (1, 0)}, W = {(0, 0)} ∪ V , and

X = {(0, 2), (2, 0), (−1, 1), (1,−1)} ∪W.

Then, we define the sets C0, C1, . . . by

Ci =


∅ if i < 2

2i−1(1, 1) +W if i = 2

(2i−1(1, 1) +X) ∪ ⋃
w∈W

(2i−1w + Ci−1) otherwise.
(5.1)

Intuitively, each Ci is the set of cap fibers in Li. For each i ∈ N, let

Φi =
i−2⋃
j=1

2i−2j⋃
k=2j+1

{
(2i − j, k), (k, 2i − j)

}
. (5.2)
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S Cap Fiber Test Fiber Counter Fiber

Figure 8: Stage 6 of the laced Sierpinski triangle.

Note that Φi = ∅ for i < 3. Then, we define the sets N0, N1, . . . by

Ni =

∅ if i < 3

Φi ∪Ni−1 ∪
⋃
v∈V

(2i−1v + (Ni−1 − Φi−1)) otherwise. (5.3)

Intuitively, Ni is the set of counter fibers that run along the top and right sides of the empty
triangles that form in the negative space around the interior of Si+1. For each i ∈ N, let

Ψi =

i−1⋃
j=3

2i−j⋃
k=2i−2j+3

{
(2j − 1, k), (2j , k), (k, 2j − 1), (k, 2j)

}
. (5.4)
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Note that Ψi = ∅ for i < 4. Then, we define the sets T0, T1, . . . ⊆ Z2 by

Ti =

∅ if i < 4

Ψi ∪ Ti−1 ∪
⋃
v∈V

(2i−1v + (Ti−1 −Ψi−1)) otherwise. (5.5)

Intuitively, Ti is the set of test fibers between the counter fibers and cap fibers in Li. Now,
for each i ∈ N, let

Li = Si ∪ Ci ∪Ni ∪ Ti. (5.6)

Then, the laced Sierpinski triangle is the set

L =

∞⋃
i=0

Li. (5.7)

We often refer to Li as the ith stage of L. See Figure 8 for an illustration. From equation
(5.6), it is clear that L is a superset of S.

Observation 5.1. S ⊆ L.

We now show that the ζ-dimension of L∆S (hence also of L) is the same as the ζ-
dimension of S.

Theorem 5.2. Dimζ(L∆S) = Dimζ(S).

Proof. Since S ⊆ L, it suffices to show that Dimζ(L \ S) = Dimζ(S). By (5.6), for each
n ∈ N, |(L \ S)[0,2n)| = |Cn|+ |Nn|+ |Tn|. By (5.1),

|Cn| =


0 if n < 2

3 if n = 2

3|Cn−1|+ 7 otherwise.

Solving this recurrence for n ≥ 2 gives |Cn| = 6.5 · 3n−2 − 3.5. By (5.2), for n ≥ 2,
|Φn| = 2n+1(n− 3) + 8. Then, by (5.3),

|Nn| =


0 if n < 3

8 if n = 3

3|Nn−1|+ |Φn| − 2|Φn−1| otherwise.

Solving this recurrence for n ≥ 2 gives |Nn| = 4 · 3n−1 − 2n+2 + 4. By (5.4), for n ≥ 3,
|Ψn| = 2n+2 − 2n2 − 6n+ 4. Then, by (5.5),

|Tn| =
{

0 if n ≤ 3

3|Tn−1|+ |Ψn| − 2|Ψn−1| otherwise.

Solving this recurrence for n ≥ 3 gives |Tn| = 3n−3(n+ 16.5)− 3n2 − 9n+ 34.5. Then,

Dimζ(L∆S) = lim sup
n→∞

log2(|Cn|+ |Nn|+ |Tn|)
n

= lim sup
n→∞

log2(3
n−3(n+ 72)− 2n+2 − 3n(n+ 3) + 35)

n

= Dimζ(S) by Observation 2.3.
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It remains to show that L strictly self-assembles. Our proof is constructive in that we
exhibit a TAS in which L strictly self-assembles. We begin by explaining the general tech-
niques used to fiber S in place, i.e., strictly self-assembly a superset of S without disturbing
the set S, and then delve into the details of a TAS implementing those techniques.

counters

test

caps

Figure 9: Fibering S in place.

Conceptually, the communication fibers added to S enable a superset of Si+1 to strictly
self-assemble when given a superset of Si as input. By (2.2), Si+1 can be constructed by
placing a copy of Si on top and to the right of itself. This is achieved by copying the
left boundary of Si to the right of Si, and the bottom boundary of Si to the top of Si.
These communication fibers are divided into three functional groups. To ensure that the
newly added bars are of the proper length, counter fibers control their attachment. The
counter fibers increment until they have reached same height as the middle point of the
largest diagonal in Si, and then decrement to zero. To know where the middle point is,
the counter fibers initiate the attachment of test fibers which grow back to Si, test whether
the middle point is reached, and return the result to the counters. However, if Si has not
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yet fully attached, the test fibers will read from the wrong location. Nor can the test fibers
wait until Si has completed attaching before returning to the counters, because the test
fibers would have to know where to wait! The solution to this is the diagonal cap fibers
that attach along the largest diagonal in S on the side opposite the seed. The purpose of
the diagonal cap fibers is to force the necessary part of Si to complete attaching before
its middle is read by the test fibers. Then, a blocking technique can be used for the test
fibers. The bottom row of the test fibers runs from the counters until blocked by the
cap fibers. This attachment forms a path on which information can propagate from the
diagonals back to the counters in a controlled manner. This is achieved by the diagonal
cap fibers that attach along the largest diagonal in S on the side opposite the seed. They
force the necessary part of Si to complete attaching before the counters for Si+1 can begin
to attach. Then, a blocking technique is used for the test fibers. The bottom row of the
test fibers runs from the counters until blocked by the cap fibers. This attachment forms
a path on which information can propagate from the diagonals back to the counters in a
controlled manner. See Figure 9 for an illustration. We now describe how the self-assembly
determines the center of Si. A location is at the center of Si when it sits directly above
the left boundary of the Si−1 structure on the right part of Si and directly to the right
of the bottom boundary of the Si−1 structure on the top part of Si. This is computed in
our construction by assigning to each bar of S a boolean value that is true (represented in
Figure 9 by orange) only if it meets the criteria above. Every new bar that attaches to an
existing bar will carry a true value unless it is the unique bar that attaches at the halfway
point. Then, when two true bars meet, it is always at a location in the middle of the largest
diagonal of some stage of S. When this is the case, it is noted by the diagonal cap fibers so
it can be passed to the test fibers. Note that every bar that attaches on the boundary has
a true value.

We now construct a TAS TL that implements the techniques described. Let TL =
(TL, σL, 2) be a TAS such that the set TL has ninety-five tile types as illustrated in Figure
10, and σL is a tile of type S from Figure 10.

There are five tile types to assemble the boundary of S, two for the bottom boundary
and two for the left boundary. The bottom boundary is assembled by a tile with a west glue
color of 0 attaching to the east side of S and a tile with a west glue color of 1 attaching to
the east side of it. This process continues ad infinitum. The left boundary assembles in a
similar fashion. See Figure 11 for an illustration.

The are thirty-two tile types to assemble the horizontal and vertical bars in the interior
of S, sixteen for the vertical bars and sixteen for the horizontal bars. Here, we focus on the
assembly of a vertical bar. A horizontal bar assembles in a similar fashion. The glue colors
on the north and south sides of the tiles in a vertical bar are made up of the characters
+, -, *, T, and F. Tiles used for the bottom half of a vertical bar use the + and cause the
counter that assembles next to the bar to increment. Tiles used for the top half of a vertical
bar use the - and cause the counter to decrement. A tile with a * in its south glue color
also has a * for its east glue color. The * will be used by the cap tiles to know when to stop
attaching. The T or F in the north and south glue colors propagates through the entire bar.
When a location ~m has a tile with a T in the glue color of both its south and west sides it
means that ~m is the middle point of the largest diagonal to which it belongs and the cap
tiles start their assembly at location ~m. The west side of alternating tiles in the vertical bar
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Figure 10: The tile set TL of the TAS TL.

have a glue color of either T, F, or @. These glues allow the vertical bar to receive feedback
from the counters. A T glue color tells the bar that it is at half of its intended height, at
which point the bar switches from instructing the counter to increment to instructing the
counter to decrement. An @ glue color instructs the bar to complete its assembly. An F glue
allows the bar continue assembling. The east side of these tiles also starts the growth of
new horizontal bars. If the tile abuts a glue of color T (or F) on the counter, then it negates
this value for the horizontal bar originating on its east side. See Figures 11 and 12 for an
illustration.

The cap tiles are fibers that sit on top of the diagonals of S. There are eighteen tile
types to assemble the cap tiles. Each diagonal of S has a vertical (horizontal) bar directly
to the right (above) it. The height (length) of these bars can be computed directly from
knowledge of the location of the middle of this diagonal. The test tiles will handle the
two way communication between the caps and the counters so that this information can be
used in the assembly of the bars. The cap tiles also delay the assembly of these bars until
the assembly of the relevant part of the diagonal has been completed. This allows for the
blocking behavior needed for proper assembly of these two-way communication fibers. The
middle point of the diagonal will always be at the unique location that has a tile with a T in
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Figure 11: Example assembly of the horizontal and vertical bars of S.

the glue color on both its south and west sides. When tiles meeting this criteria are present,
a cap tile will attach to the assembly at that location. This will trigger the assembly of
cap tiles both up and down the diagonal. The growth of the cap tiles are controlled by
the * glue colors on the tops (right sides) of the vertical (horizontal) bars making up the
diagonal. They first attach to a tile having a * in its glue color on the abutting side, and
then to a tile having a T or F in its glue color on the abutting side, then the process repeats.
When a * glue color is not present, the cap tiles cease their assembly. See Figure 12 for an
illustration.

There are thirty-four tile types to assemble the binary counter fibers that assemble
adjacent to the bars of S, seventeen for the vertical counters and seventeen for the horizontal
counters. The counters assemble in a zig-zag fashion. Alternating rows go from east to west
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Figure 12: Example assembly of the cap, test, and counter fibers in L.

(zig) and west to east (zag). The zig row either increments or decrements the value of the
counter depending on the glue color on the abutting side of the tile on the bar of S. During
the increment phase of the counter, if the counter is at a value that is one less than a power
of two, then it initiates the two-way communication with the cap fibers by presenting a tst

glue. The result of the test, either a T or F glue color, is propagated back to the bar. If
the counter is not at a power of two, then the zag row returns the value F. During the
decrement phase of the counter, if the counter is at a power of two, the zag row is triggered
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by a @- glue color, which instructs the counter to shrink in width by one. See Figure 12 for
an illustration.

There are six tile types to assemble the test fibers. Three for the vertical tests and
three for the horizontal tests. These fibers allow for the two-way communication between
the counter fibers and cap fibers. The request made by the counter fibers is sent along
the bottom row of the test fibers and the response is returned along the top row of the
test fibers. Because the counters do not assemble until the assembly of the corresponding
caps have completed, we can be sure that the bottom row will not continue indefinitely – it
will be blocked by the cap fibers. See Figure 12 for an illustration. We conclude with the
following theorems which prove that L strictly self-assembles in the Tile Assembly Model.

We now show that TL satisifies the conditions for the generalization of local determinism
we introduced in Section 4.

Theorem 5.3. TL is conditionally deterministic.

Proof. Let ~α = (αi | 0 ≤ i < k) be any assembly sequence in TL such that res (~α) is terminal.
It should be clear that there is such an assembly sequence and that k =∞. First, we make
the following observations that the reason that TL is not locally deterministic is because of
the locations in α at which there is a tile of type ut or dt (of Figure 10).

1. For each 0 ≤ i < k, the unique tile type t = α(~m), where ~m ∈ domαi+1 \ domαi,
attaches to αi with a strength of exactly 2.

2. For each location ~m ∈ domα \ domα0 such that α(~m) = ut , either

~m+ ~uN ∈ ∂τ
ht

(α � (domα \ ({~m} ∪ (~m+ OUT~α(~m)))))

or
∂τ (α � (domα \ ({~m} ∪ (~m+ OUT~α(~m))))) = ∅,

and for all t ∈ TL \
{

ut , ht
}

,

∂τt (α � (domα \ ({~m} ∪ (~m+ OUT~α(~m))))) = ∅.

3. For each location ~m ∈ domα \ domα0 such that α(~m) = dt ,

~m+ ~uE ∈ ∂τvt (α � (domα \ ({~m} ∪ (~m+ OUT~α(~m)))))

or
∂τ (α � (domα \ ({~m} ∪ (~m+ OUT~α(~m))))) = ∅,

and all t ∈ TL \
{

ut , ht
}

,

∂τt (α � (domα \ ({~m} ∪ (~m+ OUT~α(~m))))) = ∅.

4. For each location ~m ∈ domα \ domα0 such that α(~m) 6∈
{

ut , dt
}

, and all t ∈
TL \ {α(~m)},

∂τt (α � (domα \ ({~m} ∪ (~m+ OUT~α(~m))))) = ∅.
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5. ∂τα = ∅.
Thus, ~α satisfies conditions (1) and (3) of both local determinism and conditional deter-
minism. What prevents ~α from satisfying condition (2) of local determinism is the second
and third observation above. So, it suffices to show that

1. For each location ~m ∈ domα \ domα0 such that α(~m) = ut ,

∂τ (α � (domα \ ({~m} ∪ (~m+ (OUT~α(~m) ∪DEPT (~m)))))) = ∅, and

2. For each location ~m ∈ domα \ domα0 such that α(~m) = dt ,

∂τ (α � (domα \ ({~m} ∪ (~m+ (OUT~α(~m) ∪DEPT (~m)))))) = ∅.

We will argue that (2) holds. The argument that (1) holds is similar. Let ~m ∈ domα\domα0

such that α(~m) = dt . By construction, it must be the case that either α(~m + ~uE) ↑ or
α(~m+ ~uE) ↓. If α(~m+ ~uE) ↑ then it follows that

∂τ (domα \ ({~m} ∪ (~m+ OUT~α(~m))))) = ∅, so

∂τ (α � (domα \ ({~m} ∪ (~m+ (OUT~α(~m) ∪DEPT (~m)))))) = ∅.

If α(~m+ ~uE) ↓ then the tile at α(~m+ ~uE) must have attached along the bottom row of the
test fibers initiated by the vertical bar directly to the right of ~m (i.e., α(~m + ~uE) = vt ).
However, if you look at the assembly of this bar, the second tile from the bottom uses
the bottom right location of these caps as an input side (see Figure 12 for an illustration).
Thus, the vertical bar can not assemble above this point until all of the down caps along
this diagonal have assembled. Thus, ~m ≺TL ~m+ ~uE. Hence, ~m+ ~uE ∈ DEPT (~m). Thus,

∂τ (α � (domα \ ({~m} ∪ (~m+ (OUT~α(~m) ∪DEPT (~m)))))) = ∅.

We now show that L strictly self-assembles in TL.

Theorem 5.4. L strictly self-assembles in TL.

Proof. We say some set of locations X ⊆ L “properly assembles” if the intended tile type
was placed at each location in the set, and no tile is placed at a location in Z2 \ L. By
Theorem 5.3 and Theorem 4.2, |A� [TL] | = 1. Pick the unique α ∈ A� [TL]. It suffices to
show that domα = L. We make the following claims about TL.

(1) If Li assembles properly, then Si+1 assembles properly. To see this note that Si ⊆ Li.
Then, the same mechanics used to assemble Si are used to assemble (2i, 0) + Si and
(0, 2i) + Si. Then, by (2.2), Si+1 assembles properly.

(2) If Si assembles properly, then Ci assemble properly. To see this Let ~m = (2i−1, 2i−1).
Note that the tallest (widest) vertical (horizontal) bar of Si originates from the bound-
ary and hence propagates a T glue color throughout its assembly. Then, ~m+ ~uS and
~m + ~uW have a glue color of T on its ~uN and ~uE sides respectively. Thus, Ci are
allowed to begin their assembly at location ~m and since all of the smaller horizontal
and vertical bars of Si assemble properly, the caps will assemble up and down the
longest diagonal in Si.
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(3) If Ci assembles properly, then the largest horizontal and vertical bar of Si+1 along
with Ni and Ti assemble properly. To see this note that the longest vertical and widest
horizontal bar of Si+1 cannot grow very far until Ci has completed assembling (see
Figure 12 for an illustration). At this point the proper assembly of these bars depends
upon the proper assembly of Ni. But for Ni to assemble properly only depends on Ti
to assemble properly, which in turn depends on Ci to assemble properly.

Our proof by induction easily follows from these claims. It is easy to see that L0,L1,L2,L3

properly assemble in TL. It suffices to show that if Li properly assembles in TL, then Li+1

properly assembles in TL. Suppose Li has properly assembled in TL. Then, by claim (1),
Si+1 assembles properly. Then, by claim (2), Ci+1 assemble properly. Then, by claim (3),
Ni+1 and Ti+1 assemble properly. Hence Li+1 assembles properly.

It is also interesting to note that S also weakly self-assembles in TL.

Observation 5.5. S weakly self-assembles in TL.

Instructions for simulating TL with the ISU TAS [8] are available at http://www.cs.

iastate.edu/~shutters/asast .
We conclude this section by presenting our second main theorem which shows that the

bound given in our first main theorem, Theorem 3.4 is tight.

Theorem 5.6. There exists a set X ⊆ Z2 with the following properties.

(1) S ⊆ X.

(2) Dimζ(X∆S) = Dimζ(S).

(3) X strictly self-assembles in the Tile Assembly Model.

Proof. Let X = L. By Observation 5.1, condition (1) is satisfied. By Theorem 5.2 and
Observation 2.1, condition (2) is satisfied. By Theorem 5.4 condition (3) is satisfied.

6 Open Questions

Our results show that in the case of the Sierpinski triangle, no set “close” to the Sierpin-
ski triangle strictly self-assembles. Given that no self-similar fractal is known to strictly
self-assemble, a natural question is whether there exists a self-similar fractal that can be
approximated closely. Is there a set X that strictly self-assembles and a self-similar fractal
F such that Dimζ(X∆F ) < Dimζ(F )?

We demonstrated a distortion-free fibering technique that enables a superset of the Sierpin-
ski triangle to strictly self-assemble without increasing the fractal dimension of the intended
structure. However, this technique depends on properties unique to the Sierpinski triangle
and does not generalize to a large class of fractals. Is there a distortion-free fibering tech-
nique that generalizes to a large class of fractals without increasing the fractal dimension
of the intended structure?

We gave an extension of local determinism sufficient for showing a blocking tile assembly
system is directed. However, the relative order of when certain tiles attach in every assembly
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sequence must be established. In contrast, local determinism requires only the analysis of
a single assembly sequence. Is there a set of conditions that only requires the analysis of
a single assembly sequence that is sufficient for showing a blocking tile assembly system is
directed?
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