
Parameterizing by the Number of Numbers?

Michael R. Fellows1, Serge Gaspers2, and Frances A. Rosamond1

1 School of Engineering and IT, Charles Darwin University, NT 0909, Australia.
{michael.fellows,frances.rosamond}@cdu.edu.au

2 Institute of Information Systems, Vienna University of Technology, Vienna, Austria.
gaspers@kr.tuwien.ac.at

Abstract. The usefulness of parameterized algorithmics has often depended on what
Niedermeier has called “the art of problem parameterization”. In this paper we intro-
duce and explore a novel but general form of parameterization: the number of numbers.
Several classic numerical problems, such as Subset Sum, Partition, 3-Partition,
Numerical 3-Dimensional Matching, and Numerical Matching with Target
Sums, have multisets of integers as input. We initiate the study of parameterizing
these problems by the number of distinct integers in the input. We rely on an FPT
result for Integer Linear Programming Feasibility to show that all the above-
mentioned problems are fixed-parameter tractable when parameterized in this way. In
various applied settings, problem inputs often consist in part of multisets of integers or
multisets of weighted objects (such as edges in a graph, or jobs to be scheduled). Such
number-of-numbers parameterized problems often reduce to subproblems about tran-
sition systems of various kinds, parameterized by the size of the system description.
We consider several core problems of this kind relevant to number-of-numbers param-
eterization. Our main hardness result considers the problem: given a non-deterministic
Mealy machine M (a finite state automaton outputting a letter on each transition), an
input word x, and a census requirement c for the output word specifying how many
times each letter of the output alphabet should be written, decide whether there exists
a computation of M reading x that outputs a word y that meets the requirement c.
We show that this problem is hard for W [1]. If the question is whether there exists an
input word x such that a computation of M on x outputs a word that meets c, the
problem becomes fixed-parameter tractable.

1 Introduction

Parameterized complexity and algorithmics has been developing for more than twenty
years. Some important progress of the field has depended on what Niedermeier has
called “the art of problem parameterization” (see Chapter 5 of his monograph [23]).
For example, it was Cristina Bazgan who first suggested that the parameter might
be k = 1/ε in the study of the complexity of approximation, leading eventually to
the study of EPTASs [3].

Here we explore, for the first time (to our knowledge), a parameterization that
seems widely relevant: the number of numbers. Many problems take as input informa-
tion that consists (in part) of multisets of integers or multisets of weighted objects,
such as weighted edges in a weighted graph, the time-requirements of jobs to be

? A preliminary version of this paper appeared in the proceedings of IPEC 2010 [7]. M.R.F. and
F.A.R. acknowledge support from the Australian Research Council. S.G. acknowledges partial
support from the European Research Council (COMPLEX REASON, 239962), from Conicyt
Chile (Basal-CMM), and from the Australian Research Council.

ar
X

iv
:1

00
7.

20
21

v4
 [

cs
.D

S]
 6

 O
ct

 2
01

1

2 Michael R. Fellows, Serge Gaspers, and Frances A. Rosamond

scheduled, or the sequence of molecular weights of a spectrographic dataset. Our in-
vestigations are of importance for problem input distributions where the number of
distinct numerical values is small compared to the overall input size, and when the
modeling of the problem allows rounding as a way to get to fewer distinct values.

In classical complexity, this “parameterization” has been explored in distribution-
sensitive algorithmics [29]. For example, while Ω(n log n) is a lower bound on sorting
n values in the comparison model [18], a multiset of cardinality n and h distinct
values can be sorted using O(n log h) comparisons [22].

It is perhaps surprising that this parameterization in the sense of Niedermeier’s
“art of problem parameterization” [23, 24] has not been considered before in parame-
terized complexity, as it seems entirely well-motivated. While weighted combinatorial
optimization problems have generally strong claims to model realism, it is often the
case that, e.g., the jobs to be scheduled may be of certain standard sizes arising in
a limited number of ways, or that the costs of the nodes in a network problem may
depend on the model and vendor of the device, of which there are a limited num-
ber of possibilities. Many similar scenarios easily come to mind. A bounded number
of numbers may also arise naturally and implicitly in parameterized problems when
numbers are associated to other parameterized aspects of a problem, such as alphabet
size.

As an initial foray, we first show that a number of classic NP-hard problems
about multisets of integers, when parameterized in this way, become fixed-parameter
tractable. The proofs are easy, and the knowledgeable reader might anticipate them
almost as exercises today — they use the relatively deep result that Integer Linear
Programming, parameterized by the number of variables, is FPT. Until recently, as
noted in the 2006 monograph by Niedermeier [23], there were not so many interesting
applications of this fundamental result (see [1, 11, 12, 16] for some exceptions).

At a deeper level of engagement with this parameterization, we describe some
examples of how number-of-numbers parameterized problems reduce to numerical
problems about Mealy machines, parameterized by the size of the description of the
machine. We show that one basic problem about Mealy machines, parameterized in
this way, is FPT, and that another is W [1]-hard.

2 Preliminaries

Integer Linear Programming In the Integer Linear Programming Feasibility
problem (ILPF), the input is an m × n matrix A of integers and an m-vector b of
integers, the parameter is n, and the question is whether there exists an n-vector x of
integers satisfying the m inequalities Ax ≤ b. ILPF, parameterized by the number of
variables, was shown to be fixed-parameter tractable by Lenstra [20] and the running
time has been improved by Kannan [17] and by Frank and Tardos [14].

Multisets Let A be a multiset. The cardinality of A, denoted |A|, is the total number
of elements in A, including repeated memberships. The variety of A, denoted ||A||, is
the number of distinct elements in A. Element a has multiplicity m in A if it occurs
m times in A. We denote the set of integers from 1 to n by [n] = {1, . . . , n}.

Parameterizing by the Number of Numbers 3

Graphs Let G = (V,E) be a graph, v ∈ V be a vertex of G, and S ⊆ V be a subset
of vertices of G. The subgraph of G induced on S is the graph G[S] = (S,E ∩ {uv :
u, v ∈ S}). The set S is a clique of G if G[S] is complete, i.e. there is an edge between
every two distinct vertices of G[S]. The set S is an independent set of G if G[S] is
empty, i.e. G[S] has no edge. The neighborhood of v is the set of vertices incident to v
and denoted N(v). The degree of v is d(v) = |N(v)|. We also define NS(v) = N(v)∩S
and dS(v) = |NS(v)|.

Words Let Σ be an alphabet. The elements of Σ are called letters, and a word x of
length n = |x| is a sequence of n letters. The symbol ε denotes the empty letter. We
denote the concatenation of two words x1, x2 ∈ Σ∗ by x1x2. The ith power of a word
x is denoted xi or (x)i and represents the word xx . . . x︸ ︷︷ ︸

i times

.

Parameterized Complexity We define the basic notions of Parameterized Complex-
ity and refer to other sources [6, 13, 23] for an in-depth treatment. A parameterized
problem is a set of pairs (I, k), the instances, where I is the main part and k is
the parameter. A parameterized problem is fixed-parameter tractable if there exist a
computable function f and an algorithm that solves any instance (I, k) of size n in
time f(k)nO(1). FPT denotes the class of all fixed-parameter tractable parameterized
decision problems.

Parameterized complexity offers a completeness theory that allows the accumula-
tion of strong theoretical evidence that some parameterized problems are not fixed-
parameter tractable. This theory is based on a hierarchy of complexity classes

FPT ⊆W[1] ⊆W[2] ⊆W[3] ⊆ · · · ⊆ XP.

where all inclusions are believed to be strict. Each class W[i] contains all parameter-
ized decision problems that can be reduced to a canonical parameterized satisfiability
problem Pi under parameterized reductions. These are many-to-one reductions where
the parameter for one problem maps into the parameter for the other. More specifi-
cally, a parameterized problem L reduces to a parameterized problem L′ if there is a
mapping R from instances of L to instances of L′ such that

1. (I, k) is a Yes-instance of L if and only if (I ′, k′) = R(I, k) is a Yes-instance
of L′,

2. there is a computable function g such that k′ ≤ g(k), and
3. there is a computable function f such that R can be computed in time f(k)·nO(1),

where n denotes the size of (I, k).

A parameterized problem L is then in W[i], for i ∈ N, if it has a parameterized
reduction to the problem of deciding whether a Boolean decision circuit (a decision
circuit is a circuit with exactly one output), with AND, OR, and NOT gates, of
constant depth such that on each path from an input to the output, all but i gates
have a constant number of inputs, parameterized by the number of ones in a satisfying
assignment to the inputs of the circuit [6].

A parameterized problem is in XP if there exist computable functions f and g
and an algorithm that solves any instance (I, k) of size n in time f(k)ng(k).

4 Michael R. Fellows, Serge Gaspers, and Frances A. Rosamond

3 Subset Sum and Partition

We start with two classic problems on multisets and show that they are fixed-para-
meter tractable, parameterized by the number of numbers.

variety-Subset Sum (var -SubSum)

Input: A multiset A of integers and an integer s.
Parameter: k = ||A||, the number of distinct integers in A.
Question: Is there a multiset X ⊆ A such that

∑
a∈X a = s?

variety-Partition (var -Part)

Input: A multiset A of integers.
Parameter: k = ||A||.
Question: Is there a multiset X ⊆ A such that

∑
a∈X a =

∑
b∈A\X b?

The parameterizon of Subset Sum by |X| is W [1]-hard [9]. This hardness also holds
for the parameterization of Partition by |X| as an easy reduction from Subset
Sum adds the integer (

∑
a∈A a)− 2s to A if s ≤ (

∑
a∈A a)/2, and if s > (

∑
a∈A a)/2,

the reduction looks instead for the complement set A \X that sums to (
∑

a∈A a)− s
and uses the previous construction.

Our FPT results use a deep result of Lenstra, stating that Integer Linear
Programming Feasibility (ILPF), parameterized by the number of variables, is
FPT. They are obtained by very natural formulations of the respective problems as
integer programs.

Theorem 1. var-SubSum is fixed-parameter tractable.

Proof. Given an instance (A, s) for var -SubSum, with ||A|| = k, we create an equiv-
alent instance of ILPF whose number of variables is upper bounded by a function of
k. Let a1, . . . , ak denote the distinct elements of A and let m1, . . . ,mk denote their
respective multiplicities in A. The ILPF instance has the integer variables x1, . . . , xk
and the following inequalities and equalities.

xi ≤ mi ∀i ∈ [k]

xi ≥ 0 ∀i ∈ [k]

k∑
i=1

xi · ai = s.

For each i ∈ [k], the variable xi represents the number of times ai occurs in X, the
set summing to s in a valid solution. Using standard techniques in mathematical
programming, these constraints can be transformed into the form Ax ≤ b. ut

A very similar proof shows that var -Part is fixed-parameter tractable.

Theorem 2. var-Part is fixed-parameter tractable.

Parameterizing by the Number of Numbers 5

Proof. Given an instance A for var -Part, with ||A|| = k, we create an equivalent
instance of ILPF whose number n of variables is upper bounded by a function of k.
Let a1, . . . , ak denote the distinct elements of A and let m1, . . . ,mk denote their
respective multiplicities in A. The ILPF instance has the integer variables x1, . . . , xk
and the following inequalities and equalities.

xi ≤ mi ∀i ∈ [k]

xi ≥ 0 ∀i ∈ [k]

k∑
i=1

xi · ai =
∑
a∈A

a/2.

For each i ∈ [k], the variable xi represents the number of times ai occurs in X, such
that

∑
a∈X a =

∑
b∈A\X b =

∑
a∈A a/2 in a valid solution.

Using standard techniques in mathematical programming, these constraints can be
transformed such that they respect the form Ax ≤ b. ut

4 Other Classic Numerical Problems

Using the ILPF machinery, we show in this section that several other problems,
which are often used in NP-hardness proofs, become fixed-parameter tractable when
parameterized by the number of numbers.

variety-Numerical 3-Dimensional Matching (var -Num3-DM)

Input: Three multisets A,B,C of n integers each and an integer s.
Parameter: k = ||A ∪B ∪ C||.
Question: Are there n triples S1, . . . , Sn, each containing one element from

each of A,B, and C such that for every i ∈ [n],
∑

a∈Si a = s?

Theorem 3. var-Num3-DM is fixed-parameter tractable.

Proof. Let (A,B,C, s) be an instance for var -Num3-DM, with k1 = ||A||, k2 = ||B||,
k3 = ||C||, and k = ||A ∪ B ∪ C||. Let a1, . . . , ak1 denote the distinct elements of
A, b1, . . . , bk2 denote the distinct elements of B, and c1, . . . , ck3 denote the distinct
elements of C. Also, let m1,a, . . . ,mk1,a,m1,b, . . . ,mk2,b,m1,c, . . . ,mk3,c denote their
respective multiplicities in A, B, and C. We create an instance of ILPF with at most
k3 integer variables xi,j,`, for i ∈ [k1], j ∈ [k2], ` ∈ [k3]:

xi,j,` = 0 for each (i, j, `) ∈ [k1]× [k2]× [k3]

such that ai + bj + c` 6= s∑
(j,`)∈([k2],[k3])

xi,j,` = mi,a ∀i ∈ [k1]∑
(i,`)∈([k1],[k3])

xi,j,` = mj,b ∀j ∈ [k2]∑
(i,j)∈([k1],[k2])

xi,j,` = m`,c ∀` ∈ [k3]

6 Michael R. Fellows, Serge Gaspers, and Frances A. Rosamond

A variable xi,j,` represents the number of times the elements ai ∈ A, bj ∈ B and
c` ∈ C are used together to form a triple summing to s. The first constraint makes
sure that such a triple is formed only if it sums to s. The remaining equalities make
sure that each element of A ∪ B ∪ C appears in a triple. Thus n such triples are
formed, all summing to s if the integer program is feasible. ut

Note that the problem is also fixed-parameter tractable if parameterized by ||A∪B||
only: we face a No-instance if ||C|| > ||{a+ b : a ∈ A, b ∈ B}||. A closely related, well
known numerical problem, is the following.

variety-Numerical Matching with Target Sums (var -NMTS)

Input: Three multisets A,B, S of n integers each.
Parameter: k = ||A ∪B ∪ S||.
Question: Are there n triples C1, . . . , Cn ∈ A × B × S, such that the A-

element and the B-element from each Ci sum to its S-element?

Corollary 1. var-NMTS is fixed-parameter tractable.

By the previous discussion, the natural parameterization by ||A ∪ B|| is also fixed-
parameter tractable. A straightforward adaptation of the proof of Theorem 3 shows
that variety-3-Partition is fixed-parameter tractable.

variety-3-Partition (var -3-Part)

Input: A multiset A of 3n integers.
Parameter: k = ||A||.
Question: Are there n triples S1, . . . , Sn ⊆ A, all summing to the same

number?

Theorem 4. var-3-Part is fixed-parameter tractable.

Proof. Let A be an instance for var -3-Part, with ||A|| = k and |A| = 3n. Let
s =

∑
a∈A a/n. Let a1, . . . , ak denote the distinct elements of A and let m1, . . . ,mk

denote their multiplicities in A. We create an instance of ILPF with at most k3

integer variables xi,j,`, for i, j, ` ∈ [k]:

xi,j,` = 0 for each i, j, ` ∈ [k]

such that ai + aj + a` 6= s∑
j,`∈[k]
j, 6̀=i

(xi,j,` + xj,i,` + xj,`,i)

+2 ·
∑
j∈[k]
j 6=i

(xi,i,j + xi,j,i + xj,i,i)

+3 · xi,i,i = mi ∀i ∈ [k]

A variable xi,j,` represents the number of times the elements ai, aj and a` are used
together to form a triple summing to s. The first constraint makes sure that such a

Parameterizing by the Number of Numbers 7

triple is formed only if it sums to s. The second set of equalities make sure that each
element of A appears in a triple. Thus n such triples are formed, all summing to s if
the integer program is feasible. ut

5 Mealy Machines

In this section, we explore how far we can generalize the rather simple FPT results of
the previous two sections. To this end, we investigate the parameterized complexity of
two problems about Mealy Machines. Both problems can be viewed as parameterized
problems implicitly parameterized by the number of numbers, because in each case
the size of the alphabet is part of the parameterization, and each letter of the alphabet
is associated with a census requirement. The richer structure of these problems means
that a simple appeal to integer linear programming no longer suffices: one turns out
to be FPT, and the other W[1]-hard. In Section 6, we show that other problems
parameterized by the number of numbers reduce to these two seemingly general
problems of this kind.

Mealy machines [21] are finite-state transducers, generating an output based on
their current state and input. They have important applications in cryptanalysis [2],
computational linguistics [27], and control and system theory [30]. A deterministic
Mealy machine is a dual-alphabet state transition system given by a 5-tuple M =
(S, s0, Γ,Σ, T):

– a finite set of states S,

– a start state s0 ∈ S,

– a finite set Γ , called the input alphabet,

– a finite set Σ, called the output alphabet, and

– a transition function T : S × Γ → S × Σ mapping pairs of a state and an input
letter to the corresponding next state and output letter.

The alphabets Γ and Σ may contain the empty letter ε, as in [28]. This eases some
of the description, but all our results also hold if we restrict ε /∈ Γ ∪Σ.

In a non-deterministic Mealy machine, the only difference is that the transition
function is defined T : S × Γ → P(S ×Σ) as for a given state and input letter, there
may be more than one possibility for the next state and output letter. (Here P(X)
denotes the powerset of a set X.)

A census requirement c : Σ \ {ε} → N is a function assigning a non-negative
integer to each letter of the output alphabet (except ε). It is used to constrain how
many times each letter should appear in the output of a Mealy machine. A word
x ∈ Σ∗ meets the census requirement if every letter b ∈ Σ \ {ε} appears exactly c(b)
times in x.

The notion of census requirement is related to Parikh images [25]. Let Σ \ {ε} =
{b1, . . . , bσ}. For x ∈ Σ∗, the Parikh image is Ψ(x) = (c(b1), . . . , c(bσ)), where c is
the census requirement such that x meets c. The Parikh image of a language L is
Ψ(L) = {Ψ(x) : x ∈ L}. Parikh’s theorem [25] states that the Parikh image of a
context-free language is semilinear, i.e., that for every context-free language there is
a regular language with the same Parikh image.

8 Michael R. Fellows, Serge Gaspers, and Frances A. Rosamond

Our first problem about Mealy machines asks whether there exists an input word
and a computation of the Mealy machine such that the output word meets the census
requirement.

variety-Exists Word Mealy Machine (var -EWMM)

Input: A non-deterministic Mealy machine M = (S, s0, Γ,Σ, T), and a
census requirement c : Σ \ {ε} → N.

Parameter: |S|+ |Γ |+ |Σ|.
Question: Does there exist a word x ∈ Γ ∗ for which a computation of M

on input x generates an output y that meets c?

Our proof that var -EWMM is fixed-parameter tractable is inspired by the proof from
[10] showing that Bandwidth is fixed-parameter tractable when parameterized by
the maximum number of leaves in a spanning tree of the input graph. We need the
following definition and lemma from [10].

In a digraph D, two directed walks ∆ and ∆′ from a vertex s to a vertex t are
arc-equivalent, if for every arc a of D, ∆ and ∆′ pass through a the same number of
times.

Lemma 1 ([10]). Any directed walk ∆ through a finite digraph D on n vertices from
a vertex s to a vertex t of D is arc-equivalent to a directed walk ∆′ from s to t, where
∆′ has the form:

(1) ∆′ consists of an underlying directed walk ρ from s to t of length at most n2,
(2) together with some number of short loops, where each such short loop l begins

and ends at a vertex of ρ, and has length at most n.

The algorithm will first subdivide state transitions in order to make the underlying
directed graph simple. As suggested by Lemma 1, the algorithm goes over all possible
choices for selecting an underlying directed walk ρ starting from s0. For every short
loop starting and ending at a vertex from ρ, the algorithm associates an integer
variable representing the number of times this short loop is executed while moving
along ρ. Again by Integer Linear Programming Feasibility, it can be checked
whether there is a set of integers, representing the number of executions of the short
loops, such that the number of times each output letter is written is compatible with
the census requirement.

Theorem 5. var-EWMM is fixed-parameter tractable.

Proof. Let (M ′ = (S′, s′0, Γ
′, Σ′, T ′), c) be an instance for var -EWMM with k =

|S′| + |Γ ′| + |Σ′|. As M ′ might have multiple transitions from one state to another,
we first subdivide each transition in order to obtain a simple digraph underlying
the Mealy machine (so we can use Lemma 1): create a new non-deterministic Mealy
machine M = (S, s0, Γ,Σ, T) such that, initially, S = S′, s0 = s′0, Γ = Γ ′ ∪ {ε}, and
Σ = Σ′ ∪ {ε}; for each transition t of T ′ from a couple (si, 〈i〉) to a couple (so, 〈o〉),
add a new state st to S and add the transition from (si, 〈i〉) to (st, 〈o〉) and the
transition from (st, ε) to (so, ε) to T . Clearly, there is at most one transition between
every two states in M .

Parameterizing by the Number of Numbers 9

Our algorithm goes over all transition walks in M of length at most |S|2 that start
from s0. There are at most |S|(|S|2) such transition walks and each such transition
walk has at most |S||S| short loops, as they have length at most |S| by Lemma 1. Let
P = (s0, s1, . . . , s|P |) be such a transition walk and L = (`1, `2, . . . , `|L|) be its short
loops. It remains to check whether there exists a set of integers X = {x1, x2, . . . , x|L|}
such that a word output by a computation of M moving from s0 to s|P | along the
walk P , and executing xi times each short loop `i, 1 ≤ i ≤ |L|, meets the census
requirement. Note that if one such word meets the census requirement, then all such
words meet the census requirement, as it does not matter in which order the short
loops are executed. We verify whether such a set X exists by ILPF.

Let Σ \ {ε} = {〈`, 1〉, 〈`, 2〉, . . . , 〈`, σ〉}. Define m(i, j), for 1 ≤ i ≤ |L|, 1 ≤ j ≤ σ,
to denote the number of times that M writes the letter 〈`, j〉 when it executes the
loop `i once. Define m(j), for 1 ≤ j ≤ σ, to be the number of times that M writes
the letter 〈`, j〉 when it transitions from s0 to s|P | along the walk P . Then, we only
need to verify that there exist integers x1, x2, . . . , x|L| such that

m(j) +

|L|∑
i=0

xi ·m(i, j) = c(〈`, j〉), ∀j ∈ [σ].

By construction, |S| ≤ |S′|+ |T ′| ≤ |S′|+ |S′|2 · |Γ ′| · |Σ′| ≤ k+ k4. As the number of
integer variables of this program is at most |L| ≤ |S||S| ≤ (k+k4)k+k

4
, and the number

of transition walks that the algorithm considers is at most |S|(|S|2) ≤ (k+k4)k
2+2k5+k8 ,

var -EWMM is fixed-parameter tractable. ut

We note that the proof in [10] concerned a special case of a deterministic Mealy
machine where the input and output alphabet are the same, and all transitions that
read a letter 〈`〉 also write 〈`〉.

In our second Mealy machine problem, the question is whether, for a given input
word, there is a computation of the Mealy machine which outputs a word that meets
the census requirement.

variety-Given Word Mealy Machine (var -GWMM)

Input: A non-deterministic Mealy machine M = (S, s0, Γ,Σ, T), a word
x ∈ Γ ∗, and a census requirement c : Σ \ {ε} → N.

Parameter: |S|+ |Γ |+ |Σ|
Question: Is there a computation of M on input x generating an output y

that meets c?

By dynamic programming we show that two restrictions of this problem are in XP.
In the first one, the census requirement is encoded in unary. This restriction of the
problem seems lenient, especially when one is actually interested in finding the output
word, as the census function acts then as a placeholder for the produced word.

Theorem 6. var-GWMM is in XP if c is encoded in unary.

Proof. Let |Σ \ {ε}| = σ and Σ \ {ε} = {b1, . . . , bσ}. Our dynamic programming
algorithm computes the entries of a boolean table A. The table A has an entry A[s, c1,

10 Michael R. Fellows, Serge Gaspers, and Frances A. Rosamond

. . . , cσ, i, p] for each state s ∈ S, each cj ∈ {0, . . . , c(bj)}, j ∈ [σ], each index i ∈
{0, . . . , |x|}, and each integer p ∈ P = {0, . . . , |S| − 1}. The entry A[s, c1, . . . , cσ, i, p]
is set to true if there exists a computation of M reading the first i letters of x,
outputting a word y in which the letter bj occurs cj times, for each j ∈ [σ], followed
by p transitions that read ε and write ε, and ending up in state s, and to false

otherwise.
Set A[s, c1, . . . , cσ, 0, 0] to true if s = s0 and c1 = . . . = cσ = 0, and to false

otherwise. Compute the values of the table by increasing values of
∑σ

i=1 ci, index i,
propagation integer p, and state number s:

A[s, c1, . . . , cσ, i, p] =∨
s′∈S,bj∈Σ\{ε},p′∈P :

(s,bj)∈T (s′,x[i])

A[s′, c1, . . . , cj−1, cj − 1, cj+1, . . . , cσ, i− 1, p′]

∨
∨

s′∈S,p′∈P :
(s,ε)∈T (s′,x[i])

A[s′, c1, . . . , cσ, i− 1, p′]

∨
∨

s′∈S,bj∈Σ\{ε},p′∈P :

(s,bj)∈T (s′,ε)

A[s′, c1, . . . , cj−1, cj − 1, cj+1, . . . , cσ, i, p
′]

∨
∨

s′∈S:(s,ε)∈T (s′,ε)

A[s′, c1, . . . , cσ, i, p− 1]

Finally, there exists an x-computation of M generating a word y that meets the
census requirement if and only if

∨
s∈S,p∈P A[s, c(b1), . . . , c(bσ), |x|, p] is true. Denote

by n is the length of the description of an input instance. The table has |S| · |x| · |P | ·
Πσ
j=1c(bj) ≤ |S|2 · nσ+1 entries, and each entry can be computed in time O(|S|2 · σ).

The running time of the algorithm is thus upper bounded by O(nσ+1 · k5), where k
is the parameter. ut

For the version where c is encoded in binary, a restriction on the input alphabet gives
an XP algorithm as well.

Corollary 2. var-GWMM is in XP if ε /∈ Γ .

Proof. If
∑

b∈Σ\{ε} c(b) > |x|, then return false, as M cannot output more than |x|
letters. Otherwise, run the algorithm described in the proof of Theorem 6. Its running
time is O(k5 · |x| ·Πσ

j=1c(bj)) = O(nσ+1 · k5). ut

Note that the XP-results also hold if the parameter is only |Σ|.

To show that var -GWMM is W [1]-hard, we reduce from the Multicolored
Clique problem, which is W [1]-hard [26, 8].

Parameterizing by the Number of Numbers 11

Multicolored Clique (MCC)

Input: An integer k and a connected undirected graph G = (V (1) ∪
V (2) . . . ∪ V (k), E) such that for every i ∈ [k], the vertices of
V (i) induce an independent set in G.

Parameter: k.
Question: Is there a clique of size k in G?

Clearly, a solution to this problem has one vertex from each color.

Our parameterized reduction encodes G in the input word x of the Mealy machine
M , and the description of M depends only on k. The Mealy machine is divided into
k parts, one for each color class V (i), with 1 ≤ i ≤ k. Its ith part is responsible for
selecting a vertex vi from V (i) and edges vivj for every vj ∈ V (j), with 1 ≤ j 6= i ≤ k.
All consistency issues and communication is done via the census requirement. Within
part i, we need to make sure that the selected edges are all incident to the selected
vertex vi. This is achieved by making M output p times each letter 〈l, i, j〉, with
1 ≤ j 6= i ≤ k, if it selects the pth vertex in V (i). The census requirement for 〈l, i, j〉
is |V (i)| + 1, meaning that 〈l, i, j〉 needs to be output |V (i)| + 1 − p times later. To
select an edge vivj , the machine M will be constrained to select this edge among the
edges incident to vi. To achieve this, edges from V (i) to V (j) appear in x grouped by
the vertex from V (i) on which they are incident. After each group of edges incident
on one vertex from V (i), there is a special state where 〈l, i, j〉 is output if and only
if the edge towards V (j) has already been selected. As 〈l, i, j〉 needs to be output
exactly |V (i)| + 1 − p times, we force in this way that an edge is selected which is
incident on vi. This enforces that all edges selected in the ith part are incident on the
same vertex. It remains to make sure that distinct parts i and j select the same edge
between V (i) and V (j). This is again achieved by a census requirement where a part
of the census of letter 〈l, ē, i, j〉 is output in the ith part and the remaining part in
the jth part of M .

Theorem 7. var-GWMM is W [1]-hard.

Proof. Let (k,G = (V (1) ∪ V (2) . . . ∪ V (k), E)) be an instance of MCC. Suppose
V (i) = {vi,1, vi,2, . . . , vi,|V (i)|} is the vertex set of color i, for each color class i ∈ [k],
E = {e1, e2, . . . , e|E|}, and E(i, j) = {e(i, j, 1), e(i, j, 2), . . . , e(i, j, |E(i, j)|)} is the
subset of edges with one vertex in color class i and the other in color class j, for i, j ∈
[k]. Moreover, suppose E(i, j) follows the same order as E, that is if ep = e(i, j, p′),
eq = e(i, j, q′), and p ≤ q, then p′ ≤ q′. For a vertex vi,p and two integers j ∈ [k] \ {i}
and q ∈ [dV (j)(vi,p) + 1], we define gap(vi,p, j, q) = t− s, where e(i, j, t) is the qth edge
in E(i, j) incident to vi,p (respectively, t = |E(i, j)| if q = dV (j)(vi,p) + 1) and e(i, j, s)

is the (q − 1)th edge in E(i, j) incident to vi,p (respectively, s = 0 if q = 1).

We construct an instance (M = (S, s0, Γ,Σ, T), x, c) for var -GWMM as follows.
M ’s input alphabet, Γ , is {〈i〉, 〈i, j〉, 〈ē, i, j〉, 〈e, i, j〉 : i, j ∈ [k], i 6= j}. M ’s output
alphabet, Σ, is {ε} ∪ {〈l, i, j〉, 〈l, ē, i, j〉 : i, j ∈ [k], i 6= j}. The word x is defined

12 Michael R. Fellows, Serge Gaspers, and Frances A. Rosamond

x := x1x2 . . . xk

xi := xi,0xi,1 . . . xi,i−1xi,i+1xi,i+2 . . . xi,k〈i〉 ∀i ∈ [k]

xi,0 := (〈i, 1〉〈i, 2〉 . . . 〈i, i− 1〉〈i, i+ 1〉〈i, i+ 2〉 . . . 〈i, k〉)|V (i)| ∀i ∈ [k]

xi,j := 〈i, j〉xi,j,1〈i, j〉xi,j,2 . . . 〈i, j〉xi,j,|V (i)|〈i, j〉 ∀i, j ∈ [k], i 6= j

xi,j,p := 〈ē, i, j〉gap(vi,p,j,1)〈e, i, j〉〈ē, i, j〉gap(vi,p,j,2)〈e, i, j〉
. . . 〈ē, i, j〉gap(vi,p,j,dV (j)(vi,p))〈e, i, j〉〈ē, i, j〉gap(vi,p,j,dV (j)(vi,p)+1).

The census requirement c is, for every i, j ∈ [k], i 6= j,

c(〈l, i, j〉) := |V (i)|+ 1

c(〈l, ē, i, j〉) := |E(i, j)|.

On reading a subword xi, the Mealy machine will select a vertex vi,p in V (i) and one
edge incident to vi,p for each color class j ∈ [k] \ {i}. The vertex vi,p is selected in
the subword xi,0 of xi. Next, for each j ∈ [k] \ {i}, a vertex in V (i) and a vertex in
V (j) are selected in the subword xi,j . The census requirement for 〈l, i, j〉 makes sure
that the vertex from V (i) is vi,p. The subword xi,j,p ensures that vi,p and the vertex
that is selected from V (j) are joined by an edge. Finally, the census requirement for
〈l, ē, i, j〉 is responsible for the inter-partition communication and makes sure that
the edge selected in xi,j is equal to the edge selected in xj,i.

The Mealy machine M consists of k parts. The ith part of M is depicted in Fig. 1.

Its initial state is sv,1. There is a transition from the last state of each part, s
(4)
e,i,k, to

the first state of the following part, sv,i+1 (from the kth part, there is a transition to a
final state): it reads the letter 〈i〉 and writes the letter ε. We set 〈l′, ē, i, j〉 = 〈l, ē, j, i〉
for all i 6= j ∈ [k]. Note that, in the description of M , the letter 〈l, i, j〉 can only
be output on reading 〈i, j〉, and 〈l, ē, i, j〉 can only be output on reading 〈ē, i, j〉 or
〈ē, j, i〉.

Let us first verify that the parameter for var -GWMM is a function of k, and
that there exists a function f such that the size of the instance for var -GWMM is
f(k) · nO(1), where n is the number of vertices of G. We have |Γ | = k+ 3 · k · (k− 1),
|Σ| = 1+2 ·k ·(k−1), and |S| = 1+k ·(2+4 ·(k−1)). The parameter of var -GWMM
is thus bounded by a function of k. The length of x is O(k2 · n3). Now, we show that
(M,x, c) is a Yes-instance for var -GWMM if and only if (G, k) is a Yes-instance
for MCC.

First, suppose (M = (S, s0, Γ,Σ, T), x, c) is a Yes-instance for var -GWMM.

We say that M selects a vertex vi,p if it makes a transition from state sv,i to state
s′v,i reading 〈i, k〉 (respectively 〈i, k − 1〉 if i = k) for the pth time. In other words,

in the ith part of M , it reads p · (k − 1) − 1 letters of xi,0, staying in state sv,i and
outputs the letter 〈l, i, r〉 for each letter 〈i, r〉 it reads; then it transitions to state s′v,i
on reading 〈i, k〉 (respectively 〈k, k − 1〉 if i = k) and outputs 〈l, i, k〉 (respectively
〈l, k, k− 1〉); in the state s′v,i it outputs the empty letter for each letter 〈i, r〉 it reads.

Parameterizing by the Number of Numbers 13

sv,i s′v,i s
(1)
e,i,1 s

(2)
e,i,1

s
(3)
e,i,1s

(4)
e,i,1s

(1)
e,i,2s

(2)
e,i,2

s
(3)
e,i,2 s

(4)
e,i,2 s

(1)
e,i,k s

(2)
e,i,k

s
(3)
e,i,ks

(4)
e,i,k

〈i−1〉,ε

〈i,1〉,〈l,i,1〉
〈i,2〉,〈l,i,2〉

...
〈i,k〉,〈l,i,k〉

〈i,k〉,〈l,i,k〉

〈i,1〉,ε
〈i,2〉,ε
...
〈i,k〉,ε

〈i,1〉,ε

〈i,1〉,ε
〈e,i,1〉,ε
〈ē,i,1〉,ε

〈ē,i,1〉,〈l,ē,i,1〉

〈e,i,1〉,ε
〈ē,i,1〉,〈l,ē,i,1〉

〈e,i,1〉,ε〈e,i,1〉,ε
〈ē,i,1〉,〈l′,ē,i,1〉

〈i,1〉,〈l,i,1〉

〈i,1〉,〈l,i,1〉
〈e,i,1〉,ε
〈ē,i,1〉,ε

〈i,2〉,ε

〈i,2〉,ε
〈e,i,2〉,ε
〈ē,i,2〉,ε

〈ē,i,2〉,〈l,ē,i,2〉

〈e,i,2〉,ε
〈ē,i,2〉,〈l,ē,i,2〉

〈e,i,2〉,ε 〈e,i,2〉,ε
〈ē,i,2〉,〈l′,ē,i,2〉

〈i,2〉,〈l,i,2〉

〈i,2〉,〈l,i,2〉
〈e,i,2〉,ε
〈ē,i,2〉,ε

〈i,k〉,ε
〈e,i,k〉,ε
〈ē,i,k〉,ε

〈ē,i,k〉,〈l,ē,i,k〉

〈e,i,k〉,ε
〈ē,i,k〉,〈l,ē,i,k〉

〈e,i,k〉,ε〈e,i,k〉,ε
〈ē,i,k〉,〈l′,ē,i,k〉

〈i,k〉,〈l,i,k〉

〈i,k〉,〈l,i,k〉
〈e,i,k〉,ε
〈ē,i,k〉,ε

〈i〉,ε

Fig. 1. The ith part of the Mealy machine M . It does not have the states s
(1)
e,i,i, s

(2)
e,i,i, s

(3)
e,i,i, and s

(4)
e,i,i;

there is instead a transition from s
(4)
e,i,i−1 to s

(1)
e,i,i+1 reading 〈i − 1〉 and writing ε, and there is a

transition from s
(4)
e,k,k−1 to the last state reading 〈k〉 and writing ε. There are no transitions starting

at the last state. (Drawing all this would have cluttered the figure too much.)

We say that M selects an edge e(i, j, q) if it makes a transition from state s
(2)
e,i,j

to state s
(3)
e,i,j after having read the letter 〈ē, i, j〉 of xi,j,p exactly q times, where vi,p

is the vertex of color i that e(i, j, q) is incident on. In other words, in the ith part of

M , it transitions from the state s
(1)
e,i,j to the state s

(2)
e,i,j on reading the first letter of

xi,j,p (if it did this transition any later, the census requirement of 〈l, ē, i, j〉 could not

be met, as shown in the proof of Claim 2 below); then it stays in the state s
(2)
e,i,j until

it has read q times the letter 〈ē, i, j〉 of xi,j,p; then it transitions to the state s
(3)
e,i,j on

reading 〈e, i, j〉; it stays in this state and outputs 〈l′, ē, i, j〉 for each letter 〈ē, i, j〉 it

reads until transitioning to the state s
(4)
e,i,j on reading the letter following xi,j,p.

14 Michael R. Fellows, Serge Gaspers, and Frances A. Rosamond

The following claims ensure that the edge-selection and the vertex-selection are
compatible, i.e., that exactly one edge is selected from color i to color j, and that
this edge is incident on the selected vertex of color i.

Claim 1. Let i be a color and let vi,p be the vertex selected in the ith part of M . In
its ith part, M selects one edge incident to vi,p and to a vertex of color j, for each
j ∈ [k] \ {i}.

Proof. After M has selected vi,p, it has output p times each of the letters 〈l, i, 1〉,
〈l, i, 2〉, . . . , 〈l, i, i − 1〉, 〈l, i, i + 1〉, 〈l, i, i + 2〉, . . . , 〈l, i, k〉. For each j ∈ [k] \ {i}, the

only other transitions that output 〈l, i, j〉 are the transition from s
(3)
e,i,j to s

(4)
e,i,j and a

transition that loops on s
(4)
e,i,j . To meet the census requirement of |V (i)|+1 for 〈l, i, j〉,

M selects an edge while reading xi,j,p. This edge is incident on vi,p by construction.
ut

The following claim makes sure that the edge selected from color i to color j is the
same as the edge selected from color j to color i.

Claim 2. Suppose M selects the edge e(i, j, q) in its ith part. Then, M selects the
edge e(j, i, q) in its jth part.

Proof. Before M selects e(i, j, q), it has output q′ ≤ q times the letter 〈l, ē, i, j〉. On

selecting e(i, j, q) it transitions to the state s
(3)
e,i,j , and after the selection it outputs

〈l′, ē, i, j〉 for every letter 〈ē, i, j〉 of xi,j,p it reads. As it reads

(

dV (j)(vi,p)+1∑
r=1

gap(vi,p, j, r))− q = |E(i, j)| − q

times the letter 〈ē, i, j〉 of xi,j,p after it has selected e(i, j, q), the Mealy machine
outputs |E(i, j)| − q times the letter 〈l′, ē, i, j〉 in its ith part.

The only other transition where it outputs 〈l, ē, i, j〉 = 〈l′, ē, j, i〉 is the transition

in the jth part of M looping on s
(3)
e,j,i that reads 〈ē, j, i〉 and outputs 〈l′, ē, j, i〉. To meet

the census requirement for 〈l, ē, i, j〉, this transition must be used exactly |E(i, j)|−q′
times.

The only other transitions where it outputs 〈l′, ē, i, j〉 = 〈l, ē, j, i〉 are two transi-

tions in the jth part of M : the transition from s
(1)
e,j,i to s

(2)
e,j,i and the transition looping

on s
(2)
e,j,i, both reading 〈ē, j, i〉 and writing 〈l, ē, j, i〉. These transitions can be used at

most q′ times as the transition of the previous paragraph is used |E(i, j)| − q′ times.
These transitions have to be used at least q times to meet the census requirement for
〈l′, ē, i, j〉. Thus, these transitions are used exactly q times and q = q′.

Finally, the transition from s
(2)
e,j,i to s

(3)
e,j,i happens after having read q times the

letter 〈ē, j, i〉 of some vertex xj,i,p′ , p
′ ∈ [|V (j)|], which means that M selects the edge

e(j, i, q) in its jth part. ut

By Claims 1 and 2, the k vertices that are selected by M form a multicolored clique.
Thus, (k,G = (V (1) ∪ V (2) . . . ∪ V (k), E)) is a Yes-instance for MCC.

Parameterizing by the Number of Numbers 15

Now, suppose that (k,G = (V (1) ∪ V (2) . . . ∪ V (k), E)) is a Yes-instance for MCC.

Let {v1,p1 , v2,p2 , . . . , vk,pk} be a multicolored clique in G. We will construct a word
y meeting c such that a computation of M on input x generates y. For two adjacent
vertices vi,pi and vj,pj , define edge(vi,pi , vj,pj) = t such that e(i, j, t) = vi,pivj,pj . The
word y is y1y2 . . . yk, where yi, for i ∈ [k], is

(〈l, i, 1〉〈l, i, 2〉 . . . 〈l, i, i− 1〉〈l, i, i+ 1〉〈l, i, i+ 2〉 . . . 〈l, i, k〉)pi

yi,1yi,2 . . . yi,i−1yi,i+1yi,i+2 . . . yi,k

and yi,j , for i 6= j ∈ [k], is

〈l, ē, i, j〉edge(vi,pi ,vj,pj)〈l′, ē, i, j〉|E(i,j)|−edge(vi,pi ,vj,pj)〈l, i, j〉|V (i)|−pi+1.

We note that y meets the census requirement c. Moreover, the computation of M on
input x, which selects (as defined in the first part of the proof) exactly the vertices
and edges of the multicolored clique {v1,p1 , v2,p2 , . . . , vk,pk}, outputs y. Thus (M =
(S, s0, Γ,Σ, T), x, c) is a Yes-instance for var -GWMM. ut

The theorem holds if we restrict ε /∈ Γ ∪ Σ. Indeed, ε /∈ Γ in the target instance,
and one can add a new letter e to Σ, which replaces ε and has census requirement
c(e) = |x| −

∑
i,j∈[k],i 6=j(c(〈l, i, j〉) + c(〈l, ē, i, j〉). This instance is equivalent since the

modified M outputs one letter for each letter in x.

6 Applications

In this section we sketch two examples that illustrate how number-of-numbers pa-
rameterized problems may reduce to census problems about Mealy machines, param-
eterized by the size of the machine. For another application, see [10].

Example 1: Heat-Sensitive Scheduling. In a recent paper Chrobak et al. [5]
introduced a model for the issue of temperature-aware task scheduling for micropro-
cessor systems. The motivation is that different jobs with the same time requirements
may generate different heat loads, and it may be important to schedule the jobs so
that some temperature threshold is not breached.

In the model, the input consists of a set of jobs that are all assumed to be of
unit length, with each job assigned a numerical heat level. If at time t the processor
temperature is Tt, and if the next job that is scheduled has heat level H, then the
processor temperature at time t+ 1 is

Tt+1 = (Tt +H)/2

It is also allowed that perhaps no job is scheduled for time t+ 1 (that is, idle time is
scheduled), in which case H = 0 in the above calculation of the updated temperature.

The relevant decision problem is whether all of the jobs can be scheduled, meet-
ing a specified deadline, in such a way that a given temperature threshold is never
exceeded. This problem has been shown to be NP-hard [5] by a reduction from 3-
Dimensional Matching. An image instance of the reduction, however, involves

16 Michael R. Fellows, Serge Gaspers, and Frances A. Rosamond

arbitrarily many distinct heat levels asymptotically close to H = 2, for a tempera-
ture threshold of 1.

In the spirit of the “deconstruction of hardness proofs” advocated by Komusiewicz
et al. [19] (see also [4, 24]), one might regard this problem as ripe for parameterization
by the number of numbers, for example (scaling appropriately), a model based on 2k
equally-spaced heat levels and a temperature threshold of k. Furthermore, if the heat
levels of the jobs are only roughly classified in this way, it also makes sense to treat
the temperature transition model similarly, as:

Tt+1 = d(Tt +H)/2e

The input to the problem can now be viewed equivalently as a census of how
many jobs there are for each of the 2k + 1 heat levels, with the available potential
units of idle time allowed to meet the deadline treated as “jobs” for which H = 0.
Because of the ceiling function modeling the temperature transition, the problem now
immediately reduces to var -EWMM, for a machine on k + 1 states (that represent
the temperature of the processor) and an alphabet of size at most 2k+1. By Theorem
5, the problem is fixed-parameter tractable.

Example 2: A Problem in Computational Chemistry. The parameterized
problem of Weighted Splits Reconstruction for Paths that arises in com-
putational chemistry [15] reduces to a special case of var -GWMM. The input to
the problem is obtained from time-series spectrographic data concerning molecular
weights. The problem as defined in [15] is equivalent to the following two-processor
scheduling problem. The input consists of

– a sequence x of positive integer time gaps taken from a set of positive integers Γ ,
and

– a census requirement c on a set of positive integers Σ of job lengths.

The question is whether there is a “winning play” for the following one-person two-
processor scheduling game. At each step, first, Nature plays the next positive integer
“gap” of the sequence of time gaps x — this establishes the next immediate deadline.
Second, the Player responds by scheduling on one of the two processors, a job that
begins at the last stop-time on that processor, and ends at the immediate deadline.
The Player wins if there is a sequence of plays (against x) that meets the census
requirement c on job lengths. Fig. 2 illustrates such a game.

Processor 1 4 3 3
Processor 2 5 3 1 5

x = 4 1 2 1 1 1 4

Fig. 2. A winning game for the census: 1 (1), 3 (3), 4 (1), 5 (2)

This problem easily reduces to a special case of var -GWMM. Whether this special
case is also W [1]-hard remains open.

Parameterizing by the Number of Numbers 17

7 Concluding Remarks

The practical world of computing is full of computational problems where inputs
are “weighted” in a realistic model — weighted graphs provide a simple example
relevant to many applications. Here we have begun to explore parameterizing on the
numbers of numbers as a way of mitigating computational complexity for problems
that are numerically structured. One might view some of the impulse here as moving
approximation issues into the modeling, as illustrated by Example 1 in Section 6. We
believe this line of attack may be widely applicable.

To date, there has been little attention to parameterized complexity issues in
the context of cryptography, control theory, and other numerically structered areas
of application. Number of numbers parameterization may provide some inroads into
these underdeveloped areas.

Our main FPT result, Theorem 5, has a poor worst-case running-time guarantee.
Can this be improved – at least in important special cases?

Acknowledgment. We thank Iyad Kanj for stimulating conversations about this
work.

References

1. Noga Alon, Yossi Azar, Gerhard J. Woeginger, and Tal Yadid. Approximation schemes for
scheduling on parallel machines. Journal of Scheduling, 1:55–66, 1998.

2. Gregory V. Bard. Algebraic cryptanalysis. Springer, 2009.
3. Cristina Bazgan. Schémas d’approximation et complexité paramétrée. Master’s thesis, Université

Paris Sud, 1995.
4. Nadja Betzler, Michael R. Fellows, Jiong Guo, Rolf Niedermeier, and Frances A. Rosamond.

Fixed-parameter algorithms for kemeny rankings. Theoretical Computer Science, 410(45):4554–
4570, 2009.

5. Marek Chrobak, Christoph Dürr, Mathilde Hurand, and Julien Robert. Algorithms for
temperature-aware task scheduling in microprocessor systems. In Rudolf Fleischer and Jin-
hui Xu, editors, AAIM 2008, volume 5034 of Lecture Notes in Computer Science, pages 120–130.
Springer, 2008.

6. Rodney G. Downey and Michael R. Fellows. Parameterized complexity. Springer-Verlag, New
York, 1999.

7. Michael R. Fellows, Serge Gaspers, and Frances A. Rosamond. Parameterizing by the number of
numbers. In Venkatesh Raman and Saket Saurabh, editors, IPEC 2010, volume 6478 of Lecture
Notes in Computer Science, pages 123–134. Springer, 2010.

8. Michael R. Fellows, Danny Hermelin, Frances Rosamond, and Stéphane Vialette. On the parame-
terized complexity of multiple-interval graph problems. Theoretical Computer Science, 410(1):53–
61, 2009.

9. Michael R. Fellows and Neal Koblitz. Fixed-parameter complexity and cryptography. In
Gérard D. Cohen, Teo Mora, and Oscar Moreno, editors, AAECC 1993, volume 673 of Lec-
ture Notes in Computer Science, pages 121–131. Springer, 1993.

10. Michael R. Fellows, Daniel Lokshtanov, Neeldhara Misra, Matthias Mnich, Frances A. Rosamond,
and Saket Saurabh. The complexity ecology of parameters: An illustration using bounded max
leaf number. Theory of Computing Systems, 45(4):822–848, 2009.

11. Michael R. Fellows, Daniel Lokshtanov, Neeldhara Misra, Frances A. Rosamond, and Saket
Saurabh. Graph layout problems parameterized by vertex cover. In Seok-Hee Hong, Hiroshi
Nagamochi, and Takuro Fukunaga, editors, ISAAC 2008, volume 5369 of Lecture Notes in Com-
puter Science, pages 294–305. Springer, 2008.

12. Jiŕı Fiala, Petr A. Golovach, and Jan Kratochv́ıl. Parameterized complexity of coloring problems:
Treewidth versus vertex cover. Theoretical Computer Science, 412(23):2513–2523, 2011.

18 Michael R. Fellows, Serge Gaspers, and Frances A. Rosamond

13. Jörg Flum and Martin Grohe. Parameterized Complexity Theory, volume XIV of Texts in The-
oretical Computer Science. An EATCS Series. Springer, Berlin, 2006.

14. András Frank and Éva Tardos. An application of simultaneous diophantine approximation in
combinatorial optimization. Combinatorica, 7(1):49–65, 1987.

15. Serge Gaspers, Mathieu Liedloff, Maya J. Stein, and Karol Suchan. Complexity of splits recon-
struction for low-degree trees. In Jan Kratochv́ıl, editor, WG 2011, volume 6986 of Lecture Notes
in Computer Science. Springer, 2011. To appear.

16. Jens Gramm, Rolf Niedermeier, and Peter Rossmanith. Fixed-parameter algorithms for closest
string and related problems. Algorithmica, 37(1):25–42, 2003.

17. Ravi Kannan. Minkowski’s convex body theorem and integer programming. Mathematics of
Operations Research, 12(3):415–440, 1987.

18. Donald E. Knuth. The Art of Computer Programming, Volume III: Sorting and Searching.
Addison-Wesley, 1973.

19. Christian Komusiewicz, Rolf Niedermeier, and Johannes Uhlmann. Deconstructing intractabil-
ity - a multivariate complexity analysis of interval constrained coloring. Journal of Discrete
Algorithms, 9(1):137–151, 2011.

20. Hendrik W. Lenstra. Integer programming with a fixed number of variables. Mathematics of
Operations Research, 8(4):538–548, 1983.

21. George H. Mealy. A method for synthesizing sequential circuits. Bell System Technical Journal,
34(5):1045–1079, 1955.

22. Ian Munro and Philip M. Spira. Sorting and searching in multisets. SIAM Journal on Computing,
5(1):1–8, 1976.

23. Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathe-
matics and Its Applications. Oxford University Press, Oxford, 2006.

24. Rolf Niedermeier. Reflections on multivariate algorithmics and problem parameterization. In
Jean-Yves Marion and Thomas Schwentick, editors, STACS 2010, volume 5 of LIPIcs, pages
17–32. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2010.

25. Rohit J. Parikh. On context-free languages. Journal of the ACM, 13(4):570–581, 1966.
26. Krzysztof Pietrzak. On the parameterized complexity of the fixed alphabet shortest common

supersequence and longest common subsequence problems. Journal of Computer and System
Sciences, 67(4):757–771, 2003.

27. Emmanuel Roche and Yves Schabes. Finite-state language processing. The MIT Press, 1997.
28. John E. Savage. Models of computation - exploring the power of computing. Addison-Wesley,

1998.
29. Sandeep Sen and Neelima Gupta. Distribution-sensitive algorithms. Nordic Journal of Comput-

ing, 6:194–211, 1999.
30. Eduardo Sontag. Mathematical Control Theory: Deterministic Finite Dimensional Systems,

Second Edition. Springer, 1998.

