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Abstract The routing capabilities of an interconnection network are
strictly related to its bandwidth and latency characteristics, which are
in turn quantifiable through the graph-theoretic concepts of expansion
and diameter. This paper studies expansion and diameter of a family
of subgraphs of the random geometric graph, which closely model the
topology induced by the device discovery phase of Bluetooth-based ad
hoc networks. The main feature modeled by any such graph, denoted
as BT (r(n), c(n)), is the small number c(n) of links that each of the n
devices (vertices) may establish with those located within its communi-
cation range r(n). First, tight bounds are proved on the expansion of
BT (r(n), c(n)) for the whole set of functions r(n) and c(n) for which
connectivity has been established in previous works. Then, by leveraging
on the expansion result, tight (up to a logarithmic additive term) upper
and lower bounds on the diameter of BT (r(n), c(n)) are derived.

1 Introduction

Random graph models have been employed in the literature for the analytical
characterization of topological properties of ad hoc wireless networks governed by
a variety of network-formation protocols. One such case concerns networks based
on the Bluetooth technology [1,2]. A Bluetooth network connects n devices, each
endowed with a wireless transmitter/receiver able to communicate within a cer-
tain visibility range. The network is obtained by means of the following process:
each device attempts at discovering other devices contained within its visibility
range and at establishing reliable communication channels with them, in order
to form a connected topology, called the Bluetooth topology. Subsequently, a hi-
erarchical organization is superimposed on this initial topology. Since requiring
each device to discover all of its neighbors is too time-consuming [3], the de-
vice discovery phase is terminated by a suitable time-out, hence only a limited
number of neighbors are actually discovered.

The following random graph model for the Bluetooth topology has been
proposed in [4] and subsequently generalized in [5]. The devices are represented
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by n nodes, whose coordinates are randomly chosen within the unit square [0, 1]2;
each node selects c(n) neighbors among all visible nodes, that is, among all
nodes within Euclidean distance r(n), where r(n) models the visibility range,
which is assumed to be the same for all devices. The resulting graph, called
BT (r(n), c(n)), is the one where there is an undirected edge for each pair of
neighbors. Note that such a graph is a subgraph of the well-known random
geometric graph in [0, 1]2, where all pairs of visible nodes are connected by an
edge [6]. Experimental evidence shows that BT (r(n), c(n)) is a good model for
the Bluetooth topology [4]. Moreover, BT (r(n), c(n)) may be employed as a
model for network scenarios where nodes are constrained to maintain a small
number of simultaneous connections, because of limited resources, both energetic
and computational, or where establishing links to every visible node is, by far,
too costly either in time or energy.

Properties of BT (r(n), c(n)) have been investigated in a number of recent
works. In [7] the authors show that for any fixed constant r > 0 there exists
a (large) constant c such that BT (r, c) is an expander with high probability.
In [8] it is proved that with high probability BT (r, c) is connected for any fixed
constant r > 0 and c ≥ 2 whenever n becomes sufficiently large. These results
require that the visibility range be a constant, which implies that every node can
choose its neighbors among a constant fraction of all of the nodes in the system.
Such an assumption becomes unfeasible as the number of devices grows large.

To overcome the latter problem, a more general setting has been analyzed
in [5], where it has been proved that BT (r(n), c(n)) stays connected, with high
probability, also for vanishing values of r(n) (as n → ∞), as long as each node
selects a suitable number of neighbors. Precisely, if r(n) = Ω

(√
log n/n

)
, just

allowing c(n) = O (log (1/r(n))) neighbor selections per node ensures that the
resulting graph be connected with high probability. The lower bound on r(n)
cannot be improved: in fact, when r(n) ≤ δ

√
log n/n, for some constant 0 < δ <

1, the visibility graph obtained connecting every node to all visible ones (i.e.,
the random geometric graph RGG (r(n)) of [6] with radius r(n)) is disconnected
with high probability [9]. The tightness of the lower bound on c(n) is instead an
open problem.

Most of the previous research focuses on the connectivity of the Bluetooth
topology, with the exception of the expansion result of [7] which only considers
the extreme case of constant visibility range. In this paper, we contribute to a
deeper understanding of the Bluetooth topology by providing upper and lower
bounds for two crucial structural properties, namely, expansion and diameter,
for the values of r(n) and c(n) for which connectivity has been established by
previous works. All of our bounds are tight, except for an additive logarithmic
term in the upper bound on the diameter. To emphasize the relevance of our
results, observe that the bandwidth and latency characteristics of a network,
which determine its ability to perform efficient routing, are closely related to the
expansion and diameter properties of its underlying topology [10].

The rest of the paper is organized as follows. Section 2 introduces key defi-
nitions and properties which will be used throughout the paper. The lower and



upper bounds on the expansion of BT (r(n), c(n)) are presented in Section 3,
while those on the diameter are obtained in Section 4. Section 5 concludes the
paper with some final remarks.

2 Preliminaries

In this section we formally define the Bluetooth topology, illustrate the notation
and recall some facts for later use.

Definition 1 (Bluetooth topology). Given an integer n, a real-valued func-
tion r(n)→ (0,

√
2] and a positive integer function c(n), the Bluetooth topology,

denoted by BT (r(n), c(n)), is the undirected random graph G = (Vn, En), defined
as follows.

– The vertex set Vn is a set of n points chosen uniformly and independently at
random in [0, 1]2.

– The edge set En is obtained through the following process: independently,
each node selects a random subset of c(n) neighbors among all nodes within
distance r(n) (all of them, if they are less than c(n)). An edge {u, v} ∈ En

exists if and only if u has selected v, or viceversa.

In the next sections, we assume the following setting. Consider the standard
tessellation of [0, 1]2 into k2 square cells of side 1/k where k =

⌈√
5/r(n)

⌉
. We

say that two cells are adjacent if they share a side. Thus, any two nodes residing
in the same or in two adjacent cells are at distance at most r(n) (i.e., each node
is within the range of the other) and we say that they can see each other. When
the context is clear, with a slight abuse of notation, we identify a cell with the
set of nodes residing therein.

Recall that an event occurs with high probability (in brief, w.h.p.) if its prob-
ability is at least 1−1/poly(n). Let m = n/k2 be the expected number of nodes
residing in a cell. The following proposition will be exploited several times.

Proposition 1 ([5]). Let α = 9/10, β = 11/10. There exists a constant γ1 > 0
such that for every r(n) ≥ γ1

√
log n/n the following two events occur w.h.p.:

1. every cell contains at least αm and at most βm nodes;
2. every node has at least (α/4)πnr2(n) and at most βπnr2(n) nodes in its

visibility range.

Let G = (V,E) be an undirected graph. Below, we define the quantities at
the center of our analysis.

Definition 2 (Neighborhood). Given a set of vertices X ⊆ V , its neighbor-
hood is the set Γ (X) = {u ∈ V (G) : ∃e = {u, v} ∈ E(G), v ∈ X }.

Definition 3 (Expansion). The expansion of G is a function λ(s), for 1 ≤
s ≤ |V | /2, such that

λ(s) = min
S⊆V : |S|=s

|Γ (S)− S|
|S|

.



We remark that, in some works, the term “expansion” is used to refer to a global
property of the graph, that is, the minimum value of the function λ(s) [10]. In
contrast, in this paper we offer a finer characterization of the expansion proper-
ties of BT (r(n), c(n)) by proving explicit bounds on all values of λ(s).

Definition 4 (Diameter). The diameter of G, denoted as diam(G), is the
maximum distance between any two nodes u, v ∈ V , where the distance between
two nodes is the number of edges of a shortest path connecting them.

Observe that, under any reasonable cost model for communication, the maxi-
mum latency to be expected of a point-to-point communication in a network is
proportional to the diameter of its underlying topology.

In the rest of the paper we focus on BT (r(n), c(n)) and we study its ex-
pansion and diameter for those ranges of the parameters for which the con-
nectivity is guaranteed by the results of [5], that is, r(n) ≥ γ1

√
log n/n and

c(n) = γ2 log (1/r(n)) for two suitable positive real constants γ1, γ2.

3 Expansion of BT (r(n), c(n))

In this section we study the node expansion of BT (r(n), c(n)). Specifically, in
Section 3.1 and Section 3.2 we establish, respectively, a lower bound and an
upper bound to the node expansion of this family of random graphs. Recall that
m = n/k2 = Θ

(
nr2(n)

)
denotes the expected number of nodes residing in a cell.

3.1 Lower Bound

The main result of this section is the following theorem.

Theorem 1. Consider an instance of BT (r(n), c(n)) with r(n) ≥ γ1

√
log n/n

and c(n) = γ2 log (1/r(n)), for two suitable positive constants γ1 and γ2. With
high probability, for every integer s, 1 ≤ s ≤ n/2, we have

λ(s) =

{
Ω (min {c(n),m/s}) if 1 ≤ s ≤ αm
Ω
(√

m/s
)

if αm < s ≤ n/2.

The proof of Theorem 1 relies on three technical lemmas, which characterize
the expansion of certain types of node subsets confined within a single cell.
Consider a given subset of vertices S of size s. For any cell Q, we call the set
P = S ∩Q the pocket of S in Q.

Lemma 1. Let α′ and ε′ be two suitable positive constants, with α′ ≤ min {ε′, α}.
When |P | ≥ log n or r(n) = O

(
n−1/8

)
, then with high probability, for any cell

Q and for every pocket P ⊆ Q, with 1 ≤ |P | ≤ α′m, we have |Γ (P )− P | ≥
ε′min {c(n) |P | ,m} .



Proof. Fix a cell Q and a size p for P , with 1 ≤ p ≤ α′m. We bound the proba-
bility that, for every P ⊆ Q its neighborhood is contained in P ∪T , where T is a
set of nodes not belonging to P with a certain (small) size t. For notational con-
venience, we abbreviate c = c(n) = γ2 log (1/r(n)) and introduce the following
quantities:

– q is the number of nodes in Q;
– v is the total number of nodes visible by at least one node in Q;
– w is the minimum number of nodes visible by any node;
– w′ is the maximum number of nodes visible by any node;
– z is the minimum number of nodes visible by all nodes in P .

Conditioning on the events of Proposition 1, we have that q, v, w,w′, z = Θ (m).
Let E be the union, over all the cells Q and all the choices of the pocket

P ⊆ Q, of the events |Γ (P )− P | ≤ t. We can bound the probability of E :

Pr [E ] ≤
(
q

p

)(
v

t

)((t+p
c

)(
w
c

) )p((w′−p
c

)(
w′

c

) )z−(t+p)

≤
(
eq

p

)p (ev
t

)t
(
t+ p

w

)cp(
w′ − p
w′

)c(z−(t+p))

≤
(
eq

p

)p (ev
t

)t
(
t+ p

w

)cp

e−
cp
w′ (z−(t+p)).

We distinguish between two cases, depending on the value of p.
Case 1: 1 ≤ p ≤ m/c. Let t = ε′cp. We rewrite the bound on Pr [E ] as

Pr [E ] ≤

((
eqc

cp

)1/c(
ev

ε′cp

)ε′ (
ε′cp

aw

))cp

,

where a is a positive constant, since p = O(t) and (z − (t + p))/w′ = Θ (1). By
regrouping the factors, we obtain:

Pr [E ] ≤

(
c1/c

aε′ε′

(eq)1/c (ev)ε′

w
(cp)1−ε′−1/c

ε′

)cp

<
1
n3
,

where the last inequality holds for a sufficiently large γ2 in c = γ2 log(1/r(n)),
and for a sufficiently small ε′, since cp = Ω (log n). The claim follows by invoking
the union bound over the O (n) cells and the O (n) choices of p = |P |.

Case 2: m/c < p ≤ α′m. Note that in this case cp > m, whence we set
t = ε′m. We rewrite the upper bound on Pr [E ] as

Pr [E ] ≤
(
eq

p

)p ( ev

ε′m

)ε′m
(
ε′m+ p

aw

)cp

≤

((
eq

p

)1/c ( ev

ε′m

)ε′m/(cp)
(
ε′m+ p

aw

))cp

.



The first and the second factor of the latter bound are bounded by a constant,
for a suitable choice of c and ε′. By our choice of α′, letting ε′ be a sufficiently
small value, we can make the product of the three factors at most a constant
less than 1, so that Pr [E ] < 1

n3 since cp = Ω (log n). The claim then follows by
applying the union bound as done for Case 1. ut

Lemmas 2 and 3 are proved via counting arguments which are similar in
spirit to the one employed in the proof of Lemma 1, and are omitted due to
space limitations. Detailed proofs are reported in [11].

Lemma 2. Let r(n) = Ω
(
n−1/8

)
, and c(n) ≥ 3. With high probability, for any

cell Q and for every pocket P ⊆ Q, with |P | < log n, we have |Γ (P )| > 1
3c(n) |P |.

Lemma 3. Let α′′ and ε′′ be two suitable positive constants, with α′′ ≤ α/(2(1+
ε′′)). With high probability, for any pair of distinct adjacent cells Q and Q′ and
for every pocket P ⊆ Q, with m/c(n) ≤ |P | ≤ α′′m, we have |Γ (P ) ∩Q′| ≥
(1 + ε′′) |P |.

We are now ready to prove the main result of this section.

Proof (Theorem 1). Throughout the proof, we condition on the events stated in
Proposition 1 and in the three previous lemmas. We also define ᾱ = min {α′, α′′}
and ε̄ = min {ε′, ε′′, 1/3} where α′, α′′, ε′, ε′′ are the constants appearing in the
statements of Lemma 1 and Lemma 3, respectively. Consider an arbitrary set S
of s vertices of BT (r(n), c(n)), with 1 ≤ s ≤ n/2. We classify the cells according
to the size of the pockets of S that they contain: namely, a cell Q such that
Q ∩ S 6= ∅ is said to be black if it contains at least ᾱm nodes of S, and gray
otherwise. Two cases are possible: either a majority of nodes of S resides in black
cells or a majority of nodes of S resides in gray cells.

In the first case, there are at least ds/(2βm)e black cells. By well-known
topological properties of two-dimensional meshes [12], we have that at least
Ω
(√

s/m
)

black cells are adjacent to distinct non-black cells. From Lemma 3,
every subset P ′ ⊆ S of size ᾱm contained in one of these black cells expands
into the corresponding adjacent non-black cell Q′ of at least (1 + ε̄) times its
cardinality, hence |Γ (P )− S| ≥ |(Γ (P ′) ∩Q′)− S| ≥ ε̄ᾱm, and thus λ(s) =
Ω
(√

m/s
)

, which is the correct bound since s = Ω (m) in this case.
In the second case, we resort to a proof strategy inspired by the one employed

in [7]. Referring to the tessellation of [0, 1]2 into k2 cells, let us index the cells
as Qij , with 1 ≤ i, j ≤ k. Define the sector Sij of a cell Qij as

Sij =
⋃

max{i−6,1}≤x≤min{i+6,k}
max{j−6,1}≤y≤min{j+6,k}

Qxy.

The active area Aij of sector Sij is defined as

Aij =
⋃

max{i−3,1}≤x≤min{i+3,k}
max{j−3,1}≤y≤min{j+3,k}

Qxy.



Cell Qij is called the center of both sector Sij and its active area Aij . Note that
the neighborhood of the pocket Pij = Qij ∩ S is entirely contained in Aij and
that the definition of a sector ensures that given two sectors Sij and Si′j′ , with
Qi′j′ ∩ Sij = ∅, their active areas are non-overlapping.

Let G be the set of at least s/2 nodes of S belonging to gray cells. To
estimate the expansion of S, we first execute a greedy procedure, which selects
a number of gray cells which are centers of nonoverlapping active areas, and
then obtain a lower bound on the expansion by adding up the contributions
related to these selected cells. The selection of the centers is obtained via the
following marking strategy. Initially all of the gray cells are unmarked. Then,
iteratively, the center of the next active area is selected as the unmarked gray
cell Q containing the largest pocket of S, and all of the unmarked cells of the
sector centered at Q are marked. The procedure terminates as soon as every gray
cell becomes marked. The procedure is described by the following pseudocode,
where sets I and U maintain, respectively, the indices of the selected centers
and the indices of unmarked cells, and subroutine LargestPocket(U) returns
the pair (i, j) corresponding to the unmarked cell with the largest pocket (ties
broken arbitrarily).

Center Selection
I ← ∅; U ← {(i, j) : Qij is a gray cell}
while U 6= ∅ do

(i, j)← LargestPocket(U)
I ← I ∪ (i, j)
for each Qxy ∈ Sij do U ← U − (x, y)

Let 〈 c1, c2, . . . , cw 〉 be the list of w centers picked by Center Selection, where
ct = (it, jt) was chosen at the t-th iteration of the while loop. Let pt = |Pct

|,
and let gt be the number of nodes residing in unmarked gray cells of Sct

at the
beginning of iteration t. Clearly, we have that

∑w
t=1 gt = |G| and, by the greedy

choice of the centers, gt ≤ 169pt.
In order to lower bound the expansion of S, we proceed as follows. For each

t, with 1 ≤ t ≤ w, we determine a suitable set of nodes Nt ⊆ Γ (S), which
belong to gray cells of Act

. We distinguish between two different cases. If Act

contains a black cell, since Qct
is gray, there must exists a pair of adjacent black-

gray cells in Act
, and we pick Nt as a set of (1 + ε̄)ᾱm nodes in the gray cell

reached by nodes of S in the black cell, which exists by virtue of Lemma 3.
Otherwise, we let Nt = Γ (Pct) − Pct and observe that by Lemmas 1 and 2,
|Nt| ≥ ε̄min {c(n)pt,m} . Note that the Nt’s are all disjoint, but the sum of
their sizes does not immediately yield a lower bound to |Γ (S)− S|, since each
Nt may itself contain nodes of S, which have to be subtracted from the overall
count.

Let us first consider the special case when no active area Act contains black
cells. In this case, the number of external neighbors of S (i.e., nodes of Γ (S)−S)
accounted for by the Nt’s is(

w∑
t=1

|Nt|

)
− |G| =

w∑
t=1

(|Nt| − gt) ≥
w∑

t=1

(|Nt| − 169pt) .



Since pt ≤ ᾱm and |Nt| ≥ ε̄min {c(n)pt,m}, then for a sufficiently large choice
of γ2 in c(n) = γ2 log (1/r(n)) and a sufficiently small value of ᾱ, we have that
|Nt| − 169pt ≥ µ |Nt| for a certain constant µ > 0. Hence,

w∑
t=1

(|Nt| − 169pt) = Ω

(
w∑

t=1

ε̄min {c(n)pt,m}

)
= Ω (min {c(n)s,m}) ,

and the theorem follows.
Consider now the general case where some active areas contain black cells,

which implies that s = Ω (m). Observe that
∑w

t=1 |Nt| = Ω (|G|) = Ω (s), and
note that it is sufficient to show that the number of external neighbors of S is
Ω (
∑w

t=1 |Nt|). Partition the index set I = {1, 2, . . . , t} into two disjoint subsets
B1 and B2, such that t ∈ B1 if Act

contains no black cells, and t ∈ B2 otherwise.
Suppose that

∑
t∈B2

|Nt| ≥ τ
∑

t∈B1
|Nt|, for a suitable positive constant τ which

will be specified later. For each t ∈ B2 the set Nt contains (1 + ε̄)ᾱm nodes,
and at least ε̄ᾱm of these nodes are external neighbors of S. Hence, the total
number of external neighbors of S is at least

∑
t∈B2

ε̄ᾱm =
ε̄

1 + ε̄

∑
t∈B2

|Nt| ≥
ε̄

1 + ε̄

τ

1 + τ

w∑
t=1

|Nt| ,

and the theorem follows. Finally, if
∑

t∈B2
|Nt| < τ

∑
t∈B1

|Nt|, the number of
external neighbors of S accounted for by the nodes in the Nt’s is(

w∑
t=1

|Nt|

)
− |G| =

∑
t∈B1

(|Nt| − 169pt) +
∑
t∈B2

(|Nt| − 169pt)

≥
∑
t∈B1

µ |Nt|+
∑
t∈B2

((1 + ε̄)ᾱm− 169ᾱm)

>
∑
t∈B1

µ |Nt| −
∑
t∈B1

(
169

1 + ε̄
− 1
)
τ |Nt| .

By fixing τ such that ((169/(1 + ε̄))− 1)τ = µ/2, we get

∑
t∈B1

µ |Nt| −
∑
t∈B1

(
169

1 + ε̄
− 1
)
τ |Nt| =

µ

2

∑
t∈B1

|Nt| = Ω

(
w∑

t=1

|Nt|

)
,

and the theorem follows. ut

3.2 Upper Bound

We now prove that the lower bound of Theorem 1 is asymptotically tight.

Theorem 2. Consider an instance of BT (r(n), c(n)) with r(n) ≥ γ1

√
log n/n

and c(n) = γ2 log (1/r(n)), for two suitable positive constants γ1 and γ2. With



high probability, for every integer s, 1 ≤ s ≤ n/2, there exists a set of vertices S
of size s whose expansion is

λ(s) =

{
O (min {c(n),m/s}) if 1 ≤ s ≤ αm
O
(√

m/s
)

if αm < s ≤ n/2.

Proof. Suppose that the events stated in Proposition 1 occur. If s ≤ αm, we
can choose any subset S of the nodes in a single corner cell Q, so that a total
of at most 13βm nodes are visible from S. Hence, λ(s) = O (m/s). Consider a
list 〈 v1, v2, . . . , vn 〉 of the vertices of V , sorted by nondecreasing node degree. If
we take S = {v1, v2, . . . , vs}, we are guaranteed that the sum of the degrees of
all nodes in S is not greater than 2c(n)s, or otherwise the sum of the degrees
of the n nodes would exceed 2c(n)n, which is impossible. Combining the two
cases above yields the thesis for the case s ≤ αm. Let s > αm and consider a
set S which occupies an approximately square area of Θ (s/m) cells in a corner
of [0, 1]2. Since only the nodes in O

(√
s/m

)
cells are visible from S, we have

that λ(s) = O (
√
ms/s) = O

(√
m/s

)
, and the theorem follows. ut

We remark that the tight bounds on the expansion of BT (r(n), c(n)) pro-
vided by Theorems 1 and 2 extend the results in [7] from the specific case of
r(n) = Θ (1) to any value of r(n) which guarantees the connectivity of the graph.
Note also that if we consider the minimum expansion λ = min1≤s≤n/2 λ(s), we
obtain that for the Bluetooth topology λ = Θ (r(n)).

Similar techniques may be applied to prove that RGG (r(n)) features an
expansion of λ(s) = Θ (m/s) for 1 ≤ s ≤ αm, and λ(s) = Θ

(√
m/s

)
for αm <

s ≤ n/2 (details are given in [11]). Hence, quite surprisingly, the expansion of
BT (r(n), c(n)) is, within a constant factor, equal to the expansion of RGG (r(n))
whenever s = Ω (m/c(n)).

4 Diameter of BT (r(n), c(n))

In this section, we provide upper and lower bounds on the diameter of
BT (r(n), c(n)) by leveraging on the expansion result of Section 3. Specifically,
the upper bound relies on the following lemma, which relates diameter and ex-
pansion.

Lemma 4. Given a connected undirected graph G = (V,E) with n nodes and
expansion λ(s), for 1 ≤ s ≤ n/2, consider the following recurrence:

N0 = 1
Ni = (1 + λ(Ni−1))Ni−1.

(1)

Define i? as the smallest index such that Ni? > n/2. Then, diam(G) ≤ 2i?.



Proof. Let d = diam(G) and let u and v be two nodes at distance d in G.
Consider a breadth-first tree rooted at u. For 0 ≤ i ≤ d, let Wi denote the
set of nodes at level i in the tree, and Yi =

⋃i
`=0W`. Note that the expansion

properties of G imply that |Yi| ≥ Ni. Define now j? as the smallest index such
that |Yj? | > n/2, which implies that j? ≤ i?. Also, w.l.o.g., we can assume that
j? ≥ dd/2e, or otherwise we repeat the argument considering the breadth-first
tree rooted at v. Indeed, since u and v are at distance d, one of the two breadth-
first trees must reach at most n/2 nodes within the first dd/2e−1 levels, or there
would be a path shorter than d connecting u and v. The lemma follows. ut
Theorem 3. Consider an instance of BT (r(n), c(n)) with r(n) ≥ γ1

√
log n/n

and c(n) = γ2 log (1/r(n)), for two suitable positive constants γ1 and γ2. With
high probability,

diam(BT (r(n), c(n))) = O

(
1

r(n)
+ log n

)
.

Proof. We apply Lemma 4 by estimating the value i? for the graph
BT (r(n), c(n)), conditioning on the fact that the expansion of BT (r(n), c(n))
is λ(s) = Ω (min {c(n),m/s}) for s ≤ αm, and λ(s) = Ω

(√
m/s

)
for s > αm,

which happens w.h.p. (see Theorem 1).
In order to account for these two different expansion regimes, we proceed as

follows. Let K(j) = min
{
i : Ni ≥ 2j

}
, so that i? = K(log n − 1) and let j1 be

such that 2j1 = Θ (m). Since λ(Ni) = Ω (1) for 0 ≤ i < K(j1), it follows that
K(j1) = O (log n). Observe that for i > K(j1), there exists a constant σ such
that λ(Ni) ≥ σ

√
m/Ni. As a consequence, for j > j1, we have:

NK(j) ≥ NK(j−1)

K(j)−1∏
s=K(j−1)

(
1 +

σ
√
m√
Ns

)

≥ NK(j−1)

(
1 +

σ
√
m√

NK(j)−1

)K(j)−K(j−1)

≥ 2j−1

(
1 +

σ
√
m

2j/2

)K(j)−K(j−1)

.

Since K(j) is defined as the smallest index for which NK(j) ≥ 2j , from the above

inequalities it follows that K(j)−K(j − 1) = O
(

2j/2

r(n)
√

n

)
. Therefore,

i? = K(log n− 1) =
log n−1∑

j=1

(K(j)−K(j − 1))

=
j1∑

j=1

(K(j)−K(j − 1)) +
log n−1∑
j=j1+1

(K(j)−K(j − 1))

= O (log n) +O

(
1

r(n)

)
,



and the theorem follows from Lemma 4. ut

We now show that Theorem 3 gives a tight estimate for the diameter of
BT (r(n), c(n)) when r(n) = O (1/ log n).

Theorem 4. Consider an instance of BT (r(n), c(n)) with r(n) ≥ γ1

√
log n/n

and c(n) ≥ γ2 log (1/r(n)), for two suitable positive constants γ1 and γ2. With
high probability,

diam(BT (r(n), c(n))) = Ω

(
1

r(n)

)
.

Proof. Consider the natural tessellation introduced in Section 2. By Proposi-
tion 1, with high probability the top leftmost cell and the bottom rightmost
cell contain at least one node each, hence the Euclidean distance between these
two nodes is Θ (1). Therefore, any path in BT (r(n), c(n)) connecting them must
contain at least Ω (1/r(n)) nodes. ut

We point out that the lower bound for the case r(n) = Θ (1) can be im-
proved to Ω (log n/ log log n). (Full details will be given in the full version of this
extended abstract.)

5 Conclusions

The main result of this paper is a tight characterization of the node expansion
properties of the Bluetooth topology. Since expansion is essentially a measure
of bandwidth, being able to provide a quantitative estimate of this property is
useful for the design and analysis of routing strategies [10]. Our result is valid
for the entire set of visibility ranges r(n) and number of neighbor choices c(n)
which are known to produce a connected graph, as opposed to the result of [7]
which holds only for the extreme case r(n) = Θ (1).

By leveraging on the expansion properties, we also derive nearly tight bounds
on the diameter of the same topology, which is again an important measure for
routing, related to the latency of the network. Our bounds are tight for a large
spectrum of visibility ranges (i.e., r(n) = O (1/ log n)), which includes “small
ranges”, that is, those which are most interesting for the large scale deployment
of the technology. In fact, for the larger ranges r(n) = ω (1/ log n) the upper and
lower bounds differ by a mere additive logarithmic term. Closing this gap is still
an open problem.

A consequence of our results is that for subsets of s = Ω (m/c(n)) vertices,
BT (r(n), c(n)) exhibits roughly the same expansion as the much denser random
geometric graph RGG (r(n)) of [6]. Also, the diameters of the two graphs differ
by at most a logarithmic additive term. These are important considerations for
real ad hoc networks, especially for what concerns routing capabilities, since they
imply thatBT (r(n), c(n)) features similar bandwidth and latency characteristics
of RGG (r(n)) at only a fraction of the costs.

Finally, we recall that it is still an open problem to establish, for every given
visibility range r(n) = Ω

(√
log n/n

)
, the minimum number c(n) of neighbor



choices which yield connectivity and to assess the corresponding diameter and
expansion properties.
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