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Abstract

Clique-width is a complexity measure of directed as well as undirected graphs. Rank-

width is an equivalent complexity measure for undirected graphs and has good al-
gorithmic and structural properties. It is in particular related to the vertex-minor

relation. We discuss an extension of the notion of rank-width to edge-colored graphs.
A C-colored graph is a graph where the arcs are colored with colors from the set
C. There is not a natural notion of rank-width for C-colored graphs. We define two
notions of rank-width for them, both based on a coding of C-colored graphs by
edge-colored graphs where each edge has exactly one color from a field F and named
respectively F-rank-width and F-bi-rank-width. The two notions are equivalent to
clique-width. We then present a notion of vertex-minor for F-colored graphs and
prove that F-colored graphs of bounded F-rank-width are characterised by a finite
list of F-colored graphs to exclude as vertex-minors. A cubic-time algorithm to de-
cide whether a F-colored graph has F-rank-width (resp. F-bi-rank-width) at most k,
for fixed k, is also given. Graph operations to check MSOL-definable properties on
F-colored graphs of bounded rank-width are presented. A specialisation of all these
notions to (directed) graphs without edge colors is presented, which shows that our
results generalise the ones in undirected graphs.
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1 Introduction

Clique-width [5,12] is a complexity measure for edge-colored graphs, i.e., graphs
where edges are colored with colors from a finite set. Clique-Width is more
general than tree-width [33] because every class of graphs of bounded tree-
width has bounded clique-width and the converse is false (complete undirected
graphs have clique-width 2 and unbounded tree-width) [12]. Clique-width is an
interesting complexity measure in algorithmic design. In fact every property
expressible in monadic second-order logic (MSOL for short) can be checked
in linear-time, provided the clique-width expression is given, on every graph
that has small clique-width [11]. This result is important in complexity the-
ory because many NP-complete problems are MS-definable properties, e.g.,
3-colorability. However, it is NP-complete to check if a graph has clique-width
at most k when k is part of the input [17]. It is still open whether this problem
is polynomial for fixed k ≥ 4.

In their investigations of a recognition algorithm for undirected graphs of
clique-width at most k, for fixed k, Oum and Seymour [31] introduced the
notion of rank-decomposition and associated complexity measure rank-width,
of undirected graphs. Rank-width is defined in a combinatorial way and is
equivalent to the clique-width of undirected graphs in the sense that a class
of graphs has bounded clique-width if and only if it has bounded rank-width
[31]. But, being defined in a combinatorial way provides to rank-width better
algorithmic properties than clique-width, in particular:

• for fixed k, there exists a cubic-time algorithm that decides whether the
rank-width of an undirected graph is at most k and if so, constructs a rank-
decomposition of width at most k [22];
• there exists a dual notion to rank-width, the notion of tangle [28,34]. This

dual notion is interesting for getting certificates in recognition algorithms.

Since clique-width and rank-width of undirected graphs are equivalent, one
way to check MSOL properties in undirected graphs of small rank-width is to
transform a rank-decomposition into a clique-width expression [31]. However,
an alternative characterization of rank-width in terms of graph operations has
been proposed in [9]. It is thus possible to solve MSOL properties in graphs
of small rank-width by using directly the rank-decomposition. This later re-
sult is important in a practical point of view because it avoids the exponent,
that cannot be avoided [4,32], when transforming a rank-decomposition into
a clique-width expression.

Another advantage of rank-width over clique-width is that it is invariant with
respect to the vertex-minor relation (no such notion, except for induced sub-
graph relation, is known for clique-width), i.e., if H is a vertex-minor of G,
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then the rank-width of H is at most the rank-width of G [29]. Moreover,
every class of undirected graphs of bounded rank-width is characterised by
a finite list of undirected graphs to exclude as vertex-minors [29]. This later
result generalises the one of Robertson and Seymour on undirected graphs of
bounded tree-width [33].

Despite all these positive results of rank-width, the fact that clique-width
is defined for graphs - directed or not, with edge colors or not - is an un-
deniable advantage over rank-width. It is thus natural to ask for a notion
of rank-width for edge-colored graphs or at least for directed graphs with-
out edge colors. Courcelle and Oum suggested in [13] a definition of rank-
width for directed graphs as follows: Courcelle [6] described a graph trans-
formation B from (directed) graphs to undirected bipartite graphs so that
f1(cwd(B(G))) ≤ cwd(G) ≤ f2(cwd(B(G))), for some functions f1 and f2;
the rank-width of a (directed) graph is defined as the rank-width of B(G).
This definition can be extended to edge-colored graphs by using a similar
coding (see [7, Chapter 6]). This definition gives a cubic-time algorithm that
approximates the clique-width of edge-colored graphs. Another consequence
is the proof of a weak version of the Seese’s conjecture for edge-colored graphs
[13]. However, this definition suffers from the following drawback: a vertex-
minor of B(G) does not always correspond to a coding of an edge-colored
graph and similarly for the notion of pivot-minor (see for instance [20,29] for
the definition of pivot-minor of undirected graphs).

We investigate in this paper a better notion of rank-width for edge-colored
graphs. However, there is no unique natural way to extend rank-width to edge-
colored graphs. We are looking for a notion that extends the one on undirected
graphs and that can be used for directed graphs without edge colors. For
that purposes, we will define the notion of sigma-symmetric matrices, which
generalizes the notion of symmetric and skew-symmetric matrices. We then use
this notion to represent edge-colored graphs by matrices over finite fields and
derive, from this representation, a notion of rank-width, called F-rank-width,
that generalises the one of undirected graphs. We also define another notion
of rank-width, called F-bi-rank-width. We prove that the two parameters are
equivalent to clique-width.

We then define a notion of vertex-minor for edge-colored graphs that extends
the one on undirected graphs. We prove that F-rank-width and F-bi-rank-
width are invariant with respect to this vertex-minor relation. We give a
characterisation of edge-colored graphs of bounded F-rank-width by excluded
configurations. This result generalises the one on undirected graphs [29]. A
generalisation of the pivot-minor relation is also presented.

The cubic-time recognition algorithm by Hliněný and Oum [22] can be adapted
to give for fixed k, a cubic-time algorithm that decides if a given edge-colored
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graph has F-rank-width (resp. F-bi-rank-width) at most k and if so, outputs
an optimal rank-decomposition.

The two notions of rank-width of edge-colored graphs are specialised to di-
rected graphs without colors on edges. All the results specialised to them.

The paper is organized as follows. In Section 2 we give some preliminary
definitions and results. We recall in particular the definition of rank-width
of undirected graphs. The first notion of rank-width of edge-colored graphs,
called F-rank-width, is studied in Section 3. We will define the notion of vertex-
minor and pivot-minor, and prove that edge-colored graphs of bounded F-rank-
width are characterised by a finite list of edge-colored graphs to exclude as
vertex-minors (resp. pivot-minors). A cubic-time recognition algorithm and
a specialisation to directed graphs are also presented. We define our second
notion of rank-width for edge-colored graphs called F-bi-rank-width in Section
4. We also specialise it to directed graphs. In Section 5 we introduce some
algebraic graph operations that generalise the ones in [9]. These operations
will be used to characterise exactly the two notions of rank-width. They can
be seen as alternatives to clique-width operations for solving MSOL properties.
We conclude by some remarks and open questions in Section 6.

This paper is related to a companion paper where the authors introduce a
decomposition of edge-colored graphs on a fixed field [24]. This decomposition
plays a role similar to the split decomposition for the rank-width of undirected
graphs. Particularly we show that the rank width of an edge-colored graph is
exactly the maximum over the rank-width over all edge-colored prime graphs
in the decomposition, and we give different characterisations of egde-colored
graphs of rank-width one.

2 Preliminaries

For two sets A and B, we let A\B be the set {x ∈ A | x /∈ B}. The power-set
of a set V is denoted by 2V . We often write x to denote the set {x}. The set
of natural integers is denoted by N.

We denote by + and · the binary operations of any field and by 0 and 1 the
neutral elements of + and · respectively. For every prime number p and every
positive integer k, we denote by Fpk the finite field of characteristic p and of
order pk. We recall that they are the only finite fields. We refer to [27] for our
field terminology.

For sets R and C, an (R,C)-matrix is a matrix where the rows are indexed by
elements in R and columns indexed by elements in C. For an (R,C)-matrix
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M , if X ⊆ R and Y ⊆ C, we let M [X, Y ] be the sub-matrix of M where the
rows and the columns are indexed by X and Y respectively. We let rk be the
matrix rank-function (the field will be clear from the context). We denote by
MT the transpose of a matrix M . The order of an (R,C)-matrix is defined
as |R| × |C|. We often write k × ℓ-matrix to denote a matrix of order k × ℓ.
For positive integers k and ℓ, we let Ok,ℓ be the null k × ℓ-matrix and Ik the
identity k × k-matrix, or respectively O and I when the size is clear in the
context.

We use the standard graph terminology, see for instance [15]. A graph G is a
couple (VG, EG) where VG is the set of vertices and EG ⊆ VG×VG is the set of
edges. A graph G is said to be oriented if (x, y) ∈ EG implies (y, x) /∈ EG, and
it is said undirected if (x, y) ∈ EG implies (y, x) ∈ EG. An edge between x and
y in an undirected graph is denoted by xy (equivalently yx). For a graph G,
we denote by G[X ], called the sub-graph of G induced by X ⊆ VG, the graph
(X,EG ∩ (X ×X)); we let G-X be the sub-graph G[VG\X ]. The degree of a
vertex x in an undirected graph G is the cardinal of the set {y | xy ∈ EG}. Two
graphs G and H are isomorphic if there exists a bijection h : VG → VH such
that (x, y) ∈ EG if and only if (h(x), h(y)) ∈ EH . We call h an isomorphism
between G and H . All graphs are finite and loop-free (i.e. for every x ∈ VG,
(x, x) 6∈ EG).

A tree is an acyclic connected undirected graph. In order to avoid confusions
in some lemmas, we will call nodes the vertices of trees. The nodes of degree
1 are called leaves and the set of leaves in a tree T is denoted by LT . A sub-
cubic tree is an undirected tree such that the degree of each node is at most
3. A tree T is rooted if it has a distinguished node r, called the root of T . For
convenience, we will consider a rooted tree as an oriented graph such that the
underlying graph is a tree, and such that all nodes are reachable from the root
by a directed path. For a tree T and an edge e of T , we let T -e denote the
graph (VT , ET\e).

Let C be a (possibly infinite) set that we call the colors. A C-graph G is a
tuple (VG, EG, ℓG) where (VG, EG) is a graph and ℓG : EG → C is a function.
Its associated underlying graph u(G) is the graph (VG, EG). Two C-graph
G and H are isomorphic if there is a isomorphism h between (VG, EG) and
(VH , EH) such that for every (x, y) ∈ EG, ℓG((x, y)) = ℓH((h(x), h(y)). We call
h an isomorphism between G and H . We let G (C) be the set of C-graphs for a
fixed color set C. Even though we authorise infinite color sets in the definition,
most of results in this article are valid only when the color set is finite. It is
worth noticing that an edge-uncolored graph can be seen as an edge-colored
graph where all the edges have the same color.

Remark 2.1 (Multiple colors per edge) In our definition, an edge in a
C-graph can only have one color. However, this is not restrictive because if in
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an edge-colored graph an edge can have several colors from a set C, we just
extend C to 2C.

Remark 2.2 (2-structures and edge-colored graphs) A 2-structure [16]
is a pair (D,R) where D is a finite set and R is an equivalence relation on the
set D2 = {(x, y) | x, y ∈ D and x 6= y}. Every 2-structure (D,R) can be seen
as a C-colored graph G = (D,D2, ℓ) where C := {[e] | [e] is an equivalence
class of R} and for every edge e, ℓ(e) := [e]. Equivalently, every C-graph G
can be seen as a 2-structure (VG, R) where eRe′ if and only if ℓG(e) = ℓG(e

′)
and all the non-edges in G are equivalent with respect to R.

A parameter on G (C) is a function wd : G (C) → N that is invariant under
isomorphism. Two parameters on G (C), say wd and wd′, are equivalent if
there exist two integer functions f and g such that for every edge-colored
graph G ∈ G (C), f(wd′(G)) ≤ wd(G) ≤ g(wd′(G)).

The clique-width, denoted by cwd, is a graph parameter defined by Courcelle et
al. [5,12]. Most of the investigations concern edge-uncolored graphs. However,
its edge-colored version has been investigated these last years (see [3,18]). Note
that the clique-width is also defined in more general case where edges can have
several colors.

We finish these preliminaries by the notion of terms. Let F be a set of binary
and unary function symbols and C a set of constants. We denote by T (F , C)
the set of finite well-formed terms built with F ∪ C. Notice that the syntactic
tree of a term is rooted.

A context is a term in T (F , C∪{u}) having a single occurrence of the variable
u (a nullary symbol). We denote by Cxt(F , C) the set of contexts. We denote
by Id the particular context u. If s is a context and t a term, we let s • t be
the term in T (F , C) obtained by substituting t for u in s.

2.1 Rank-Width and Vertex-Minor of Undirected Graphs

Despite the interesting algorithmic results [11], clique-width suffers from the
lack of a recognition algorithm. In their investigations for a recognition al-
gorithm, Oum and Seymour introduced the notion of rank-width [31], which
approximates the clique-width of undirected graphs. Let us first define some
notions.

Let V be a finite set and f : 2V → N a function. We say that f is symmetric
if for any X ⊆ V, f(X) = f(V \X); f is submodular if for any X, Y ⊆ V ,
f(X ∪ Y ) + f(X ∩ Y ) ≤ f(X) + f(Y ).
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A layout of a finite set V is a pair (T,L) of a sub-cubic tree T and a bijective
function L : V → LT . For each edge e of T , the connected components of T -e
induce a bipartition (Xe, V \Xe) of LT , and thus a bipartition (Xe, V \Xe) =
(L−1(Xe),L

−1(V \Xe)) of V (we will omit the sub or sup-script e when the
context is clear).

Let f : 2V → N be a symmetric function and (T,L) a layout of V . The f -
width of each edge e of T is defined as f(Xe) and the f -width of (T,L) is
the maximum f -width over all edges of T . The f -width of V is the minimum
f -width over all layouts of V .

Definition 2.3 (Rank-width of undirected graphs [29,31]) For every undi-
rected graph G, we let MG be its adjacency (VG, VG)-matrix where MG[x, y] := 1
if and only if xy ∈ EG. For every graph G, we let cutrkG : 2VG → N where
cutrkG(X) := rk(MG[X, VG\X ]), where rk is the matrix rank over F2. This
function is symmetric. The rank-width of an undirected graph G, denoted
rwd(G), is the cutrkG-width of VG.

Rank-Width has several structural and algorithmic results, see for instance
[9,22,29]. In particular, for fixed k, there exists a cubic-time algorithm for
recognizing undirected graphs of rank-width at most k [22]. Moreover, rank-
width is related to a relation on undirected graphs, called vertex-minor.

Definition 2.4 (Local complementation, Vertex-minor [29]) For an undi-
rected graph G and a vertex x of G, the local complementation at x, denoted
by G ∗ v, consists in replacing the sub-graph induced on the neighbors of x by
its complement. A graph H is a vertex-minor of a graph G if H can be ob-
tained from G by applying a sequence of local complementations and deletions
of vertices.

Authors of [2,20,29] also introduced the pivot operation on an edge xy, denoted
by G ∧ xy = G ∗ x ∗ y ∗ x = G ∗ y ∗ x ∗ y. An interesting theorem relating
rank-width and the notion of vertex-minor is the following.

Theorem 2.5 ([29]) For every positive integer k, there exists a finite list Ck

of undirected graphs such that an undirected graph has rank-width at most k
if and only if it does not contain as vertex-minor any graph isomorphic to a
graph in Ck.

In the next section, we define the notion of rank-width of edge-colored graphs
and generalize Theorem 2.5 to them.
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3 F-Rank-Width of σ-Symmetic F∗-Graphs

We want a notion of rank-width for edge-colored graphs that generalises the
one on undirected graphs. For that purposes, we will identify each color by
an non-zero element of a field. This representation will allow us to define the
rank-width of edge-colored graphs by using rank matrices.

Let F be a field, and let F∗ = F \ {0} (where 0 is the zero of F). One can
note that there is a natural bijection between the class of F∗-graphs and the
class of F-graphs with complete underlying graph (replace every non-edge by
an edge of color 0). From now on, we do not distinguish these two classes, and
we let ℓG((x, y)) = 0 for all (x, y) /∈ EG.

We can represent every F∗-graph G by a (VG, VG)-matrixMG such that MG[x, y] :=
ℓG((x, y)) for every x, y ∈ VG with x 6= y, and MG[x, x] := 0 for every x ∈ VG.

Let σ : F→ F be a bijection. We recall that σ is an involution if σ(σ(a)) = a
for all a ∈ F. We call σ a sesqui-morphism if σ is an involution, and the
mapping [x 7→ σ(x)/σ(1)] is an automorphism. It is worth noticing that if
σ : F → F is a sesqui-morphism, then σ(0) = 0 and for every a, b ∈ F,
σ(a+ b) = σ(a)+σ(b) (i.e. σ is an automorphism for the addition). Moreover,
we have the following notable equalities.

Proposition 3.1 If σ is a sesqui-morphism, then

σ(a · b) =
σ(a) · σ(b)

σ(1)
,

σ
(
a

b

)
=

σ(1) · σ(a)

σ(b)
,

σ

(
a · b

c

)
=

σ(a) · σ(b)

σ(c)
.

A F∗-graph is σ-symmetric if the underlying graph is undirected, and for
every arc (x, y), ℓG((x, y)) = a if and only if ℓG((y, x)) = σ(a). Clearly, if
G is a σ-symmetric F∗-graph, then MG[x, y] = σ(MG[y, x]). We denote by
S (F) (respectively S (F, σ)) the set of F∗-graphs (respectively σ-symmetric
F∗-graphs). Note that S (F) = G (F∗).

To represent a C-graph, one can take an injection from C to F∗ for a large
enough field F. Notice that the representation is not unique: on one hand,
several incomparable fields are possible for F, and on the other hand, the
representation depends on the injection from C to F∗. For example, oriented
graphs can be represented by a F∗

3-graph or by a F∗
4-graph (see Section 3.4).

Two different representations can give two different rank-width parameters,
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but the two parameters are equivalent when C is finite (direct consequence of
Proposition 3.11).

Let F be a finite field of characteristic p and order q. We will prove that every
F∗-graph can be seen as a σ̃-symmetric (F2)∗-graph for some sesqui-morphism
σ̃, where F2 is an algebraic extension of F of order 2. Let us first make some
observations.

Lemma 3.2 There exists an element p in F∗ such that the polynomial X2 −
p(X + 1) has no root in F.

Proof. There exist |F| − 1 distinct polynomials of the form X2 − p(X + 1),
p 6= 0. We first notice that 0 or −1 cannot be a root of X2 − p(X + 1), for
any p ∈ F∗. Now, two such polynomials cannot have a common root. Assume
the contrary and let α be a root of X2− p(X +1) and of X2− p′(X +1) with
p 6= p′. Then (α + 1) · (p− p′) = 0, i.e. p = p′ since α 6= −1, a contradiction.
Since −1 and 0 cannot be the roots of any of the polynomials, we have at most
|F| − 2 possible roots. Therefore, there exists a p such that X2− p(X +1) has
no root in F. ✷

We can now construct an algebraic extension of the finite field F. Let p ∈ F∗

such that X2−p(X +1) has no root in F and let F2 be isomorphic to the field
F[X ] mod (X2 − p(X + 1)) (i.e. F2 is the finite field of characteristic p and
order q2). Let α := X mod (X2 − p(X + 1)). Then every element of F2 is a
polynomial on α of the form a0 + a1α where a0, a1 ∈ F. Moreover, α is a root
of X2 − p(X + 1) in F2.

We let γ := 1−p−1α and τ := p−1α be in F2. Notice that α = pτ and 1 = γ+τ .

Lemma 3.3 We have the following equalities:

γ2 = (1 + p−1)γ + p−1τ,

τ 2 = p−1γ + (1 + p−1)τ,

γ · τ = p−1γ + p−1τ.

To every pair of elements in F, we associate an element in F2 by letting f̃ :
F× F→ F2 where, for every (a, b) ∈ F× F, f̃(a, b) := aγ + bτ .

Lemma 3.4 f̃ is a bijection.

For the sesqui-morphism in F2, we let σ̃ : F2 → F2 where σ̃(aγ+bτ) := bγ+aτ .
One easily verifies that σ̃(σ̃(β)) = β for all β ∈ F2.

Lemma 3.5 σ̃ is an automorphism.

9



Proof. An easy computation shows that σ̃((aγ + bτ) + (cγ + dτ)) = σ̃(aγ +
bτ) + σ̃(cγ + dτ). For the product, we have:

σ̃((aγ + bτ) · (cγ + dτ)) = σ̃(acγ2 + (ad+ bc)γτ + bdτ 2)

= acσ̃(γ2) + (ad+ bc)σ̃(γτ) + bdσ̃(τ 2)

and

σ̃(aγ + bτ) · σ̃(cγ + dτ) = (bγ + aτ) · (dγ + cτ)

= bdγ2 + (ad+ bc)γτ + acτ 2.

By Lemma 3.3, σ̃(γ2) = τ 2, σ̃(τ 2) = γ2 and σ̃(γτ) = γτ . This concludes the
proof of the lemma. ✷

For every F∗-graph G, we let G̃ be the (F2)∗-graph (VG, EG, ℓG̃) where, for
every two distinct vertices x and y,

ℓ
G̃
((x, y)) := f̃(ℓG((x, y)), ℓG((y, x))).

By the definitions of G̃ and σ̃, and Lemmas 3.3-3.5, we get the following.

Proposition 3.6 The mapping [G 7→ G̃] from S (F) to S (F2, σ̃) is a bijection
and for every F∗-graph G, G̃ is σ̃-symmetric. Moreover, for two F∗-graphs G
and H, G̃ and H̃ are isomorphic if and only if G and H are isomorphic.

Nevertheless, two different mappings can give two different rank-width param-
eters. But again, since F is finite, the parameters are equivalent.

If F is infinite, a mapping from S (F) to S (G, σ) is not always possible with
the previous construction. For example, a mapping is possible from S (R) to
S (C, σ) with f(a, b) = (1+i)a+(1−i)b and σ(a+ib) = a−ib (where a, b ∈ R),
but the construction fails for F = C since the complexes are algebraically
closed.

From now on, we will focus our attention to sigma-symmetric F∗-graphs. In
Section 3.1 we define the notion of F-rank-width. The notion of vertex-minor
for F∗-graphs is presented in Section 3.2 and we prove that sigma-symmetric
F∗-graphs of F-rank-width at most k are characterised by a finite list of sigma-
symmetric F∗-graphs to exclude as vertex-minors. We prove in Section 3.3 that
F∗-graphs of F-rank-width at most k, for fixed k, can be recognised in cubic-
time when F is finite. A specialisation to graphs without colors on edges is
presented in Section 3.4.
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3.1 Rank-Width of σ-symmetric F∗-Graphs

Along this section, we let F be a fixed field (of characteristic p and of order
q if F is finite), and we let σ : F → F be a fixed sesqui-morphism. We recall
that if G is a F∗-graph, we denote by MG the (VG, VG)-matrix where:

MG[x, y] :=




ℓG((x, y)) if x 6= y,

0 otherwise.

Definition 3.7 (Cut-Rank Functions) The F-cut-rank function of a σ-
symmetric F∗-graph G is the function F- cutrkG : 2VG → N where F- cutrkG(X) =
rk(MG[X, VG\X ]) for all X ⊆ VG.

Lemma 3.8 For every σ-symmetric F∗-graph G, the function F- cutrkG is
symmetric and submodular.

We first recall the submodular inequality of the matrix rank-function.

Proposition 3.9 [29, Proposition 4.1] Let M be an (R,C)-matrix over a field
F. Then for all X1, Y1 ⊆ R and X2, Y2 ⊆ C,

rk(M [X1,X2]) + rk(M [Y1, Y2]) ≥ rk(M [X1 ∪ Y1,X2 ∩ Y2]) + rk(M [X1 ∩ Y1,X2 ∪ Y2]).

Proof of Lemma 3.8. Let X and Y be subsets of VG. We let A1 = MG[X, VG\X]
and A2 = MG[Y, VG\Y ]. We first prove the first statement.

We let M ′ be the (VG\X,X)-matrix where M ′[y, x] = σ(A1[x, y])/σ(1). Since
σ is a sesqui-morphism, the mapping [x 7→ σ(x)/σ(1)] is an automorphism and
then rk(M ′) = rk((A1)

T ) = rk(A1). But, MG[VG\X,X ] = σ(1) ·M ′. Then,
rk(MG[VG\X,X ]) = rk(M ′) = rk(MG[X, VG\X ]).

For the second statement, we have by definition and Proposition 3.9,

F- cutrkG(X) + F- cutrkG(Y ) = rk(A1) + rk(A2)

≥ rk(MG[X ∪ Y , VG\X ∩ VG\Y ]) + rk(MG[X ∩ Y , VG\X ∪ VG\Y ]).

Since VG\X ∩ VG\Y = VG\(X ∪ Y ) and VG\X ∪ VG\Y = VG\(X ∩ Y ), the
second statement holds. ✷

Definition 3.10 (F-rank-width) The F-rank-width of a σ-symmetric F∗-
graph G, denoted by F- rwd(G), is the F- cutrkG-width of VG.

This definition generalises the one for undirected graphs. If we let σ1 be the
identity automorphism on F2, every undirected graph is a σ1-symmetric F∗

2-
graph. Moreover, for every undirected graph G, the functions cutrkG and
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F2- cutrkG are equal. It is then clear that the definition of rank-width given in
Section 2.1 coincides with the one of F2-rank-width.

One can easily verify that the F-rank-width of a σ-symmetric F∗-graph is
the maximum of the F-rank-width of its maximum connected components.
The following proposition, which says that F-rank-width and clique-width are
equivalent when F is finite, has an easy proof. We omit it because its proof
is an easy adaptation of the one comparing rank-width and clique-width of
undirected graphs [31, Proposition 6.3].

Proposition 3.11 Let G be a σ-symmetric F∗-graph. Then, F- rwd(G) ≤
cwd(G) ≤ 2 · qF- rwd(G) − 1.

It is also easy to show that the clique-width and the F-rank-width are equiva-
lent if F is infinite but C is finite. In [23,24], authors present a decomposition
related to F-rank-width and different characterizations of graphs of F-rank-
width 1.

3.2 Vertex-Minor and Pivot-Minor

Bouchet generalised in [2] the notion of local complementation to all graphs
(undirected or not). We recall that a graph G is a F∗

2-graph and then is rep-
resented by a (VG, VG)-matrix MG over F2 where MG[x, y] := 1 if and only
if (x, y) ∈ EG. A local complementation at x of G is the graph represented
by the matrix M ′

G over F2 where M ′
G[z, y] = MG[z, y] + MG[z, x] ·MG[x, y].

This definition coincides with the one on undirected graphs when G is undi-
rected. We will extend it to F∗-graphs. We say that λ in F∗ is σ-compatible if
σ(λ) = λ · σ(1)2.

Definition 3.12 (λ-local complementation) Let λ in F∗. Let G be a F∗-
graph and x a vertex of G. The λ-local complementation at x of G is the
F∗-graph G ∗ (x, λ) represented by the (VG, VG)-matrix MG∗(x,λ) where:

MG∗(x,λ)[z, t] :=




MG[z, t] + λ ·MG[z, x] ·MG[x, t] if x 6∈ {z, t},

MG[z, t] otherwise.

One can easily verify that for every F∗-graph G and every vertex x of G, the
adjacency matrix of G∗(x, λ) is obtained by modifying the sub-matrix induced
by the neighbors of x. Then for every vertex y of G, MG[x, y] = MG∗(x,λ)[x, y].

Definition 3.13 (locally equivalent, vertex-minor) A F∗-graph H is lo-
cally equivalent to a F∗-graph G if H is obtained by applying a sequence of
λ-local complementations to G with λ ∈ F∗. We call H a vertex-minor of G if

12



H = G′[X ] for some X ⊆ VG and G′ is locally equivalent to G. Moreover, H
is a proper vertex-minor of G if X ( VG.

In this section, we are interested in σ-symmetric graphs, thus we have to
restrict ourselves to a subset of local complementations which preserve the
σ-symmetry. We now prove that λ-local complementation is well defined on
σ-symmetric graphs when λ is σ-compatible.

Lemma 3.14 Let G be a σ-symmetric F∗-graph and let λ ∈ F∗ be σ-compatible.
Then every λ-local complementation of G is also σ-symmetric.

Proof. Let H := G ∗ (x, λ) for some σ-compatible λ. It is sufficient to prove
that MH [t, z] = σ(MH [z, t]) for any z, t ∈ VG, z 6= t.

MH [t, z] = MG[t, z] + λ ·MG[t, x] ·MG[x, z]

= σ(MG[z, t]) + λ · σ(MG[x, t]) · σ(MG[z, x])

= σ(MG[z, t]) + λ · σ(1) · σ(MG[z, x] ·MG[x, t])

= σ(MG[z, t]) + σ(λ) · σ−1(1) · σ(MG[z, x] ·MG[x, t])

= σ(MG[z, t]) + σ(λ ·MG[z, x] ·MG[x, t])

= σ(MG[z, t] + λ ·MG[z, x] ·MG[x, t])

= σ(MH [z, t]).

Definition 3.15 (σ-locally-equivalent, σ-vertex-minor) A F∗-graph H is
σ-locally-equivalent to a σ-symmetric F∗-graph G if H is obtained by applying
a sequence of λ-local-complementations to G with σ-compatibles λ. We call H
a σ-vertex-minor of G if H = G′[X ] for some X ⊆ VG and G′ is σ-locally-
equivalent to G. Moreover, H is a proper σ-vertex-minor of G if X ( VG.

Note that if no σ-compatible λ ∈ F∗ exists, H is a σ-vertex-minor of G if and
only if H is an induced subgraph of G.

Remark 3.16 Lemma 3.14 shows that λ-local complementation is well-defined
on σ-symmetric F∗-graphs for σ-compatible λ. Moreover, one can easily verify
that when F is the field F2, this notion of 1-local complementation coincides
with the one defined by Bouchet in [2].

The following lemma proves that σ-local-complementation does not increase
F-rank-width.

Lemma 3.17 Let G be a σ-symmetric F∗-graph and x a vertex of G. For
every subset X of VG,

F- cutrkG∗(x,λ)(X) = F- cutrkG(X).

13



Proof. We can assume that x ∈ X since F- cutrkG is a symmetric function
(Lemma 3.8). For each y ∈ X, the σ-local-complementation at x results in
adding a multiple of the row indexed by x to the row indexed by y. Precisely, we
obtain MG∗(x,λ)[y, VG\X ] by adding λ·MG[y, x]·MG[x, VG\X ] to MG[y, VG\X ].
This operation is repeated for all y ∈ X. In each case, the rank of the matrix
does not change. Hence, F- cutrkG∗(x,λ)(X) = F- cutrkG(X). ✷

Unfortunately, such a σ-compatible λ does not always exist. For instance, if the
field is F3 and σ is such that σ(x) = −x (see Section 3.4), no σ-compatible λ
does exist. We present now an other F∗-graph transformation which is defined
for every couple (F, σ).

Definition 3.18 (Pivot-complementation) Let G be a σ-symmetric F∗-
graph, and x and y two vertices of G such that ℓG((x, y)) 6= 0. The pivot-
complementation at xy of G is the F∗-graph G∧xy represented by the (VG, VG)-
matrix MG∧xy where MG∧xy[z, z] := 0 for every z ∈ VG, and for every z, t ∈
VG \ {x, y} with z 6= t:

MG∧xy[z, t] := MG[z, t]−
MG[z, x] ·MG[y, t]

MG[y, x]
−

MG[z, y] ·MG[x, t]

MG[x, y]

MG∧xy[x, t] :=
MG[y, t]

MG[y, x]
MG∧xy[y, t] :=

σ(1) ·MG[x, t]

MG[x, y]

MG∧xy[z, x] :=
σ(1) ·MG[z, y]

MG[x, y]
MG∧xy[z, y] :=

MG[z, x]

MG[y, x]

MG∧xy[x, y] := −
1

MG[y, x]
MG∧xy[y, x] := −

σ(1)2

MG[x, y]

A F∗-graph H is pivot-equivalent to a F∗-graph G if H is obtained by applying
a sequence of pivot-complementations to G. We call H a pivot-minor of G if
H = G′[X ] for some X ⊆ VG and G′ pivot-equivalent to G. Moreover, H is a
proper pivot-minor of G if X ( VG.

Note that G ∧ xy = G ∧ yx if σ(1) = 1. In the case of undirected graphs
(F = F2), this definition coincides with the pivot-complementation of undi-
rected graphs [29]. The following lemma shows that this transformation is well
defined.

Lemma 3.19 Let G be a σ-symmetric F∗-graph and let xy be an edge of G.
Then G ∧ xy is also σ-symmetric.
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Proof. Let z, t ∈ V , with z 6= t. If {z, t} ∩ {x, y} = ∅, then

MG∧xy[t, z] = MG[t, z]−
MG[t, x] ·MG[y, z]

MG[y, x]
−

MG[t, y] ·MG[x, z]

MG[x, y]

= σ(MG[z, t])−
σ(MG[x, t]) · σ(MG[z, y])

σ(MG[x, y])
−

σ(MG[y, t]) · σ(MG[z, x])

σ(MG[y, x])

= σ(MG[z, t])− σ

(
MG[x, t] ·MG[z, y]

MG[x, y]

)
− σ

(
MG[y, t] ·MG[z, x]

MG[y, x]

)

= σ

(
MG[z, t])−

MG[x, t] ·MG[z, y]

MG[x, y]
−

MG[y, t] ·MG[z, x]

MG[y, x]

)

= σ (MG∧xy[z, t]) .

If t 6= y, then:

MG∧xy[t, x] =
σ(1) ·MG[t, y]

MG[x, y]
=

σ(1) · σ(MG[y, t])

σ(MG[y, x])

= σ

(
MG[y, t]

MG[y, x]

)
= σ (MG∧xy[x, t]) .

Finally:

MG∧xy[y, x] = −
σ(1)2

MG[x, y]
= −

σ(1)2

σ(MG[y, x])

= σ

(
−

12

MG[y, x]

)
= σ (MG∧xy[x, y]) . ✷

Similarly to Lemma 3.17, the following lemma proves that pivot complemen-
tation does not increase F-rank-width.

Lemma 3.20 Let G be a σ-symmetric F∗-graph and xy an edge of G. For
every subset X of VG:

F- cutrkG∧xy(X) = F- cutrkG(X).
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Proof. Let Y := VG \X. We can assume w.l.o.g. that x ∈ X. If y ∈ X, then
(with X ′ := X \ {x, y})

rk (MG∧xy[X, Y ]) = rk




1
MG[y,x]

·MG[y, Y ]

σ(1)
MG[x,y]

·MG[x, Y ]

MG[X
′, Y ]− MG[X′,x]·MG[y,Y ]

MG[y,x]
− MG[X′,y]·MG[x,Y ]

MG[x,y]




= rk




1
MG[y,x]

·MG[y, Y ]

σ(1)
MG[x,y]

·MG[x, Y ]

MG[X
′, Y ]− MG[X′,x]·MG[y,Y ]

MG[y,x]




= rk




1
MG[y,x]

·MG[y, Y ]

σ(1)
MG[x,y]

·MG[x, Y ]

MG[X
′, Y ]




= rk




MG[y, Y ]

MG[x, Y ]

MG[X
′, Y ]




= rk (MG[X, Y ]) .

If y 6∈ X, then (with X ′ := X \ {x} and Y ′ := Y \ {y})

rk (MG∧xy[X, Y ]) = rk



− 1

MG[y,x]
MG[y,Y ′]
MG[y,x]

MG[X′,x]
MG[y,x]

MG[X
′, Y ′]− MG[X′,x]·MG[y,Y ′]

MG[y,x]
− MG[X′,y]·MG[x,Y ′]

MG[x,y]




= rk



− 1

MG[y,x]
MG[y,Y ′]
MG[y,x]

0 MG[X
′, Y ′]− MG[X′,y]·MG[x,Y ′]

MG[x,y]




= rk



− 1

MG[y,x]
0

0 MG[X
′, Y ′]− MG[X′,y]·MG[x,Y ′]

MG[x,y]




= rk



MG[x, y] 0

0 MG[X
′, Y ′]− MG[X′,y]·MG[x,Y ′]

MG[x,y]




= rk




MG[x, y] 0

MG[X
′, y] MG[X

′, Y ′]− MG[X′,y]·MG[x,Y ′]
MG[x,y]




= rk




MG[x, y] MG[x, Y
′]

MG[X
′, y] MG[X

′, Y ′]




= rk (MG[X, Y ]) . ✷

Proposition 3.21 Let G and H be two σ-symmetric F∗-graphs. If H is σ-
locally-equivalent (resp. pivot-equivalent) to G, then the F-rank-width of H is
equal to the F-rank-width of G. If H is a σ-vertex-minor (resp. pivot-minor)
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of G, then the F-rank-width of H is at most the F-rank-width of G.

Proof. The first statement is obvious by Lemma 3.17 and Lemma 3.20. Since
taking sub-matrices does not increase the rank, it does not increase the F-
rank-width. So, the second statement is true. ✷

Our goal now is to prove the following which is a generalization of Theorem
2.5.

Theorem 3.22 (i) For each positive integer k ≥ 1, there is a set C
(F,σ)
k of

σ-symmetric F∗-graphs, each having at most (6k+1 − 1)/5 vertices, such
that a σ-symmetric F∗-graph G has F-rank-width at most k if and only if
no σ-symmetric F∗-graph in C

(F,σ)
k is isomorphic to a pivot-minor of G.

(ii) Suppose that a σ-compatible λ ∈ F∗ exists. Then for each positive integer

k ≥ 1, there is a set C ′(F,σ)
k of σ-symmetric F∗-graphs, each having at

most (6k+1 − 1)/5 vertices, such that a σ-symmetric F∗-graph G has F-

rank-width at most k if and only if no σ-symmetric F∗-graph in C
′(F,σ)
k is

isomorphic to a σ-vertex-minor of G.

Note that C
(F,σ)
k and C ′(F,σ)

k are finite if F is finite. For doing so we adapt
the same techniques as in [21,29]. We first prove some inequalities concerning
cut-rank functions. The following one is a counterpart of [29, Proposition 4.3].
All the notions of linear algebra are borrowed from [26].

Proposition 3.23 Let G be a σ-symmetric F∗-graph, λ a σ-compatible ele-
ment in F∗ and x a vertex of G. For every subset X of VG \ {x},

F- cutrk(G∗(x,λ))-x(X) = rk


 −1 MG[x, VG\(X ∪ x)]

MG[X,x] MG[X,VG\(X ∪ x)]


− 1

Proof. Let X be a subset of VG\{x} and let Y := VG\(X ∪ {x}). We let J
be the matrix (MG[z, x] ·MG[x, t])z∈X,t∈Y . Then,

F- cutrk(G∗(x,λ))-x(X) = rk(MG∗(x,λ)[X,Y ])

= rk(MG[X,Y ] + λ · J)

= rk


−1 · λ

−1 MG[x, Y ]

0 MG[X,Y ] + λ · J




︸ ︷︷ ︸
A

−1

We now show how to transform the ({x} ∪ X, {x} ∪ Y )-matrix A by using
elementary row operations in order to get the desired equality. For each z ∈ X,

−λ ·MG[z, x] · A[x, Y ∪ {x}] =
(
MG[z, x] −λ · J [z, Y ]

)
.
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Hence,

−λ ·MG[z, x] · A[x, Y ∪ {x}] +A[z, Y ∪ {x}] =
(
MG[z, x] MG[z, Y ]

)
.

Therefore, by adding −λ ·MG[z, x] · A[x, Y ∪ {x}] to each row A[z, Y ∪ {x}]

of A we get the matrix


 −1 MG[x, Y ]

MG[X,x] MG[X,Y ]


. This concludes the proof. ✷

The following lemma is thus the counterpart of [29, Lemma 4.4] and [21,
Proposition 3.2].

Lemma 3.24 Let G be a σ-symmetric F∗-graph and x a vertex in VG. Assume
that (X1, X2) and (Y1, Y2) are partitions of VG\{x}. Then,

F- cutrkG-x(X1) + F- cutrk(G∗(x,λ))-x(Y1) ≥ F- cutrkG(X1 ∩ Y1) + F- cutrkG(X2 ∩ Y2)− 1.

Proof. We recall that for every vertex z of G, MG[z, z] = 0. Let M ′ be
obtained from MG by replacing MG[x, x] by −1. It is worth noticing that for
every subset X of VG, rk(MG[X, VG\X ]) = rk(M ′[X, VG\X]. We recall that
Y2 = VG\(Y1 ∪ {x}) and X2 = VG\(X1 ∪ {x}). By definition of M ′,

M ′[Y1 ∪ {x}, Y2 ∪ {x}] =


 −1 MG[x, Y2]

MG[Y1, x] MG[Y1, Y2]


 .

By Proposition 3.23,

F- cutrkG-x(X1) + F- cutrk(G∗(x,λ))-x(Y1) = rk(MG[X1, X2]) + rk(M ′[Y1 ∪ {x}, Y2 ∪ {x}])− 1.

Since rk(MG[X1, X2]) = rk(M ′[X1, X2]), by Proposition 3.9 we get the in-
equality

rk(MG[X1,X2]) + rk(M ′[Y1 ∪ {x}, Y2 ∪ {x}]) ≥

rk(M ′[X1 ∩ Y1,X2 ∪ Y2 ∪ {x}]) + rk(M ′[X1 ∪ Y1 ∪ {x},X2 ∩ Y2]).

Hence,

F- cutrkG-x(X1) + F- cutrk(G∗(x,λ))-x(Y1) ≥ F- cutrkG(X1 ∩ Y1) + F- cutrkG(X1 ∪ Y1 ∪ x)− 1.

By the symmetry of F- cutrkG, we get the desired inequality. ✷

Similarly, we get the followings for pivot-minor.

Proposition 3.25 Let G = (V,E) be a σ-symmetric F∗-graph and xy an edge
of G. For every subset X of VG \ {x},

F- cutrk(G∧xy)-x(X) = rk


 0 MG[x, V \(X ∪ x)]

MG[X,x] MG[X,V \(X ∪ x)]


− 1
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Proof. Suppose w.l.o.g. that y ∈ X (otherwise replace X by VG \ (X ∪{x})).
Let Y := VG \ (X ∪ {x}) and X ′ := X \ {y}. Then, by elementary row and
column operations, we have:

F- cutrk(G∧xy)-x(X) = rk




σ(1)
MG[x,y]

·MG[x, Y ]

MG[X
′, Y ]− MG[X′,x]·MG[y,Y ]

MG[y,x]
− MG[X′,y]·MG[x,Y ]

MG[x,y]




= rk




MG[y, Y ]

MG[X
′, Y ]− MG[X′,x]·MG[y,Y ]

MG[y,x]




= rk




MG[y, x] MG[y, Y ]

0 MG[y, Y ]

0 MG[X
′, Y ]− MG[X′,x]·MG[y,Y ]

MG[y,x]



− 1

= rk




0 MG[y, Y ]

MG[y, x] MG[y, Y ]

MG[X
′, x] MG[X

′, Y ]



− 1

= rk




0 MG[y, Y ]

MG[X, x] MG[X, Y ]


− 1. ✷

Lemma 3.26 Let G be a σ-symmetric F∗-graph and xy an edge in VG. As-
sume that (X1, X2) and (Y1, Y2) are partitions of VG\{x}. Then

F- cutrkG-x(X1) + F- cutrk(G∧xy)-x(Y1) ≥ F- cutrkG(X1 ∩ Y1) + F- cutrkG(X2 ∩ Y2)− 1.

Proof. We recall that Y2 = VG\(Y1 ∪ {x}) and X2 = VG\(X1 ∪ {x}). By
definition of M ,

M [Y1 ∪ {x}, Y2 ∪ {x}] =


 0 MG[x, Y2]

MG[Y1, x] MG[Y1, Y2]


 .

By Proposition 3.25,

F- cutrkG-x(X1) + F- cutrk(G∧x)-xy(Y1) = rk(MG[X1, X2]) + rk(M [Y1 ∪ {x}, Y2 ∪ {x}])− 1.

By Proposition 3.9 we get the inequality

rk(MG[X1,X2]) + rk(M [Y1 ∪ {x}, Y2 ∪ {x}]) ≥

rk(M [X1 ∩ Y1,X2 ∪ Y2 ∪ {x}]) + rk(M [X1 ∪ Y1 ∪ {x},X2 ∩ Y2]).

Hence,

F- cutrkG-x(X1) + F- cutrk(G∧xy)-x(Y1) ≥ F- cutrkG(X1 ∩ Y1) + F- cutrkG(X1 ∪ Y1 ∪ x)− 1.
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By the symmetry of F- cutrkG, we get the desired inequality. ✷

The most important ingredients for proving Theorem 3.22 are Propositions
3.23 and 3.25, and Lemmas 3.24 and 3.26. All the other ingredients are already
proved in [21,29] except that they are stated for the connectivity function of
matroids in [21] and for undirected graphs in [29]. Their proofs rely only on
the fact that the parameter is symmetric, submodular and integer valued. We
include them for completeness. We first recall some definitions [21,29].

Let V be a finite set and f : 2V → N a symmetric and submodular function.
Let (A,B) be a bipartition of V . A branching of B is a triple (T, r,L) where T
is a sub-cubic tree with a fixed node r ∈ LT and such that (T -r,L) is a layout
of B. For an edge e of T and a node v of T , we let Tev be the set of nodes in
the component of T -e not containing v and we let Yev := L−1(LTev

). We say
that B is k-branched if there exists a branching (T, r,L) such that for each
edge e of T , f(Yer) ≤ k. It is worth noticing that if A and B are k-branched,
then the f -width of V is at most k.

A subset A of V is called titanic with respect to f if for every partition
(A1, A2, A3) of A, there is a i ∈ {1, 2, 3} such that f(Ai) ≥ f(A) (A1,A2 or A3

may be empty).

The following lemma is proved in [29, Lemma 5.1] for cutrkG, in [21, Lemma
2.1] for the connectivity function of matroids, and in [22, Lemma 3.3] for all
symmetric and submodular functions.

Lemma 3.27 ([22, Lemma 3.3]) Let V be a finite set and f : 2V → N a
symmetric and submodular function. Assume that the f -width of V is at most
k. Let (A,B) be a bipartition of V such that f(A) ≤ k. If A is titanic with
respect to f , then B is k-branched.

Let g : N → N be a function. A σ-symmetric F∗-graph G is called (m, g)-
connected if for every bipartition (A,B) of VG, F- cutrkG(A) = ℓ < m implies
|A| ≤ g(ℓ) or |B| ≤ g(ℓ). This notion will help to bound the order of the
minimal σ-symmetric F∗-graphs that every σ-symmetric F∗-graph of F-rank-
width k must exclude as pivot-minor or σ-vertex-minors.

Lemma 3.28 Let f : N→ N be a non-decreasing function with f(0) = 0. Let
G be an (m, f)-connected σ-symmetric F∗-graph and x a vertex of G. Then
either G-x or (G∧ xy)-x is (m, 2f)-connected (for an edge xy). Moreover if a
σ-compatible λ ∈ F∗ exists, either G-x or (G ∗ (x, λ))-x is (m, 2f)-connected.

Proof. Since f(0) = 0, G is connected. Let y be a neighbor of x. Sup-
pose neither G-x nor (G ∧ xy)-x is (m, 2f)-connected. Then there are bi-
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partitions (A1, A2) and (B1, B2) of VG\{x} such that a = F- cutrkG-x(A1),
b = F- cutrk(G∧xy)-x(B1), and |Ai| > 2f(a), |Bi| > 2f(b) for i = 1, 2.

We may assume that a ≥ b . By Lemma 3.26, we have

F- cutrkG(A1 ∩B1) + F- cutrkG(A2 ∩B2) ≤ a+ b+ 1.

Thus, either F- cutrkG(A1∩B1) ≤ a or F- cutrkG(A2∩B2) ≤ b. So, by hypoth-
esis either |A1∩B1| ≤ f(a) or |A2∩B2| ≤ f(b). Assume that |A2∩B2| ≤ f(b).
Similarly, we also have either |A2 ∩ B1| ≤ f(a) or |A1 ∩ B2| ≤ f(b). Since
|A1 ∩ B2| = |B2| − |B2 ∩ A2| > f(b), we have |A2 ∩ B1| ≤ f(a). Then
|A2| = |A2 ∩ B1| + |A2 ∩ B2| ≤ f(a) + f(b) ≤ 2f(a). This yields a contra-
diction.

The proof of the second statement is similar, using Lemma 3.24. ✷

We let g(n) = (6n−1)/5. Note that g(0) = 0, g(1) = 1 and g(n) = 6g(n−1)+1
for all n ≥ 1. We now prove that the minimal σ-symmetric F∗-graphs that have
F-rank-width at least k + 1 are (k + 1, g)-connected.

Lemma 3.29 Let k ≥ 1 and let G be a σ-symmetric F∗-graph of F-rank-width
larger than k. If every proper pivot-minor of G has F-rank-width at most k,
then G is (k + 1, g)-connected. Similarly, if a σ-compatible λ ∈ F∗ exists,
and every proper σ-vertex-minor of G has F-rank-width at most k, then G is
(k + 1, g)-connected.

Proof. The proof is similar to the one of [29, Lemma 5.3]. We assume that G
is connected since the F-rank-width of G is the maximum of the F-rank-width
of its connected components. It is now easy to see that G is (1, g)-connected.

Assume that m ≤ k and that G is (m, g)-connected but G is not (m + 1, g)-
connected. Then there exists a bipartition (A,B) with F- cutrkG(A) = m such
that |A| > g(m) and |B| > g(m). Also, either A or B is not k-branched
(F- rwd(G) > k). We may assume that B is not k-branched. Let x ∈ A and
xy ∈ EG.

By Lemma 3.28, either G-x or (G ∧ xy)-x is (m, 2g)-connected; assume G-x
is (m, 2g)-connected. Since G-x and (G ∧ xy)-x are proper pivot-minors of G,
they both have F-rank-width at most k. Let (A1, A2, A3) be a tri-partition of
A\{x}. Since |A| > g(m) = 6g(m − 1) + 1, there exists an i ∈ [3] such that
|Ai| > 2g(m− 1). Since G-x is (m, 2g)-connected and |Ai| > 2g(m− 1),

F- cutrkG-x(Ai) ≥ m ≥ F- cutrkG-x(A\{x}).
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Therefore, by Lemma 3.27 B is k-branched in G-x. Since B is not k-branched
in G, there exists W ⊆ B such that

F- cutrkG(W ) = F- cutrkG-x(W ) + 1.

Thus, the column vectors of MG[W,VG\(W ∪ {x})] do not span MG[W,x]. So,
the column vectors of MG[W,VG\(B ∪ {x})] do not span MG[W,x]. Hence, the
column vectors of MG[B, VG\(B ∪ {x})] do not span MG[B, x]. Therefore,

F- cutrkG-x(B) = F- cutrkG(B)− 1 = m− 1.

This implies that |B| ≤ 2g(m− 1) or |A\{x}| ≤ 2g(m− 1). A contradiction.

The proof of the second statement is similar (replace G∧xy by G∗(x, λ)). ✷

As a consequence of Lemma 3.29, we get the following.

Theorem 3.30 (Size of Excluded Pivot-Minor and σ-Vertex-Minors)
Let k ≥ 1 and let G be a σ-symmetric F∗-graph. If G has F-rank-width larger
than k but every proper pivot-minor of G has F-rank-width at most k, then
|VG| ≤ (6k+1 − 1)/5.

Moreover, if a σ-compatible λ ∈ F∗ exists, and if G has F-rank-width larger
than k but every proper σ-vertex-minor of G has F-rank-width at most k, then
|VG| ≤ (6k+1 − 1)/5.

Proof. Let x ∈ VG. We may assume that G-x is (k + 1, 2g)-connected by
Lemmas 3.28 and 3.29. Since G-x has F-rank-width k, there exists a bipartition
(A,B) of VG\{x} such that |A| ≥ 1

3
(|VG| − 1) and |B| ≥ 1

3
(|VG| − 1) and

F- cutrkG-x(A) ≤ k. By (k + 1, 2g)-connectivity, either |A| ≤ 2g(k) or |B| ≤
2g(k). Therefore, |VG| − 1 ≤ 6g(k) and consequently |VG| ≤ 6g(k) + 1 =
g(k + 1). ✷

It is surprising that the bound (6k+1− 1)/5 does not depend neither on F nor
on σ. But that is because the proof technique is based on the F- cutrkG-width
of VG and neither on F nor on σ. However, the F-rank-width depends on F

since there is no reason that the rank of a matrix is the same in two different
fields. But, as we will see in the following proof of Theorem 3.22, the set of σ-
symmetric F∗-graphs to exclude as pivot-minors and σ-vertex-minor depends
on F and σ.

Proof of Theorem 3.22. We show only the proof for the first statement.
the other proof is similar. If k < 0, we let C

(F,σ)
k = ∅. If k = 0, we let C

(F,σ)
0 :=
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{a | a ∈ F∗} where a is the σ-symmetric F∗-graph ({x, y}, {x
a
→ y, y

σ(a)
→ x}).

It is clear that G has F-rank-width at most 0 if and only if G has no pivot-
minor isomorphic to any a ∈ C

(F,σ)
0 .

Assume now that k ≥ 1 and let C
(F,σ)
k be the set, up to isomorphism, of

σ-symmetric F∗-graphs H such that F- rwd(H) > k and every proper pivot-
minor of H has F-rank-width at most k. By Theorem 3.30, each σ-symmetric
F∗-graph in C

(F,σ)
k has at most (6k+1 − 1)/5 vertices.

Let G be a σ-symmetric F∗-graph of F-rank-width at most k. Since every
F∗-graph in C

(F,σ)
k has F-rank-width larger than k, no F∗-graph in C

(F,σ)
k is

isomorphic to a pivot-minor of G.

Conversely, assume that the F-rank-width of G is larger than k and let H be
a proper pivot-minor of G of minimum size such that F- rwd(H) > k. Then

there exists a F∗-graph H ′ ∈ C
(F,σ)
k isomorphic to H . ✷

Moreover, using the characterization of F∗-graphs of F-rank-width 1 [23,24],
obstructions for F∗-graphs of F-rank-width 1 by vertex-minor (resp. pivot-
minor) have at most 5 (resp. 6) vertices. In [30], Oum derives from the principal
pivot transformation of Tucker (see [36] for instance) a notion of pivot-minor
for symmetric and skew-symmetric matrices and proved that symmetric and
skew-symmetric matrices of bounded rank-width are well-quasi-ordered by this
relation. Our notion of pivot-minor is a special case of Oum’s notion when
σ(x) := x or σ(x) := −x. Hence, oriented graphs of bounded rank-width are
well-quasi-ordered by pivot-minor. We generalise Oum’s result to σ-symmetric
matrices in [25].

3.3 Recognizing F-Rank-Width at Most k

We give in this section a cubic-time algorithm that decides whether a F∗-graph
has F-rank-width at most k, for fixed finite field F and a fixed k. This algorithm
is an easy corollary of the one by Hliněný and Oum concerning representable
matroids [22]. We recall the necessary materials about matroids. We refer to
Schrijver [35] for our matroid terminology. We let F be a fixed finite field and
σ : F→ F a sesqui-morphism.

Definition 3.31 (Matroids) A pair M = (S, I) is called a matroid if S
is a finite set and I is a nonempty collection of subsets of S satisfying the
following conditions

(M1) if I ∈ I and J ⊆ I, then J ∈ I,
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(M2) if I, J ∈ I and |I| < |J |, then I ∪ {z} ∈ I for some z ∈ J \ I.

For U ⊆ S, a subset B of U is called a base of U if B is an inclusionwise
maximal subset of U and belongs to I. It is easy to see that, if B1 and B2

are bases of U ⊆ S, then B1 and B2 have the same size. The common size of
the bases of a subset U of S is called the rank of U , denoted by rM(U). A set
B ⊆ S is a base of M if it is a base of S.

Let A be a m×n-matrix. Let S := {1, . . . , n} and let I be the collection of all
those subsets I of S such that the columns of A with index in I are linearly
independent. Then M := (S, I) is a matroid. If A has entries in F, then M
is said representable over F and A is called a representation ofM over F.

We now define the branch-width of matroids. Let M = (S, I) be a matroid.
We let λM be defined such that for every subset U of S, λM(U) = rM(U) +
rM(S\U)−rM(S)+1 and call it the connectivity function ofM. The function
λM is symmetric and submodular [35]. The branch-width of M, denoted by
bwd(M), is the λM-width of S.

Definition 3.32 (Partitioned Matroids [22]) Let M = (S, I) be a ma-
troid and P a partition of S. The couple (M,P) is called a partitioned ma-
troid. A partitioned matroid (M,P) is representable over F if M is repre-
sentable over F. For a partitioned matroid (M,P), we let λP

M be defined such
that for every Z ⊆ P, we have λP

M(Z) := λM(
⋃

Y ∈Z Y ). The branch-width of
(M,P), denoted by bwd(M,P), is the λP

M-width of P.

We recall the following important result by Hliněný and Oum [22].

Theorem 3.33 ([22]) Let F be a fixed finite field, and k be a fixed positive
integer. There exists a cubic-time algorithm that takes as input a representable
partitioned matroid (M,P) over F given with the representation ofM over F

and outputs a layout of P of λP
M-width at most k or confirms that the branch-

width of (M,P) is strictly greater than k.

We can now derive our recognition algorithm from Theorem 3.33. For that we
borrow ideas from [22]. For a set X, we let X ′ be a disjoint copy of it defined
as {x′ | x ∈ X}. For G a F∗-graph, we let MG be the matroid on VG ∪ V ′

G

represented by the (VG, VG ∪ V ′
G)-matrix (recall that In denotes the identity

square matrix of size n):

VG V ′
G

VG

(
I|VG| MG

)
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For each x ∈ V , we let Px := {x, x′} and we let Π(G) := {Px | x ∈ VG}. We
now prove the following which is a counterpart of [29, Proposition 3.1].

Proposition 3.34 Let G be a F∗-graph. For every X ⊆ VG, λ
Π(G)
MG

(P ) =
rk(MG[X, VG\X ]) + rk(MG[VG\X,X ]) + 1 where P := {Px | x ∈ X}.

Proof. For X ⊆ VG and P := {Px | x ∈ X}, we have

λ
Π(G)
MG

(P ) = rMG
(X ∪X ′) + rMG

(VG\X ∪ (VG\X)′)− rMG
(VG ∪ V ′

G) + 1

= rk




0 MG[VG\X,X ]

I|X| MG[X,X ]


+ rk




0 MG[X, VG\X]

I|VG|−|X| MG[VG\X, VG\X ]


− |VG|+ 1

= |X|+ rk(MG[VG\X,X ]) + |VG −X|+ rk(MG[X, VG\X ])− |VG|+ 1

= rk(MG[X, VG\X ]) + rk(MG[VG\X,X ]) + 1. ✷

Since when G is σ-symmetric, we have rk(MG[X, VG\X]) = rk(MG[VG\X,X ]) =
F- cutrkG(X), we get the followings as corollaries of Proposition 3.34.

Corollary 3.35 Let G be a σ-symmetric F∗-graph. For every X ⊆ VG, λ
Π(G)
MG

(P ) =
2 · F- cutrkG(X) + 1 where P := {Px | x ∈ X}.

Corollary 3.36 Let G be a σ-symmetric F∗-graph and let p : VG → Π(G)
be the bijective function such that p(x) = Px. If (T,L) is a layout of Π(G)

of λ
Π(G)
MG

-width 2k + 1, then (T,L ◦ p) is a layout of VG of F- cutrkG-width k.
Conversely, if (T,L) is a layout of VG of F- cutrkG-width k, then (T,L ◦ p−1)

is a layout of Π(G) of λ
Π(G)
MG

-width 2k + 1.

Theorem 3.37 (Checking F-Rank-Width at most k) For fixed k and a
fixed finite field F, there exists a cubic-time algorithm that, for a σ-symmetric
F∗-graph G, either outputs a layout of VG of F- cutrkG-width at most k or
confirms that the F-rank-width of G is larger than k.

Proof. Let k be fixed and let A be the algorithm constructed in Theorem
3.33 for 2k + 1. Let G be a σ-symmetric F∗-graph. We run the algorithm A
with input (MG,Π(G)). If it confirms that bwd(MG,Π(G)) > 2k + 1, then
the F-rank-width of G is greater than k (Corollary 3.35). If it outputs a layout

of Π(G) of λ
Π(G)
MG

-width at most 2k+1, we can transform it into a layout of VG

of F- cutrkG-width at most k by Corollary 3.36. The fact that the algorithm
A runs in cubic-time concludes the proof. ✷
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3.4 Specialisations to Graphs

We specialise in this section the F-rank-width to directed and oriented graphs.
As we already said, for undirected graphs the F2-rank-width matches with the
rank-width.

Directed Graphs. We recall that the adjacency matrix of a directed graph
G is the (VG, VG)-matrix MG over F2 where MG[x, y] := 1 if and only if
(x, y) ∈ EG. This matrix is not symmetric except when G is undirected.
In particular, rk(MG[X, VG\X ]) is a priori different from rk(MG[VG\X,X ]).
The quest for finding another representation of directed graphs by matri-
ces where rk(MG[X, VG\X]) = rk(MG[VG\X,X ]) motivates the definition of
sigma-symmetry. We now give this representation.

We recall that F4 is the finite field of order four. We let {0, 1,a,a2} be its
elements with the property that 1+a+a2 = 0 and a3 = 1. Moreover, it is of
characteristic 2. We let σ4 : F4 → F4 be the automorphism where σ4(a) = a2

and σ4(a
2) = a. It is clearly a sesqui-morphism.

For every directed graph G, let G̃ := (VG, EG ∪ {(y, x)|(x, y) ∈ EG}, ℓG) be
the F4

∗-graph where for every pair of vertices (x, y):

ℓG((x, y)) :=





1 if (x, y) ∈ EG and (y, x) ∈ EG,

a (x, y) ∈ EG and (y, x) /∈ EG,

a2 (y, x) ∈ EG and (x, y) /∈ EG,

0 otherwise.

It is straightforward to verify that G̃ is σ4-symmetric and is actually the one
constructed in Section 3. We define the rank-width of a directed graph G,
denoted by F4- rwd(G), as the F4-rank-width of G̃.

Remark 3.38 Let G be an undirected graph. We denote by
−→
G the directed

graph obtained from G by replacing each edge xy in G by two opposite. By the

definition of
−→
G we have AG = M−→

G
. Then F4- rwd(

−→
G) = rwd(G) since F4 is

an extension of F2.

We now specialise the notion of vertex-minor. We recall that given a sesqui-
morphism σ : F→ F, an element λ of F∗ is said σ-compatible if σ(λ) = λ·σ(1)2.
Since σ4(1) = 1, 1 is σ4-compatible and is the only one. We then denote
G ∗ v = G ∗ (v, 1), and say that a directed graph H is a vertex-minor of a
directed graph G if H̃ is a vertex-minor of G̃. One easily verifies that if a

26



directed graph H is obtained from a directed graph G by applying a 1-local-
complementation at x, then H is obtained from G by modifying the subgraph
induced on the neighbours of x as shown on Table 1. Figure 1 gives an example
of a 1-local complementation. In Figure 2 (resp. Figure 3), we give a set of
obstructions for directed graphs of F4-rank-width 1 with respect to vertex-
minor relation (resp. pivot-minor relation).

G G ∗ x

z ⊥ t z ↔ t

z → t z ← t

z ← t z → t

z ↔ t z ⊥ t

G G ∗ x

z ⊥ t z → t

z → t z ⊥ t

z ← t z ↔ t

z ↔ t z ← t

(a) (b)

Table 1
We use the following notations: x → y means ℓG((x, y)) = a, x ← y means
ℓG((x, y)) = a2, x↔ y means ℓG((x, y)) = 1, and z ⊥ t means ℓG((x, y) = 0).
(a) Uniform Case: z ← x→ t or z → x← t or z ↔ x↔ t.
(b) Non Uniform Case: z ← x← t or z → x↔ t or z ↔ x→ t.

x3

x6

x5

x4

x1

x2

x3

x6

x5

x4

x1

x2

(a) (b)

Figure 1. (a) A directed graph G. (b) The directed graph G ∗ x4.

Moreover, as in the undirected case, we have G∧xy = G∧yx = G ∗ x ∗ y∗x =
G ∗ y ∗ x ∗ y. As corollaries of Theorem 3.22 and 3.37 we get the followings.

Theorem 3.39 For each positive integer k, there is a finite list Ck of directed
graphs having at most (6k+1 − 1)/5 vertices such that a directed graph G has
rank-width at most k if and only if no directed graph in Ck is isomorphic to a
vertex-minor of G.

Theorem 3.40 For fixed k, there exists a cubic-time algorithm that, for a
directed graph G, either outputs a layout of VG of F4- cutrkG-width at most k
or confirms that the rank-width of G is larger than k.

Oriented Graphs. We can define another parameter in the case of oriented
graphs. Let G = (V,A) be an oriented graph, and let G̃ = (V,E, ℓ) be the
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Figure 2. Vertex-minor exclusions for directed graphs of F4-rank-width 1.

Figure 3. Pivot-minor exclusions for directed graphs of F4-rank-width 1.

F∗
3-graph such that E = A ∪ A′ where A′ = {(y, x)|(x, y) ∈ A}, ℓ((x, y)) := 1

if (x, y) ∈ A and ℓ((x, y)) := −1 if (x, y) ∈ A′. Clearly, G̃ is a σ-symmetric
F∗
3-graph, with σ(x) := −x. Moreover, one can show immediately that σ is a

sesqui-morphism. Note that there is no σ-compatible λ in F∗
3, thus no σ-local-

complementation is defined on σ-symmetric F∗
3-graphs. Nevertheless, oriented

graphs of F3-rank-width k are characterized by a finite set of oriented graphs
C

(F3,σ)
k of forbidden pivot-minors (whereas sets C

(F4,σ)
k and C ′(F4,σ)

k contains
directed graphs). In Figure 5, we give a set of obstructions for oriented graphs
of F3-rank-width 1 with respect to pivot-minor relation.

F3-rank-width and F4-rank-width of oriented graphs are two equivalent pa-
rameters, since they are both equivalent to the clique width. But these two
rank parameters are not equal. In one hand, tournaments of F3-rank-width
1 are exactly tournaments completely decomposable by bi-join decomposition
(see [24]), and a cut {X, Y } in a tournament has F4-rank 1 if and only if X or
Y is a module. Since there are tournaments completely decomposable by bi-
join and prime w.r.t. the modular decomposition (see [1]), there are oriented
graphs of F3-rank-width 1 and F4-rank-width at least 2. On the other hand,
the graph on Figure 4 (right) has F4-rank-width 2 and F3-rank-width 3.
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Figure 4. Left: an oriented graph of F3-rank-width 1 and F4-rank-width 2
(white/black vertices give a cut of F3-rank-width 1). Right: an oriented graph
of F3-rank-width 3 and F4-rank-width 2 (white/black vertices give a cut of
F4-rank-width 2).

Figure 5. Pivot-minor exclusions for oriented graphs of F3-rank-width 1.

4 The Second Notion of Rank-Width: F-Bi-Rank-Width

In Section 4.1 we define the notion of F-bi-rank-width for F∗-graphs, sigma-
symmetric or not, and compare it to clique-width and F-rank-width. A cubic-
time algorithm for recognising F∗-graphs of F-bi-rank-width at most k is pre-
sented in Section 4.2. A specialisation to graphs without colors on edges is
given in Section 4.3.

4.1 Definitions and Comparisons to Other Parameters

Recall that if G is a F∗-graph, we denote by MG the (VG, VG)-matrix over F

where

MG[x, y] :=




ℓG((x, y)) if x 6= y,

0 otherwise.

As for the notion of F-rank-width, we use matrix rank functions for the notion
of F-bi-rank-width.

Definition 4.1 (Bi-Cut-Rank Function) For a F∗-graph G, we let F-bicutrkG :
2VG → N where F- bicutrkG(X) = rk(MG[X, VG\X]) + rk(MG[VG\X,X ]) for
all X ⊆ VG.

Lemma 4.2 For every F∗-graph G, the function F-bicutrkG is symmetric and
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submodular.

Proof. Let X and Y be subsets of VG. We let A1 := MG[X, VG\X], A2 :=
MG[VG\X,X ], B1 =: MG[Y, VG\Y ] and B2 := MG[VG\Y , Y ]. By definition,

F- bicutrkG(X) = rk(A1) + rk(A2) = rk(A2) + rk(A1) = F- bicutrkG(VG\X).

For the submodularity, we have by definition,

F- bicutrkG(X) + F- bicutrkG(Y ) = rk(A1) + rk(A2) + rk(B1) + rk(B2)

By Proposition 3.9,

rk(A1) + rk(B1) ≥ rk(MG[X ∪ Y , VG\X ∩ VG\Y ]) + rk(MG[X ∩ Y , VG\X ∪ VG\Y ])

and

rk(A2) + rk(B2) ≥ rk(MG[VG\X ∪ VG\Y ,X ∩ Y ]) + rk(MG[VG\X ∩ VG\Y ,X ∪ Y ]).

Since VG\X ∩ VG\Y = VG\(X ∪ Y ) and VG\X ∪ VG\Y = VG\(X ∩ Y ) the
second statement holds. ✷

Definition 4.3 (F-bi-rank-width) The F-bi-rank-width of a F∗-graph, de-
noted by F- brwd(G), is the F-bicutrkG-width of VG.

The following proposition compares clique-width and F-bi-rank-width when F

is finite and of order q. Its proof is easy.

Proposition 4.4 For every F∗-graph G, 1
2
F- brwd(G) ≤ cwd(G) ≤ 2·qF-brwd(G)−

1.

The following compares F-bi-rank-width and F-rank-width. Let [G 7→ G̃] be
a mapping from S (F) to S (F2, σ̃) such that for every x, y ∈ VG, M

G̃
[x, y] =

γ ·MG[x, y] + τ ·MG[y, x] for fixed γ, τ ∈ (F2)∗ with γ/τ 6∈ F. We recall that
the mapping constructed in Section 3 respects this property.

Proposition 4.5 Let G be a F∗-graph. Then

(1) F2- rwd(G̃) ≤ F-brwd(G) ≤ 4 · F2- rwd(G̃).
(2) If G is σ-symmetric for some sesqui-morphism σ : F→ F, then F- brwd(G) =

2 · F- rwd(G).

Before proving the proposition, we recall some technical properties about ranks
of matrices. See the following books for more informations [26,27].

Lemma 4.6 (i) Let M be a matrix over F. If the rank of M over F is k,
then the rank of M over any finite extension of M is k.
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(ii) If A and B are two matrices over F, then rk(A + B) ≤ rk(A) + rk(B)
and rk(A · B) ≤ min{rk(A), rk(B)}. If a ∈ F∗, then rk(a · A) = rk(A).

By definition of G̃, we have:

Proposition 4.7 For every F∗-graph G and every subset X of VG, we have

M
G̃
[X, VG\X] = γ ·MG[X, VG\X ] + τ ·MT

G [VG\X,X ].

Proof of Proposition 4.5. It is sufficient to compare F2- cutrk
G̃
(X) and

F- bicutrkG(X) for every subset X of VG.

(1) From Lemma 4.6 and Proposition 4.7 we have:

rk(M
G̃
[X, VG\X]) ≤ rk(MG[X, VG\X ]) + rk(MG[VG\X,X ])

= F- bicutrkG(X).

We now prove that F- bicutrkG(X) ≤ 4·F2- cutrk
G̃
(X). Let M1 := MG[X, VG\X]

and M2 := MT
G [VG\X,X ]. We recall that each entry of M

G̃
is of the form

a · γ + b · τ for a unique pair (a, b) ∈ F × F. Let π1, π2 and π3 be mappings
from F2 to F such that:

π1(a · γ + b · τ) = a,

π2(a · γ + b · τ) = b.

Clearly, M1 = π1(MG̃
[X, VG\X]) and M2 = π2(MG̃

[VG\X,X ]). It is also
straightforward to verify that π1 and π2 are homomorphism with respect to the
addition. Moreover, for every c ∈ F, δ ∈ F2 and i ∈ {1, 2}, πi(c · δ) = c · πi(δ).

We let v1, . . . , vk be a column-basis of M
G̃
[X, VG\X ]. Then for each column-

vector v in M
G̃
[X, VG\X ], v =

∑
i≤k αi · vi where αi ∈ F2. Then we have for

j ∈ {1, 2},

πj(v) =
∑

i≤k

πj(αi · vi)

=
∑

i≤k

πj (αi · (π1(vi) · γ + π2(vi) · τ))

=
∑

i≤k

πj (αi · γ · π1(vi) + αi · τ · π2(vi))

=
∑

i≤k

πj(αi · γ) · π1(vi) + πj(αi · τ) · π2(vi)

Thus, every column-vector of Mj is a linear combination of 2k vectors π1(vi)
and π2(vi) for i ∈ {1, . . . , k}, i.e. rk(Mj) ≤ 2k. Therefore, F- bicutrkG(X) =
rk(M1) + rk(M2) ≤ 4 · F2- cutrk

G̃
(X).
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(2) Assume now that G is σ-symmetric. By definition of F- bicutrkG, we have
F- bicutrkG(X) = rk(MG[X, VG\X]) + rk(MG[VG\X,X ]). But since G is σ-
symmetric, by Lemma 3.8, we have rk(MG[X, VG\X ]) = rk(MG[VG\X,X ]).
We can then conclude that F- bicutrkG(X) = 2 · F- cutrkG(X). ✷

The notion of local complementation defined in Section 3.2 also preserves the
F-bi-rank-width.

Lemma 4.8 Let G be a F∗-graph and λ an element in F∗. If G ∗ (x, λ) is the
λ-local complementation of G at x, then for every subset X of VG, we have
F-bicutrkG∗(x,λ)(X) = F- bicutrkG(X).

Proof. Assume by symmetry that x is in X. Let y be a neighbor of x in X.
If we apply a λ-local complementation at x, we obtain MG∗(x,λ)[y, VG\X] by
adding λ·MG[y, x]·MG[x, VG\X] to MG[y, VG\X ]. Therefore, rk(MG∗(x,λ)[X, VG\X ]) =
rk(MG[X, VG\X ]). Similarly, we obtain MG∗(x,λ)[VG\X, y] by adding to MG[VG\X, y]
the column λ·MG[VG\X, x]·MG[x, y]. Again, rk(MG∗(x,λ)[VG\X,X ]) = rk(MG[VG\X,X ]).
We can thus conclude that F- bicutrkG∗(x,λ)(X) = F- bicutrkG(X). ✷

As a corollary, we get the following.

Corollary 4.9 Let G and H be two F∗-graphs. If H is locally equivalent to
G, then the F-bi-rank-width of H is equal to the F-bi-rank-width of G. If H is
a vertex-minor of G, then the F-bi-rank-width of H is at most the F-bi-rank-
width of G.

Note that the pivot-complementation in Section 3.2 is not well defined in the
case of no-sigma-symmetric graphs. Currently, we do not have a characterisa-
tion of F∗-graphs of bounded F-bi-rank-width as the one in Theorem 3.22. We
leave it as an open question. Moreover, this notion of vertex-minor is not a
well-quasi-order on F∗-graphs of bounded F-bi-rank-width (see Remark 4.13).

4.2 Recognizing F-Bi-Rank-Width at Most k

We will give here, for fixed k and a fixed finite field F, a cubic-time algorithm
that decides whether a F∗-graph has F-bi-rank-width at most k. The algorithm
is in the same spirit as the one in Section 3.3.

We recall that if G is a F∗-graph, we denote by (MG,Π(G)) the partitioned
matroid represented over F where MG is the matroid represented by the
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(VG, VG ∪ V ′
G)-matrix over F (V ′

G is an isomorphic copy of VG)

VG V ′
G

VG

(
I|VG| MG

)

and Π(G) := {Px | x ∈ VG} with Px := {x, x′}.

As corollaries of Proposition 3.34 we get the followings.

Corollary 4.10 Let G be a F∗-graph. For every X ⊆ VG, λ
Π(G)
MG

(P ) = F-bicutrkG(X)+
1 where P := {Px | x ∈ X}.

Corollary 4.11 Let G be a F∗-graph and let p : VG → Π(G) be the bijective

function such that p(x) = Px. If (T,L) is a layout of Π(G) of λ
Π(G)
MG

-width
k + 1, then (T,L ◦ p) is a layout of VG of F-bicutrkG-width k. Conversely, if
(T,L) is a layout of VG of F-bicutrkG-width k, then (T,L ◦ p−1) is a layout

of Π(G) of λ
Π(G)
MG

-width k + 1.

Theorem 4.12 (Checking F-Bi-Rank-Width at most k) For a fixed fi-
nite field F and a fixed integer k, there exists a cubic-time algorithm that, for
a F∗-graph G, either outputs a layout of VG of F-bicutrkG-width at most k or
confirms that the F-bi-rank-width of G is larger than k.

Proof. Let k be fixed and let A be the algorithm constructed in Theorem 3.33
for k+1. Let G be a F∗-graph. We run the algorithmA with input (MG,Π(G)).
If it confirms that bwd(MG,Π(G)) > k + 1, then the F-bi-rank-width of G is

greater than k (Corollary 4.10). If it outputs a layout of Π(G) of λ
Π(G)
MG

-width
at most k+1, we can transform it into a layout of VG of F- bicutrkG-width at
most k by Corollary 4.11. The fact that the algorithm A runs in cubic-time
concludes the proof. ✷

4.3 A Specialisation to Graphs

We now define our second notion of rank-width for directed graphs. We recall
that a graph G is seen, also denoted by G, as the F∗

2-graph where MG[x, y] := 1
if and only if (x, y) ∈ EG. The bi-rank-width of a graph G, denoted by brwd(G),
it its F2-bi-rank-width. It is straightforward to verify that if G is undirected,
i.e., if EG is symmetric, then brwd(G) = 2 · rwd(G).

A directed graph is strongly connected if for every pair (x, y) of vertices, there is
a directed path from x to y. Clearly in a strongly connected graph G, for every
∅ ( X ( VG, we have F- bicutrkG(X) ≥ 2. It is straightforward to verify that
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strongly connected graphs of bi-rank-width 2 are exactly the graphs completely
decomposable by Cunningham’s split decomposition of directed graphs [14].

The 1-local complementation of a directed graph seen as a F∗
2-graph is the one

defined by Bouchet [2] and Fon-Der-Flaass [20]. One easily verifies that if H
is obtained by applying a 1-local complementation at x to G, then (z, t) ∈ EH

if and only if:

- (z, t) /∈ EG, (z, x) ∈ EG and (x, t) ∈ EG or,
- (z, t) ∈ EG, and either (z, x) /∈ EG or (x, t) /∈ EG.

Figures 6 illustrates a 1-local complementation of a directed graph seen as a
F∗
2-graph.

We notice that the 1-local complementation of a directed graph seen as a F∗
2-

graph can be different from the one when we consider it as a σ4-symmetric
F∗
4-graph (see Section 3.4). Figures 7 and 8 illustrate this observation. We

leave open the question of finding a notion of vertex-minor for directed graphs,
that not only lets invariant F4-rank-width and F2-bi-rank-width, but also is
independent of the representation.

Remark 4.13 Directed graphs of bounded bi-rank-width are not well-quasi-
ordered by the vertex-minor relation. In fact the class EC of directed even cycles
such that each vertex has either in-degree 2 or out-degree 2 are of bounded bi-
rank-width and are not well-quasi-ordered by vertex-minor relation since none
of them is a vertex-minor of another. In fact each of them is isomorphic to its
1-local complementations. Figure 7 illustrates such cycles.

x3

x6

x5

x4

x1

x2

x3

x6

x5

x4

x1

x2

(a) (b)

Figure 6. (a) A directed graph seen as a F∗
2-graph. (b) Its 1-local complementation

at x4.

5 Algebraic Operations for F-Rank-Width and F-Bi-Rank-Width

Courcelle and the first author gave in [9] graph operations that characterise
exactly the notion of rank-width of undirected graphs. These operations are
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G2

H = (G2 ∗ x) \ x

G1

x

Figure 7. G1 and G2 are graphs in EC. Each graph in EC, seen as a F∗
2-graph, is

isomorphic to its 1-local complementations. This is not the case if we consider them
as a σ4-symmetric F∗

4-graph. For instance, H is a vertex-minor of G2 seen as a
σ4-symmetric F∗

4-graph.

G1 G2G

x x

x2

x

x2x1 x1 x2 x1

Figure 8. G1 is a vertex-minor of G seen as a F∗
2-graph and the only one locally

equivalent to it, and G2 is a vertex-minor of G seen as a σ4-symmetric F∗
4-graph. G1

is not isomorphic to G2.

interesting because they allow to check monadic second-order properties on
undirected graph classes of bounded rank-width without using clique-width
operations. This important in a practical point of view since it allows to de-
crease by 1 the hidden towers of exponents due to the generality of the method.
We give in Section 5.1 graph operations, that generalise the ones in [9] and that
characterise exactly F-rank-width. A specialisation that allows to characterise
exactly F-bi-rank-width is then presented in Section 5.2.

We let F be a fixed finite field along this section. For a fixed positive integer
k, we let Fk be the set of row vectors of length k.

5.1 Operations Characterising F-Rank-Width

The operations are easy adaptations of the ones in [9]. We let σ : F →
F be a fixed sesqui-morphism. If u := (u1, . . . , uk) ∈ Fk, we let σ(u) be
(σ(u1), . . . , σ(uk)). Similarly, if M = (mi,j) is a matrix, we let σ(M) be the
matrix (σ(mi,j)). In this section we deal with σ-symmetric F∗-graphs. So, we
will say graph instead of σ-symmetric F∗-graph.
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An Fk-coloring of a graph G is a mapping γG : VG → Fk with no constraint
on the values of γ for adjacent vertices. An Fk-colored graph G is a tuple
(VG, EG, ℓG, γG) where (VG, EG, ℓG) is a graph and γG is an Fk-coloring of
(VG, EG, ℓG). Notice that an Fk-colored graph has not only its edges colored
with colors from F, but also its vertices with colors from Fk. With an Fk-
colored graph G, we associate the (VG × [k])-matrix ΓG, the row vectors of
which are the vectors γG(x) in Fk for x in VG.

The following is a binary graph operation that combines several operations
consisting in adding colored edges between its disjoint arguments and recolor
them independently.

Definition 5.1 (Bilinear Products) Let k, ℓ and m be positive integers and
let M,N and P be k× ℓ, k×m and ℓ×m matrices, respectively, over F. For
an Fk-colored graph G and an Fℓ-colored graph H, we let G ⊗M,N,P H be the
Fm-colored graph K := (VG ∪ VH , EG ∪ EH ∪ E ′, ℓK , γK) where:

E ′ := {xy | x ∈ VG, y ∈ VH and γG(x) ·M · σ(γH(y))
T 6= 0},

ℓK((x, y)) :=





ℓG((x, y)) if x, y ∈ VG,

ℓH((x, y)) if x, y ∈ VH ,

γG(x) ·M · σ(γH(y))
T if x ∈ VG, y ∈ VH ,

σ
(
γG(y) ·M · σ(γH(x))

T
)

if y ∈ VG, x ∈ VH .

γK(x) :=




γG(x) ·N if x ∈ VG,

γH(x) · P if x ∈ VH .

Definition 5.2 (Constants) For each u ∈ Fk, we let u be a constant denot-
ing a Fk-colored graph with one vertex colored by u and no edge.

We denote by CFn the set {u | u ∈ F1 ∪ · · · ∪ Fn}. We let R(F,σ)
n be the set

of bilinear products ⊗M,N,P where M,N and P are respectively k × ℓ, k ×m
and ℓ×m matrices for k, ℓ,m ≤ n. Each term t in T (R(F,σ)

n , CFn) defines, up to
isomorphism, a σ-symmetric F∗-graph val(t). We write by abuse of notation
G = val(t) to say that G is isomorphic to val(t).

One easily verifies that the operations ⊗M,N,P can be defined in terms of the
disjoint union and quantifier-free operations. The following is thus a corollary
of results in [5,10].

Theorem 5.3 For each monadic second-order property ϕ, there exists an al-
gorithm that checks for every term t ∈ T (R(F,σ)

n , CFn), in time O(|t|), if the
σ-symmetric F∗-graph defined by this term, up to isomorphism, satisfies ϕ.

The principal result of this section is the following.

Theorem 5.4 A graph G has F-rank-width at most n if and only if it is

36



isomorphic to val(t) for some term t in T (R(F,σ)
n , CFn).

Let σ1 : F2 → F2 be the identity automorphism. As a corollary of Theorem
5.4, we get the following.

Theorem 5.5 ([9]) An undirected graph has rank-width at most n if and only
if it is isomorphic to val(t) for some term t in T (R(F2,σ1)

n , CF2

n ).

We can now begin the proof of Theorem 5.4. It is similar to the one in [9].

Lemma 5.6 If K = G ⊗M,N,P H, then MK [VG, VH ] = ΓG ·M · σ(ΓH)
T and

ΓK =
(
ΓG·N
ΓH ·P

)
. Moreover, K is isomorphic to H ⊗M ′,P,N G where M ′ = 1

σ(1)2
·

σ(M)T .

Lemma 5.7 Let t = c•t′ where t′ ∈ T (R(F,σ)
n , CFn) and c ∈ Cxt(R(F,σ)

n , CFn)\Id.
If G = val(t) and H = val(t′), then

MG[VH , VG\VH ] = ΓH · B,

ΓG[VH ] = ΓH · C.

for some matrices B and C.

Proof. We prove it by induction on the structure of c. We identify two cases
(the two other cases are similar by symmetry and Lemma 5.6).

Case 1 c = id ⊗M,N,P t′′. Then, G = H ⊗M,N,P K where K = val(t′′). By
Lemma 5.6,

MG[VH , VG\VH ] = ΓH ·M · σ(ΓK)
T ,

ΓG[H] = ΓH ·N.

We let B = M · σ(ΓK)
T and C = N .

Case 2 c = c′ ⊗M,N,P t′′. We let G′ = val(c′ • t′) and K = val(t′′). Hence,
G = G′ ⊗M,N,P K. By definition and Lemma 5.6,

MG[VH , VG\VH ] =
(
MG′ [VH , VG′\VH ] (ΓG′ ·M · σ(ΓK)

T )[VH , VK ]

)

By inductive hypothesis, MG′ [VH , VG′\VH ] = ΓH · B
′ for some matrix B′.

Moreover, (ΓG′ ·M · σ(ΓK)
T )[VH , VK ] = ΓG′[VH ] ·M ·σ(ΓK)

T . But by induc-
tive hypothesis, ΓG′[VH ] = ΓH ·C

′ for some matrix C ′. Then, MG[VH , VG\VH ] =

ΓH ·B where B =
(
B′ C ′ ·M · σ(ΓK)

T

)
. Moreover, ΓG[H] = ΓH ·C where

C = C ′ ·N since ΓG[VH ] = ΓG′[VH ] ·N . ✷

We now prove the “if direction” of Theorem 5.4 in the following.
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Proposition 5.8 If G is isomorphic to val(t) for a term t in T (R(F,σ)
n , CFn),

then F- rwd(G) ≤ n.

Proof. Let T be the syntactic tree of t. By definition, there exists a bijective
function L : VG → LT where LT is the set of leaves of t, then of T . We let
(T,L) be a layout of VG. In order to prove that the F- cutrkG-width of (T,L)
is at most n, it is sufficient to prove that for each subgraph H of G associated
to a sub-term t′ of t, F- cutrkG(VH) ≤ n. However, we have proved in Lemma
5.7 that MG[VH , VG\VH ] = ΓH ·B for some matrix B. And since each such H
is Fk-colored for some k ≤ n, we are done. ✷

The following proves the “only if direction” of Theorem 5.4.

Proposition 5.9 If F- rwd(G) ≤ n, then G is isomorphic to val(t) for a term
t in T (R(F,σ)

n , CFn).

Let us first introduce another notion. Let V be a subset of VG. A subset X of
V is called a vertex-basis of MG[V, VG\V ] if {MG[x, VG\V ] | x ∈ X} is linearly
independent and generates the row space of MG[V, VG\V ].

Proof. Assume first that G is connected. Let (T,L) be a layout of VG of
F- cutrkG-width at most n. We pick an edge of T , subdivide it and root the
new tree T ′ by considering the new node as the root. For each node u of T ′, we
let Gu be the subgraph of G induced by the vertices that are in correspondence
with the leaves of the sub-tree of T ′ rooted at u. We let r(u) be F- cutrkG(VGu

).

Lemma 5.10 For each node u of T ′, we can construct a term tu in T (R(F,σ)
n , CFn)

such that val(tu) is isomorphic to Gu and is a Fr(u)-colored graph. There exists
moreover a vertex-basis Xu of MG[VGu

, VG\VGu
] such that MG[VGu

, VG\VGu
] =

Γval(tu) ·MG[Xu, VG\VGu
].

It is clear that if r is the root of T ′, then G = val(tr) where tr is the term in
T (R(F,σ)

n , CFn) constructed in Lemma 5.10.

Assume now that G is not connected and let G1, . . . , Gm be the connected com-
ponents of G. By Lemma 5.10, we can construct terms t1, . . . , tm that defines,
up to isomorphism, respectively, G1, . . . , Gm. It is clear that ((. . . ((t1 ⊗O,O,O

t2) ⊗O,O,O t3) . . .) ⊗O,O,O tm) is isomorphic to G where O is the null matrix
of order 1 × 1. This concludes the proof of the proposition and therefore of
Theorem 5.4. ✷

Proof of Lemma 5.10. We prove it by induction on the number of vertices
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of Gu. Let u be a node in T ′.

If Gu is a single vertex x, then since G is connected we let tu := 1 and
Xu := {x}. It is clear that tu and Xu verify the statements of the lemma.

Assume now that Gu has at least two vertices. Then u has two sons u1 and u2

so that Gu1
and Gu2

have less vertices than Gu. By inductive hypothesis, there
exist tui

and Xui
, for i = 1, 2, verifying the statements of the lemma. We let

r(u1) := h and r(u2) := k. We let Xu1
:= {x1, . . . , xh} and Xu2

:= {y1, . . . , yk}.
We let M := 1

σ(1)
·MG[Xu1

, Xu2
], and H = val(tu1

) and K = val(tu2
).

Claim 5.11 MG[VGu1
, VGu2

] = ΓH ·M · σ(ΓK)
T .

Proof of Claim 5.11. Let x ∈ VGu1
and y ∈ VGu2

. By inductive hypothesis,
MG[x, VG\VGu1

] = γH(x) ·MG[Xu1
, VG\VGu1

] and MG[y, VG\VGu2
] = γK(y) ·

MG[Xu2
, VG\VGu2

]. Hence, γH(x) ·M = 1
σ(1)
·MG[x,Xu2

]. Therefore,

γH(x) ·M · σ(γK(y))
T =

1

σ(1)
·MG[x,Xu2

] · σ(γK(y))
T

=
1

σ(1)
· σ(MG[Xu2

, x])T · σ(γK(y))
T

=
1

σ(1)
· σ(γK(y)) · σ(MG[Xu2

, x])

= σ(γK(y) ·MG[Xu2
, x])

= σ(MG[y, x]) = MG[x, y]. ✷

It remains now to find a vertex-basis Xu of MG[VGu
, VG\VGu

] and matrices N

and P such that MG[VGu
, VG\VGu

] =
(
ΓH ·N
ΓK ·P

)
·MG[Xu, VG\VGu

].

It is straightforward to verify that {MG[z, VG\VGu
] | z ∈ Xu1

∪ Xu2
} gen-

erates the row space of MG[VGu
, VG\VGu

]. Therefore, we can find a vertex-
basis Xu of MG[VGu

, VG\VGu
] which is a subset Xu1

∪ Xu2
. That means, for

each z ∈ Xu1
∪ Xu2

, there exists a row vector bz such that MG[z, VG\VGu
] =

bz ·MG[Xu, VG\VGu
]. We let tu = tu1

⊗M,N,P tu2
where:

N :=
(
bx1
· · · bxh

)T

P :=
(
by1 · · · byh

)T

From Claim 5.11 it remains to show that ΓH ·N ·MG[Xu, VG\VGu
] = MG[VGu1

, VG\VGu
]

and ΓK · P ·MG[Xu, VG\VGu
] = MG[VGu2

, VG\VGu
]. For that it is sufficient to

prove, for each t in VG\VGu
, that MG[Xu1

, t] = N ·MG[Xu, t] and MG[Xu2
, t] =

P ·MG[Xu, t]. But, this is a straightforward computation by the definitions of
N , P and Xu. This concludes the proof of the lemma. ✷
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5.2 Graph Operations for F-Bi-Rank-Width

In this section we specialise the graph operations in R(F,σ)
n in order to give

graph operations that characterise exactly F-bi-rank-width. We start by some
notations. Let k1 and k2 be positive integers. An Fk1,k2-bi coloring of a F∗-
graph G is a couple of mappings γ+

G : VG → Fk1 and γ−
G : VG → Fk2. An

Fk1,k2-bi colored graph is a tuple (VG, EG, ℓG, γ
+
G, γ

−
G) where (VG, EG, ℓG) is a

F∗-graph and (γ+
G , γ

−
G) is a Fk1,k2-bi coloring. With an Fk1,k2-bi colored graph G

we associate the (VG, [k1]) and (VG, [k2])-matrices Γ+
G and Γ−

G, the row vectors
of which are respectively γ+

G(x) and γ−
G(x) for x in VG.

Definition 5.12 Let k1, k2, ℓ1, ℓ2, m1 and m2 be positive integers. Let M1, M2,
N1, N2, P1 and P2 be respectively k1 × ℓ1, k2 × ℓ2, k1 ×m1, k2 ×m2, ℓ1 ×m1

and ℓ2 × m2-matrices. For a Fk1,k2-bi colored graph G and a Fℓ1,ℓ2-bi colored
graph H, we let G ⊗M1,M2,N1,N2,P1,P2

H be the Fm1,m2-bi colored graph K :=
(VG ∪ VH , EG ∪ EH ∪ E1 ∪ E2, ℓK , γ

+
K, γ

−
k ) where:

E1 := {(x, y) | x ∈ VG, y ∈ VH and γ+
G(x) ·M1 · (γ

−
H(y))

T 6= 0},

E2 := {(y, x) | x ∈ VG, y ∈ VH and γ−
G(x) ·M2 · (γ

+
H(y))

T 6= 0},

ℓK((x, y)) :=





ℓG((x, y)) if x, y ∈ VG,

ℓH((x, y)) if x, y ∈ VH ,

γ+
G(x) ·M1 · (γ

−
H(y))

T if x ∈ VG and y ∈ VH ,

γ−
G(y) ·M2 · (γ

+
H(x))

T if y ∈ VG and x ∈ VH ,

γ+
K(x) :=




γ+
G(x) ·N1 if x ∈ VG,

γ+
H(x) · P1 if x ∈ VH ,

γ−
K(x) :=




γ−
G(x) ·N2 if x ∈ VG,

γ−
H(x) · P2 if x ∈ VH ,

Definition 5.13 For each pair (u, v) ∈ Fk1 ×Fk2, we let u · v be the constant
denoting a Fk1,k2-bi colored graph with a single vertex and no edge.

We let BCFn be the set {u · v | (u, v) ∈ Fk1 × Fk2 and k1 + k2 ≤ n}. We denote
by BRF

n the set of all operations ⊗M1,M2,N1,N2,P1,P2
where M1, M2, N1, N2, P1

and P2 are respectively k1× ℓ1, k2× ℓ2, k1×m1, k2×m2, ℓ1×m1 and ℓ2×m2-
matrices and k1 + k2, ℓ1 + ℓ2 and m1 +m2 ≤ n. Every term t in T (BRF

n,BC
F
n)

defines, up to isomorphism, a F∗-graph denoted by val(t).

The operations in BRF
n can be defined in terms of disjoint union and quantifier-

free operations. Therefore, Theorem 5.3 is still true if we replaceR(F,σ)
n by BRF

n.
The principal result of this section is the following.

Theorem 5.14 A F∗-graph has F-bi-rank-width at most n if and only if it is
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isomorphic to some term t in T (BRF
n,BC

F
n).

The proof is similar to the one of Theorem 5.4. The following lemma is straight-
forward to verify.

Lemma 5.15 If K = G⊗M1,M2,N1,N2,P1,P2 H, then

MK [VG, VH] = Γ+
G ·M1 · (Γ

−
H)

T , MK [VH , VG] =
(
Γ−
G ·M2 · (Γ

+
H)

T
)T

,

Γ+
K =



Γ+
G ·N1

Γ+
H · P1


 , Γ−

K =



Γ−
G ·N2

Γ−
H · P2


 .

Moreover, K is isomorphic to H ⊗(M2)T ,(M1)T ,P1,P2,N1,N2
G.

Lemma 5.16 Let t = c•t′ where t′ ∈ T (BRF
n,BC

F
n) and c ∈ Cxt(BRF

n,BC
F
n)\Id.

If G = val(t) and H = val(t′), then MG[VH , VG\VH ] = Γ+
H ·B1 and MG[VG\VH , VH] =

(Γ−
H · B2)

T for some matrices B1 and B2.

Proof. We prove it by induction on the structure of c, by showing in addition
that Γ+

G[VH ] = Γ+
H · C1 and Γ−

G[VH ] = Γ−
H · C2 for some matrices C1 and C2. We

identify two cases (the two other cases are similar by symmetry and Lemma
5.15).

Case 1 c = Id⊗M1,M2,N1,N2,P1,P2
t′′. We let K = val(t′′). Then G = H⊗M1,M2,N1,N2,P1,P2

K. By Lemma 5.15,

MG[VH , VG\VH ] = Γ+
H ·M1 · (Γ

−
K)

T , MG[VG\VH , VH ] =
(
Γ−
H ·M2 · (Γ

+
K)

T
)T

,

Γ+
G[VH ] = Γ+

H ·N1, Γ−
G[VH ] = Γ−

H ·N2.

We let B1 = M1 · (Γ
−
K)

T , B2 = M2 · (Γ
+
K)

T , C1 = N1 and C2 = N2.
Case 2 c = c′⊗M,M ′,N,P t

′′ where c′ ∈ Cxt(BRF
n,BC

F
n)\Id. We let K = val(t′′)

and G′ = val(c′ • t′). Hence G = G′ ⊗M1,M2,N1,N2,P1,P2
K. By Lemma 5.15,

MG[VH , VG\VH ] =
(
MG′ [VH , VG′\VH ] Γ+

G′[VH ] ·M1 · (Γ
−
K)

T

)
,

MG[VG\VH , VH] =
(
MG′ [VG′\VH , VH ]

(
Γ−
G′[VH ] ·M2 · (Γ

+
K)

T
)T)

By inductive hypothesis, MG′ [VH , VG′\VH ] = Γ+
H ·B

′
1 and MG′ [VG′\VH , VH ] =

(Γ−
H · B

′
2)

T . Moreover, Γ+
G′[VH ] = Γ+

H · C
′
1 and Γ−

G′[VH ] = Γ−
H · C

′
2. Therefore,

letting

B1 =
(
B′

1 C ′
1 ·M1 · (Γ

−
K)

T

)
, B2 =

(
B′

2 C ′
2 ·M2 · (Γ

+
K)

T

)
,

C1 = C ′
1 ·N1, C2 = C ′

2 ·N2
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concludes the proof. ✷

The following proves the “if direction” of Theorem 5.14.

Proposition 5.17 If G is isomorphic to val(t) for a term t in T (BRF
n,BC

F
n),

then F-brwd(G) ≤ n.

Proof. Let T be the syntactic tree of t. By definition, there exists a bijective
function L : VG → LT where LT is the set of leaves of t, then of T . We let (T,L)
be a layout of VG. In order to prove that the F- bicutrkG-width of (T,L) is at
most n, it is sufficient to prove that for each subgraph H of G associated to a
sub-term t′ of t, F- bicutrkG(VH) ≤ n. However, we have proved in Lemma 5.16

that MG[VH , VG\VH ] = Γ+
H · B1 and MG[VG\VH , VH ] =

(
Γ−
H · B2

)T
for some

matrices B1 and B2. And since each such H is Fk1,k2-colored where k1+k2 ≤ n,
we are done. ✷

The following proves the “only if direction” of Theorem 5.14.

Proposition 5.18 If F- brwd(G) ≤ n, then G is isomorphic to val(t) for a
term t in T (BRF

n,BC
F
n).

Proof. Assume first that G is connected. Let (T,L) be a layout of VG of
F- bicutrkG-width at most n. We pick an edge of T , subdivide it and root
the new tree T ′ by considering the new node as the root. For each node u
of T ′, we let Gu be the subgraph of G induced by the vertices that are in
correspondence with the leaves of the sub-tree of T ′ rooted at u. We let r1(u)
be MG[VGu

, VG\VGu
] and r2(u) be MG[VG\VGu

, VGu
].

Lemma 5.19 For each node u of T ′, we can construct a term tu in T (BRF
n,BC

F
n)

such that val(tu) is isomorphic to Gu and is a Fr1(u),r2(u)-bi colored graph.
There exists moreover vertex-bases X+

u and X−
u of, respectively, MG[VGu

, VG\VGu
]

and (MG[VG\VGu
, VGu

])T such that MG[VGu
, VG\VGu

] = Γ+
val(tu)

·MG[X
+
u , VG\VGu

]

and MG[VG\VGu
, VGu

] = MG[VG\VGu
, X−

u ] · (Γ
−
val(tu)

)T .

It is clear that if r is the root of T ′, then G = val(tr) where tr is the term in
T (BRF

n,BC
F
n) constructed in Lemma 5.19.

Assume now that G is not connected and let G1, . . . , Gm be the connected com-
ponents of G. By Lemma 5.19, we can construct terms t1, . . . , tm that defines,
up to isomorphism, respectively, G1, . . . , Gm. It is clear that ((. . . ((t1⊗O,O,O,O,O,O

t2)⊗O,O,O,O,O,O t3) . . .)⊗O,O,O,O,O,O tm) is isomorphic to G where O is the null
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matrix of order 1. This concludes the proof of the proposition and therefore
of Theorem 5.14. ✷

Proof of Lemma 5.19. We prove it by induction on the number of vertices
of Gu. Let u be a node in T ′.

If Gu is a single vertex x, then since G is connected we let tu := 1 · 1 and
X+

u := X−
u := {x}. It is clear that tu, X

+
u and X−

u verify the statements of
the lemma.

Assume now that Gu has at least two vertices. Then u has two sons u1 and
u2 so that Gu1

and Gu2
have less vertices than Gu. By inductive hypothesis,

there exist tui
, X+

ui
and X−

ui
, for i = 1, 2, verifying the statements of the

lemma. We let r1(u1) := h, r2(u1) = h′, r1(u2) = k and r2(u2) := k′. We let
X+

u1
:= {xi1 , . . . , xih}, X

−
u1

:= {xj1 , . . . , xjh′
}, X+

u2
:= {yt1, . . . , ytk} and X−

u2
:=

{ys1, . . . , ysk′}. We let M1 := MG[X
+
u1
, X−

u2
] and M2 := (MG[X

+
u2
, X−

u1
])T , and

H = val(tu1
) and K = val(tu2

).

Claim 5.20 MG[VGu1
, VGu2

] = Γ+
H ·M1·(Γ

−
K)

T and MG[VGu2
, VGu1

] =
(
Γ−
H ·M2 · (Γ

+
K)

T
)T

.

Proof of Claim 5.20. Let x ∈ VGu1
and y ∈ VGu2

. By inductive hypothesis,

MG[x, VG\VGu1
] = γ+

H(x) ·MG[X
+
u1
, VG\VGu1

],

MG[VG\VGu1
, x] = MG[VG\VGu1

, X−
u1
] · (γ−

H(x))
T

MG[y, VG\VGu2
] = γ+

K(y) ·MG[X
+
u2
, VG\VGu2

],

MG[VG\VGu2
, y] = MG[VG\VGu2

, X−
u2
] · (γ−

K(y))
T .

Hence,

γ+
H(x) ·M1 · (γ

−
K(y))

T = MG[x,X
−
u2
] · (γ−

K(y))
T = MG[x, y],

and

γ−
H(x) ·M2 · (γ

+
K(y))

T = γ−
H(x) · (MG[X

+
u2
, X−

u1
])T · (γ+

K(y))
T

= (MG[X
+
u2
, X−

u1
] · (γ−

H(x))
T )T · (γ+

K(y))
T

= (MG[X
+
u2
, x])T · (γ+

K(y))
T

=
(
γ+
K(y) ·MG[X

+
u2
, x]
)T

= MG[y, x]. ✷

It remains now to find vertex-bases X+
u and X−

u of, respectively, MG[VGu
, VG\VGu

]
and (MG[VG\VGu

, VGu
])T , and matrices N1, N2, P1 and P2 such that MG[VGu

, VG\VGu
] =(

Γ+

H
·N1

Γ+

K
·P1

)
·MG[X

+
u , VG\VGu

] and MG[VG\VGu
, VGu

] = MG[VG\VGu
, X−

u ]·
(

Γ−

H
·N2

Γ−

K
·P2

)T

.
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It is straightforward to verify that {MG[z, VG\VGu
] | z ∈ X+

u1
∪ X+

u2
} gener-

ates the row space of MG[VGu
, VG\VGu

]. Similarly, {(MG[VG\VGu
, z])T | z ∈

X−
u1
∪ X−

u2
} generates the row space of (MG[VG\VGu

, VGu
])T . Therefore, we

can find vertex-bases X+
u ⊆ X+

u1
∪ X+

u2
and X−

u ⊆ X−
u1
∪ X−

u2
of, respec-

tively, MG[VGu
, VG\VGu

] and (MG[VG\VGu
, VGu

])T . That means, for each z ∈
X+

u1
∪ X+

u2
, there exists a row vector bz such that MG[z, VG\VGu

] = bz ·
MG[X

+
u , VG\VGu

]. Similarly, for each z′ ∈ X−
u1
∪X−

u2
, there exists a row vector b′z

such that MG[VG\VGu
, z] = b′z·MG[VG\VGu

, X−
u ]. We let tu = tu1

⊗M1,M2,N1,N2,P1,P2

tu2
where:

N1 :=
(
bxi1
· · · bxih

)T

P1 :=
(
byt1 · · · byth

)T

N2 :=
(
b′xj1
· · · b′xj

h′

)T

P2 :=
(
b′ys1 · · · b

′
ys

k′

)T

From Claim 5.20 it remains to show that Γ+
H ·N1·MG[X

+
u , VG\VGu

] = MG[VGu1
, VG\VGu

]
and Γ+

K ·P1·MG[X
+
u , VG\VGu

] = MG[VGu2
, VG\VGu

], and MG[VG\VGu
, X−

u ]·(Γ
−
H ·

N2)
T = MG[VG\VGu

, VGu1
] and MG[VG\VGu

, X−
u ]·(Γ

−
K ·P2)

T = MG[VG\VGu
, VGu2

].
But, this is a straightforward computation by the definitions of N1, N2, P1 and
P2, and X+

u and X−
u . This concludes the proof of the lemma. ✷

6 Conclusion

We extended the rank-width and some related results from the undirected
graphs to the C-graphs. Presented results imply in particular that every
MSOL-definable property can be checked in polynomial time on C-graphs,
when C is finite. Every open question for the undirected case are of course
still relevant for the C-graphs.

Recently, some authors investigated the clique-width of multigraphs [8] or
weighted graphs [19]. These graphs can be seen as N-graphs. It is straight-
forward to verify that the rank-width is not equivalent to the clique-width
when C is infinite. It would be interesting to investigate the rank-width over
an infinite field, and in particular its algorithmic aspects: the recognition of
C-graphs of bounded rank-width, and the property checking on C-graphs of
bounded rank-width.
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