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Abstract

Given a Boolean functiorf on n variables, aDisjoint Sum-of-Products (DSOR)f f is a set of
products (ANDSs) of subsets of literals whose sum (OR) eqgfiataich that no two products cover the
same minterm of. DSOP forms are a special instancepaftial DSOPsi.e. the general case where
a subset of minterms must be covered exactly once and therathterms (typically corresponding to
don’t care conditions of) can be covered any number of times. We discuss finding DS@dPpartial
DSOP with a minimal number of products, a problem theoryicnnected with various properties
of Boolean functions and practically relevant in the systhef digital circuits. Finding an absolute
minimum is hard, in fact we prove that the problem of absolateimization of partial DSOPs is NP-
hard. Therefore it is crucial to devise a polynomial time itigic that compares favorably with the
known minimization tools. To this end we develop a furthexogi of theory starting from the definition
of theweightof a productp as a functions of the number of fragments induced on otheesbly the
selection ofp, and show how product weights can be exploited for buildirdass of minimization
heuristics for DSOP and partial DSOP synthesis. A set of exy@ats conducted on major benchmark
functions show that our method, with a family of variantsya}s generates better results than the ones
of previous heuristics, including the method based on a BEeasentation of.

1 Introduction

Given a Boolean functiorf on n variablesxs, Xy, ..., X, in B", a Disjoint Sum-of-Products (DSOPR f is

a set of products (ANDSs) of subsets of literals whose sum (€fplsf, such that no two products cover
the same minterm of. As each product is the mathematical expression for a cul®'jra DSOP also
represents a set of non intersecting cubes occupying thetspof B" in which f = 1. In fact we shall
indifferently refer to products or cubes, and apply algi&boa set operations to them. We are interested in
finding a DSOP with a minimal number of products.

Besides its theoretical interest, DSOP minimization isveht in the area of digital circuits for deter-
mining various properties of Boolean functions and for thetlsesis of asynchronous circuits, as discussed
for example in([4, 10, 11, 12, 16]. DSOPs are indeed used astingtpoint for the synthesis @&Xxclusive-
Or-Sum-Of-Products (ESOR)rms, and for calculating the spectra of Boolean functions

DSOP forms can be seen as a special cagmufal DSOPswhere a subset of minterms of a Boolean
function must be covered exactly once, while other mintecars be covered more than once or not be
covered at all. In particular this is the case where the pdimthe on set of a function are covered exactly
once, while the points in the don’t care set can be coverechamper of times [10].

For speeding an otherwise exceedingly cumbersome proceabsmlute minimum in general is not
sought for, rather heuristic strategies for cube seledt@ve been proposed, working on explicit product
expressions 2,15, 15], or on a BDD representatioti {8, [6].
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After discussing the complexity of DSOP and partial DSOPRbAlte minimization we propose a class of
heuristic algorithms based on the new concept of “cube vigighd show that our results compare favorably
with the ones of the other known heuristics. The startingpgetibes is the one of a sum of product (SOP)
found with standard heuristics. The SOP cubes may be eunftegmented into non overlapping sub-
cubes, giving rise to a largely unpredictable DSOP solutiime process may exhibit an exponential blow
up in the number of fragments even dealing with theoreticqaihimal solutions, as for a function presented
in [13] where|SOR = n/2 and|DSOR = 22 — 1 (|]SOR and |DSOR denote the number of terms in the
SOP and DSOP expression, respectively).

Another new characteristic of our heuristic is the idea abraputing a SOP on the residual function
at different possible stages of the disjoint minimizatioogess, as a trade-off between quality of the result
and computational time. We have observed experimentadiytiiis strategy is crucial for obtaining compact
DSOP forms. For ease of presentation we start with DSOP sgistland then extend the heuristics to the
more general case of partial DSOP.

The paper is organized as follows. In the next Sedtion 2 weudisthe complexity of absolute min-
imization of DSOP and partial DSOP forms proving that, fog thtter, i.e. for the most general forms,
the problem is NP-hard. In Sectidh 3 we define the weight ofoalyct p as a function of the number of
fragments possibly induced on other cubes by the selecfign la Sectiori#4 we show how this weight can
be exploited for building a class of minimization heuristiSectiol b extends our strategy to partial DSOP
synthesis. In Sectidd 6 we present and discuss the comgnahtiesults obtained by applying the proposed
heuristic to the standamsPRESShenchmark suite [18], and comparing these results withr gihielished
data. The paper is concluded in Secfion 7.

2 The complexity of DSOP minimization

As it may be expected absolute DSOP minimization is a hardipno and absolute partial DSOP minimiza-
tion may be at least as hard. Let us first recall some clagéfitions. In a Boolean spa¢8,1}" described
by nvariablesxs, X, .. ., Xn, acompletely specified Boolean functisra functionf : {0,1}" — {0, 1}, while
Boolean a functiorf is partial if f: {0,1}" — {0,1,—}. With usual terminology, diteral y; is a variable

X in direct or complemented form, amfoductsare ANDs of literals. A producp is animplicant of the
Boolean functionf if ¥x € {0,1}", (p(x) = 1) = (f(x) = 1). An implicant p of a function f is aprime
implicantif p cannot be implied by a more general (i.e., with fewer lit€rahplicant off.

Unlike SOPs, a DSOP composed of prime implicants only mayerist, as can be immediately seen
considering a function with only three points in the on seg adjacent to the other. Furthermore, DSOPs
of prime implicants may exist but none of them may be minintadr example the minimal DSOP cover
of six implicants shown in Figure 1 contains the non primelioamt x; X4XsXgx7 displayed in the sub-map
XsXeX7 = 001, which is covered by the prime implicaxitxsXsXs Spanning across the sub-mapsex; =
000 andxsxgx7 = 001. The reader may discover that there is one DSOP coverasedof seven prime
implicants but not less (actually we could not constructamgple with less than seven variables).

The above considerations show that, unlike in the SOP cadeSOP minimization non prime impli-
cants must also be considered. Theoretically this is notjarrdeawback as the generation of all implicants
requires polynomial time in the size of the input (truth &abf the function). The problem arises in the impli-
cant selection phase where, as in the SOP case, a brute fantegative selection requires exponential time
in the worst case. It has been shown that SOP absolute matiovizis as complex as set coveringl[7] 17].
Similarly DSOP absolute minimization can be compared tosttepartitioning (or minimal exact cover)
problen@ It is immediate that minimal exact cover is at least as ha@baslute DSOP minimization (solv-

1The minimal exact cover problem is as follows: given a familpubsetsS of a setU and a positive integek, is there a subset
family T C Ssuch that the subsetsTharek in number, are disjoint, and their union is the entirels2tThe minimal exact cover is
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Figure 1. A minimal DSOP in seven variables composed of stxesu one of which is not prime (the
Karnaugh maps forsxgx; = 011,101,110,111 do not contain 1's and are not shown). A corresponding
DSOP composed of prime cubes only includes at least sevériof. t

ing the former problem efficiently would imply solving aldwetlatter). Here we are not proving the reverse
condition, rather we focalize on the most general problepastial DSOP absolute minimization and prove
that, in this version, the problem is NP-hard. More pregisek prove that thelecision versiorof partial
DSOP minimization is NP-complete. Let us formally define pih@blem.

MIN PARTIAL DSOP

INPUT: A partial Boolean functiorf : {0,1}" — {0,1,—}, specified by its on, off, and don't
care set, and a positive inteder

QUESTION: Is there a partial DSOP, i.e., a sum of products coveringtexance the points of
the on set, and any humber of times the points in the don’tsetref f, with at mosk products?

This problem is in NP because given a candidate partial DS@#atv mostk terms, one can determine
whether it is a covering of satisfying the given requirements in time polynomial in fiee of the input
instance. In fact this simply requires evaluating the phdiSOP at all of the points in the on set band
checking that one and only one of its products takes the \ialue

To prove the NP-completeness of MINRriAL DSOP, we adapt to our problem the theory and the
proofs developed i [1], where the authors proved that tieesim version of finding the smallest SOP form
consistent with a truth table is NP-complete, reducing fi@#BARTITE SET COVER, instead of QRCUIT
SAT as done in[[1i7]. Moreover, they pointed out that the rédnovould also work for 3D MTCHING,
which is precisely the NP-complete problem that we will reglto MiIN PARTIAL DSOP.

3D MATCHING

NP-hard since it can be easily reduced by the “exact covasigng’ introduced by Karp in 1972 [9] settirigto the cardinality of
uU.



INPUT: A positive integem, a partitionl of the set{1,2,...,n} into three sets of equal size,
and a collections of subsets of 1,2,...,n}, where every subset contains exactly one element
from each of the set dfl.

QUESTION: Is there a subcollectiog’ C § of sizen/3 whose union i1,2,...,n}?

Note that such a subcollectighwould provide an exact cover, as it covers each element stid, 2,... ,n}
exactly once.

In the next theorem, we give the reduction from 3DAMHING to MIN PARTIAL DSOP. It is basically
the same reduction given ini[1] for SOP minimization, howdwre we show how it works even for disjoint
SOP minimization. Givem,v € {0,1}", we will write u < vif u; <v; foralli € {1,2,...,n}.

Theorem 1 MIN PARTIAL DSOPis NP-complete.

Proof. We have already noticed thatiIM PARTIAL DSOP belongs to NP. Thus, we are left to show that
it is NP-hard. To this aim we show how to transform an inputdnse of 3D MATCHING into an instance
of MIN PARTIAL DSOP in polynomial time. The instance defines an incompletpkcified functionf
depending orO(logn) variables, that can be covered by a partial DSOP witB products if and only if
there is a subcollectiog’ C § of sizen/3 whose union i§1,2,...,n}.

Let (n,MM,S5) be an input instance of 3D MCHING. We first define two sets of vectorg, andW,
that we will use to define an instance of MPARTIAL DSOP. Letqg be the smallest even integer such that
(qj‘z) > n. Observe thaj = O(logn). We assign a unique g-bit vectbfi) with exactlyq/2 1’s to each
i€{1,2,...,n}. LetM(i) € {1,2,3} be the index of the block of the partitidh that containg. Lett = 3q.
The vectors iV andW can be divided into 3 blocks, each of sige We can now define the vectors in
V={)|1<i<n}andW={w® |Ac S}

e eachvl) €V,i€ {1,2...,n},is equal tdy(i) on blockr(i), and is 0 in the other two blocks;
e eachw™ e W, Ac S, is the bitwise OR of ali{) ¢ V such thai € A.

These two sets can be generated in tiflé).
Observe that this choice guarantees that:

VAeS, Vie{1,2,...,n}, ieA = vi<w®, (1)

The forward implication is obvious. To see that the backviamplication holds, leA € S andi € {1,2,...,n},
and assume that) <w®. This implies thatA contains one elemerjtthat belongs to the same bloEK)
of i, wherevl) is not 0, i.e.1(i) = M(j). Thus, since/!) <w(®, we must havd(i) < b(j), which in turn
impliesi = j, and therefore € A.

We now construct an incompletely specified functioan the domair{0, 1}!, as follows:

o f(X)=1ifxeV.
o f(x)=—if x¢V andx <wfor someweW.
e f(x) =0, otherwise.

Foru € {0,1}', let D(u) = {w | w < u} and lett(u) denote the produd];.,_oX. Observe that(u) is
the characteristic function of the sBfu). Consider the sdd(W) = Uycw D(X). Property (1) implies that
V C D(W) and thatf (x) = — iff x€ D(W)\ V.

To complete the proof we must show tigatontains a covet® of sizen/3 if and only if there is a partial
DSOP for f, with n/3 products. Suppose thatcontains a cover of sizen/3, and consider the set of
products{t(wW®)) | C € C}. It is immediate to verify that the sum of these products c®vke function
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f. Indeed, for alli € {1,2,...,n}, i belongs to one of the sets ®, sayC’, and the vector!) in the on
set of f is then covered by the corresponding produei©)) (recall that by construction’) < w(©), thus
vl e D(W(®))). Now, we have to prove that these products define a partial/®6f, i.e., we must show
that the corresponding cubes are either disjoint or inttimaly on the don't cares df.

First of all recall that each vectav®), C € ¢, can be divided into three blocks, each equal to one of
the vectorsh(i). For instance, i€ = {i, j,k}, with M(i) = 1, N(j) = 2, and(k) = 3, thenw(© is given
by the concatenation di(i), b(j), andb(k). The related product(w(®)) can then be divided into three
subterms ofy/2 literals, containing the complemented variables cooedjmg to the 0's irb(i), b(j), and
b(k). Moreover, sinc€ is a disjoint cover of 1,2, ...,n}, eachvl) belongs to one and only one of the sets
in C, that is only one of the vectors®) has a block equal tb(i), for alli € {1,2,...,n}. This implies that
all subterms of the set of produdfs(w(®)) | C € ¢} are different.

Given any pair of products(w©)) andt(w®)), with C,D € ¢, consider the intersection of the corre-
sponding cubes. The characteristic function of the intdime is simply the product (AND) between@w(c))
andt(w®)). Since all subterms af(w(©)) andt(w®)) are different, the produat(w(©) - t(w(®)) contains
three subterms, each of at leag2 + 1 complemented variables. Thus, it can cover only don'tcafd,
since any vectovl) € V has one block with onlyg/2 0's.

Now, suppose thapis a partial DSOP foif, with n/3 products. For each produpte @, letu(p) be the
maximal vector satisfying. Note thatf (u(p)) € {1,—}, thusu(p) € D(W) and there must be a s&tp) € S
such thau(p) < wSP), We then show that the collectian= {S(p) | p € @} is a cover of{1,2,...,n}. Let
je{1,2,...,n}. Sincef(v))) =1, exactly one of the product ip sayp'!), must coven')). This implies
vi) < u(p). Thusvt) < wSP™), which by property (1) implieg € S(p)). m

The exponential nature of partial DSOP minimization jussifthe search for heuristic solutions. This
will be done after a theoretical discussion on how cubesfgagsnented due to their intersections, contained
in the next section. This will lead to a heuristic strategyosdn complexity is polynomial in the size of the
output, i.e., in the number of products of the computed DS f

3 The Weight of a Cube

A productq =i, Yi,...Yi,,» 1 <k <n, represents a cube of dimensidfg) = n—k, i.e., a cube of »K points
in {0,1}". The intersectiorp = p; N p, of two cubesp; = Yiz--Yie » P2 = Yiz--Yiy, is obviously obtained as
the AND of the two corresponding products. The intersectiaa empty if and only if there is a literal in
p; that appears complemented g, and vice-versa. Otherwiseis a cube of dimensiod(p) = r, with

r =n— (ky + k2 — ), andc is the number of common literals my and ps.

Take p1, p2 as above, and lgb;, p, partially overlap. The set of points @k \ p1 can be covered in
different ways by a set of at ledst— c disjoint cubes of dimensionsr +1,...,n—k, — 1. Forn= 6, letting
ki =5,kp =3,c=2we hava =0 andd(p;) = 1,d(p2) = 3, i.e., the intersection contains 1 point, and the
two cubes contain 2 and 8 points, respectively. Thereforgp; contains 7 points and can be covered with
5— 2= 3 cubes of dimensions 0, 1, 2. For an other example, consithesé andB in Figure[2(a). The set
A\ B contains the minterms 0000, 0001, and 0100. The disjoirgrsdfor these points arX;X3 + X1XoX3Xa
andx1XsX4 + X1 XoX3X4, both containing two cubes.

Now, if p; is selected into a DSOR, must be discarded and the points @f\ p; must be covered
with at leastk; — ¢ disjoint cubes instead of one (the singlg). Thenk; —c— 1 is the number of extra
cubes required by the DSOP. If the functibrtan be represented by a SOP containing gmland p,, the
selection ofp; into a DSOP requires a total &f — c+ 1 cubes. In particular ik, — ¢ = 1 the intersectiomp
covers exactly one half of the points pf andp, \ p; is also a cube. Clearly the general situation will not
be that simple as the starting SOP fotto be transformed into a minimal DSOP, will consist of aedlion
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Figure 2: (a) A minimal SOP of four cubes of dimension 28, with weightsw(A) = 1, w(B) = 2,
w(C) =0,w(D) = 1. (b) A corresponding DSOP.

of cubes overlapping in groups. Still we define a weight faheeubep; equal to the minimum number of
extra cubes that the selection mfwould induce in all the cubes intersectipg Formally, let a SOP fof
consist of partially overlapping products, py, ..., ps. We pose:

Definition 1 Let a product pof k literals intersect the products;,p..., pi;, such that pand p; have g
common literals. Then (i /p;;) = k—c;j — 1is theweight of p; relative top;,, and wW(p;) = ztj:lw( pi/pi)
is theweightof p. If p; does not intersect any other product, s¢py = —1.

Thus, whenp; intersectsp;;, the weight ofp; relative to p;; is the minimum number of additional
products that we would have in the cover keepgnd coveringp;/p;; with non-overlapping products.

As an example, consider the functidnof four variables, represented in Figlide 2(a). A minimal SOP
of f contains four cube#\ = X1X3, B = XoX4, C = X1X2, D = X1x3, all of dimension two. The weights
are computed as follows. Fér w(A/B) =1 (in fact, selectingA in a DSOP would require to cover the
remaining three points d@ with at least two disjoint cubes)y(A/C) = 0 (the residual two points @& can
be covered with one cube); ther{A) = 1. ForB: w(B/A) = 1; w(B/C) = 0; w(B/D) = 1; thenw(B) = 2.
ForC: w(C/A) = 0; w(C/B) = 0; thenw(C) = 0. ForD: w(D/B) = 1; thenw(D) = 1. As we shall explain
in the next section, we start the construction of a DSOP bgcsiel the cubes with low weight and high
dimension, breaking on the fly the ones that intersect a teglezube. In the present example, start by
selectingC and reducé andB to two subcubegd\;, B, of two points each. Then seldotand further reduce
B, to B, of one point. Then sele&; andB,, as shown in the DSOP of Figuré 2(b). During the process the
weights are updated as explained below.

4 DSOP synthesis algorithms

Let us consider an incompletely defined Boolean funcfio{0,1}" — {0,1, —} represented with a set of
cubesC = (Con,Cyc), WhereCo, covers the on set of, i.e., the points/ in {0,1}" such thatf (v) = 1, and
Cqc covers the don't care set éf i.e., the pointw in {0,1}" such thatf (v) = —.

The new heuristic for DSOP construction uses four basicquores working on an explicit represen-
tation of cubes. The first procedure BUILD-S@PP) works on a seC of cubes covering an arbitrary
function as above, to build a minimal (or quasi minimal) SPRor that function. Note that, during the
process, BUILD-SOP may be called on different €2&merging in the computation. As a limit the cubes
of C may be minterms, i.e., cubes of dimension 0. The second guoedVEIGHTP) builds the weights
for the cubes of a sdl.



algorithm DSOP(, D)
INPUT: A set of cube& covering a functiorf
OUTPUT: A set of disjoint cube® coveringf

D=0
while (C #£ 0)
BUILD-SOP(C,P)
A={deP|VceP\{d}: dnc=0}
D=DUA
P=P\A
WEIGHT(P)
SORTEP)
B=0
while (P # 0)
let p be the first element d?

P=P\{p}
D=Du{p}
forall ge P: png#0

P=P\{q}

BREAK(q, p,Q)

OPT@,Q,P,B)
forall reB: pNr#£0

B=B\{r}

BREAK(r, p,Q)

B=BUQ
C=B

Figure 3: The general algorithm for DSOP synthesis.

The third procedure SORP] sorts a seP of weighted cubes. This procedure comes in two versions: i)
the cubes are ordered for decreasing dimension and, if therdiion is the same, for increasing weight; ii)
the cubes are ordered for increasing weight and, if the wésghe same, for decreasing dimension. If two
or more cubes have same weight and same dimension, theirisit®sen arbitrarily. The two versions of
SORT give rise to two different alternatives of the over&ioaithm.

The fourth procedure BREAK|( p, Q) works on the set differenag\ p between two cubes, to build an
arbitrary minimal sefQ of disjoint cubes covering\ p. Note that this operation is easy singg p can be
obtained ag)\ (pNq), where the latter is the set difference between two cubesgiandpnq, in turn a
cube because is the intersection of two cubes.

In practice, for BUILD-SOP one can use any minimization e (in our experiments we have used
procedureESPRESSGNON-EXACT of the ESPRESSOsuite [18]). Procedures WEIGHT and SORT (both
versions) are obvious. Procedure BREAK is the one sugges{8jiand [14] as DISJOINT-SHARP.

In the overall process we consider four sets of cubdg3B,D. At the beginningC contains the cubes
defining f, while P,B,D are empty. During the proce€scontains the cubes defining the partfostill to
be covered with a DSOR®, contains the cubes of a SOP under procesdhtgmporarily contains cubes
produced by BREAK as fragmentation of cubesRyfand D contains the cubes already assigned to the
DSOP solution and, at the end, the solution itself.

The algorithms of our family share the structure shown inuFég3 (its behaviour on incompletely
specified functions is discussed at the end of this secti@s)long asf has not been completely covered
with disjoint cubes, i.e., there are still cubes in theGea minimal (or quasi-minimal) SOP for the part
of f still to be covered is computed by the procedure BUILD-SOPcébes that do not intersect any other



cube inP are removed fronP and inserted in the DSOP under construction; the remaining cubes are
weighted and sorted. Then, the first cybés extracted fronP and inserted in the solutioR. Each cube

g € P that intersect9 is removed fromP, and a SORQ for the set difference)\ p is computed by the
procedure BREAK.

During this phase an optional optimization procedure OPdalked to decide how to handle the frag-
ments inQ; depending on this optimization phase, different variarftthe heuristic can be defined. Note
that, since the points gi cannot be covered by any other cube, all fragmerageady inserted B must
be tested for intersection withand, if necessary, replaced with the SOP computed by BREAkK®set
differencer \ p. WhenP becomes empty, the fragmentsBrare moved to the s€ and the algorithm iter-
atively builds a new SOP covering the points that are not yet covered by the D&QRder construction.
The iterations terminate whé&hbecomes empty.

We have designed and tested five variants of our heuristiedbas five different versions of the opti-
mization procedure OPT, with different degrees of soptasion. The first varianDSOP-1, is the simplest,
and computationally fastest, as OPT simply inserts thesob® into the set of fragments:

in DSOP-1:
procedure OPT(@Q, Q,P,B)
B=BUQ

Example 1 For an example, Figur¢]l2(b) shows a DSOP form for the SOP fofrRigure [2(a), com-
puted by algorithm DSOP-1. At the beginning=D0 and P= {X1X2,X1X3,X1X3,X2X4}, sorted for de-
creasing dimensions of cubes and then for increasing weifhe recall that, WX1x2) = 0, w(xix3) = 1,
W(X1X3) = 1, and Wxox4) = 2). The first cube considered is=pX;Xo, which is removed from P and in-
serted in D. Its intersecting cube®;Xs and %X4, are then broken generating the residuals cuRgsXs
and xXoXs, respectively, which are inserted in B, whitgxs and »X4 are removed from P. The last cube
in P to be considered is thenx that is inserted directly in D, since there are not any othemain-
ing cubes in P. Its intersecting cubexxs in B is then reduced to;x,XsXs. The secondvhile (P # 0)
iteration starts with P= {X1X2X3,X1X2X3X4} and D= {X1xp,X1X3}, and terminates with the final DSOP
D= {)_(1X2, X1X3, X1 X2X3, X1X2)_(3X4} .

In the second varianDSOP-2 after a cubep has been selected and movedteach cube intersecting
p is, as before, fragmented and movedtoln addition the optimization procedure updates the weidht
all cubes € P that intersecy), and then sorts the cubesRmagain:

in DSOP-2:
procedure OPT(@Q, Q,P,B)
B=BUQ
I ={reP|gnr#0}
WEIGHT(I)
SORTP)

A disadvantage of both versions is that whenever a quibanoved fromP to D, all cubegyintersecting
p are fragmented and removed from the BetHence, the fragments, even the big ones, are “out of the
game” and cannot participate in the construction of the D&Qktil P becomes empty and a new SOP
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covering all fragments in the sBtis computed. Consequentially, small cube$inould be selected first,
possibly damaging the quality of the final result, i.e., tize ®f the final DSOP.

To partially avoid this disadvantage, we have implementédrd version of the heuristid)SOP-3 in
which whenever a cubp € P is moved taD, each cubej intersectingp is, as before, fragmented and moved
to B, and, in addition, all cubese P intersectingg are moved td as well:

in DSOP-3:
procedure OPT@Q, Q,P,B)
| ={reP|gnr#0}
B=BUQUI
P=P\I

In this way, the cubes dP intersecting the fragments already in B cannot be selegl#i@, is avoided
the possible fragmentation of big cubesBnMoreover, we leave open the possibility of selecting thage
cubes in the next iterations of the algorithm, This versibtie heuristic is computationally more expensive,
since in the internal while loop less cubes can be sele®exir(pties faster), and procedure BUILD-SOP
must be executed more frequently.

The fourth version of the heuristiSOP-4 checks whether the s€tcontains only one fragment, i.e.,
g\ pis a cube. In this case, this only fragment is put bacR.imhe cubes left ifP are then weighted and

sorted again:

in DSOP-4;
procedure OPT(@, Q,P,B)
if (1Q| = 1)
P=PUQ
else
B=BUQ
WEIGHT(P)
SORTP)

Finally, in the last version of the heuristic that we havaeddsDSOP-5 the biggest fragment in the set
Qis always put back i?. The cubes left ifP are then weighted and sorted again. In this way, big fragsnent
remain part of the game in the present iteration of the algori

in DSOP-5:
procedure OPT(@Q, Q,P,B)
let b be the biggest cube Q
P=PuU{b}
B=BUQ\{b}
WEIGHT(P)
SORTP)



The performances of these five procedures are discussedtinrg@. We have observed experimentally
that more sophisticated optimization procedures do noaydvprovide better quality results. Experimental
results have also outlined how the BUILD-SOP procedure,rieesynthesizing the remaining cubes, seems
to be crucial for obtaining compact DSOPs.

Let us now briefly consider the case of the DSOP synthesiscofiipletely specified Boolean functions.
Our heuristic does not consider explicitly the presenceooftdcares; indeed, the first call of the BUILD-
SOP procedure produces a SBRovering the whole on set df and a subset of its don’t care set. Then,
the algorithm works on the SOP, treating all points covered by its cubes as if they belorngetie on set
of f,i.e., there is no distinction between points originallfhie on set off and points originally in the don't
care set. In particular, the successive calls of BUILD-S@Rhe part off still to be covered with a DSOP,
treat the function as if it were completely specified. Of smyreach cube in the SGPcomputed by the
first call of BUILD-SOP covers at least one point in the on def pas cubes covering only points in the
don't care set are discarded by the SOP minimization alyoritHowever, the final disjoint covéd for f
could contain cubes covering only points originally in tlent care set. In fact, cubes [ are either entire
cubes of the starting SOP, or sub-cubes of cubes i(besides new cubes and sub-cubes originated by the
successive calls of BUILD-SOP) and some sub-cubes (or nbesjucould only cover don't care points.

From the above all versions of our heuristic could be impdasgecking whether a culgcontains only
points in the don't care set of the functidn before adding it to the DSOP soluti@ under construction.
Unfortunately, such a check can be computationally expensind for this reason we have not added it as
a “default” procedure in our algorithm. In fact the checkeft s an option. Experiments conducted on a
set of incompletely specified functions show some improvesien the final form induced by the check at
a considerable increase of computing time, see next Sé@tion

5 Partial DSOP synthesis

As already mentioned the problem of DSOP minimization radlyigeneralizes to covering partial DSOPs
where some minterms (e.g. the ones in the on set of the funciie covered exactly once while other
minterms (e.g. the ones in the don'’t care set) can be covergdwamber of times [10]. In this section we
present a general heuristic to efficiently compugagial DSOPcover.

The heuristic makes use of two sums of products as input. T$teSOPsopD, contains all points of
the on and don't care set of the functidrthat must be covered only once (DSOP part), while the second
SOP,sopS contains all the points of that can be covered more than once (SOP part). These two SOPs
are disjoint. The output of the heuristic is a cover of theralldunction f, represented by the union of the
two SOPssopDandsopSthat respects the specifications. Note that weepDis empty the problem is a
classical SOP minimization, while wheopSis empty the problem is a classical DSOP minimization.

The algorithm uses four basic procedures as for the DSOResistof Sectiohl4. In particular BUILD-
SOP, WEIGHT, and SORT are the same.

The fourth procedure PARTIAL-BREAKY p,sopD,sopSQ,R) works on the set differencg)\ p be-
tween two cubes, to build an arbitrary minimal ebf disjoint cubes covering)\ p, if gN pis not entirely
contained insopS If gN p is contained irsop$ the cubeg is not broken and we can keep it in the Bet
which contains the cubes to be considered in the curreatiiber. In this case we then I8t= 0. Moreover,
the procedure PARTIAL-BREAK builds a s& containing points ofy\ p that can be covered more than
once and can therefore be added as don't car€s ta this way, these points, that have been already cov-
ered, could be used again in the minimization phase to getdlemeover. This procedure, different from
the one used for DSOP synthesis, is presented in Figure 4.

The overall minimization heuristic is presented in FigureAs for the DSOP synthesis, the heuristic
makes use of four sets of cub@sP,B,D. At the beginningC = sopDuU sopScontains the cubes defining
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algorithm PARTIAL-BREAK(q, p,sopD sopSQ,R)

INPUT: The chosen cubp, the cubgjy that can be broken,

the two SOPsopDandsopSwvhose union represents
OUTPUT: A minimal setQ of disjoint cubes covering\ p and

a setR of the points ofg\ p that can be covered more than once

R=0
pi=anp
if (pi € sopS// all points of p can be covered more than once
Q=0
else if(p; € sopD // all points of p must be covered once
Q = DISJOINT_SHARP(, pi)
elsel// p; intersects both sopD and sopS
Q = DISJOINT_SHARP@, pi)
R=piNnsopS

Figure 4: The procedure PARTIAL-BREAK to be used in parti@d@P synthesis.

algorithm PARTIAL-DSOP&opD sopSD)

INPUT: Two disjoint SOPs describing the points bfhat
must be covered only oncedqpD) and the points of that
can be covered more than onsep3g

OUTPUT: A partial DSOPD for the functionf

Con = sopDynUsopSn
Cdc = sopDycUsopIc
while (Con # 0)
BUILD-SOP(C,P)
A={deP|VceP\{d}: dnc=0}
D=DUA
P=P\A
WEIGHT(P)
SORTP)
B=0
while (P £ 0)
let p be the first element d&?
P=P\{p}
D=Du{p}
forall ge P: pnq#0
PARTIAL-BREAK(q, p,sopD sopSQ,R)
if (Q#0)P=P\{q}
OPT@.Q.P.B)
Cdc = Cch R
forall reB: pNnr#0
PARTIAL-BREAK(r, p,sopD,sopSQ,R)

it (Q#0) B=B\{r}

B=BUQ
Cdic=CycUR
Con:B

Figure 5: Algorithm for partial DSOP synthesis.
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Figure 6: (a) sopS (cubes with solid lines) and sopD (cubds adétted lines). (b) A corresponding partial
DSOP.

f while P,B,D are empty. During the processi@contains the cubes defining the part fostill to be
covered with a partial DSOP.contains the cubes of a SOP under procesddtgmporarily contains cubes
produced by BREAK as fragmentation of cubedPofD contains the cubes already assigned to the partial
DSOP solution and, at the end, the solution itself. QRPQ(P,B) is an optional optimization procedure
to decide how to handle the fragments produced by the proeeBREAK. As before, depending on this
optimization phase, different variants of the heuristio ba defined.

Example 2 Consider the function shown in Figuré 6(a). Suppose thaDsep{X;1xX3, X1 X2X3%4} (cubes
with dotted lines in the figure) and sopS{X1X3,x1x3} (cubes with solid lines). A partial DSOP for f is
shown in Figurd B(b). This expression is obtained with theiaDSOP algorithm as described in the
following. Let OPT(gQ,P,B) be the simple command-BBUQ (as in theDSOP-1procedure). At the
beginning D= 0 and, after the SOP minimization phase=RX;x2, X1X3,X1X3, X2X4 }, sorted for decreasing
dimensions of cubes and then for increasing weights (nateviie have the same initial P of Example 1).
The first cube p= X1X% is removed from P and inserted in D. Its intersecting cubeXgs and »%X4. In the
procedure PARTIAL-BREAK, the intersection betweeg andXix, is @ = X1x2X4. Note that pintersects
both sopD and sopS, thusQ{xiX>x4} and R= {X1xoXsXa} (i.€., X X2Xq4 and Xy xoXsX4 Will be inserted in
B and in the don't care set of C, respectively). Moreover, emgute the intersection; petweerk; Xz and
X1X2, ObtainingX;xoX3 which is entirely contained in sopS. Thus, in this case Q = 0, thenX;X3 is not
broken and it is not removed from P. Similar operations ardggened onx;X3, and on XXyx4 contained
in B. The seconavhile (P # 0) iteration, which starts with the P- {xixox4} and D= {Xix2,X1X3,%1X3},
terminates with the partial DSOP shown in Figlie 6(b).

6 Experimental Results

In this section we present and discuss the results obtaiitadhe heuristics presented above to the standard
ESPRESScbenchmark suite [18]. All experiments were performed on8@AHz PowerPC with 1 GB of
RAM.

6.1 DSOP synthesis

We have considered the five different variants of the hearikiscribed in Section 4, denotedRSOP-1,
DSOP-2, DSOP-3, DSOP-4, DSOP-%or each variant, we have run both versions of the procesOfReT,
to estimate the practical effectiveness of each versiormeé\awe have ordered the cubes for decreasing
dimension and, in case of equal dimension, for increasinigwéversiondimension/weigh). Then we
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SORT VERSION: dimension/weight
SOP DSOP-1 DSOP-2 DSOP-3 DSOP-4 DSOP-5
Bench in | out size size | time size | time size | time size | time size | time
accpla 50 69 175 1457 | 11.68 || 1458 | 13.42 || 1190 | 10.55 || 1125 | 5.61 || 1528 | 21.60
addm4 9 8 200 218 0.26 221 0.31 214 | 0.40 222 | 0.19 224 | 0.19
alu4 14 8 575 923 151 921 2.00 881 2.32 || 1051 | 3.36 || 1044 | 2.87
apex3 54 50 280 345 0.62 345 0.65 350 0.68 366 | 2.04 400 211
apex4 9 19 436 506 0.34 506 0.36 503 0.31 502 | 0.52 501 0.59
b2 16 17 106 131 0.42 131 0.49 121 0.54 130 | 0.93 127 0.56
bcO 26 11 179 214 0.47 214 0.53 202 0.68 212 | 0.53 208 0.51
chkn 29 7 140 187 0.87 187 0.88 168 0.88 215 | 0.48 221 0.42
clip 9 5 120 151 0.28 150 0.29 140 0.39 153 | 0.20 157 0.16
cps 24 | 109 163 184 | 0.75 184 | 0.76 204 | 0.89 219 | 0.38 225 | 0.38
dist 8 5 123 135 0.22 135 0.23 130 0.38 128 | 0.15 129 | 0.16
ex5 8 63 74 126 0.79 126 0.44 122 0.80 137 | 0.39 141 | 0.48
gary 15 11 107 134 0.52 134 0.35 124 0.49 126 | 0.28 127 0.16
ibm 48 17 173 366 1.23 366 0.59 361 0.99 373 | 0.46 391 | 0.30
in4 32 20 212 312 1.36 312 0.84 280 1.33 303 | 0.54 304 0.56
intb 15 7 631 811 2.03 818 1.61 798 2.57 922 | 2.56 952 291
jbp 36 57 122 135 0.57 135 0.26 127 0.43 134 | 0.20 136 0.17
mainpla 27 54 172 296 4.67 296 3.00 293 3.23 288 | 5.37 260 5.20
max1024 || 10 6 274 332 0.32 334 0.33 334 0.54 347 | 0.35 345 0.32
misex3 14 14 690 || 1070 | 2.72 || 1073 149 || 1032 | 2.68 | 1159 | 2.57 || 1309 | 3.48
soar 83 94 353 447 1.93 447 1.30 434 1.58 442 | 0.59 456 0.58
sym10 10 1 210 232 0.43 231 0.51 232 1.11 235 | 1.01 245 | 0.85
table3 14 14 175 181 0.41 181 0.23 180 0.33 179 | 0.16 179 0.18
table5 17 15 158 167 0.39 167 0.36 161 0.38 161 | 0.24 161 | 0.25
tial 14 8 581 943 1.78 937 1.96 874 2.98 || 1071 | 2.84 || 1040 2.50
vix1 27 6 110 204 0.45 204 0.49 204 0.64 208 | 0.34 213 0.31
x7dn 66 15 538 796 1.30 784 1.43 812 1.57 813 | 0.88 864 0.76

Table 1. Comparison of five different variants of the DSOPimimation heuristic (SORT versiordimen-
sion/weight) The size of the best DSOP representation computed forlesothmark is in boldface.

have ordered the cubes for increasing weight and, in casgual reight, for decreasing dimension (version
weight/dimension).

Since the benchmarks are multi-output functions and theriditgn is described for single output func-
tion, in the experiments we have considered each outputatepa but the minimization phase wiHsPRESSO
is performed in a multi-output way. Moreover, common disfaubes of several output are counted only
once.

Tabled 1 an@]2 report a significant subset of the experiméntsarticular, Tablé 1 reports the perfor-
mances of the heuristics with respect to the first versiolefSORT procedure, while Talilé 2 is relative
to the second SORT procedure. All benchmarks in these talpbesompletely specified. In both tables,
the first column reports the name of the benchmark; the fatiguwo columns give the number of inputs
and outputs; the column label&DP shows the number of products in a SOP representation cothpyte
ESPRESsaAN the heuristic mode; finally the remaining five pairs of eohs report the number of disjoint
products in the DSOP expressions computed by our heurtidghe corresponding synthesis time.

As Table[l and Tablel 2 clearly show, the third variant of theriséic, together with the first version
of procedure SORT (versiodimension/weigh), gives the best results regarding the size of the resulting
DSOP forms, and its running times are comparable to thodeeddther variants, and sometimes even lower.

We have then tested the performances of the best variantrdfieuristic on incompletely specified
benchmarks. Tablg 3 reports a subset of our experiments.aWerhin the heuristic without the elimination
of cubes covering only don’t cares points from the solutiodar construction@SOP-3 (a), and with such
elimination OSOP-3 (b). As the table clearly shows, the elimination of these cutsgsirally produces
better solutions in terms of size, but the computationaktisnmuch higher.

In another series of experiments we compared our heuristth (he third version of the optimization
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SORT VERSION: weight/dimension
SOP DSOP-1 DSOP-2 DSOP-3 DSOP-4 DSOP-5
Bench in | out size size | time size | time size | time size | time size | time
accpla 50 69 175 1779 | 24.57 || 1717 | 32.46 || 1317 | 16.80 || 1535 | 34.29 || 3078 | 97.73
addm4 9 8 200 220 0.26 222 0.27 217 0.29 222 0.20 223 | 0.13
alu4 14 8 575 1138 2.25 || 1065 2.12 || 1276 4.74 || 1269 5.23 || 1211 3.69
apex3 54 50 280 337 0.54 342 0.57 347 0.6 356 0.82 386 0.94
apex4 9 19 436 506 0.34 506 0.36 503 0.33 502 0.38 500 0.25
b2 16 17 106 131 0.41 131 0.44 120 0.62 126 0.36 125 0.36
bcO 26 11 179 230 0.60 218 0.53 210 1.18 218 0.44 211 0.40
chkn 29 7 140 598 3.67 448 3.55 216 2.86 386 2.21 426 1.70
clip 9 5 120 154 0.32 153 0.29 143 0.38 157 | 0.20 159 0.17
cps 24 | 109 163 184 | 0.75 184 | 0.88 204 1.19 217 0.36 223 | 0.36
dist 8 5 123 138 0.21 138 0.23 133 0.36 134 | 0.15 133 | 0.15
ex5 8 63 74 128 0.38 125 0.44 142 0.77 141 0.39 148 | 0.31
gary 15 11 107 139 0.28 131 0.27 132 0.43 124 0.15 125 0.15
ibm 48 17 173 431 0.69 393 0.64 416 1.24 415 0.56 478 0.47
in4 32 20 212 329 0.72 331 0.81 321 1.29 303 0.52 319 0.48
intb 15 7 631 955 1.79 932 1.83 || 1125 3.65 || 1130 4,99 || 1173 3.84
jbp 36 57 122 151 0.35 147 0.36 128 0.33 140 0.16 147 0.17
mainpla 27 54 172 459 2.86 405 2.47 387 3.33 366 2.76 338 2.23
max1024 || 10 6 274 334 0.30 330 0.36 324 0.50 339 0.34 338 0.29
misex3 14 14 690 1132 1.28 || 1155 1.75 || 1317 458 || 1234 3.67 || 1464 4.36
soar 83 94 353 451 1.16 449 1.25 430 1.41 440 0.61 464 0.60
sym10 10 1 210 233 0.42 234 | 0.48 248 1.37 239 1.19 258 1.38
table3 14 14 175 181 0.21 181 0.24 180 0.24 179 0.14 179 0.14
table5 17 15 158 167 0.31 167 0.32 161 0.28 161 0.20 161 0.17
tial 14 8 581 1121 2.22 || 1060 2.13 || 1371 6.68 || 1330 5.25 || 1322 3.65
vix1 27 6 110 236 0.50 247 0.51 258 0.93 313 0.63 317 0.62
Xx7dn 66 15 538 1078 1.89 || 1010 2.23 919 2.80 || 1068 2.32 || 1043 1.30

Table 2: Comparison of five different variants of the DSOP imimation heuristic (SORT version:
weight/dimension) The size of the best DSOP representation computed for leaathmark is in bold-
face.

phase, and without elimination of cubes of don’t cares ownligh other DSOP minimization methods. We
considered three techniques working, as ours, on expdipiesentation of cubes, and one method based on
binary decision diagrams. The first algorithm [5] sorts auimea minimal SOP according to their size, and
compares the largest cube with all the others, starting tf@smallest ones. In the next step, the second
largest cube is selected and compared to all smaller oresA®h last step, the cubes are merged wherever
possible. The second algorithm, presented_in [15], exptbié property of the most binate variable in a set
of cubes to compute a DSOP form. The algorithm proposed iaff@merates all overlapping pairs of cubes
in a SOP form, and builds a disjoint cover starting from thiespaf cubes with the highest degree of logic
sharing.

Finally, the third approach, presented(in [6], makes usel@DB, exploiting the efficiency resulting from
the implicit representation of the products. Observe intlagt a DSOP form can be extracted in a straight-
forward way from a BDD, as different one-paths correspordigint cubes. As the results presented.in [6]
largely depend on the variable ordering of the underlying>Bih [3] an evolutionary algorithm has been
proposed to find an optimized variable ordering for the BDpresentation that guarantees more compact
DSOP forms.

Table[4 reports a cost-oriented comparison among the eliftenethods. The first three columns are as
before. Columns four and five report the number of producthenPLA realization and in the SOP form
heuristically minimized byesPRESSAN the heuristic mode. The column labelB&OP ESPR shows the
size of the DSOP computed runniggPRESSowith the option “-Ddisjoint” on the previously computed
SOP form. The next five columns report the sizes, when avajlaib the DSOP forms computed with the
methods discussed inl[5], [15],/[6]./[3], and [2], respeelyv Finally, the last column shows the size of the
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DSOP-3 (a) DSOP-3 (b)
Bench in | out size | time size time

b10 15| 11 115 | 0.49 115| 17.04
b3 32| 20 279 | 1.21 279 | 47.34
bca 26| 46 189 | 0.29 189 | 49.54
bcb 26| 39 162 | 0.26 162 | 42.33

benchl|| 9 9 250 | 0.32 210 | 14.92
ex1010( 10| 10 876 | 1.34 665 | 73.00
exam 10| 10 145| 0.33 107 | 62.26
exep 30| 63 130 | 0.53 120 8.33
exps 8| 38 151 | 0.31 151 | 37.91
pdc 16 | 40 381 | 0.98 277 | 37.14
spla 16 | 46 347 | 0.64 347 | 37.06
test2 11| 35| 2322 | 2.40 || 2054 | 324.84
test3 10| 35| 1462 | 1.81| 1204 | 159.60

Table 3: DSOP synthesis of incompletely specified benchspavkhout DSOP-3 (a) and with ©SOP-3
(b)) elimination of cubes covering only don't cares. The siz¢éhefbest DSOP is in boldface.

DSOPs computed with our heuristic (third variant).

As the table clearly shows, our method almost always geserahaller DSOP representations, and the
gain in size can be quite striking, as for instance for thecherarksalu4, clipandmisex3 We have found
only a few benchmarks where our approach compares unfdyoi@pl, cordicandinc.

A time comparisons among all these different methods wagassible due to the partial absence of
CPU times specification in the literature.

6.2 Partial DSOP synthesis

In order to test our partial DSOP synthesis algorithm, westzgoplied the heuristic to the classieslPRESSO
benchmark suite [18] with the following meaning. We havesidared only benchmarks with don't cares,
where the on set of the benchmark is the on ssb@D and the don't care set of the benchmark is the don’t
care set obopS

Table[® reports a subset of our experimental results. TharoolabeledSOP shows the number of
products in a SOP representation compute&$®yRESsAn the heuristic mode. The remaining three pairs
of columns report the number of products and the correspgralinthesis time for the following three forms
(all computed with the third version of the optimization phathe dimension/weight sort version, and with
the elimination of cubes covering don't cares only):

1. DSOP: a DSOP for the original function, with the choice of don'tesa performed bgsSPRESSGN
the heuristic mode. Each don'’t care point is coveaethostonce.

2. P-DSOP (a) a partial DSOP for the original function, with the choicedain’t cares performed by
ESPRESSAnN the heuristic mode. Don'’t care points are either elimedadr coveredt leastonce.

3. P-DSOP (b} a partial DSOP for the original function, where all the daréres of the function are
in play (they have all been covered during the first SOP mirétion). Don't care points are either
eliminated or coveredt leastonce in the final form.

Note that the results in the colun8OP are better than ours because the resulting form is not dtsjoi

The table suggests that the best solution is the one relaiibe choice of don't cares made by
ESPRESSO Moreover, it appears clearly from these results that th@omf covering more than once
the don't care points of the functioGOP-3 (a) gives better results, especially for big benchmarks.
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DSOP DSOP DSOP DSOP DSOP DSOP

Bench in | out || PLA | SOP ESPR 5l [15] 61 Bl 2l DSOP-3
5xpl 7| 10 75 65 99 70 - 82 79 48 70
9sym 9 1 87 86 209 166 148 148 148 - 134
alud 14 8 || 1028 | 575 3551 - - 1545 1372 1206 881
b12 15 9 431 43 691 57 - 60 60 62 51
clip 9 5 167 | 120 359 162 - 262 212 167 140
col4d 14 1 47 14 14 - 14 14 - - 14
cordic 23 2 || 1206 | 914 22228 - - 19763 8311 6687 9893
inc 7 9 34 30 56 - - 66 27 - 37
max1024|| 10 6 || 1024 | 274 775 - - 444 - 362 334
misex1 8 7 32 12 18 15 - 34 34 15 15
misex2 25| 18 29 28 29 28 - 30 29 28 28
misex3 14| 14 || 1848 | 690 2349 - - 2255 1973 - 1032
mip4 8 8 256 | 128 206 - - 203 - 155 143
rd53 5 3 32 31 31 31 - 35 35 31 31
rd73 7 3 141 127 127 127 - 147 147 127 127
rd84 8 4 256 | 255 255 - - 294 294 255 255
sao2 10 4 58 58 199 - - 96 96 - 24
sym10 10 1 837 | 210 367 - 240 240 - - 232
t481 16 1 481 | 481 2139 - 2139 1009 841 - 841
x7dn 66 | 15 622 | 538 1697 - - 1091 - 1228 812
xor5 5 1 16 16 16 - 16 16 16 16 16

Table 4: Comparison with other techniques. The size of tise DSOP is in boldface.

7 Conclusions and Future Work

Deriving an optimal DSOP or partial DSOP representation Bbalean function is a hard problem. This is
why we have proposed a heuristic that has been implemeetgddt and compared with others.

From the experimental results we conclude that exploiti@P Sninimization for DSOP synthesis is
a crucial idea. In fact, comparing our results with the omeshe literature we always obtain equal or
smaller forms. We observe that the fact that SOP and DSORegpnshare so close is not intuitive. In fact,
we would have expected that efficient strategies to solvévtbeproblems would be different since DSOP
minimization appears to be much harder then SOP synthesivertteless, the experiments show that,
starting from minimal or quasi-minimal SOP expressions,cae heuristically derive very compact DSOP
forms. Moreover, from Tablgl5 we also infer that the choic¢hef don't cares, which are used as ones of
the function, performed for the SOP minimization is neahlyays the best choice also for DSOP synthesis.
Therefore it would be interesting to further study the cless of SOP and DSOP minimal forms both in
theoretical and experimental way.

It could also be worth studying the approximability of DSOimization with the aim of designing
approximation algorithms instead of heuristics. In fachileva p-approximation algorithm yields a near-
optimal solution, i.e. a solution whose cd@stis < pC* whereC* is the cost of an optimal solution][7],
no prediction can be made on the result of a heuristic. Perhafirst step in this direction would be
understanding when our heuristic returns a DSOP whose sostich higher then the cost of an optimal
DSOP.
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