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Abstract

Given a Boolean functionf on n variables, aDisjoint Sum-of-Products (DSOP)of f is a set of
products (ANDs) of subsets of literals whose sum (OR) equalsf , such that no two products cover the
same minterm off . DSOP forms are a special instance ofpartial DSOPs, i.e. the general case where
a subset of minterms must be covered exactly once and the other minterms (typically corresponding to
don’t care conditions off ) can be covered any number of times. We discuss finding DSOPs and partial
DSOP with a minimal number of products, a problem theoretically connected with various properties
of Boolean functions and practically relevant in the synthesis of digital circuits. Finding an absolute
minimum is hard, in fact we prove that the problem of absoluteminimization of partial DSOPs is NP-
hard. Therefore it is crucial to devise a polynomial time heuristic that compares favorably with the
known minimization tools. To this end we develop a further piece of theory starting from the definition
of theweightof a productp as a functions of the number of fragments induced on other cubes by the
selection ofp, and show how product weights can be exploited for building aclass of minimization
heuristics for DSOP and partial DSOP synthesis. A set of experiments conducted on major benchmark
functions show that our method, with a family of variants, always generates better results than the ones
of previous heuristics, including the method based on a BDD representation off .

1 Introduction

Given a Boolean functionf on n variablesx1,x2, ...,xn in Bn, a Disjoint Sum-of-Products (DSOP)of f is
a set of products (ANDs) of subsets of literals whose sum (OR)equalsf , such that no two products cover
the same minterm off . As each product is the mathematical expression for a cube inBn, a DSOP also
represents a set of non intersecting cubes occupying the points of Bn in which f = 1. In fact we shall
indifferently refer to products or cubes, and apply algebraic or set operations to them. We are interested in
finding a DSOP with a minimal number of products.

Besides its theoretical interest, DSOP minimization is relevant in the area of digital circuits for deter-
mining various properties of Boolean functions and for the synthesis of asynchronous circuits, as discussed
for example in [4, 10, 11, 12, 16]. DSOPs are indeed used as a starting point for the synthesis ofExclusive-
Or-Sum-Of-Products (ESOP)forms, and for calculating the spectra of Boolean functions.

DSOP forms can be seen as a special case ofpartial DSOPswhere a subset of minterms of a Boolean
function must be covered exactly once, while other mintermscan be covered more than once or not be
covered at all. In particular this is the case where the points in the on set of a function are covered exactly
once, while the points in the don’t care set can be covered anynumber of times [10].

For speeding an otherwise exceedingly cumbersome process an absolute minimum in general is not
sought for, rather heuristic strategies for cube selectionhave been proposed, working on explicit product
expressions [2, 5, 15], or on a BDD representation off [3, 6].
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After discussing the complexity of DSOP and partial DSOP absolute minimization we propose a class of
heuristic algorithms based on the new concept of “cube weight”, and show that our results compare favorably
with the ones of the other known heuristics. The starting setof cubes is the one of a sum of product (SOP)
found with standard heuristics. The SOP cubes may be eventually fragmented into non overlapping sub-
cubes, giving rise to a largely unpredictable DSOP solution. The process may exhibit an exponential blow
up in the number of fragments even dealing with theoretically minimal solutions, as for a function presented
in [13] where|SOP| = n/2 and|DSOP| = 2n/2−1 (|SOP| and|DSOP| denote the number of terms in the
SOP and DSOP expression, respectively).

Another new characteristic of our heuristic is the idea of recomputing a SOP on the residual function
at different possible stages of the disjoint minimization process, as a trade-off between quality of the result
and computational time. We have observed experimentally that this strategy is crucial for obtaining compact
DSOP forms. For ease of presentation we start with DSOP synthesis and then extend the heuristics to the
more general case of partial DSOP.

The paper is organized as follows. In the next Section 2 we discuss the complexity of absolute min-
imization of DSOP and partial DSOP forms proving that, for the latter, i.e. for the most general forms,
the problem is NP-hard. In Section 3 we define the weight of a product p as a function of the number of
fragments possibly induced on other cubes by the selection of p. In Section 4 we show how this weight can
be exploited for building a class of minimization heuristics. Section 5 extends our strategy to partial DSOP
synthesis. In Section 6 we present and discuss the computational results obtained by applying the proposed
heuristic to the standardESPRESSObenchmark suite [18], and comparing these results with other published
data. The paper is concluded in Section 7.

2 The complexity of DSOP minimization

As it may be expected absolute DSOP minimization is a hard problem and absolute partial DSOP minimiza-
tion may be at least as hard. Let us first recall some classicaldefinitions. In a Boolean space{0,1}n described
by n variablesx1, x2, . . ., xn, acompletely specified Boolean functionis a functionf : {0,1}n →{0,1}, while
Boolean a functionf is partial if f : {0,1}n → {0,1,−}. With usual terminology, aliteral yi is a variable
xi in direct or complemented form, andproductsare ANDs of literals. A productp is an implicant of the
Boolean functionf if ∀x ∈ {0,1}n,(p(x) = 1) ⇒ ( f (x) = 1). An implicant p of a function f is a prime
implicant if p cannot be implied by a more general (i.e., with fewer literals) implicant of f .

Unlike SOPs, a DSOP composed of prime implicants only may notexist, as can be immediately seen
considering a function with only three points in the on set, one adjacent to the other. Furthermore, DSOPs
of prime implicants may exist but none of them may be minimal.For example the minimal DSOP cover
of six implicants shown in Figure 1 contains the non prime implicant x1x4x5x6x7 displayed in the sub-map
x5x6x7 = 001, which is covered by the prime implicantx1x4x5x6 spanning across the sub-mapsx5x6x7 =
000 andx5x6x7 = 001. The reader may discover that there is one DSOP cover composed of seven prime
implicants but not less (actually we could not construct an example with less than seven variables).

The above considerations show that, unlike in the SOP case, in DSOP minimization non prime impli-
cants must also be considered. Theoretically this is not a major drawback as the generation of all implicants
requires polynomial time in the size of the input (truth table of the function). The problem arises in the impli-
cant selection phase where, as in the SOP case, a brute force enumerative selection requires exponential time
in the worst case. It has been shown that SOP absolute minimization is as complex as set covering [7, 17].
Similarly DSOP absolute minimization can be compared to theset partitioning (or minimal exact cover)
problem.1 It is immediate that minimal exact cover is at least as hard asabsolute DSOP minimization (solv-

1The minimal exact cover problem is as follows: given a familyof subsetsSof a setU and a positive integerk, is there a subset
family T ⊆ Ssuch that the subsets inT arek in number, are disjoint, and their union is the entire setU? The minimal exact cover is
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Figure 1: A minimal DSOP in seven variables composed of six cubes, one of which is not prime (the
Karnaugh maps forx5x6x7 = 011,101,110,111 do not contain 1’s and are not shown). A corresponding
DSOP composed of prime cubes only includes at least seven of them.

ing the former problem efficiently would imply solving also the latter). Here we are not proving the reverse
condition, rather we focalize on the most general problem ofpartial DSOP absolute minimization and prove
that, in this version, the problem is NP-hard. More precisely, we prove that thedecision versionof partial
DSOP minimization is NP-complete. Let us formally define theproblem.

MIN PARTIAL DSOP

INPUT: A partial Boolean functionf : {0,1}n → {0,1,−}, specified by its on, off, and don’t
care set, and a positive integerk.

QUESTION: Is there a partial DSOP, i.e., a sum of products covering exactly once the points of
the on set, and any number of times the points in the don’t careset of f , with at mostk products?

This problem is in NP because given a candidate partial DSOP with at mostk terms, one can determine
whether it is a covering off satisfying the given requirements in time polynomial in thesize of the input
instance. In fact this simply requires evaluating the partial DSOP at all of the points in the on set off and
checking that one and only one of its products takes the value1.

To prove the NP-completeness of MIN PARTIAL DSOP, we adapt to our problem the theory and the
proofs developed in [1], where the authors proved that the decision version of finding the smallest SOP form
consistent with a truth table is NP-complete, reducing from3-PARTITE SET COVER, instead of CIRCUIT

SAT as done in [17]. Moreover, they pointed out that the reduction would also work for 3D MATCHING,
which is precisely the NP-complete problem that we will reduce to MIN PARTIAL DSOP.

3D MATCHING

NP-hard since it can be easily reduced by the “exact cover problem” introduced by Karp in 1972 [9] settingk to the cardinality of
U .
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INPUT: A positive integern, a partitionΠ of the set{1,2, . . . ,n} into three sets of equal size,
and a collectionS of subsets of{1,2, . . . ,n}, where every subset contains exactly one element
from each of the set ofΠ.

QUESTION: Is there a subcollectionC ⊆ S of sizen/3 whose union is{1,2, . . . ,n}?

Note that such a subcollectionC would provide an exact cover, as it covers each element of theset{1,2, . . . ,n}
exactly once.

In the next theorem, we give the reduction from 3D MATCHING to MIN PARTIAL DSOP. It is basically
the same reduction given in [1] for SOP minimization, however here we show how it works even for disjoint
SOP minimization. Givenu,v∈ {0,1}n, we will write u≤ v if ui ≤ vi for all i ∈ {1,2, . . . ,n}.

Theorem 1 M IN PARTIAL DSOPis NP-complete.

Proof. We have already noticed that MIN PARTIAL DSOP belongs to NP. Thus, we are left to show that
it is NP-hard. To this aim we show how to transform an input instance of 3D MATCHING into an instance
of M IN PARTIAL DSOP in polynomial time. The instance defines an incompletely specified functionf
depending onO(logn) variables, that can be covered by a partial DSOP withn/3 products if and only if
there is a subcollectionC ⊆ S of sizen/3 whose union is{1,2, . . . ,n}.

Let (n,Π,S) be an input instance of 3D MATCHING. We first define two sets of vectors,V andW,
that we will use to define an instance of MIN PARTIAL DSOP. Letq be the smallest even integer such that
( q

q/2

)

≥ n. Observe thatq = O(logn). We assign a unique q-bit vectorb(i) with exactlyq/2 1’s to each
i ∈ {1,2, . . . ,n}. Let Π(i) ∈ {1,2,3} be the index of the block of the partitionΠ that containsi. Let t = 3q.
The vectors inV andW can be divided into 3 blocks, each of sizeq. We can now define the vectors in
V = {v(i) | 1≤ i ≤ n} andW = {w(A) | A∈ S}:

• eachv(i) ∈V, i ∈ {1,2, . . . ,n}, is equal tob(i) on blockΠ(i), and is 0 in the other two blocks;

• eachw(A) ∈W, A∈ S , is the bitwise OR of allv(i) ∈V such thati ∈ A.

These two sets can be generated in timenO(1).
Observe that this choice guarantees that:

∀A∈ S , ∀ i ∈ {1,2, . . . ,n}, i ∈ A ⇐⇒ v(i) ≤ w(A) . (1)

The forward implication is obvious. To see that the backwardimplication holds, letA∈ S andi ∈{1,2, . . . ,n},
and assume thatv(i) ≤ w(A). This implies thatA contains one elementj that belongs to the same blockΠ(i)
of i, wherev(i) is not 0, i.e.,Π(i) = Π( j). Thus, sincev(i) ≤ w(A), we must haveb(i) ≤ b( j), which in turn
implies i = j, and thereforei ∈ A.

We now construct an incompletely specified functionf on the domain{0,1}t , as follows:

• f (x) = 1 if x∈V.

• f (x) =− if x 6∈V andx≤ w for somew∈W.

• f (x) = 0, otherwise.

For u ∈ {0,1}t , let D(u) = {w | w ≤ u} and letτ(u) denote the product∏i:ui=0xi. Observe thatτ(u) is
the characteristic function of the setD(u). Consider the setD(W) =

⋃
x∈W D(x). Property (1) implies that

V ⊆ D(W) and thatf (x) =− iff x∈ D(W)\V.
To complete the proof we must show thatS contains a coverC of sizen/3 if and only if there is a partial

DSOP for f , with n/3 products. Suppose thatS contains a coverC of sizen/3, and consider the set of
products{τ(w(C)) | C ∈ C}. It is immediate to verify that the sum of these products covers the function
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f . Indeed, for alli ∈ {1,2, . . . ,n}, i belongs to one of the sets inC , sayC′, and the vectorv(i) in the on
set of f is then covered by the corresponding productτ(w(C′)) (recall that by constructionv(i) ≤ w(C′), thus
v(i) ∈ D(w(C′))). Now, we have to prove that these products define a partial DSOP for f , i.e., we must show
that the corresponding cubes are either disjoint or intersect only on the don’t cares off .

First of all recall that each vectorw(C), C ∈ C , can be divided into three blocks, each equal to one of
the vectorsb(i). For instance, ifC = {i, j,k}, with Π(i) = 1, Π( j) = 2, andΠ(k) = 3, thenw(C) is given
by the concatenation ofb(i), b( j), andb(k). The related productτ(w(C)) can then be divided into three
subterms ofq/2 literals, containing the complemented variables corresponding to the 0’s inb(i), b( j), and
b(k). Moreover, sinceC is a disjoint cover of{1,2, . . . ,n}, eachv(i) belongs to one and only one of the sets
in C, that is only one of the vectorsw(C) has a block equal tob(i), for all i ∈ {1,2, . . . ,n}. This implies that
all subterms of the set of products{τ(w(C)) | C∈ C} are different.

Given any pair of productsτ(w(C)) andτ(w(D)), with C,D ∈ C , consider the intersection of the corre-
sponding cubes. The characteristic function of the intersection is simply the product (AND) betweenτ(w(C))
andτ(w(D)). Since all subterms ofτ(w(C)) andτ(w(D)) are different, the productτ(w(C)) · τ(w(D)) contains
three subterms, each of at leastq/2+1 complemented variables. Thus, it can cover only don’t cares of f ,
since any vectorv(i) ∈V has one block with onlyq/2 0’s.

Now, suppose thatφ is a partial DSOP forf , with n/3 products. For each productp∈ φ, let u(p) be the
maximal vector satisfyingp. Note thatf (u(p)) ∈ {1,−}, thusu(p) ∈D(W) and there must be a setS(p)∈ S

such thatu(p)≤ w(S(p)). We then show that the collectionC = {S(p) | p∈ φ} is a cover of{1,2, . . . ,n}. Let
j ∈ {1,2, . . . ,n}. Since f (v( j)) = 1, exactly one of the product inφ, sayp( j), must coverv( j). This implies
v( j) ≤ u(p( j)). Thusv( j) ≤ w(S(p( j))), which by property (1) impliesj ∈ S(p( j)).

The exponential nature of partial DSOP minimization justifies the search for heuristic solutions. This
will be done after a theoretical discussion on how cubes getsfragmented due to their intersections, contained
in the next section. This will lead to a heuristic strategy whose complexity is polynomial in the size of the
output, i.e., in the number of products of the computed DSOP form.

3 The Weight of a Cube

A productq= yi1yi2...yik , 1≤ k≤ n, represents a cube of dimensiond(q) = n−k, i.e., a cube of 2n−k points
in {0,1}n. The intersectionp= p1∩ p2 of two cubesp1 = yi1...yik1

, p2 = y j1...yik2
is obviously obtained as

the AND of the two corresponding products. The intersectionp is empty if and only if there is a literal in
p1 that appears complemented inp2, and vice-versa. Otherwisep is a cube of dimensiond(p) = r, with
r = n− (k1+k2−c), andc is the number of common literals inp1 andp2.

Take p1, p2 as above, and letp1, p2 partially overlap. The set of points ofp2 \ p1 can be covered in
different ways by a set of at leastk1−c disjoint cubes of dimensionsr, r +1, ...,n−k2−1. Forn= 6, letting
k1 = 5, k2 = 3, c= 2 we haver = 0 andd(p1) = 1, d(p2) = 3, i.e., the intersection contains 1 point, and the
two cubes contain 2 and 8 points, respectively. Therefore,p2\ p1 contains 7 points and can be covered with
5−2= 3 cubes of dimensions 0, 1, 2. For an other example, consider cubesA andB in Figure 2(a). The set
A\B contains the minterms 0000, 0001, and 0100. The disjoint covers for these points arex1x2x3+x1x2x3x4

andx1x3x4+x1x2x3x4, both containing two cubes.
Now, if p1 is selected into a DSOP,p2 must be discarded and the points ofp2 \ p1 must be covered

with at leastk1 − c disjoint cubes instead of one (the singlep2). Thenk1 − c− 1 is the number of extra
cubes required by the DSOP. If the functionf can be represented by a SOP containing onlyp1 andp2, the
selection ofp1 into a DSOP requires a total ofk1−c+1 cubes. In particular ifk1−c= 1 the intersectionp
covers exactly one half of the points ofp2 andp2 \ p1 is also a cube. Clearly the general situation will not
be that simple as the starting SOP forf , to be transformed into a minimal DSOP, will consist of a collection
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Figure 2: (a) A minimal SOP of four cubes of dimension 2 inB4, with weightsw(A) = 1, w(B) = 2,
w(C) = 0, w(D) = 1. (b) A corresponding DSOP.

of cubes overlapping in groups. Still we define a weight for each cubepi equal to the minimum number of
extra cubes that the selection ofpi would induce in all the cubes intersectingpi . Formally, let a SOP forf
consist of partially overlapping productsp1, p2, ..., ps. We pose:

Definition 1 Let a product pi of k literals intersect the products pi1, ..., pit , such that pi and pi j have cj
common literals. Then w(pi/pi j ) = k−c j −1 is theweight of pi relative topi j , and w(pi) = ∑t

j=1w(pi/pi j )
is theweightof pi . If pi does not intersect any other product, set w(pi) =−1.

Thus, whenpi intersectspi j , the weight ofpi relative to pi j is the minimum number of additional
products that we would have in the cover keepingpi and coveringpi/pi j with non-overlapping products.

As an example, consider the functionf of four variables, represented in Figure 2(a). A minimal SOP
of f contains four cubesA = x1x3, B = x2x4, C = x1x2, D = x1x3, all of dimension two. The weights
are computed as follows. ForA: w(A/B) = 1 (in fact, selectingA in a DSOP would require to cover the
remaining three points ofB with at least two disjoint cubes);w(A/C) = 0 (the residual two points ofC can
be covered with one cube); thenw(A) = 1. ForB: w(B/A) = 1; w(B/C) = 0; w(B/D) = 1; thenw(B) = 2.
ForC: w(C/A) = 0; w(C/B) = 0; thenw(C) = 0. ForD: w(D/B) = 1; thenw(D) = 1. As we shall explain
in the next section, we start the construction of a DSOP by selecting the cubes with low weight and high
dimension, breaking on the fly the ones that intersect a selected cube. In the present example, start by
selectingC and reduceA andB to two subcubesA1, B1 of two points each. Then selectD and further reduce
B1 to B2 of one point. Then selectA1 andB2, as shown in the DSOP of Figure 2(b). During the process the
weights are updated as explained below.

4 DSOP synthesis algorithms

Let us consider an incompletely defined Boolean functionf : {0,1}n → {0,1,−} represented with a set of
cubesC = (Con,Cdc), whereCon covers the on set off , i.e., the pointsv in {0,1}n such thatf (v) = 1, and
Cdc covers the don’t care set off , i.e., the pointsv in {0,1}n such thatf (v) =−.

The new heuristic for DSOP construction uses four basic procedures working on an explicit represen-
tation of cubes. The first procedure BUILD-SOP(C,P) works on a setC of cubes covering an arbitrary
function as above, to build a minimal (or quasi minimal) SOPP for that function. Note that, during the
process, BUILD-SOP may be called on different setsC emerging in the computation. As a limit the cubes
of C may be minterms, i.e., cubes of dimension 0. The second procedure WEIGHT(P) builds the weights
for the cubes of a setP.
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algorithm DSOP(C,D)
INPUT: A set of cubesC covering a functionf
OUTPUT: A set of disjoint cubesD covering f

D = /0
while (C 6= /0)

BUILD-SOP(C,P)
A= {d ∈ P | ∀c∈ P\ {d} : d∩c= /0}
D = D∪A
P= P\A
WEIGHT(P)
SORT(P)
B= /0
while (P 6= /0)

let p be the first element ofP
P= P\ {p}
D = D∪{p}
forall q∈ P : p∩q 6= /0

P= P\ {q}
BREAK(q, p,Q)
OPT(q,Q,P,B)

forall r ∈ B : p∩ r 6= /0
B= B\ {r}
BREAK(r, p,Q)
B= B∪Q

C= B

Figure 3: The general algorithm for DSOP synthesis.

The third procedure SORT(P) sorts a setP of weighted cubes. This procedure comes in two versions: i)
the cubes are ordered for decreasing dimension and, if the dimension is the same, for increasing weight; ii)
the cubes are ordered for increasing weight and, if the weight is the same, for decreasing dimension. If two
or more cubes have same weight and same dimension, their order is chosen arbitrarily. The two versions of
SORT give rise to two different alternatives of the overall algorithm.

The fourth procedure BREAK(q, p,Q) works on the set differenceq\ p between two cubes, to build an
arbitrary minimal setQ of disjoint cubes coveringq\ p. Note that this operation is easy sinceq\ p can be
obtained asq\ (p∩q), where the latter is the set difference between two cubes, i.e.,q and p∩q, in turn a
cube because is the intersection of two cubes.

In practice, for BUILD-SOP one can use any minimization procedure (in our experiments we have used
procedureESPRESSO-NON-EXACT of the ESPRESSOsuite [18]). Procedures WEIGHT and SORT (both
versions) are obvious. Procedure BREAK is the one suggestedin [8] and [14] as DISJOINT-SHARP.

In the overall process we consider four sets of cubesC,P,B,D. At the beginningC contains the cubes
defining f , while P,B,D are empty. During the processC contains the cubes defining the part off still to
be covered with a DSOP;P contains the cubes of a SOP under processing;B temporarily contains cubes
produced by BREAK as fragmentation of cubes ofP; andD contains the cubes already assigned to the
DSOP solution and, at the end, the solution itself.

The algorithms of our family share the structure shown in Figure 3 (its behaviour on incompletely
specified functions is discussed at the end of this section).As long asf has not been completely covered
with disjoint cubes, i.e., there are still cubes in the setC, a minimal (or quasi-minimal) SOPP for the part
of f still to be covered is computed by the procedure BUILD-SOP. All cubes that do not intersect any other
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cube inP are removed fromP and inserted in the DSOPD under construction; the remaining cubes are
weighted and sorted. Then, the first cubep is extracted fromP and inserted in the solutionD. Each cube
q ∈ P that intersectsp is removed fromP, and a SOPQ for the set differenceq\ p is computed by the
procedure BREAK.

During this phase an optional optimization procedure OPT iscalled to decide how to handle the frag-
ments inQ; depending on this optimization phase, different variantsof the heuristic can be defined. Note
that, since the points ofp cannot be covered by any other cube, all fragmentsr already inserted inB must
be tested for intersection withp and, if necessary, replaced with the SOP computed by BREAK for the set
differencer \ p. WhenP becomes empty, the fragments inB are moved to the setC and the algorithm iter-
atively builds a new SOPP covering the points that are not yet covered by the DSOPD under construction.
The iterations terminate whenC becomes empty.

We have designed and tested five variants of our heuristic based on five different versions of the opti-
mization procedure OPT, with different degrees of sophistication. The first variant,DSOP-1, is the simplest,
and computationally fastest, as OPT simply inserts the cubes of Q into the set of fragmentsB:

in DSOP-1:
procedure OPT(q,Q,P,B)

B= B∪Q

Example 1 For an example, Figure 2(b) shows a DSOP form for the SOP form of Figure 2(a), com-
puted by algorithm DSOP-1. At the beginning D= /0 and P= {x1x2,x1x3,x1x3,x2x4}, sorted for de-
creasing dimensions of cubes and then for increasing weights (we recall that, w(x1x2) = 0, w(x1x3) = 1,
w(x1x3) = 1, and w(x2x4) = 2). The first cube considered is p= x1x2, which is removed from P and in-
serted in D. Its intersecting cubes,x1x3 and x2x4, are then broken generating the residuals cubesx1x2x3

and x1x2x4, respectively, which are inserted in B, whilex1x3 and x2x4 are removed from P. The last cube
in P to be considered is then x1x3 that is inserted directly in D, since there are not any other remain-
ing cubes in P. Its intersecting cube x1x2x4 in B is then reduced to x1x2x3x4. The secondwhile (P 6= /0)
iteration starts with P= {x1x2x3,x1x2x3x4} and D= {x1x2,x1x3}, and terminates with the final DSOP
D = {x1x2,x1x3,x1x2x3,x1x2x3x4}.

In the second variant,DSOP-2, after a cubep has been selected and moved toD, each cubeq intersecting
p is, as before, fragmented and moved toB. In addition the optimization procedure updates the weightof
all cubesr ∈ P that intersectq, and then sorts the cubes inP again:

in DSOP-2:
procedure OPT(q,Q,P,B)

B= B∪Q
I = {r ∈ P | q∩ r 6= /0}
WEIGHT(I )
SORT(P)

A disadvantage of both versions is that whenever a cubep is moved fromP to D, all cubesq intersecting
p are fragmented and removed from the setP. Hence, the fragments, even the big ones, are “out of the
game” and cannot participate in the construction of the DSOPD until P becomes empty and a new SOP

8



covering all fragments in the setB is computed. Consequentially, small cubes inP could be selected first,
possibly damaging the quality of the final result, i.e., the size of the final DSOP.

To partially avoid this disadvantage, we have implemented athird version of the heuristic,DSOP-3, in
which whenever a cubep∈ P is moved toD, each cubeq intersectingp is, as before, fragmented and moved
to B, and, in addition, all cubesr ∈ P intersectingq are moved toB as well:

in DSOP-3:
procedure OPT(q,Q,P,B)

I = {r ∈ P | q∩ r 6= /0}
B= B∪Q∪ I
P= P\ I

In this way, the cubes ofP intersecting the fragments already in B cannot be selected,while is avoided
the possible fragmentation of big cubes inB. Moreover, we leave open the possibility of selecting thesebig
cubes in the next iterations of the algorithm, This version of the heuristic is computationally more expensive,
since in the internal while loop less cubes can be selected (P empties faster), and procedure BUILD-SOP
must be executed more frequently.

The fourth version of the heuristic,DSOP-4, checks whether the setQ contains only one fragment, i.e.,
q\ p is a cube. In this case, this only fragment is put back inP. The cubes left inP are then weighted and
sorted again:

in DSOP-4:
procedure OPT(q,Q,P,B)

if (|Q|= 1)
P= P∪Q

else
B= B∪Q

WEIGHT(P)
SORT(P)

Finally, in the last version of the heuristic that we have tested,DSOP-5, the biggest fragment in the set
Q is always put back inP. The cubes left inP are then weighted and sorted again. In this way, big fragments
remain part of the game in the present iteration of the algorithm:

in DSOP-5:
procedure OPT(q,Q,P,B)

let b be the biggest cube inQ
P= P∪{b}
B= B∪Q\{b}
WEIGHT(P)
SORT(P)

9



The performances of these five procedures are discussed in Section 6. We have observed experimentally
that more sophisticated optimization procedures do not always provide better quality results. Experimental
results have also outlined how the BUILD-SOP procedure, i.e., re-synthesizing the remaining cubes, seems
to be crucial for obtaining compact DSOPs.

Let us now briefly consider the case of the DSOP synthesis of incompletely specified Boolean functions.
Our heuristic does not consider explicitly the presence of don’t cares; indeed, the first call of the BUILD-
SOP procedure produces a SOPP covering the whole on set off and a subset of its don’t care set. Then,
the algorithm works on the SOPP, treating all points covered by its cubes as if they belongedto the on set
of f , i.e., there is no distinction between points originally inthe on set off and points originally in the don’t
care set. In particular, the successive calls of BUILD-SOP on the part off still to be covered with a DSOP,
treat the function as if it were completely specified. Of course, each cube in the SOPP computed by the
first call of BUILD-SOP covers at least one point in the on set of f , as cubes covering only points in the
don’t care set are discarded by the SOP minimization algorithm. However, the final disjoint coverD for f
could contain cubes covering only points originally in the don’t care set. In fact, cubes inD are either entire
cubes of the starting SOPP, or sub-cubes of cubes inP (besides new cubes and sub-cubes originated by the
successive calls of BUILD-SOP) and some sub-cubes (or new cubes) could only cover don’t care points.

From the above all versions of our heuristic could be improved checking whether a cubep contains only
points in the don’t care set of the functionf , before adding it to the DSOP solutionD under construction.
Unfortunately, such a check can be computationally expensive, and for this reason we have not added it as
a “default” procedure in our algorithm. In fact the check is left as an option. Experiments conducted on a
set of incompletely specified functions show some improvements on the final form induced by the check at
a considerable increase of computing time, see next Section6.

5 Partial DSOP synthesis

As already mentioned the problem of DSOP minimization naturally generalizes to covering partial DSOPs
where some minterms (e.g. the ones in the on set of the function) are covered exactly once while other
minterms (e.g. the ones in the don’t care set) can be covered any number of times [10]. In this section we
present a general heuristic to efficiently compute apartial DSOPcover.

The heuristic makes use of two sums of products as input. The first SOP,sopD, contains all points of
the on and don’t care set of the functionf that must be covered only once (DSOP part), while the second
SOP,sopS, contains all the points off that can be covered more than once (SOP part). These two SOPs
are disjoint. The output of the heuristic is a cover of the overall function f , represented by the union of the
two SOPssopDandsopSthat respects the specifications. Note that whensopD is empty the problem is a
classical SOP minimization, while whensopSis empty the problem is a classical DSOP minimization.

The algorithm uses four basic procedures as for the DSOP synthesis of Section 4. In particular BUILD-
SOP, WEIGHT, and SORT are the same.

The fourth procedure PARTIAL-BREAK(q, p,sopD,sopS,Q,R) works on the set differenceq\ p be-
tween two cubes, to build an arbitrary minimal setQ of disjoint cubes coveringq\ p, if q∩ p is not entirely
contained insopS. If q∩ p is contained insopS, the cubeq is not broken and we can keep it in the setP
which contains the cubes to be considered in the current iteration. In this case we then setQ= /0. Moreover,
the procedure PARTIAL-BREAK builds a setR containing points ofq\ p that can be covered more than
once and can therefore be added as don’t cares toC. In this way, these points, that have been already cov-
ered, could be used again in the minimization phase to get a smaller cover. This procedure, different from
the one used for DSOP synthesis, is presented in Figure 4.

The overall minimization heuristic is presented in Figure 5. As for the DSOP synthesis, the heuristic
makes use of four sets of cubesC,P,B,D. At the beginningC = sopD∪ sopScontains the cubes defining
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algorithm PARTIAL-BREAK(q, p,sopD,sopS,Q,R)
INPUT: The chosen cubep, the cubeq that can be broken,
the two SOPssopDandsopSwhose union representsf
OUTPUT: A minimal setQ of disjoint cubes coveringq\ p and
a setRof the points ofq\ p that can be covered more than once

R= /0
pi = q∩ p
if (pi ⊆ sopS) // all points of pi can be covered more than once

Q= /0
else if(pi ⊆ sopD) // all points of pi must be covered once

Q= DISJOINT SHARP(q, pi)
else// pi intersects both sopD and sopS

Q= DISJOINT SHARP(q, pi)
R= pi ∩sopS

Figure 4: The procedure PARTIAL-BREAK to be used in partial DSOP synthesis.

algorithm PARTIAL-DSOP(sopD,sopS,D)
INPUT: Two disjoint SOPs describing the points off that
must be covered only once (sopD) and the points off that
can be covered more than once (sopS)
OUTPUT: A partial DSOPD for the functionf

Con = sopDon∪sopSon

Cdc = sopDdc∪sopSdc

while (Con 6= /0)
BUILD-SOP(C,P)
A= {d ∈ P | ∀c∈ P\ {d} : d∩c= /0}
D = D∪A
P= P\A
WEIGHT(P)
SORT(P)
B= /0
while (P 6= /0)

let p be the first element ofP
P= P\ {p}
D = D∪{p}
forall q∈ P : p∩q 6= /0

PARTIAL-BREAK(q, p,sopD,sopS,Q,R)
if (Q 6= /0) P= P\ {q}
OPT(q,Q,P,B)
Cdc =Cdc∪R

forall r ∈ B : p∩ r 6= /0
PARTIAL-BREAK(r, p,sopD,sopS,Q,R)
if (Q 6= /0) B= B\ {r}
B= B∪Q
Cdc =Cdc∪R

Con = B

Figure 5: Algorithm for partial DSOP synthesis.
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Figure 6: (a) sopS (cubes with solid lines) and sopD (cubes with dotted lines). (b) A corresponding partial
DSOP.

f while P,B,D are empty. During the processingC contains the cubes defining the part off still to be
covered with a partial DSOP.P contains the cubes of a SOP under processing.B temporarily contains cubes
produced by BREAK as fragmentation of cubes ofP. D contains the cubes already assigned to the partial
DSOP solution and, at the end, the solution itself. OPT(q,Q,P,B) is an optional optimization procedure
to decide how to handle the fragments produced by the procedure BREAK. As before, depending on this
optimization phase, different variants of the heuristic can be defined.

Example 2 Consider the function shown in Figure 6(a). Suppose that sopD = {x1x2x3,x1x2x3x4} (cubes
with dotted lines in the figure) and sopS= {x1x3,x1x3} (cubes with solid lines). A partial DSOP for f is
shown in Figure 6(b). This expression is obtained with the partial DSOP algorithm as described in the
following. Let OPT(q,Q,P,B) be the simple command B= B∪Q (as in theDSOP-1procedure). At the
beginning D= /0 and, after the SOP minimization phase, P= {x1x2,x1x3,x1x3,x2x4}, sorted for decreasing
dimensions of cubes and then for increasing weights (note that we have the same initial P of Example 1).
The first cube p= x1x2 is removed from P and inserted in D. Its intersecting cubes arex1x3 and x2x4. In the
procedure PARTIAL-BREAK, the intersection between x2x4 andx1x2 is pi = x1x2x4. Note that pi intersects
both sopD and sopS, thus Q= {x1x2x4} and R= {x1x2x3x4} (i.e., x1x2x4 andx1x2x3x4 will be inserted in
B and in the don’t care set of C, respectively). Moreover, we compute the intersection pi betweenx1x3 and
x1x2, obtainingx1x2x3 which is entirely contained in sopS. Thus, in this case Q= R= /0, thenx1x3 is not
broken and it is not removed from P. Similar operations are performed onx1x3, and on x1x2x4 contained
in B. The secondwhile (P 6= /0) iteration, which starts with the P= {x1x2x4} and D= {x1x2,x1x3,x1x3},
terminates with the partial DSOP shown in Figure 6(b).

6 Experimental Results

In this section we present and discuss the results obtained with the heuristics presented above to the standard
ESPRESSObenchmark suite [18]. All experiments were performed on a 1.8 GHz PowerPC with 1 GB of
RAM.

6.1 DSOP synthesis

We have considered the five different variants of the heuristic described in Section 4, denoted asDSOP-1,
DSOP-2, DSOP-3, DSOP-4, DSOP-5. For each variant, we have run both versions of the procedureSORT,
to estimate the practical effectiveness of each version. Namely we have ordered the cubes for decreasing
dimension and, in case of equal dimension, for increasing weight (versiondimension/weight). Then we
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SORT VERSION: dimension/weight
SOP DSOP-1 DSOP-2 DSOP-3 DSOP-4 DSOP-5

Bench in out size size time size time size time size time size time
accpla 50 69 175 1457 11.68 1458 13.42 1190 10.55 1125 5.61 1528 21.60
addm4 9 8 200 218 0.26 221 0.31 214 0.40 222 0.19 224 0.19
alu4 14 8 575 923 1.51 921 2.00 881 2.32 1051 3.36 1044 2.87
apex3 54 50 280 345 0.62 345 0.65 350 0.68 366 2.04 400 2.11
apex4 9 19 436 506 0.34 506 0.36 503 0.31 502 0.52 501 0.59
b2 16 17 106 131 0.42 131 0.49 121 0.54 130 0.93 127 0.56
bc0 26 11 179 214 0.47 214 0.53 202 0.68 212 0.53 208 0.51
chkn 29 7 140 187 0.87 187 0.88 168 0.88 215 0.48 221 0.42
clip 9 5 120 151 0.28 150 0.29 140 0.39 153 0.20 157 0.16
cps 24 109 163 184 0.75 184 0.76 204 0.89 219 0.38 225 0.38
dist 8 5 123 135 0.22 135 0.23 130 0.38 128 0.15 129 0.16
ex5 8 63 74 126 0.79 126 0.44 122 0.80 137 0.39 141 0.48
gary 15 11 107 134 0.52 134 0.35 124 0.49 126 0.28 127 0.16
ibm 48 17 173 366 1.23 366 0.59 361 0.99 373 0.46 391 0.30
in4 32 20 212 312 1.36 312 0.84 280 1.33 303 0.54 304 0.56
intb 15 7 631 811 2.03 818 1.61 798 2.57 922 2.56 952 2.91
jbp 36 57 122 135 0.57 135 0.26 127 0.43 134 0.20 136 0.17
mainpla 27 54 172 296 4.67 296 3.00 293 3.23 288 5.37 260 5.20
max1024 10 6 274 332 0.32 334 0.33 334 0.54 347 0.35 345 0.32
misex3 14 14 690 1070 2.72 1073 1.49 1032 2.68 1159 2.57 1309 3.48
soar 83 94 353 447 1.93 447 1.30 434 1.58 442 0.59 456 0.58
sym10 10 1 210 232 0.43 231 0.51 232 1.11 235 1.01 245 0.85
table3 14 14 175 181 0.41 181 0.23 180 0.33 179 0.16 179 0.18
table5 17 15 158 167 0.39 167 0.36 161 0.38 161 0.24 161 0.25
tial 14 8 581 943 1.78 937 1.96 874 2.98 1071 2.84 1040 2.50
vtx1 27 6 110 204 0.45 204 0.49 204 0.64 208 0.34 213 0.31
x7dn 66 15 538 796 1.30 784 1.43 812 1.57 813 0.88 864 0.76

Table 1: Comparison of five different variants of the DSOP minimization heuristic (SORT version:dimen-
sion/weight.) The size of the best DSOP representation computed for eachbenchmark is in boldface.

have ordered the cubes for increasing weight and, in case of equal weight, for decreasing dimension (version
weight/dimension).

Since the benchmarks are multi-output functions and the algorithm is described for single output func-
tion, in the experiments we have considered each output separately, but the minimization phase withESPRESSO

is performed in a multi-output way. Moreover, common disjoint cubes of several output are counted only
once.

Tables 1 and 2 report a significant subset of the experiments.In particular, Table 1 reports the perfor-
mances of the heuristics with respect to the first version of the SORT procedure, while Table 2 is relative
to the second SORT procedure. All benchmarks in these tablesare completely specified. In both tables,
the first column reports the name of the benchmark; the following two columns give the number of inputs
and outputs; the column labeledSOPshows the number of products in a SOP representation computed by
ESPRESSOin the heuristic mode; finally the remaining five pairs of columns report the number of disjoint
products in the DSOP expressions computed by our heuristicsand the corresponding synthesis time.

As Table 1 and Table 2 clearly show, the third variant of the heuristic, together with the first version
of procedure SORT (versiondimension/weight), gives the best results regarding the size of the resulting
DSOP forms, and its running times are comparable to those of the other variants, and sometimes even lower.

We have then tested the performances of the best variant of our heuristic on incompletely specified
benchmarks. Table 3 reports a subset of our experiments. We have run the heuristic without the elimination
of cubes covering only don’t cares points from the solution under construction (DSOP-3 (a)), and with such
elimination (DSOP-3 (b)). As the table clearly shows, the elimination of these cubesnaturally produces
better solutions in terms of size, but the computational time is much higher.

In another series of experiments we compared our heuristic (with the third version of the optimization
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SORT VERSION: weight/dimension
SOP DSOP-1 DSOP-2 DSOP-3 DSOP-4 DSOP-5

Bench in out size size time size time size time size time size time
accpla 50 69 175 1779 24.57 1717 32.46 1317 16.80 1535 34.29 3078 97.73
addm4 9 8 200 220 0.26 222 0.27 217 0.29 222 0.20 223 0.13
alu4 14 8 575 1138 2.25 1065 2.12 1276 4.74 1269 5.23 1211 3.69
apex3 54 50 280 337 0.54 342 0.57 347 0.6 356 0.82 386 0.94
apex4 9 19 436 506 0.34 506 0.36 503 0.33 502 0.38 500 0.25
b2 16 17 106 131 0.41 131 0.44 120 0.62 126 0.36 125 0.36
bc0 26 11 179 230 0.60 218 0.53 210 1.18 218 0.44 211 0.40
chkn 29 7 140 598 3.67 448 3.55 216 2.86 386 2.21 426 1.70
clip 9 5 120 154 0.32 153 0.29 143 0.38 157 0.2 0 159 0.17
cps 24 109 163 184 0.75 184 0.88 204 1.19 217 0.36 223 0.36
dist 8 5 123 138 0.21 138 0.23 133 0.36 134 0.15 133 0.15
ex5 8 63 74 128 0.38 125 0.44 142 0.77 141 0.39 148 0.31
gary 15 11 107 139 0.28 131 0.27 132 0.43 124 0.15 125 0.15
ibm 48 17 173 431 0.69 393 0.64 416 1.24 415 0.56 478 0.47
in4 32 20 212 329 0.72 331 0.81 321 1.29 303 0.52 319 0.48
intb 15 7 631 955 1.79 932 1.83 1125 3.65 1130 4.99 1173 3.84
jbp 36 57 122 151 0.35 147 0.36 128 0.33 140 0.16 147 0.17
mainpla 27 54 172 459 2.86 405 2.47 387 3.33 366 2.76 338 2.23
max1024 10 6 274 334 0.30 330 0.36 324 0.50 339 0.34 338 0.29
misex3 14 14 690 1132 1.28 1155 1.75 1317 4.58 1234 3.67 1464 4.36
soar 83 94 353 451 1.16 449 1.25 430 1.41 440 0.61 464 0.60
sym10 10 1 210 233 0.42 234 0.48 248 1.37 239 1.19 258 1.38
table3 14 14 175 181 0.21 181 0.24 180 0.24 179 0.14 179 0.14
table5 17 15 158 167 0.31 167 0.32 161 0.28 161 0.20 161 0.17
tial 14 8 581 1121 2.22 1060 2.13 1371 6.68 1330 5.25 1322 3.65
vtx1 27 6 110 236 0.50 247 0.51 258 0.93 313 0.63 317 0.62
x7dn 66 15 538 1078 1.89 1010 2.23 919 2.80 1068 2.32 1043 1.30

Table 2: Comparison of five different variants of the DSOP minimization heuristic (SORT version:
weight/dimension.) The size of the best DSOP representation computed for eachbenchmark is in bold-
face.

phase, and without elimination of cubes of don’t cares only)with other DSOP minimization methods. We
considered three techniques working, as ours, on explicit representation of cubes, and one method based on
binary decision diagrams. The first algorithm [5] sorts cubes in a minimal SOP according to their size, and
compares the largest cube with all the others, starting fromthe smallest ones. In the next step, the second
largest cube is selected and compared to all smaller ones, etc. As a last step, the cubes are merged wherever
possible. The second algorithm, presented in [15], exploits the property of the most binate variable in a set
of cubes to compute a DSOP form. The algorithm proposed in [2]enumerates all overlapping pairs of cubes
in a SOP form, and builds a disjoint cover starting from the pairs of cubes with the highest degree of logic
sharing.

Finally, the third approach, presented in [6], makes use of BDDs, exploiting the efficiency resulting from
the implicit representation of the products. Observe in fact that a DSOP form can be extracted in a straight-
forward way from a BDD, as different one-paths correspond todisjoint cubes. As the results presented in [6]
largely depend on the variable ordering of the underlying BDD, in [3] an evolutionary algorithm has been
proposed to find an optimized variable ordering for the BDD representation that guarantees more compact
DSOP forms.

Table 4 reports a cost-oriented comparison among the different methods. The first three columns are as
before. Columns four and five report the number of products inthe PLA realization and in the SOP form
heuristically minimized byESPRESSOin the heuristic mode. The column labeledDSOP ESPR. shows the
size of the DSOP computed runningESPRESSOwith the option “-Ddisjoint” on the previously computed
SOP form. The next five columns report the sizes, when available, of the DSOP forms computed with the
methods discussed in [5], [15], [6], [3], and [2], respectively. Finally, the last column shows the size of the

14



DSOP-3 (a) DSOP-3 (b)
Bench in out size time size time
b10 15 11 115 0.49 115 17.04
b3 32 20 279 1.21 279 47.34
bca 26 46 189 0.29 189 49.54
bcb 26 39 162 0.26 162 42.33
bench1 9 9 250 0.32 210 14.92
ex1010 10 10 876 1.34 665 73.00
exam 10 10 145 0.33 107 62.26
exep 30 63 130 0.53 120 8.33
exps 8 38 151 0.31 151 37.91
pdc 16 40 381 0.98 277 37.14
spla 16 46 347 0.64 347 37.06
test2 11 35 2322 2.40 2054 324.84
test3 10 35 1462 1.81 1204 159.60

Table 3: DSOP synthesis of incompletely specified benchmarks, without (DSOP-3 (a)) and with (DSOP-3
(b)) elimination of cubes covering only don’t cares. The size ofthe best DSOP is in boldface.

DSOPs computed with our heuristic (third variant).
As the table clearly shows, our method almost always generates smaller DSOP representations, and the

gain in size can be quite striking, as for instance for the benchmarksalu4, clip andmisex3. We have found
only a few benchmarks where our approach compares unfavorably: 5xp1, cordicandinc.

A time comparisons among all these different methods was notpossible due to the partial absence of
CPU times specification in the literature.

6.2 Partial DSOP synthesis

In order to test our partial DSOP synthesis algorithm, we have applied the heuristic to the classicalESPRESSO

benchmark suite [18] with the following meaning. We have considered only benchmarks with don’t cares,
where the on set of the benchmark is the on set ofsopD, and the don’t care set of the benchmark is the don’t
care set ofsopS.

Table 5 reports a subset of our experimental results. The column labeledSOP shows the number of
products in a SOP representation computed byESPRESSOin the heuristic mode. The remaining three pairs
of columns report the number of products and the corresponding synthesis time for the following three forms
(all computed with the third version of the optimization phase, the dimension/weight sort version, and with
the elimination of cubes covering don’t cares only):

1. DSOP: a DSOP for the original function, with the choice of don’t cares performed byESPRESSOin
the heuristic mode. Each don’t care point is coveredat mostonce.

2. P-DSOP (a): a partial DSOP for the original function, with the choice ofdon’t cares performed by
ESPRESSOin the heuristic mode. Don’t care points are either eliminated or coveredat leastonce.

3. P-DSOP (b): a partial DSOP for the original function, where all the don’t cares of the function are
in play (they have all been covered during the first SOP minimization). Don’t care points are either
eliminated or coveredat leastonce in the final form.

Note that the results in the columnSOPare better than ours because the resulting form is not disjoint.
The table suggests that the best solution is the one relativeto the choice of don’t cares made by

ESPRESSO. Moreover, it appears clearly from these results that the option of covering more than once
the don’t care points of the function (DSOP-3 (a)) gives better results, especially for big benchmarks.
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Bench in out PLA SOP
DSOP
ESPR.

DSOP
[5]

DSOP
[15]

DSOP
[6]

DSOP
[3]

DSOP
[2]

DSOP-3

5xp1 7 10 75 65 99 70 – 82 79 48 70
9sym 9 1 87 86 209 166 148 148 148 – 134
alu4 14 8 1028 575 3551 – – 1545 1372 1206 881
b12 15 9 431 43 691 57 – 60 60 62 51
clip 9 5 167 120 359 162 – 262 212 167 140
co14 14 1 47 14 14 – 14 14 – – 14
cordic 23 2 1206 914 22228 – – 19763 8311 6687 9893
inc 7 9 34 30 56 – – 66 27 – 37
max1024 10 6 1024 274 775 – – 444 – 362 334
misex1 8 7 32 12 18 15 – 34 34 15 15
misex2 25 18 29 28 29 28 – 30 29 28 28
misex3 14 14 1848 690 2349 – – 2255 1973 – 1032
mlp4 8 8 256 128 206 – – 203 – 155 143
rd53 5 3 32 31 31 31 – 35 35 31 31
rd73 7 3 141 127 127 127 – 147 147 127 127
rd84 8 4 256 255 255 – – 294 294 255 255
sao2 10 4 58 58 199 – – 96 96 – 24
sym10 10 1 837 210 367 – 240 240 – – 232
t481 16 1 481 481 2139 – 2139 1009 841 – 841
x7dn 66 15 622 538 1697 – – 1091 – 1228 812
xor5 5 1 16 16 16 – 16 16 16 16 16

Table 4: Comparison with other techniques. The size of the best DSOP is in boldface.

7 Conclusions and Future Work

Deriving an optimal DSOP or partial DSOP representation of aBoolean function is a hard problem. This is
why we have proposed a heuristic that has been implemented, tested, and compared with others.

From the experimental results we conclude that exploiting SOP minimization for DSOP synthesis is
a crucial idea. In fact, comparing our results with the ones in the literature we always obtain equal or
smaller forms. We observe that the fact that SOP and DSOP problems are so close is not intuitive. In fact,
we would have expected that efficient strategies to solve thetwo problems would be different since DSOP
minimization appears to be much harder then SOP synthesis. Nevertheless, the experiments show that,
starting from minimal or quasi-minimal SOP expressions, wecan heuristically derive very compact DSOP
forms. Moreover, from Table 5 we also infer that the choice ofthe don’t cares, which are used as ones of
the function, performed for the SOP minimization is nearly always the best choice also for DSOP synthesis.
Therefore it would be interesting to further study the closeness of SOP and DSOP minimal forms both in
theoretical and experimental way.

It could also be worth studying the approximability of DSOP minimization with the aim of designing
approximation algorithms instead of heuristics. In fact, while a p-approximation algorithm yields a near-
optimal solution, i.e. a solution whose costC is ≤ pC∗ whereC∗ is the cost of an optimal solution [7],
no prediction can be made on the result of a heuristic. Perhaps a first step in this direction would be
understanding when our heuristic returns a DSOP whose cost is much higher then the cost of an optimal
DSOP.
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SOP DSOP P-DSOP (a) P-DSOP (b)
Bench in out size size time size time size time
alu3 10 8 66 67 4.65 67 10.83 67 13.06
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b10 15 11 100 115 17.04 115 15.96 117 18.22
b3 32 20 211 279 47.34 279 51.39 279 54.80
b4 33 23 54 62 10.06 62 5.99 62 7.74
bca 26 46 180 189 49.54 189 33.63 190 53.11
bcb 26 39 155 162 42.33 162 29.08 162 42.18
bcc 26 45 137 145 26.08 145 31.19 145 43.24
bcd 26 38 117 121 17.30 121 20.51 121 29.14
bench1 9 9 139 210 14.92 164 18.30 246 86.90
dk17 10 11 18 22 1.32 19 1.50 19 15.57
dk27 9 9 10 12 1.04 10 0.73 10 10.15
dk48 15 17 22 24 1.17 22 1.40 22 69.59
duke2 22 29 12 26 3.06 24 4.10 23 26.16
ex1010 10 10 284 665 73.00 481 87.24 739 282.44
exam 10 10 67 107 62.26 89 66.78 168 115.78
exp 8 18 59 72 7.11 70 7.28 63 16.25
exps 8 38 136 151 37.91 151 41.37 152 5.61
inc 7 9 30 37 2.52 38 3.298 41 4.87
mark1 20 31 19 29 2.71 23 5.26 25 136.14
p1 8 18 55 90 7.51 67 12.26 79 32.37
p3 8 14 39 71 4.77 47 10.29 52 18.27
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