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Abstract

We study logit dynamics [3] for strategic games. This dynamics works as follows: at every stage
of the game a player is selected uniformly at random and she plays according to a noisy best-response
where the noise level is tuned by a parameter β. Such a dynamics defines a family of ergodic Markov
chains, indexed by β, over the set of strategy profiles. We believe that the stationary distribution
of these Markov chains gives a meaningful description of the long-term behavior for systems whose
agents are not completely rational.

Our aim is twofold: On the one hand, we are interested in evaluating the performance of the game
at equilibrium, i.e. the expected social welfare when the strategy profiles are random according
to the stationary distribution. On the other hand, we want to estimate how long it takes, for a
system starting at an arbitrary profile and running the logit dynamics, to get close to its stationary
distribution; i.e., the mixing time of the chain.

In this paper we study the stationary expected social welfare for the 3-player CK game [6], for
2-player coordination games, and for two simple n-player games. For all these games, we also give
almost tight upper and lower bounds on the mixing time of logit dynamics. Our results show two
different behaviors: in some games the mixing time depends exponentially on β, while for other
games it can be upper bounded by a function independent of β.

1 Introduction

The evolution of a system is determined by its dynamics and complex systems are often described by
looking at the equilibrium states induced by their dynamics. Once the system reaches an equilibrium
state it stays there, thus equilibrium states describe the long-term behavior of the system. In this paper
we are mainly interested in systems whose individual components are selfish agents. The state of a selfish
system is fully described by a vector of strategies, each controlled by one agent, and each state assigns a
payoff to each agent. The agents are selfish in the sense that they pick their strategy so to maximize their
payoff, given the strategies of the other agents. Nash equilibrium is the classical notion of equilibrium
for selfish systems and it corresponds to the equilibrium induced by the best-response dynamics. The
observation that selfish systems are described by their equilibrium states (that is, by the Nash equilibria)
has motivated the notions of Price of Anarchy [15] and Price of Stability [1] and the analysis of efficiency
of selfish systems based on such notions.

However, such analysis inherits some of the shortcomings of the concept of a Nash equilibrium. First
of all, the best-response dynamics assumes that selfish agents have complete knowledge of the current
state of the system; that is, they know the payoff associated with each of their possible choices and each
of the strategies chosen by other agents. Instead, in most cases, agents have only approximate knowledge
of the system state or they are not able to compute their best choice. Moreover, in presence of multiple
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equilibria, it is not clear which one of them will be reached by the system, as it may depend on the initial
state: Price of Anarchy considers the worst-case equilibrium, whereas Price of Stability focuses on the
best-case equilibrium. Finally, Nash equilibria are hard to compute [7, 5] and thus for some systems it
might take very long to reach a Nash equilibrium: in this case using equilibrium states to describe the
system performance is not well justified. Rather, one would like to analyze the performance of a system
by using a dynamics (and its related equilibrium notion) that has the following three properties:

• The dynamics takes into account the fact that the system components might have a perturbed or
noisy knowledge of the system;

• For every system the equilibrium state exists and is unique;

• The system reaches the equilibrium very quickly regardless of the starting state.

In this paper, we consider noisy best-response dynamics in which the behavior of the agents is de-
scribed by a parameter β > 0. The case β = 0 corresponds to agents picking their strategies completely
at random (that is, the agents have no knowledge of the system) and the case β = ∞ corresponds to
agents picking their strategies according to the best-response dynamics (in which the agents have full and
complete knowledge of the system). The intermediate values of β correspond to agents that are roughly
guided by the best-response dynamics but can make a sub-optimal choice due, for example, to bounded
rationality of the agent or limited knowledge about the system: this sub-optimal behavior occurs with
some probability that depends on β (and on the associated payoff).

We will study a specific noisy best-response dynamics for which the system evolves according to an
ergodic Markov chain for all β > 0. For these systems, it is natural to look at the stationary distribution
(which is the equilibrium state of the Markov chain) and to analyze the expected social welfare (the sum
of utility functions) of the system at that distribution. We stress that the noisy best-response dynamics
well models agents that only have approximate or noisy knowledge of the system and that for ergodic
Markov chains (such as the ones arising in our study) the stationary distribution is known to exist and
to be unique. Moreover, to justify the use of the stationary distribution for analyzing the performance
of the system, we will study how fast the Markov chain converges to the stationary distribution.

Related Works and Our Results. Several dynamics, besides the best-response dynamics, and several
notions of equilibrium, besides Nash equilibria, have been considered to describe the evolution of a selfish
system and to analyze its performance. See, for example, [11, 21, 20].

Equilibrium concepts based on the best-response. When the game does not possess a Pure Nash equi-
librium, the best-response dynamics will eventually cycle over a set of states (in a Nash equilibrium
the set is a singleton). These states are called sink equilibria [12]. Sink equilibria exist for all games
and, in some contexts, they seem a better approximation of the real setting than mixed Nash equilibria.
Unfortunately, sink equilibria share two undesirable properties with Nash equilibria: a game can have
more that one sink equilibrium and sink equilibria seem hard to compute [9].

Other notions of equilibrium state associated with best-response dynamics are the unit-recall equilibria
and component-wise unit-recall equilibria (see [9]). However, we point out that the former does not always
exist and that the latter imposes too strict limitations on the players.

No-Regret Dynamics. Another broadly explored set of dynamics are the no-regret dynamics (see, for
example, [11]). The regret of an user is the difference between the long-term average cost and the average
cost of the best strategy in hindsight. In the no-regret dynamics the regret of every player after t steps
is o(t) (sublinear with time). In [10, 14] it is showed that the no-regret dynamics converges to the set of
correlated equilibria. Note that the convergence is to the set of correlated equilibria and not to a specific
correlated equilibrium.

Our work. In this paper we consider a specific noisy best-response dynamics called the logit dynamics
(see [3]) and we study its mixing time (that is, the time it takes to converge to the stationary distribution)
and the stationary expected social welfare. Specifically,

• We start by analyzing the logit dynamics for a simple 3-player linear congestion game (the CK

game [6]) which exhibits the worst Price of Anarchy among linear congestion games. We show that
the mixing time of the logit dynamics is upper bounded by a constant independent of β. Moreover,
we show that the stationary expected social welfare is larger than the social welfare of the worst
Nash equilibrium for all β;
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• We then analyze the 2 × 2 coordination games studied in [3]. Here we show that, under some
conditions, the stationary expected social welfare is larger than the social welfare of the worst
Nash equilibrium. We give upper and lower bounds on the mixing time exponential in β. We also
observe that the same bounds apply to anti-coordination games;

• Finally, we apply our analysis to two simple n-player games: the OR game and XOR game. We
give upper and lower bounds on the mixing time: we show that the mixing time of the OR game
can be upper bounded by a function independent of β, while the mixing time of the XOR game
increases exponentially in β. We also prove that for β = O(log n) the mixing time is polynomial
in n for both games.

The logit dynamics has been first studied by Blume [3] who showed that, for 2× 2 coordination games,
the long-term behavior of the Markov chain is concentrated in the risk dominant equilibrium (see [13])
for sufficiently large β. Ellison [8] studied different noisy best-response dynamics for coordination games
assuming that interaction among players were described by a graph; that is, the utility of a player is
determined only by the strategies of the adjacent players. Specifically, Ellison [8] studied interaction
modeled by rings and showed that some large fraction of the players will eventually choose the risk
dominant strategy. Similar results were obtained by Peyton Young [22] for the logit dynamics and for
more general families of graphs. Montanari and Saberi [17] gave bounds on the hitting time (the expected
time that the logit dynamics takes to reach a specific state) of the risk dominant equilibrium state in
terms of some graph theoretic properties of the underlying interaction network. Asadpour and Saberi [2]
studied the hitting time for a broader class of congestion games. We notice that none of [3, 8, 22] gave
any bound on the convergence time to the risk dominant equilibrium. Montanari and Saberi [17] were
the first to do so but their study focuses on the hitting time of a specific configuration and not on the
convergence time to the stationary distribution.

From a technical point of view, our work follows the lead of [3, 8, 22] and extends their technical
findings by giving bounds on the mixing time of the Markov chain of the logit dynamics. We stress
that previous results only proved that, for sufficiently large β, eventually the system concentrates around
certain states without further quantifying the rate of convergence nor the asymptotic behaviour of the
system for small values of β. Instead, we identify the stationary distribution of the logit dynamics as the
global equilibrium and we evaluate the social welfare at stationarity and the time it takes the system to
reach it (the mixing time) as explicit functions of β.

We choose to start our study from the class of coordination games considered in [3] and two simple
n-player games (the OR game and the XOR game). We give nearly tight upper and lower bounds on
the mixing time. Despite their game-theoretic simplicity, the analytical study of the mixing time of the
logit dynamics for the two n-player games is far from trivial. We notice that the results in [17] cannot
be used to derive upper bounds on the mixing time.

From a more conceptual point of view, our work tries (similarly to [12, 9, 19]) to introduce a solution
concept that well models the behavior of selfish agents, is uniquely defined for any game, and is quickly
reached from any starting state. We propose the stationary distribution induced by the logit dynamics
as a possible solution concept and exemplify its use in the analysis of the performance of some 2 × 2
games (as the ones considered in [3]), of games used to obtain tight bounds on the Price of Anarchy, and
of two simple multi-player games.

Organization of the paper. In Section 2 we summarize some Markov chain notions that we will use
throughout the paper. In Section 3 we formally describe the logit dynamics for strategic games. We
also describe the coupling we will repeatedly use in the proofs of the upper bounds on mixing times. In
Sections 4, 5, 6 and 7 we study the stationary expected social welfare and the mixing time of the logit
dynamics for CK game, coordination games, the OR game, and the XOR game, respectively. Finally, in
Section 8 we present conclusions and some open problems.

Notation. We write S for the complementary set of a set S; we write |S| for its size. We use bold symbols
for vectors; when x = (x1, . . . , xn) ∈ {0, 1}n we write |x| for the number of 1s in x; i.e., |x| = |{i ∈ [n] :
xi = 1}|. For two vectors x,y let H(x,y) = |{i ∈ [n] : xi 6= yi}| be their Hamming distance: we write
x ∼ y if H(x,y) = 1. We use the standard game theoretic notation (x−i, y) to mean the vector obtained
from x by replacing the i-th entry with y, i.e. (x−i, y) = (x1, . . . , xi−1, y, xi+1, . . . , xn).
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2 Markov chains summary and notation

We summarize the main tools we use to bound the mixing time of Markov chains (for a complete
description of such tools see, for example, Chapters 5.2, 7.2, 12.2 and 14.2 of [16]. We refer the reader
to [16] also for notational conventions).

Consider a Markov chain M with finite state space Ω and transition matrix P . It is a classical result
that for an irreducible and aperiodic Markov chain1 there exists an unique stationary distribution π over
Ω; that is, a distribution π on Ω such that π · P = π.
The total variation distance ‖µ− ν‖TV between two probability distributions µ and ν on Ω is defined as

‖µ− ν‖TV = max
A⊂Ω

|µ(A) − ν(A)| .

An irreducible and aperiodic Markov chain M converges to its stationary distribution π; specifically,
there exists 1 > α > 0 such that

d(t) 6 αt,

where
d(t) = max

x∈Ω
‖P t(x, ·)− π‖TV

and P t(x, ·) is the distribution at time t of the Markov chain starting at x. For 1/2 > ε > 0, the mixing
time is defined as

tmix(ε) = min{t ∈ N : d(t) 6 ε}.
It is usual to set ε = 1/4 or ε = 1/2e. If not explicitly specified, when we write tmix we mean tmix(1/4).
Observe that tmix(ǫ) 6 ⌈log2 ǫ−1⌉tmix.

Coupling. A coupling of two probability distributions µ and ν on Ω is a pair of random variables
(X,Y ) defined on Ω × Ω such that the marginal distribution of X is µ and the marginal distribution
of Y is ν. A coupling of a Markov chain M with transition matrix P is a process (Xt, Yt)

∞
t=0 with the

property that both Xt and Yt are Markov chains with transition matrix P . When the two coupled chains
start at (X0, Y0) = (x, y), we write Px,y (·) and Ex,y [·] for the probability and the expectation on the
space where the two chains are both defined.
We denote by τcouple the first time the two chains meet; that is,

τcouple = min{t : Xt = Yt} .

We will consider only couplings of Markov chains with the property that for s > τcouple, it holds Xs = Ys.
The following theorem can be used to give an upper bound on tmix (see, for example, Corollary 5.3 in
[16]).

Theorem 1 (Coupling) Let M be a Markov chain with state space Ω and transition matrix P . For
each pair of states x, y ∈ Ω consider a coupling (Xt, Yt) of M with starting states X0 = x and Y0 = y.
Then

d(t) 6 max
x,y∈Ω

Px,y (τcouple > t) .

Sometimes it is difficult to specify a coupling and to analyze the coupling time τcouple for each pair of
starting states x and y. The Path Coupling theorem says that it is sufficient to define a coupling only
for pairs of Markov chains starting from adjacent states and an upper bound on the mixing time can
be obtained if each of these couplings contracts their distance on average. More precisely, consider a
Markov chain M with state space Ω and transition matrix P ; let G = (Ω, E) be a connected graph and
let w : E → R be a function assigning weights to the edges such that w(e) > 1 for every edge e ∈ E;
for x, y ∈ Ω, we denote by ρ(x, y) the weight of the shortest path in G between x and y. The following
theorem holds.

1Roughly speaking, a finite-state Markov chain is irreducible and aperiodic if there is a time t such that, for all pairs of
states x, y, the probability to be in y after t steps, starting from x, is positive.
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Theorem 2 (Path Coupling [4]) Suppose that for every edge {x, y} ∈ E a coupling (Xt, Yt) of M
with X0 = x and Y0 = y exists such that Ex,y [ρ(X1, Y1)] 6 e−α · w({x, y}) for some α > 0. Then

tmix(ε) 6
log(diam(G)) + log(1/ε)

α

where diam(G) is the (weighted) diameter of G.

Spectral techniques. A Markov chainM with state space Ω and transition matrix P is said reversible
if for all x, y ∈ Ω, it holds that

π(x) · P (x, y) = π(y) · P (y, x).

The eigenvalues of the transition matrix P of a reversible Markov chain M can be used to obtain upper
and lower bounds on the mixing time. Observe that all the eigenvalues of any transition matrix P have
absolute value at most 1, λ = 1 is an eigenvalue, and for irreducible and aperiodic chains, −1 is not an
eigenvalue. The relaxation time trel of a Markov chain M is defined as

trel =
1

1− λ⋆

where λ⋆ is the largest absolute value among eigenvalues other than 1,

λ⋆ = max{|λ| : λ is an eigenvalue of P, λ 6= 1} .

Observe that, for M reversible, irreducible and aperiodic, 0 6 λ⋆ < 1 and thus trel is positive and finite.
We have the following theorem (see, for example, Theorems 12.3 and 12.4 in [16]).

Theorem 3 (Relaxation time) Let P be the transition matrix of a reversible, irreducible, and aperi-
odic Markov chain with state space Ω and stationary distribution π. Then

(trel − 1) log

(

1

2ǫ

)

6 tmix(ǫ) 6 log

(

1

ǫπmin

)

trel

where πmin = minx∈Ω π(x).

Lower bound. We will use the following theorem to derive our lower bounds (see, for example, The-
orem 7.3 in [16]).

Theorem 4 (Bottleneck ratio) Let M = {Xt : t ∈ N} be an irreducible and aperiodic Markov chain
with finite state space Ω, transition matrix P , and stationary distribution π. Let S ⊆ Ω be any set with
π(S) 6 1/2. Then the mixing time is

tmix(ε) >
1− 2ǫ

2Φ(S)

where

Φ(S) =
Q(S, S)

π(S)
and Q(S, S) =

∑

x∈S, y∈S

π(x)P (x, y).

3 The model and the problem

A strategic game is a triple ([n],S,U), where [n] = {1, . . . , n} is a finite set of players, S = {S1, . . . , Sn}
is a family of non-empty finite sets (Si is the set of strategies for player i), and U = {u1, . . . , un} is a
family of utility functions (or payoffs), where ui : S1 × · · · × Sn → R is the utility function of player i.

Consider the following noisy best-response dynamics, introduced in [3] and known as logit dynamics : at
every time step

1. Select one player i ∈ [n] uniformly at random;
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2. Update the strategy of player i according to the following probability distribution over the set Si

of her strategies. For every y ∈ Si

σi(y |x) =
1

Ti(x)
eβui(x−i,y) (1)

where x ∈ S1 × · · · × Sn is the strategy profile played at the current time step, Ti(x)
=

∑

z∈Si
eβui(x−i,z) is the normalizing factor, and β > 0.

Parameter β is called inverse noise of the system, indeed from (1) it is easy to see that, for β = 0 player i
selects her strategy uniformly at random, for β > 0 the probability is biased toward strategies promising
higher payoffs, and for β → ∞ player i chooses her best response strategy (if more than one best response
is available, she chooses uniformly at random one of them). Moreover observe that probability σi(y |x)
does not depend on the strategy xi currently adopted by player i.

The above dynamics defines a Markov chain with the set of strategy profiles as state space, and
where the transition probability from profile x = (x1, . . . , xn) to profile y = (y1, . . . , yn) is zero if the
H(x,y) > 2 and it is 1

nσi(yi |x) if the two profiles differ exactly at player i. More formally, we can define
the logit dynamics as follows.

Definition 5 (Logit dynamics [3]) Let G = ([n],S,U) be a strategic game and let β > 0. The logit
dynamics for G is the Markov chain Mβ = {Xt : t ∈ N} with state space Ω = S1×· · ·×Sn and transition
matrix

P (x,y) =
1

n
·















σi(yi |x), if y−i = x−i and yi 6= xi;
∑n

i=1 σi(yi |x), if y = x;

0, otherwise;

(2)

where σi(yi |x) is defined in (1).

Properties. Logit dynamics enjoys some interesting properties:

Ergodicity. It is easy to see that the logit dynamics is irreducible and aperiodic. Indeed, let x =
(x1, . . . , xn) and y = (y1, . . . , yn) be two profiles and let (z0, . . . , zn) be a path of profiles where z0 =
x, zn = y and zi = (y1, . . . , yi, xi+1, . . . xn) for i = 1, . . . , n− 1. The probability that the chain starting
at x is in y after n steps is

Pn(x,y) = Pn(z0, zn) > Pn−1(z0, zn−1)P (zn−1, zn)

and recursively

Pn(x,y) >
n
∏

i=1

P (zi−1, zi) > 0

where the last inequality follows from (2) because, for all i = 1, . . . , n, the Hamming distance between
zi−1 and zi is at most 1. Hence there is a unique stationary distribution π and, for every starting profile
x, the distribution of the chain P t(x, ·) converges to π in total variation as t tends to infinity.

Invariance under utility translation. Let G = ([n],S,U) be a game. If we change the utility functions by
adding a constant ci to all the utilities of player i, i.e. if we define a new family Ũ = {ũi : i ∈ [n]} of
utility functions as follows

ũi(x) := ui(x) + ci for all x

we get a new game G̃ = ([n],S, Ũ) but the same logit dynamics. Indeed, according to (1), the probability
player i chooses strategy y when the game is at profile x is

σ̃i(y |x) =
eβũi(x−i,y)

∑

z∈Si
eβũi(x−i,z)

=
1

∑

z∈Si
eβ[ũi(x−i,z)−ũi(x−i,y)]

=
1

∑

z∈Si
eβ[ui(x−i,z)−ui(x−i,y)]

= σi(y |x) .

Noise changes under utility rescaling. While translations of utilities do not affect logit dynamics, a
rescaling of the utility functions for the same constant α > 0 changes the inverse noise from β to α · β.
Indeed, if for every player i and every profile x we set

ũi(x) := α · ui(x) ,
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from (1) we have

σ̃i(y |x) =
eβũi(x−i,y)

∑

z∈Si
eβũi(x−i,z)

=
eαβui(x−i,y)

∑

z∈Si
eαβui(x−i,z)

.

Notice that, unlike translations constants, we here must have the same rescaling constant α for all utility
functions.

Potential Games. A game G = ([n],S,U) is said a (exact) potential game if a function Φ : S1 ×
· · · × Sn → R exists such that, for every player i and for every pair of profiles x and y that differ only
at position i, it holds that ui(x) − ui(y) = Φ(x) − Φ(y). It is easy to see that, if G = ([n],S,U) is
a potential game with potential function Φ, then the Markov chain given by (2) is reversible and its
stationary distribution is the Gibbs measure

π(x) =
1

Z
eβΦ(x) (3)

where Z =
∑

y∈S1×···×Sn
eβΦ(y) is the normalizing constant. Except for the Matching Pennies example

in Subsection 3.1, all the games we analyze in this paper are potential games.

Logit dynamics vs Glauber dynamics. When G is a potential game, the logit dynamics is equivalent to
the well-studied Glauber dynamics. For state space Ω = S1×· · ·×Sn and probability distribution µ over
Ω, the Glauber dynamics for µ proceeds as follows: From profile x ∈ Ω, pick a player i ∈ [n] uniformly
at random and update her strategy at y ∈ Si with probability µ conditioned on the other players being
at x−i, i.e.

µ(y |x−i) =
µ(x−i, y)

∑

z∈Si
µ(x−i, z)

.

It is easy to see that the Markov chain defined by the Glauber dynamics is irreducible, aperiodic, and
reversible with stationary distribution µ. When G = ([n],S,U) is a potential game with potential function
Φ, the logit dynamics defines the same Markov chain as the Glauber dynamics for the Gibbs distribution
π in (3). Indeed, in that case we have

σi(y |x) =
eβui(x−i,y)

∑

z∈Si
eβui(x−i,z)

=
1

∑

z∈Si
eβ(ui(x−i,z)−ui(x−i,y))

=
1

∑

z∈Si
eβ(Φ(x−i,z)−Φ(x−i,y))

=
eβΦ(x−i,y)

∑

z∈Si
eβΦ(x−i,z)

=
π(x−i, y)

∑

z∈Si
π(x−i, z)

.

Hence, logit dynamics for potential games and Glauber dynamics for Gibbs distributions are two ways
of looking at the same Markov chains: in the former case the dynamics is derived from the potential
function, in the latter case from the stationary distribution. However, observe that, if G is not a potential
game and π is the stationary distribution of the logit dynamics for G, in general the Glauber dynamics
for π is different from the logit dynamics (see, for example, the Matching Pennies case in Subsection 3.1).

Due to the analogies between logit and Glauber dynamics, we will sometimes adopt the terminology
used by physicists to indicate the quantities involved; in particular we will call parameter β the inverse
noise or inverse temperature and we will call partition function the normalizing constant Z of the Gibbs
distribution (3).

Stationary expected social welfare and mixing time. Let W : S1 × · · · × Sn −→ R be a social
welfare function (in this paper we assume that W is simply the sum of all the utility functions W (x) =
∑n

i=1 ui(x), but clearly any other function of interest can be analysed). We study the stationary expected
social welfare, i.e. the expectation ofW when the strategy profiles are random according to the stationary
distribution π of the Markov chain,

Eπ [W ] =
∑

x∈S1×···×Sn

W (x)π(x)

Since the Markov chain defined in (2) is irreducible and aperiodic, from every initial profile x the
distribution P t(x, ·) of chain Xt starting at x will eventually converge to π as t tends to infinity. We will
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be interested in bounding how long it takes to get close to the stationary distribution, that is the mixing
time of the Markov chain.
In the next subsection we illustrate the goals of our work with two simple examples.

3.1 Two simple examples: Matching Pennies and a Stairs game

Matching Pennies. Consider the classical Matching Pennies game. We write the utility functions in
the standard bimatrix form.

H T

H +1, −1 −1, +1
T −1, +1 +1, −1

(4)

According to (1), the update probabilities for the logit dynamics are, for every x ∈ {H, T }

σ1(H | (x,H)) = σ1(T | (x, T )) = 1
1+e−2β = σ2(T | (H,x)) = σ2(H | (T, x)) ,

σ1(T | (x,H)) = σ1(H | (x, T )) = 1
1+e2β

= σ2(H | (H,x)) = σ2(T | (T, x)) .

Hence the transition matrix (see (2)) is

P =















HH HT TH TT
HH 1/2 b/2 (1− b)/2 0

HT (1 − b)/2 1/2 0 b/2

TH b/2 0 1/2 (1− b)/2

TT 0 (1− b)/2 b/2 1/2















where, for readability sake, we named b = 1
1+e−2β .

Since every column of the matrix adds up to 1, the uniform distribution π over the set of strategy
profiles is the stationary distribution for the logit dynamics. The stationary expected social welfare is
thus 0 for every inverse noise β.

As for the mixing time, it is easy to see that it is upper bounded by a constant independent of β.
Indeed, a direct calculation shows that, for every x ∈ {HH, HT, TH, TT } and for every β > 0 it holds
that

‖P 3(x, ·) − π‖tv 6
7

16
<

1

2
.

A stairs game. One of the main techniques used to give upper bounds on the mixing time of Markov
chains is the coupling technique (see Theorem 1). In the following example we use it to upper bound the
mixing time of the logit dynamics for a simple game.

Let G be a potential game where every player has two strategies, say upstairs (or 1) and downstairs
(or 0), and the potential of a profile x ∈ {0, 1}n is the number of players that are upstairs, i.e. Φ(x) = |x|.

Notice that the logit dynamics (and thus the stationary distribution and the mixing time) is com-
pletely defined by the potential function, while if we wanted to evaluate the stationary expected social
welfare we would need to specify the utility functions.

The partition function is

Z(β) =
∑

x∈{0,1}n

eβ|x| =

n
∑

k=0

(

n

k

)

eβk =
(

1 + eβ
)n

.

So the stationary distribution is

π(x) =
eβ|x|

(1 + eβ)
n .

As for the mixing time, we can use the coupling technique as follows: observe that the probability of
playing strategy 1 (or equivalently strategy 0), for the player selected for the update, is independent of
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the current strategies of the other players. Indeed, according to (1), for every x it holds that

σi(1 |x) =
eβui(x−i,1)

eβui(x−i,1) + eβui(x−i,0)
=

1

1 + eβ(ui(x−i,0)−ui(x−i,1))

=
1

1 + eβ(Φ(x−i,0)−Φ(x−i,1))
=

1

1 + eβ(|x−i|−(|x−i|+1))
=

1

1 + e−β
.

We can define a coupling of two Markov chains starting at two different profiles as follows: choose i ∈ [n]
uniformly at random and perform the same update at player i in both chains2. When every player has
been chosen at least once the two chains have coalesced. From the coupon collector’s argument, it takes
O(n logn) to have that, with probability at least 3/4, all players have been chosen at least once. By
applying Theorem 1 we have that the mixing time is O(n log n).

In the above examples, it turned out that the mixing time of the logit dynamics can be upper bounded
by functions that do not depend on the inverse noise β. As we shall see in the next sections, this is not
always the case. Moreover, the analysis of the mixing time is usually far from trivial.

3.2 Description of the Coupling

Throughout the paper we will use the coupling and path-coupling techniques (see Theorem 1 and Theo-
rem 2) to give upper bounds on mixing times. Since we will use the same coupling idea in several proofs,
we describe it here and we will refer to this description when we will need it.

Consider an n-player 2-strategy game G and let us rename 0 and 1 the strategies of every player. For
every pair of strategy profiles x = (x1, . . . , xn),y = (y1, . . . , yn) ∈ {0, 1}n we define a coupling (X1, Y1)
of two copies of the Markov chain with transition matrix P defined in (2) for which X0 = x and Y0 = y.

The coupling proceeds as follows: first, pick a player i uniformly at random; then, update the
strategies xi and yi of player i in the two chains, by setting

(xi, yi) =



















(0, 0), with probability min{σi(0 | x), σi(0 | y)} ;
(1, 1), with probability min{σi(1 | x), σi(1 | y)} ;
(0, 1), with probability σi(0 | x)−min{σi(0 | x), σi(0 | y)} ;
(1, 0), with probability σi(1 | x)−min{σi(1 | x), σi(1 | y)} .

Three easy observations are in order: if σi(0 | x) = σi(0 | y) and player i is chosen, then, after the update,
we have xi = yi; for every player i, at most one of the updates (xi, yi) = (0, 1) and (xi, yi) = (1, 0) has
positive probability; if i is chosen for update, then the marginal distributions of xi and yi agree with
σi(· | x) and σi(· | y) respectively, indeed, for b ∈ {0, 1}, the probability that xi = b is

min {σi(b | x), σi(b | y)} + σi(b | x)−min{σi(b | x), σi(b | y)} = σi(b | x) ,

and the probability that yi = b is

min{σi(b | x), σi(b | y)}+ σi(1− b | x)−min{σi(1− b | x), σi(1− b | y)} =

= min{σi(b | x), σi(b | y) + (1 − σi(b | x))− (1−max{σi(b | x), σi(b | y)}) = σi(b | y) .

We define G = (Ω, E) as the Hamming graph of the game, where Ω = {0, 1}n is the set of strategy
profiles, and two profiles x = (x1, . . . , xn),y = (y1, . . . , yn) ∈ Ω are adjacent if they differ only for the
strategy of one player, i.e.

{x,y} ∈ E ⇐⇒ x ∼ y . (5)

For the path coupling technique, the coupling described above is applied only to pairs of adjacent starting
profiles.

2This is the same coupling used in the analysis of the lazy random walk on the hypercube (e.g. see Section 5.3.3 in [16]),
the only difference being that the probability of choosing 0 or 1 is not 1/2, 1/2 but 1/(1 + eβ), 1/(1 + e−β)
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4 A 3-player congestion game

In this section we analyze the CK game, a simple 3-player linear congestion game introduced in [6].
This game is interesting because it highlights the weakness of the Price of Anarchy notion for the logit
dynamics. Indeed, the CK game exhibits the worst Price of Anarchy with respect to the average social
welfare among all linear congestion games with 3 or more players. But, as we shall see soon, the stationary
expected social welfare of the logit dynamics is always larger than the social welfare of the worst Nash
equilibrium and, for large enough β, players spend most of the time in the best Nash equilibrium.
Moreover, we will show that the mixing time of the logit dynamics can be bounded independently from
β: that is, the stationary distribution guarantees a good social welfare and it is quickly reached by the
system.

Let us now describe the CK game. We have 3 players and 6 facilities divided into two sets: G =
{g1, g2, g3} andH = {h1, h2, h3}. Player i ∈ {0, 1, 2} has two strategies: Strategy “0” consists in selecting
facilities (gi, hi); Strategy “1” consists in selecting facilities (gi+1, hi−1, hi+1) (index arithmetic is modulo
3). The cost of a facility is the number of players choosing such facility, and the welfare of a player is
minus the sum of the costs of the facilities she selected. It easy to see that this game has two pure Nash
equilibria: the solution where every player plays strategy 0 (each player pays 2, which is optimal), and
the solution where every player plays strategy 1 (each player pays 5). The game is a congestion game,
and thus, by [18], it is also a potential game and its potential function is:

Φ(x) =
∑

j∈G∪H

Lx(j)
∑

i=1

i ,

where Lx(j) is the number of players using facility j in configuration x.

Stationary expected social welfare. It is easy to see that the update probabilities given by the
logit dynamics for this game (see Equation (1)) only depend on the number of players playing strategy
1 and not on which player is actually playing that strategy. In particular, we have that, from a profile
x, the player i, if selected for update, plays strategy 0 with the following probabilities:

σi(0 | |x−i| = 0) =
1

1 + e−4β
, σi(0 | |x−i| = 1) =

1

1 + e−2β
, σi(0 | |x−i| = 2) =

1

2
, (6)

and strategy 1 with the remaining probabilities.
Next theorem evaluates the stationary expected social welfare for this game.

Theorem 6 (Expected social welfare) The stationary expected social welfare Eπ [W ] of the logit dy-
namics for the CK game is

Eπ [W ] = −6 + 39e−4β + 63e−6β

1 + 3e−4β + 4e−6β
.

Proof. We notice that two profiles with the same number of players playing strategy 1 have both the
same potential (and, by Equation (3), the same stationary distribution) and the same social welfare.
Thus, π(x) = π[k] and W (x) = W [k] for a profile x such that |x| = k, where

π[0] =
e−6β

Z(β)
, π[1] =

e−10β

Z(β)
, π[2] = π[3] =

e−12β

Z(β)
,

where Z(β) = e−6β + 3e−10β + 4e−12β, and

W [0] = −6 , W [1] = −13 , W [2] = −16 , W [3] = −15 .

Hence, the stationary expected social welfare is

Eπ [W ] = −6 · e−6β + 3 · 13 · e−10β + (3 · 16 + 15) · e−12β

e−6β + 3e−10β + 4e−12β
= −6 + 39e−4β + 63e−6β

1 + 3e−4β + 4e−6β
.

�
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Notice that for β = 0 we have Eπ [W ] = −27/2, which is better than the social welfare of the worst
Nash equilibrium. This means that, even if each player selects her strategy at random, the logit dynamics
drives the system to a random profile whose expectation to be better than the worst Nash equilibrium.
We also observe that Eπ [W ] increases with β and thus the long-term behavior of the logit dynamics
gives a better social welfare than the worst Nash equilibrium for any β > 0. Moreover, the stationary
expected social welfare approaches the optimal social welfare as β tends to ∞.

Mixing time. Now we study the mixing time of the logit dynamics for the CK game and we show that
it is bounded by a constant for any β > 0. The proof will use Coupling Theorem (see Theorem 1).

Theorem 7 (Mixing time) There exists a constant τ such that the mixing time tmix of the logit dy-
namics of the CK game is upper bounded by τ for every β > 0.

Proof. First, we notice that the update probabilities given in Equation (6) imply that

∀ i, ∀x, ∀β, σi(0 |x) > 1/2 . (7)

Let Xt and Yt be two copies of the logit dynamics for the CK game, starting in x and y respectively,
coupled as described in Section 3.2. It is easy to check that, by Equation (7), the player selected for
update, chooses strategy 0 in both chain with probability at least 1/2.

Finally, we bound the probability that after three steps the two coupled chains coalesce: it is at least
as large as the probability that we choose three different players and all of them play strategy 0 at their
turn, i.e.

Px,y (X3 = Y3) >
1

2
· 1
3
· 1
6
=

1

36
.

Since this bound holds for every starting pair (x,y), we have that the probability the two chains have
not yet coalesced after 3t steps is

Px,y (X3t 6= Y3t) 6

(

1− 1

36

)t

6 e−t/36 .

The thesis follows from the Theorem 1. �

5 Two player games

In this section we analyse the performance of the logit dynamics for 2× 2 coordination games (the same
class studied in [3]) and 2× 2 anti-coordination games.

Coordination games. Coordination Games are two-player games in which the players have an advan-
tage in selecting the same strategy. These games are often used to model the spread of a new technology
[22]: two players have to decide whether to adopt or not a new technology. We assume that the players
would prefer choosing the same technology as the other one and that choosing the new technology is at
most as risky as choosing the old one.

We name 0 the NEW strategy and 1 the OLD strategy. The game is formally described by the following
payoff matrix

0 1

0 (a, a) (c, d)
1 (d, c) (b, b)

(8)

We assume that a > d and b > c (meaning that they prefer to coordinate) and that a − d > b − c
(meaning that for each player strategy 0 is at most as risky as strategy 1). Notice that we do not make
any assumption on the relation between a and b. For convenience sake we name

∆ := a− d and δ := b− c .

It is easy to see that this game is a potential game and the following function is an exact potential for it:

Φ(0, 0) = ∆ Φ(0, 1) = Φ(1, 0) = 0 Φ(1, 1) = δ.
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This game has two pure Nash equilibria: (0, 0), where each player has utility a, and (1, 1), where each
player has utility b. As d+ c < a+ b, the social welfare is maximized at one of the two equilibria.

We analyse the mixing time of the logit dynamics for 2 × 2 coordination games and compute its
stationary expected social welfare as a function of β.

Stationary expected social welfare. The logit dynamics for the coordination game defined by the
payoffs in Table 8 establishes that, from a profile x, player i selected for update plays according to the
following probability distribution (see Equation (1)):

σi(0 | x−i = 0) = 1
1+e−∆β , σi(1 | x−i = 0) = 1

1+e∆β ,

σi(0 | x−i = 1) = 1
1+eδβ

, σi(1 | x−i = 1) = 1
1+e−δβ .

Next theorem bounds the stationary expected social welfare Eπ [W ] obtained by the logit dynamics and
gives conditions for which Eπ [W ] is better than the social welfare SWN of the worst Nash equilibrium.

Theorem 8 (Expected social welfare) The stationary expected social welfare Eπ [W ] of the logit dy-
namics for the coordination game in Table 8 is

Eπ [W ] = 2 · a+ be−(∆−δ)β + (c+ d)e−∆β

1 + e−(∆−δ)β + 2e−∆β
.

Moreover, if a 6= b then Eπ [W ] > SWN for β sufficiently large.

Proof. The stationary distribution π of the logit dynamics is

π(0, 0) =
e∆β

Z(β)
π(1, 1) =

eδβ

Z(β)
π(0, 1) = π(1, 0) =

1

Z(β)

where Z(β) = e∆β + eδβ + 2.
Since Eπ [W ] = 2 · Eπ [ui], we compute the expected utility Eπ [ui] of player i at the stationary

distribution,

Eπ [ui] =
∑

x∈{0,1}2

ui(x)π(x)

=
ae∆β + beδβ + c+ d

e∆β + eδβ + 2

=
a+ be−(∆−δ)β + (c+ d)e−∆β

1 + e−(∆−δ)β + 2e−∆β
.

Thus, if a > b and β > max
{

0, 1
∆ log 2b−c−d

a−b

}

, we have

Eπ [W ]− SWN = 2 · a+ be−(∆−δ)β + (c+ d)e−∆β

1 + e−(∆−δ)β + 2e−∆β
− 2b = 2 · (a− b)− (2b− c− d)e−∆β

1 + e−(∆−δ)β + 2e−∆β
> 0 .

Similarly, we obtain Eπ [W ]− SWN > 0 if b > a and β > max
{

0, 1δ log
2a−c−d

b−a

}

. �

Mixing time. Now we study the mixing time of the logit dynamics for coordination games and we
show that it is exponential in β and in the minimum potential difference between adjacent profiles.

Theorem 9 (Mixing Time) The mixing time of the logit dynamics for the coordination game of Ta-
ble 8 is Θ

(

eδβ
)

for every β > 0.

Proof. Upper bound: We apply the Path Coupling technique (see Theorem 2) with the Hamming graph
defined in (5) and all the edge-weights set to 1. Let x and y be two profiles differing only for the player
j and consider the coupling defined in Section 3.2 for this pair of profiles. Now we bound the expected
distance of the two coupled chains after one step.
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We denote by bi(x,y) the probability that both chains perform the same update given that player i
has been selected for strategy update. Clearly, bi(x,y) = 1 for i = j, while for i 6= j, we have

bi(x,y) = min{σi(0 | x), σi(0 | y)} +min{σi(1 | x), σi(1 | y)}

=
1

1 + e∆β
+

1

1 + eδβ
.

For sake of readability we set

p =
1

1 + e∆β
and q =

1

1 + eδβ
.

and thus bi(x,y) = p + q. To compute Ex,y [ρ(X1, Y1)], we observe that the logit dynamics chooses
player j with probability 1/2. In this case, as bj(x,y) = 1, the coupling updates both chains in the same
way, resulting in X1 = Y1. Similarly, player i 6= j is chosen for strategy update with probability 1/2.
In this case, with probability bi(x,y) the coupling performs the same update in both chains resulting
in ρ(X1, Y1) = 1. Instead with probability 1 − bi(x,y), the coupling performs different updates on the
chains resulting in ρ(X1, Y1) = 2. Therefore we have,

Ex,y [ρ(X1, Y1)] =
1

2
bi(x,y) + 2 · 1

2
(1− bi(x,y))

= 1− 1

2
bi(x,y) = 1− 1

2
(p+ q) 6 e−

1

2
(p+q) .

From Theorem 2, with α = 1
2 (p+ q) and diam(Ω) = 2, it follows that

tmix(ε) 6
2 (log 2 + log(1/ε))

p+ q
=

1

p+ q
log

4

ε2
.

Lower bound: We use the relaxation time bound (see Theorem 3). The transition matrix of the logit
dynamics is

P =















00 01 10 11
00 1− p p/2 p/2 0

01 1−p
2

p+q
2 0 1−q

2

10 1−p
2 0 p+q

2
1−q
2

11 0 q/2 q/2 1− q















It is easy to see that the second largest eigenvalue of P is λ⋆ = (1−p)+(1−q)
2 , hence the relaxation time is

trel = 1/(1− λ⋆) =
2

p+q , and for the mixing time we have

tmix(ε) > (trel − 1) log
1

2ε
=

2− (p+ q)

p+ q
log

1

2ε

>
1

p+ q
log

1

2ε
. (9)

In the last inequality we used that p and q are both smaller than 1/2.
Finally, the theorem follows by observing that

1

p+ q
=

1
1

1+e∆β + 1
1+eδβ

= Θ
(

eδβ
)

.

�

Notice that, if we used the relaxation time to upper bound the mixing time (see Theorem 3) we would
get a non-tight bound, hence in the above proof we had to resort to the path coupling for the upper
bound.
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Anti-coordination games. Very similar results can be obtained for anti-coordination games. These
are two-player games in which the players have an advantage in selecting different strategies. They model
many settings where there is a common and exclusive resource: two players have to decide whether to
use the resource or to drop it. If they both try to use it, then a deadlock occurs and this is bad for both
players. Usually, these games are described by a payoff matrix like the one in Table 8, where we assume
that d > a and c > b and that d− a > c− b. Notice that Nash Equilibria of this game are unfair, as one
player has utility max{c, d} and the other min{c, d}.

For the logit dynamics, we have that, for all β, the stationary expected social welfare is worse than
the one guaranteed by a Nash equilibrium. On the other hand, for sufficiently large β we have that the
expected utility of a player is always better than min{c, d}: that is, in the logit dynamics each player
expects to gain more than in the worst Nash equilibrium. Moreover, the stationary distribution is a fair
equilibrium, since every player has the same expected utility. As for the coordination games, the mixing
time is exponential in β and in the minimum potential difference between adjacent profiles.

6 The OR game

In this section we consider the following simple n-player potential game that we here call OR game.
Every player has two strategies, say {0, 1}, and each player pays the OR of the strategies of all players
(including herself). More formally, the utility function of player i ∈ [n] is

ui(x) =

{

0, if x = 0 ;
−1, otherwise.

Notice that the OR game has 2n − n Nash equilibria. The only profiles that are not Nash equilibria are
the n profiles with exactly one player playing 1. Nash equilibrium 0 has social welfare 0, while all the
others have social welfare −n.

In Theorem 10 we show that the stationary expected social welfare is always better than the social
welfare of the worst Nash equilibrium, and it is significantly better for large β. Unfortunately, in
Theorem 11 we show that if β is large enough to guarantee a good stationary expected social welfare,
then the time needed to get close to the stationary distribution is exponential in n. Finally, in Theorem 12
we give upper bounds on the mixing time showing that if β is relatively small then the mixing time is
polynomial in n, while for large β the upper bound is exponential in n and it is almost-tight with the
lower bound. Despite the simplicity of the game, the analysis of the mixing time is far from trivial.

Theorem 10 (Expected social welfare) The stationary expected social welfare of the logit dynamics

for the OR game is Eπ [W ] = −αn where α = α(n, β) = (2n−1)e−β

1+(2n−1)e−β .

Proof. Observe that the OR game is a potential game with exact potential Φ where Φ(0) = 0 and
Φ(x) = −1 for every x 6= 0. Hence the stationary distribution is

π(x) =

{

1/Z, if x = 0 ;

e−β/Z, if x 6= 0 ;

where the normalizing factor is Z = 1 + (2n − 1)e−β. The expected social welfare is thus

Eπ [W ] =
∑

x∈{0,1}n

W (x)π(x) = −n · (2n − 1)e−β

1 + (2n − 1)e−β
.

�

In the next theorem we show that the mixing time can be polynomial in n only if β 6 c logn for
some constant c.

Theorem 11 (Lower bound on mixing time) The mixing time of the logit dynamics for the OR
game is

1. Ω(eβ) if β < log(2n − 1);
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2. Ω(2n) if β > log(2n − 1).

Proof. Consider the set S ⊆ {0, 1}n containing only the state 0 = (0, . . . , 0) and observe that π(0) 6 1/2
for β 6 log(2n − 1). The bottleneck ratio is

Φ(0) =
1

π(0)

∑

y∈{0,1}n

π(0)P (0,y) =
∑

y∈{0,1}n : |y|=1

P (0,y) = n · 1
n

1

1 + eβ
.

Hence, by applying Theorem 4, the mixing time is

tmix >
1

Φ(0)
= 1 + eβ .

If β > log(2n − 1) instead we consider the set R ⊆ {0, 1}n containing all states except state 0, and
observe that

π(R) =
1

Z
(2n − 1)e−β =

(2n − 1)e−β

1 + (2n − 1)e−β
.

and π(R) 6 1/2 for β > log(2n − 1). It holds that

Q(R,R) =
∑

x∈R

π(x)P (x,0) =
∑

x∈{0,1}n : |x|=1

π(x)P (x,0) = n
e−β

Z

1

n

1

1 + e−β
.

The bottleneck ratio is

Φ(R) =
Q(R,R)

π(R)
=

Z

(2n − 1)e−β

e−β

Z

1

1 + e−β
=

1

(2n − 1)(1 + e−β)
<

1

2n − 1
.

Hence, by applying Theorem 4, the mixing time is

tmix >
1

Φ(R)
> 2n − 1 .

�

In the next theorem we give upper bounds on the mixing time depending on the value of β. The theorem
shows that, if β 6 c logn for some constant c, the mixing time is effectively polynomial in n with degree
depending on c. The use of the path coupling technique in the proof of the theorem requires a careful
choice of the edge-weights.

Theorem 12 (Upper bound on mixing time) The mixing time of the logit dynamics for the OR
game is O(n5/22n) for every β. Moreover, for small values of β the mixing time is

1. O(n logn) if β < (1 − ε) logn, for an arbitrary small constant ε > 0;

2. O(nc+3 logn) if β 6 c logn, where c > 1 is an arbitrary constant.

Proof. We apply the path coupling technique (see Theorem 2 in Section 2) with the Hamming graph
defined in (5). Let x,y ∈ {0, 1}n be two profiles differing only at player j ∈ [n] and, without loss of
generality, let us assume |x| = k− 1 and |y| = k for some k = 1, . . . , n. We set the weight of edge {x,y}
depending only on k, i.e. ℓ(x,y) = δk where δk > 1 will be chosen later. Consider the coupling defined
in Subsection 3.2.

Now we evaluate the expected distance after one step Ex,y [ρ(X1, Y1)] of the two coupled chains
(Xt, Yt) starting at (x,y). Let i be the player chosen for the update. Observe that if i = j, i.e. if we
update the player where x and y are different (this holds with probability 1/n), then the distance after
one step is zero, otherwise we distinguish four cases depending on the value of k.
Case k = 1: In this case profile x is all zeros and profile y has only one 1 and the length of edge {x,y}
is ℓ(x,y) = δ1. When choosing a player i 6= j (this happens with probability (n− 1)/n), at the next step
the two chains will be at distance δ1 (if in both chains player i chooses strategy 0, and this holds with
probability min{σi(0 |x), σi(0 |y)}), or at distance δ2 (if in both chains player i chooses strategy 1, and
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this holds with probability min{σi(1 |x), σi(1 |y)}), or at distance δ1 + δ2 (if player i chooses strategy
0 in chain X1 and strategy 1 in chain Y1, and this holds with the remaining probability). Notice that,
from the definition of the coupling, it will never happen that player i chooses strategy 1 in chain X1 and
strategy 0 in chain Y1, indeed we have that

min{σi(0 |x), σi(0 |y)} = σi(0 |y) =
1

2
and min{σi(1 |x), σi(1 |y)} = σi(1 |x) =

1

1 + eβ
. (10)

Hence the expected distance after one step is

Ex,y [ρ(X1, Y1)] =
n− 1

n

(

1

2
δ1 +

1

1 + eβ
δ2 +

(

1− 1

2
− 1

1 + eβ

)

(δ1 + δ2)

)

=
n− 1

n

(

δ1
1 + e−β

+
δ2
2

)

. (11)

Case k = 2: In this case we have xj = 0 and yj = 1, there is another player h ∈ [n] \ {j} where
xh = yh = 1, and for all the other players i ∈ [n] \ {j, h} it holds xi = yi = 0. Hence the length of edge
{x,y} is ℓ(x,y) = δ2.

When player h is chosen (this holds with probability 1/n) we have that σh(s |x) and σh(s |y) for
s = 0, 1 are the same as in (10). At the next step the two chains will be at distance δ2 (if player h stays
at strategy 1 in both chains), or at distance δ1 (if player h chooses strategy 0 in both chains), or at
distance δ1 + δ2 (if player h stays at strategy 0 in chain X1 and chooses strategy 1 in chain Y1).

When a player i /∈ {h, j} is chosen (this holds with probability (n − 2)/n) we have that σi(0,x) =
σi(1,x) = σi(0,y) = σi(1,y) = 1/2. Thus in this case the two coupled chains always perform the same
choice at player i, and at the next step they will be at distance δ2 (if player i stays at strategy 0 in both
chains) or at distance δ3 (if player i chooses strategy 1 in both chains).
Hence the expected distance after one step is

Ex,y [ρ(X1, Y1)] =
1

n

(

1

2
δ1 +

1

1 + eβ
δ2 +

(

1− 1

2
− 1

1 + eβ

)

(δ1 + δ2)

)

+
n− 2

n

(

1

2
δ2 +

1

2
δ3

)

=
1

2n

(

2

1 + e−β
δ1 + (n− 1)δ2 + (n− 2)δ3

)

. (12)

Case 3 6 k 6 n− 1: When a player i 6= j is chosen such that xi = yi = 1 (this holds with probability
(k − 1)/n) then at the next step the two chains will be at distance δk (if i stays at strategy 1) or at
distance δk−1 (if i moves to strategy 0). When a player i 6= j is chosen such that xi = yi = 0 (this holds
with probability (n − k)/n) then at the next step the two chains will be at distance δk (if i chooses to
stay at strategy 0) or at distance δk+1 (if i chooses to move to strategy 0). Hence the expected distance
after one step is

Ex,y [ρ(X1, Y1)] =
k − 1

n

(

1

2
δk +

1

2
δk−1

)

+
n− k

n

(

1

2
δk +

1

2
δk+1

)

=
1

2n
((n− 1)δk + (k − 1)δk−1 + (n− k)δk+1) . (13)

Case k = n: When a player i 6= j is chosen, then at the next step the two chains will be at distance δn
or at distance δn−1. Hence the expected distance after one step is

Ex,y [ρ(X1, Y1)] =
n− 1

n

(

1

2
δn +

1

2
δn−1

)

=
n− 1

2n
(δn + δn−1) . (14)

In order to apply Theorem 2 we now have to show that it is possible to choose the edge weights δ1, . . . , δn
and a parameter α > 0 such that

n−1
n

(

δ1
1+e−β + δ2

2

)

6 δ1e
−α ,

1
2n

(

2
1+e−β δ1 + (n− 1)δ2 + (n− 2)δ3

)

6 δ2e
−α ,

1
2n ((n− 1)δk + (k − 1)δk−1 + (n− k)δk+1) 6 δke

−α , for k = 3, . . . , n− 1 ,

n−1
2n (δn + δn−1) 6 δne

−α .

(15)
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For different values of β, we make different choices for α and for the weights δk. For clarity’s sake we
split the proof in three different lemmas. We denote by δmax the largest δk.

In Lemma 13 we show that Inequalities (15) are satisfied for every value of β by choosing the weights
as follows

δk =



















1
2 [(n− 1)δ2 + 1], if k = 1;

n−k
k δk+1 + 1, if 2 6 k 6 n− 1;

1, if k = n;

and by setting α = 1/(2nδmax). From Corollary 18, we have δmax = O(
√
n2n). Observe that the diameter

of the Hamming graph is
∑n

i=1 δi 6 nδmax, hence from Theorem 2 we obtain tmix = O(n5/22n).
In Lemma 14 we show that, if β < (1−ǫ) logn for an arbitrarily small constant ε > 0, Inequalities (15)

are satisfied, for sufficiently large n, by choosing weights δ1 = n1−ε, δ2 = 4/3, δ3 = · · · = δn = 1, and
α = 1/n.. In this case the diameter is O(n) and, by Theorem 2, tmix = O(n log n).

In Lemma 15 we show that, Inequalities (15) are satisfied by choosing weights as follows

δk =



















1+e−β

2

[

a1

b1
δ2 + 1

]

, if k = 1;

ak

bk
δk+1 + 1, if 2 6 k 6 n− 1;

1, if k = n;

where a1 = n− 1 and b1 = ne−β + 1 and, for every k = 2, . . . , n− 1

ak = (n− k)bk−1 bk = (n+ 1)bk−1 − (k − 1)ak−1 ;

and by setting α = 1/(2nδmax). From Corollary 21 it follows that, if β 6 c logn for a constant c ∈ N, we
have that δmax = O(nc+2) and the diameter of the Hamming graph is O(nc+3). Thus, by Theorem 2 it
follows that tmix = O(nc+3 logn). �

6.1 Technical lemmas

In this section we prove the technical lemmas needed for completing the proof of Theorem 12.

Lemma 13 Let δ1, . . . , δn be as follows

δk =



















1
2 [(n− 1)δ2 + 1], if k = 1;

n−k
k δk+1 + 1, if 2 6 k 6 n− 1;

1, if k = n;

(16)

and let α = 1/(2nδmax) where δmax = max{δk : k = 1, . . . , n}. Then Inequalities (15) are satisfied for
every β > 0.

Proof. Observe that, for every k = 1, . . . , n, the right-hand side of the k-th inequality in (15) is

δke
−α = δke

−1/(2nδmax)
> δk

(

1− 1

2nδmax

)

= δk −
δk

2nδmax
> δk −

1

2n
. (17)

Now we check that the left-hand side is at most δk − 1/(2n).

First inequality (k = 1): n−1
n

(

δ1
1+e−β + δ2

2

)

6 δ1e
−α.

From the definition of δ1 in (16) we have that

δ2 =
2δ1 − 1

n− 1
.

Hence the left-hand side is

n− 1

n

(

δ1
1 + e−β

+
δ2
2

)

6
n− 1

n

(

δ1 +
δ2
2

)

=
n− 1

n

(

δ1 +
2δ1 − 1

2(n− 1)

)

=
1

2n
(2nδ1 − 1) = δ1 −

1

2n
.

17



Second inequality (k = 2): 1
2n

(

2
1+e−β δ1 + (n− 1)δ2 + (n− 2)δ3

)

6 δ2e
−α.

From the definition of δ2 in (16) we have that

δ3 =
2

n− 2
(δ2 − 1) .

Hence the left-hand side of the second inequality is

1

2n

(

2

1 + e−β
δ1 + (n− 1)δ2 + (n− 2)δ3

)

6
1

2n
(2δ1 + (n− 1)δ2 + (n− 2)δ3)

=
1

2n
((n− 1)δ2 + 1 + (n− 1)δ2 + 2(δ2 − 1))

=
1

2n
(2nδ2 − 1) = δ2 −

1

2n
.

Other inequalities (k = 3, . . . , n− 1): 1
2n ((n− 1)δk + (k − 1)δk−1 + (n− k)δk+1) 6 δke

−α.
From the definition of δk in (16) we have that

δk+1 =
k

n− k
(δk − 1) .

Hence the left-hand side is

1

2n
((n− 1)δk + (k − 1)δk−1 + (n− k)δk+1) =

1

2n
((n− 1)δk + (n− k + 1)δk + (k − 1) + kδk − k)

=
1

2n
(2nδk − 1) = δk −

1

2n
.

Last inequality (k = n): n−1
2n (δn + δn−1) 6 δne

−α.

Since δn = 1 and δn−1 = 1
n−1δn + 1 = n

n−1 , the left-hand side of the last inequality is

n− 1

2n
(δn + δn−1) =

n− 1

2n
(1 +

n

n− 1
) = 1− 1

2n
.

�

Lemma 14 Let δ1, . . . , δn be as follows

δ1 = n1−ε, δ2 = 4/3, δ3 = · · · = δn = 1

where ε > 0 is an arbitrary small constant and let α = 1/n. Then Inequalities (15) are satisfied for every
β 6 (1− ε) logn and n sufficiently large.

Proof. We check that all the inequalities in (15) are satisfied.

First inequality (k = 1): n−1
n

(

δ1
1+e−β + δ2

2

)

6 δ1e
−α.

For the left-hand side we have

n− 1

n

(

δ1
1 + e−β

+
δ2
2

)

=

(

1− 1

n

)(

n1−ε

1 + e−β
+

2

3

)

6

(

1− 1

n

)(

n1−ε

1 + 1
n1−ε

+
2

3

)

=

(

1− 1

n

)(

n2(1−ε)

n1−ε + 1
+

2

3

)

=

(

1− 1

n

)(

(n1−ε + 1)(n1−ε − 1) + 1

n1−ε + 1
+

2

3

)

=

(

1− 1

n

)(

n1−ε +
1

n1−ε + 1
− 1

3

)

.

For the right-hand side we have

δ1e
−α = n1−εe−1/n > n1−ε

(

1− 1

n

)

.

18



Hence the left-hand side is smaller than the right-hand one (for n sufficiently large).

Second inequality (k = 2): 1
2n

(

2
1+e−β δ1 + (n− 1)δ2 + (n− 2)δ3

)

6 δ2e
−α.

For the left-hand side we have

1

2n

(

2

1 + e−β
δ1 + (n− 1)δ2 + (n− 2)δ3

)

=
1

2n

(

2

1 + e−β
n1−ε + (n− 1)

4

3
+ (n− 2)

)

6
1

2n

(

2n1−ε +
7

3
n

)

=
7

6
+

1

nε
.

And for the right-hand side we have

δ2e
−α =

4

3
e−1/n >

4

3

(

1− 1

n

)

>
4

3
− 1

n
.

Hence the left-hand side is smaller than the right-hand one (for n sufficiently large).

Third inequality (k = 3): 1
2n ((n− 1)δ3 + 2δ2 + (n− 3)δ4) 6 δ3e

−α.
For the left-hand side we have

1

2n
((n− 1)δ3 + 2δ2 + (n− 3)δ4) =

1

2n

(

(n− 1) + 2
4

3
+ (n− 3)

)

=
1

2n
(2n− 3) 6

(

1− 1

n

)

.

And for the right-hand side we have

δ3e
−α = e−1/n >

(

1− 1

n

)

.

Hence the left-hand side is smaller than the right-hand one.

Other inequalities (k > 4): 1
2n ((n− 1)δk + (k − 1)δk−1 + (n− k)δk+1) 6 δke

−α.

Since δk = δk−1 = δk+1 = 1 the left-hand side is equal to n−1
n and the right-hand side is e−1/n > n−1

n . �

Lemma 15 Let δ1, . . . , δn be as follows

δk =



















1+e−β

2

[

a1

b1
δ2 + 1

]

, if k = 1;

ak

bk
δk+1 + 1, if 2 6 k 6 n− 1;

1, if k = n;

(18)

where a1 = n− 1 and b1 = ne−β + 1 and for every k = 2, . . . , n− 1

ak = (n− k)bk−1 and bk = (n+ 1)bk−1 − (k − 1)ak−1 ,

and let α = 1/(2nδmax) where δmax = max{δk : k = 1, . . . , n}. Then Inequalities (15) are satisfied for
every β > 0.

Before to prove the Lemma 15 we do the following observation.

Observation 16 Let bk defined as in the Lemma 15. Then, for every k > 2, it holds that bk > kbk−1.

Proof. We proceed by induction on k. The base case k = 2 follows from

b2 = (n+ 1)(ne−β + 1)− (n− 1) = (n+ 1)ne−β + 2 > 2(ne−β + 1) = 2b1 .

Now suppose the claim holds for k − 1, that is bk−1 > (k − 1)bk−2. Then

bk = (n+ 1)bk−1 − (k − 1)ak−1

= (n+ 1)bk−1 − (k − 1)(n− k + 1)bk−2

> [(n+ 1)− (n− k + 1)] bk−1 = kbk−1 .
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Proof (Lemma 15). Observe that, as in Equation (17), for every k = 1, . . . , n, the right-hand side of the
k-th inequality in (15) is

δke
−α > δk −

1

2n
.

Now we check that the left-hand side is at most δk − 1/(2n).

First inequality (k = 1): n−1
n

(

δ1
1+e−β + δ2

2

)

6 δ1e
−α.

From the definition of δ1 in (18) we have that

δ2 =
ne−β + 1

n− 1

(

2δ1
1 + e−β

− 1

)

.

Hence the left-hand side is

n− 1

n

(

δ1
1 + e−β

+
δ2
2

)

=
n− 1

n

[

δ1
1 + e−β

+
ne−β + 1

n− 1

(

δ1
1 + e−β

− 1

2

)]

=
n− 1

n

δ1
1 + e−β

(

1 +
ne−β + 1

n− 1

)

− ne−β + 1

2n

6 δ1 −
1

2n
.

Second inequality (k = 2): 1
2n

(

2
1+e−β δ1 + (n− 1)δ2 + (n− 2)δ3

)

6 δ2e
−α.

From the definition of δ2 in (18) we have that

δ3 =
b2
a2

(δ2 − 1) =
(n+ 1)b1 − a1

(n− 2)b1
(δ2 − 1) .

Hence the left-hand side is

1

2n

(

2

1 + e−β
δ1 + (n− 1)δ2 + (n− 2)δ3

)

=
1

2n

[(

a1
b1

δ2 + 1

)

+ (n− 1)δ2 +
(n+ 1)b1 − a1

b1
(δ2 − 1)

]

= δ2 −
1

2n

nb1 − a1
b1

= δ2 −
1

2n

(

n− n− 1

ne−β + 1

)

6 δ2 −
1

2n
.

Other inequalities (k = 3, . . . , n− 1): 1
2n ((n− 1)δk + (k − 1)δk−1 + (n− k)δk+1) 6 δke

−α.
From the definition of δk in (18) we have that

δk+1 =
bk
ak

(δk − 1) =
(n+ 1)bk−1 − (k − 1)ak−1

(n− k)bk−1
(δk − 1) .

Hence the left-hand side is

1

2n
((n− 1)δk + (k − 1)δk−1 + (n− k)δk+1) =

1

2n

[

(n− 1)δk + (k − 1)

(

ak−1

bk−1
δk + 1

)

+
(n+ 1)bk−1 − (k − 1)ak−1

bk−1
(δk − 1)

]

= δk − 1

2n

(n− k + 2)bk−1 − (k − 1)ak−1

bk−1

= δk − 1

2n

(

(n− k + 2)− (k − 1)(n− k + 1)
bk−2

bk−1

)

6 δ2 −
1

2n
.

where the inequality follows from the Observation 16.
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Last inequality (k = n): n−1
2n (δn + δn−1) 6 δne

−α.

Since δn = 1 and δn−1 = an−1

bn−1
δn + 1 = an−1

bn−1
+ 1, the left-hand side of the last inequality is

n− 1

2n
(δn + δn−1) =

n− 1

2n

(

2 +
an−1

bn−1

)

=
n− 1

2n

(

2 +
bn−2

bn−1

)

6
n− 1

2n

(

2 +
1

n− 1

)

= 1− 1

2n
.

where the inequality follows from the Observation 16. �

In order to apply the path coupling theorem, we need to bound δmax: the next observation will
represent the main tool to achieve this goal.

Observation 17 Let δ1, . . . , δn be defined recursively as follows: δn = 1 and

δk = γkδk+1 + 1 ,

where γk > 0 for every k = 1, . . . , n− 1. Let δmax = max{δk : k = 1, . . . , n}. Then

δmax
6 nmax

{

j
∏

i=h

γi : 1 6 h 6 j 6 n− 1

}

.

Proof. The observation follows from the fact that, for k = 1, . . . , n− 1, we have

δk = 1 +

n−1
∑

j=k

j
∏

i=k

γi .

�

Corollary 18 Let δ1, . . . , δn be defined as in Lemma 13. Then δmax 6 c
√
n2n for a suitable constant c.

Proof. From Observation 17 and the definition of δ1, . . . , δn, it holds that

δmax
6 nmax

{

j
∏

i=h

n− i

i
: 1 6 h 6 j 6 n

}

6 n

⌊n/2⌋
∏

i=1

n− i

i
6 n

(

n

⌊n/2⌋

)

6 c
√
n2n .

for a suitable constant c. �

In order to bound δmax when δ1, . . . , δn are defined as in Lemma 15 and β 6 c logn for a constant
c ∈ N, we define

γk =
ak
bk

=
pke

−β + lk
qke−β + rk

. (19)

You can check that p1 = 0, q1 = n and

pk = (n− k)qk−1 qk = (n+ 1)qk−1 − (k − 1)pk−1 ;

we notice that pk = (n+ 1)qk−1 − (k + 1)qk−1 6 qk for every k. We can also prove the following simple
observation about qk.

Observation 19 For every k > 1 constant, we have qk > 2−knk.

Proof. We proceed by induction on k, with the base k = 1 being obvious. Suppose the claim holds for
k − 1, that is qk−1 > 2−(k−1)nk−1, then

qk = (n+ 1)qk−1 − (k − 1)pk−1 >
n

2
qk−1 > 2−knk .
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Moreover, you can check that l1 = n− 1, r1 = 1 and

lk = (n− k)rk−1 rk = (n+ 1)rk−1 − (k − 1)lk−1 ;

we notice that above recursion gives lk = (n− k)(k− 1)! and rk = k!. Next lemma bounds γk defined in
Equation 19.

Lemma 20 Let δ1, . . . , δn be defined as in Lemma 15, γk defined as in Equation (19) and β 6 c logn
for a constant c ∈ N. Then, for sufficiently large n, it holds that















γk < n ∀ k;

γk < 1 if k > c+ 2;

γc+2 = O(1).

Proof. Since pk 6 qk, then (nqk − pk)e
−β > 0; instead, lk − nrk = (k − 1)!(n − k − nk) < 0. Hence we

have for every k

γk − n =
pke

−β + lk
qke−β + rk

− n =
(lk − nrk)− (nqk − pk)e

−β

qke−β + rk
< 0 .

Inductively, we show that for every k > c + 3, we have γk < 1. Set k = c + 3: c is a constant, thus
Observation 19 holds for k − 1; hence and since e−β > n−c, we have that

(qc+3 − pc+3)e
−β = [(n+ 1)qc+2 − (c+ 2)pc+2 − (n− c− 3)qc+2]e

−β > 2qc+2e
−β > 2−(c+1)n2.

Instead, lc+3 − rc+3 = (c+ 2)!(n− 2c− 6) 6 (c+ 2)! · n. Thus,

γc+3 − 1 =
(lc+3 − rc+3)− (qc+3 − pc+3)e

−β

qc+3e−β + rc+3
6

(c+ 2)! · n− 2−(c+1)n2

qc+3e−β + rc+3
< 0 ,

for n sufficiently large. Now, suppose that γk−1 < 1; then, we have

γk − 1 =
ak − bk

bk
=

(k − 1)ak−1 − (k + 1)bk−1

bk
< 0 ,

where ak−1 < bk−1 is implied by the inductive hypothesis.
In order to complete the proof, we need to show that γc+2 = O(1). Similarly to the case k = c+ 3,

we obtain (qc+2 − pc+2)e
−β > 2−cn and lc+2 − rc+2 6 (c+ 1)! · n. Hence,

γc+2 6
pc+2 + rc+2 + (c+ 1)! · n

pc+2 + rc+2 + 2−cn
6 (c+ 1)! · 2c = O(1) .

�

Corollary 21 Let δ1, . . . , δn and c be defined as in Lemma 15. Then δmax = O(nc+2).

Proof. From Observation 17, Lemma 20 and the definition of δ1, . . . , δn it follows that

δmax 6 nmax

{

j
∏

i=h

ai
bi

: 1 6 h 6 j 6 n

}

6 n

c+2
∏

i=1

ai
bi

= O(nc+2).

�
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7 The XOR game

In this section we analyze the logit dynamics for another simple n-player game, the XOR game. The
XOR game is a symmetric n-player game in which each player has two strategies, denoted by 0 and 1,
and each player pays the XOR of the strategies of all players (including herself). More formally, for each
i ∈ [n], the utility function ui(·) is defined as follows

ui(x) =

{

−1, if x has an odd number of 1’s;

0, if x has an even number of 1’s.

Notice that the XOR game has 2n−1 Nash equilibria, namely all profiles with an even number of players
playing strategy 1. Nash equilibria have social welfare 0 and profiles not in equilibria have social welfare
−n. Observe that the XOR game is a potential game with exact potential Φ where Φ(x) = ui(x) for
every x and every i ∈ [n]. Hence, the stationary distribution is

π(x) =

{

e−β/Z, if x has an odd number of 1’s;

1/Z, if x has an even number of 1’s;

where the normalizing factor is Z = 2n−1(1 + e−β).
Even if this game looks similar to the OR game, it exhibits a different behavior. Theorem 22 gives

the stationary expected social welfare of the XOR game and we can see that, as β increases, the expected
social welfare tends from below to the social welfare at the Nash equilibria. In contrast the expected
social welfare of the OR game is better than the worst Nash equilibrium for all values of β. Moreover, in
Theorem 23 and Theorem 24 we show that the mixing time for the XOR game is polynomial in n and
exponential in β, whereas the mixing time for the OR game can be bounded independently from β.

Theorem 22 (Expected social welfare) The stationary expected social welfare of the logit dynamics
for the XOR game is Eπ [W ] = − n

1+eβ
.

Proof. The expected social welfare is

Eπ [W ] =
∑

x∈{0,1}n

W (x)π(x) = −n · 2n−1e−β

2n−1(1 + e−β)
= − n

1 + eβ
.

�

The next theorem shows that the mixing time is exponential in β for every β > 0.

Theorem 23 (Lower bound on mixing time) The mixing time of the logit dynamics for the XOR
game is Ω(eβ).

Proof. Consider the set S ⊆ {0, 1}n containing only the state 0 = (0, . . . , 0). Observe that π(0) 6 1/2.
The bottleneck ratio is

B(0) =
1

π(0)

∑

y∈{0,1}n

π(0)P (0,y) =
∑

y∈{0,1}n : |y|=1

P (0,y) = n · 1
n
· 1

1 + eβ
.

Hence, by applying Theorem 4, the mixing time is

tmix >
1

B(0)
= 1 + eβ .

�

Finally, in the next theorem we give an almost matching upper bound to the mixing time.

Theorem 24 (Upper bound on mixing time) The mixing time of the logit dynamics for the OR
game is O(n3eβ).

The theorem is proved using coupling (see Theorem 1) and proof is presented in the next sections.
Specifically, we use the coupling described in Section 3.2; in Section 7.1 we show that if the coupled
chains are at even distance then distance does not increase after one step of the coupling; in Section 7.2
we show that if the coupled chains are at odd distance then they get closer distance with probability
independent from β; finally, in Section 7.3 we bound the expected time needed by the two chains to
coalesce and use Theorem 1 to derive an upper bound for the mixing time.
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7.1 Even Hamming distance

Let Xt and Yt be two chains coupled as described in Section 3.2. Suppose that Xt = x, Yt = y, and
H(x,y) = 2ℓ, for ℓ > 0. In this case, ui(x) = ui(y) = b for all i ∈ [n] and some b ∈ {−1, 0}.

Let i be the index selected for update and let us distinguish two cases. In the first case xi = yi and
we have

ui(x−i, 0) = ui(y−i, 0) and ui(x−i, 1) = ui(y−i, 1)

and thus
σi(0 | x) = σi(0 | y) and σi(1 | x) = σi(1 | y).

Therefore the coupling always update the strategy of player i in the same way in the two chains and
thus H(Xt+1, Yt+1) = 2ℓ.

In the second case we have xi 6= yi and we assume, without loss of generality, that xi = 0 and yi = 1.
We observe that, for b ∈ {−1, 0},

ui(x−i, 0) = ui(y−i, 1) = b and ui(y−i, 0) = ui(x−i, 1) = −(1 + b).

Therefore we have

σi(0 | x) = σi(1 | y) = 1

1 + e−(1+2b)β
and σi(1 | x) = σi(0 | y) = 1

1 + e(1+2b)β

and thus we have three possible updates for the strategy of player i:

1. both chains update to 0 (and thus H(Xt+1, Yt+1) = 2ℓ− 1) with probability

min

{

1

1 + e(1+2b)β
,

1

1 + e−(1+2b)β

}

=
1

1 + eβ
;

2. both chains update to 1 (and thus H(Xt+1, Yt+1) = 2ℓ− 1) with probability

min

{

1

1 + e(1+2b)β
,

1

1 + e−(1+2b)β

}

=
1

1 + eβ
;

3. chain X and Y choose two different strategies for updating the strategy of player i (and thus
H(Xt+1, Yt+1) = 2ℓ) with probability

1− 2

1 + eβ
.

The following lemma summarizes the above observations.

Lemma 25 Suppose that H(Xt, Yt) = 2ℓ, for ℓ > 0. Then

H(Xt+1, Yt+1) =











2ℓ− 1, with probability 2ℓ
n · 2

1+eβ
;

2ℓ, with probability 1− 2ℓ
n · 2

1+eβ
.

7.2 Odd Hamming distance

Let Xt and Yt be two chains coupled as described in Section 3.2. Suppose that Xt = x, Yt = y, and
H(x,y) = 2ℓ − 1, for ℓ > 0. In this case we have ui(x) = b and ui(y) = −(1 + b) for some b ∈ {−1, 0}.
Let i be the index selected for update and let us distinguish two cases.

In the case in which xi = yi = c for some c ∈ {0, 1}, we have

ui(x−i, c) = ui(y−i, 1− c) = b and ui(x−i, 1− c) = ui(y−i, c) = −(1 + b).

Therefore

σi(c | x) = σi(1− c | y) = 1

1 + e−(1+2b)β
and σi(1− c | x) = σi(c | y) =

1

1 + e(1+2b)β

and thus we have three possible updates:
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1. both chains update to c (and thus H(Xt+1, Yt+1) = 2ℓ− 1) with probability

min

{

1

1 + e−(1+2b)β
,

1

1 + e(1+2b)β

}

=
1

1 + eβ
;

2. both chains update to 1− c (and thus H(Xt+1, Yt+1) = 2ℓ− 1) with probability

min

{

1

1 + e−(1+2b)β
,

1

1 + e(1+2b)β

}

=
1

1 + eβ
;

3. chains X and Y choose two different strategies for updating the strategy player i (and thus
H(Xt+1, Yt+1) = 2ℓ) with probability 1− 2

1+eβ
.

In the second case we have xi 6= yi and we assume, without loss of generality, that xi = 0 and yi = 1.
We observe that

ui(x−i, 0) = ui(y−i, 0) = b and ui(x−i, 1) = ui(y−i, 1) = −(1 + b).

Therefore we have
σi(0 | x) = σi(0 | y) and σi(1 | x) = σi(1 | y)

and thus in this case H(Xt+1, Yt+1) = 2ℓ− 2.
The following lemma summarizes the above observations.

Lemma 26 Suppose that H(Xt, Yt) = 2ℓ− 1, for ℓ > 0. Then

H(Xt+1, Yt+1) =































2ℓ− 2, with probability 2ℓ−1
n ;

2ℓ− 1, with probability n−2ℓ+1
n

2
1+eβ

;

2ℓ, with probability n−2ℓ+1
n

(

1− 2
1+eβ

)

.

7.3 Time to coalesce

We denote with τk the random variable indicating the first time at which the two coupled chains have
distance k. More precisely,

τk = min{t : H(Xt, Yt) = k}.
Therefore, τcouple = τ0 is the time needed for the two chains to coalesce. We next give a bound on the
expected time Ex,y [τcouple] for the two chains to coalesce starting from x and y. If x and y have distance
2ℓ, we denote by µℓ the expected time to reach distance 2ℓ− 2. That is,

µℓ = Ex,y [τ2ℓ−2] .

Similarly, if x and y have distance 2ℓ − 1, we denote by νℓ the expected time to reach distance 2ℓ − 2.
That is,

νℓ = Ex,y [τ2ℓ−2] .

Notice that, if H(x,y) = H(x′,y′) then

Ex,y [τk] = Ex′,y′ [τk]

for all k, and thus the µℓ and νℓ are well defined.
From Lemma 25 and Lemma 26, we have the following relations

µℓ = 1 + µℓ ·
(

1− 2ℓ

n
· 2

1 + eβ

)

+ νℓ ·
2ℓ

n
· 2

1 + eβ

νℓ = 1 + νℓ ·
n− 2ℓ+ 1

n
· 2

1 + eβ
+ µℓ ·

n− 2ℓ+ 1

n
·
(

1− 2

1 + eβ

)

.
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Simple algebraic manipulations give

νℓ =
n

2ℓ− 1

(

1 +
n− 2ℓ+ 1

2ℓ
· e

β − 1

2

)

and

µℓ = νℓ +
n

2ℓ
· 1 + eβ

2

=
n

2ℓ− 1
+

n

2ℓ

(

n

2ℓ− 1
· e

β − 1

2
+ 1

)

6
n

2ℓ− 1

(

n

2ℓ− 1
· e

β − 1

2
+ 2

)

6 n

(

n · e
β − 1

2
+ 2

)

.

Hence,

Ex,y [τcouple] 6 1 +
∑

26ℓ6n

ℓ even

µℓ 6
n2

2

(

n · e
β − 1

2
+ 2

)

+ 1 = O
(

n3eβ
)

.

From Markov inequality we have that

Px,y (τcouple > t) 6
Ex,y [τcouple]

t

and thus, by taking t0 = 4Ex,y [τcouple], we have d(t0) 6 1/4. Therefore, by using Theorem 1, we have
that

tmix = O
(

n3eβ
)

.

8 Conclusions and open problems

In this paper we studied strategic games where at every run a player is selected uniformly at random
and she is assumed to choose her strategy for the next run according to the logit dynamics : a noisy
best-response dynamics where the noise level is tuned by a parameter β. Such dynamics defines a family
of ergodic Markov chains, indexed by β, over the set of strategy profiles.

We proposed the stationary distribution of these Markov chains as solution concept for games where
players have bounded rationality or limited knowledge about the system. Since this solution concept
does not assume full rationality of agents, it avoids one of the main drawbacks of many classical equilibria
concepts. Moreover, the stationary distribution of an ergodic Markov chain always exists, it is unique,
and the chain converges to such a distribution from any starting state.

In order to evaluate the long-term performance of the system, on the one hand we analyzed the
expected social welfare when the strategy profiles are random according to the stationary distribution,
on the other hand we studied the mixing time, i.e. how long it takes, for a chain starting at an arbitrary
profile, to get close to its stationary distribution.

In this paper we applied this approach to some simple but well-studied games with a constant number
of players: the CK game, that obtains the worst Price of Anarchy bound between linear congestion games,
and the 2 × 2 coordination games considered in the seminal paper about logit dynamics [3]. We also
considered two simple n-player games, the OR game and the XOR game: the analysis of the mixing
time turned out to be far from trivial even for such simple games. The above games highlight a twofold
behavior: for some games, namely CK game and OR game, the mixing time can be upper bounded by a
function independent of β, whereas the mixing time for the other games depends exponentially on the
noise parameter β.
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The main goal of our line of research is to investigate logit dynamics for notable classes of n-player
games. It would also be interesting to consider variations of the logit dynamics where players update
their strategies simultaneously or where the noise is not uniform between players.

We have seen that, for some games and for some values of β, the mixing time can be exponential in
the number of players. When it takes such a long time to reach the stationary distribution, it would be
interesting to investigate the evolution of the system in the transient phase of the logit dynamics.
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