
ar
X

iv
:0

90
3.

29
14

v3
  [

cs
.L

O
] 

 2
8 

M
ar

 2
01

3

A Process Calculus with

Finitary Comprehended Terms

J.A. Bergstra and C.A. Middelburg

Informatics Institute, Faculty of Science, University of Amsterdam,
Science Park 904, 1098 XH Amsterdam, the Netherlands

J.A.Bergstra@uva.nl, C.A.Middelburg@uva.nl

Abstract. We introduce the notion of an ACP process algebra and the
notion of a meadow enriched ACP process algebra. The former notion
originates from the models of the axiom system ACP. The latter notion
is a simple generalization of the former notion to processes in which data
are involved, the mathematical structure of data being a meadow. More-
over, for all associative operators from the signature of meadow enriched
ACP process algebras that are not of an auxiliary nature, we introduce
variable-binding operators as generalizations. These variable-binding op-
erators, which give rise to comprehended terms, have the property that
they can always be eliminated. Thus, we obtain a process calculus whose
terms can be interpreted in all meadow enriched ACP process algebras.
Use of the variable-binding operators can have a major impact on the
size of terms.
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1 Introduction

In many formalisms proposed for the description and analysis of processes in
which data are involved, algebraic specifications of the data types concerned
have to be given over and over again. This is also the case with the principal
ACP-based formalisms proposed for the description and analysis of processes in
which data are involved, to wit µCRL [16,17] and PSF [23]. There is a mismatch
between the process specification part and the data specification part of these
formalisms. Firstly, there is a choice of one built-in type of processes, whereas
there is a choice of all types of data that can be specified algebraically. Secondly,
the semantics of the data specification part is its initial algebra in the case of
PSF and its class of minimal Boolean preserving algebras in the case of µCRL,
whereas the semantics of the process specification part is a model based on
transition systems and bisimulation equivalence. Sticking to this mismatch, no
lasting axiomatizations in the style of ACP has emerged for process algebras
that have to do with processes in which data are involved.

Our first main objective is to obtain a lasting axiomatization in the style
of ACP for process algebras that have to do with processes in which data are

http://arxiv.org/abs/0903.2914v3


involved. To achieve this objective, we first introduce the notion of an ACP
process algebra and then the notion of a meadow enriched ACP process algebra.

ACP process algebras are essentially models of the axiom system ACP.
Meadow enriched ACP process algebras are data enriched ACP process alge-
bras in which the mathematical structure for data is a meadow. Meadows were
defined for the first time in [13]. The prime example of a meadow is the rational
number field with the multiplicative inverse operation made total by imposing
that the multiplicative inverse of zero is zero. Although the notion of a meadow
enriched ACP process algebra is a simple generalization of the notion of an ACP
process algebra, it is an interesting one: there is a multitude of finite and infinite
meadows and meadows obviate the need for Boolean values and operations on
data that yield Boolean values to deal with conditions on data.

In the work on ACP, the emphasis has always been on axiom systems. In
this paper, we put the emphasis on algebras. That is, ACP process algebras are
looked upon in the same way as groups, rings, fields, etc. are looked upon in uni-
versal algebra (see e.g. [14]). The set of equations that are taken to characterize
ACP process algebras is a revision of the axiom system ACP. The revision is pri-
marily a matter of streamlining. However, it also involves a minor generalization
that allows for the generalization to meadow enriched ACP process algebras to
proceed smoothly.

In µCRL and PSF, we find variable-binding operators generalizing associative
operators of ACP. Our second main objective is to determine to what extent such
variable-binding operators fit in with meadow enriched ACP process algebras.
To achieve this objective, we introduce, for all associative operators from the
signature of meadow enriched ACP process algebras that are not of an auxiliary
nature, variable-binding operators as generalizations.

These variable-binding operators, which give rise to comprehended terms,
have the property that they can always be eliminated. That is, for each compre-
hended term, we can derive from axioms concerning the variable-binding opera-
tors that the comprehended term is equal to a term over the signature of meadow
enriched ACP process algebras. Those axioms are axioms of a calculus because
the distinction between free and bound variables is essential in derivations. The
terms of this process calculus are interpreted in meadow enriched ACP process
algebras.

Full elimination of all variable-binding operators occurring in a compre-
hended term can lead to a combinatorial explosion. We show that a combinatorial
explosion can be prevented if variable-binding operators that bind variables with
a two-valued range are still permitted in the resulting term. We also show that
in the latter case the size of the resulting term can be further reduced if we add
an identity element for sequential composition to meadow enriched ACP process
algebras. Moreover, we demonstrate that there is an alternative to introducing
variable-binding operators for several associative operators on processes if we
add a sort of process sequences and suitable operators on process sequences to
meadow enriched ACP process algebras.
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For readability, it is imprecisely said above that the mathematical structure
for data in meadow enriched ACP process algebras is a meadow. It is actually
a signed meadow, i.e. a meadow expanded with a signum operation. In the
presence of a signum operation, the ordering on the elements of a meadow that
corresponds with the usual ordering on the elements of a field becomes definable.

This paper is organized as follows. First, we give a brief summary of signed
meadows (Section 2). Next, we introduce the notion of an ACP process alge-
bra (Section 3) and the notion of a meadow enriched ACP process algebra
(Section 4). After that, we associate a calculus with meadow enriched ACP
process algebras (Section 5) and define the interpretation of terms of this cal-
culus in meadow enriched ACP process algebras (Section 6). Following this, we
investigate the consequences of elimination of variable-binding operators from
comprehended terms on the size of the resulting terms (Section 7). Then, we
investigate the effects of adding an identity element for sequential composition
to ACP process algebras (Section 8) and the effects of adding process sequences
to ACP process algebras (Section 9). Finally, we make some concluding remarks
(Section 10).

This paper consolidates material from [9,10].

2 Signed Meadows

In this paper, the mathematical structure for data is a signed meadow. In this
section, we give a brief summary of signed meadows.

A meadow is a field with the multiplicative inverse operation made total by
imposing that the multiplicative inverse of zero is zero. A signed meadow is a
meadow expanded with a signum operation. Meadows were defined for the first
time in [13] and were investigated in e.g. [5,6,11]. The expansion of meadows
with a signum operation originates from [5].

The signature of meadows is the same as the signature of fields. It is a
one-sorted signature. We make the single sort explicit because we will extend
this signature to a two-sorted signature in Section 4. The signature of meadows
consists of the sort Q of quantities and the following constants and operators:

– the constants 0 : → Q and 1 : → Q;
– the binary addition operator + :Q×Q → Q;
– the binary multiplication operator · :Q×Q → Q;
– the unary additive inverse operator − :Q → Q;
– the unary multiplicative inverse operator −1 :Q → Q.

We assume that there is a countably infinite set U of variables of sort Q,
which contains u, v and w, with and without subscripts. Terms are built as
usual. We use infix notation for the binary operators + and · , prefix notation
for the unary operator −, and postfix notation for the unary operator −1. We
use the usual precedence convention to reduce the need for parentheses. We
introduce subtraction and division as abbreviations: p− q abbreviates p+ (−q)
and p/q abbreviates p · q−1. For each non-negative natural number n, we write n
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Table 1. Axioms for meadows

(u+ v) + w = u+ (v + w)

u+ v = v + u

u+ 0 = u

u+ (−u) = 0

(u · v) · w = u · (v · w)

u · v = v · u
u · 1 = u

u · (v + w) = u · v + u · w

(u−1)−1 = u

u · (u · u−1) = u

for the numeral for n. That is, the term n is defined by induction on n as follows:
0 = 0 and n+ 1 = n + 1. We also use the notation pn for exponentiation with
a natural number as exponent. For each term p over the signature of meadows,
the term pn is defined by induction on n as follows: p0 = 1 and pn+1 = pn · p.

The constants and operators from the signature of meadows are adopted from
rational arithmetic, which gives an appropriate intuition about these constants
and operators.

A meadow is an algebra with the signature of meadows that satisfies the
equations given in Table 1. Thus, a meadow is a commutative ring with identity
equipped with a multiplicative inverse operation −1 satisfying the reflexivity
equation (u−1)−1 = u and the restricted inverse equation u · (u ·u−1) = u. From
the equations given in Table 1, the equation 0−1 = 0 is derivable (see [13]).

A non-trivial meadow is a meadow that satisfies the separation axiom

0 6= 1 ;

and a cancellation meadow is a meadow that satisfies the cancellation axiom

u 6= 0 ∧ u · v = u · w ⇒ v = w ,

or equivalently, the general inverse law

u 6= 0 ⇒ u · u−1 = 1 .

Important properties of non-trivial cancellation meadows are u/u = 0 ⇔
u = 0 and u/u = 1 ⇔ u 6= 0. Henceforth, we will write p⊳r⊲ q for (1 − r/r) ·
p+(r/r)·q. For non-trivial cancellation meadows, p⊳r⊲q can be read as follows:
if r equals 0 then p else q.

Each field with the multiplicative inverse operation made total by imposing
that the multiplicative inverse of zero is zero is a non-trivial meadow. The prime
example of a non-trivial cancellation meadow is the rational number field with
the multiplicative inverse operation made total by imposing that the multiplica-
tive inverse of zero is zero.

A signed meadow is a meadow expanded with a unary signum operation s

satisfying the equations given in Table 2. In combination with the cancellation
axiom, the last equation in this table is equivalent to the conditional equation
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Table 2. Additional axioms for signum operation

s(u/u) = u/u

s(1− u/u) = 1− u/u

s(−1) = −1

s(u−1) = s(u)

s(u · v) = s(u) · s(v)
(1− s(u)−s(v)

s(u)−s(v)
) · (s(u+ v)− s(u)) = 0

s(u) = s(v) ⇒ s(u + v) = s(u). In signed meadows, the predicates < and > are
defined as follows:

u < v ⇔ 1 + s(u− v) = 0 ,

u > v ⇔ 1− s(u− v) = 0 .

In [5], it is shown that the equational theories of signed meadows and signed
cancellation meadows are identical.

3 ACP Process Algebras

In this section, we introduce the notion of an ACP process algebra. This notion
originates from the models of ACP, an axiom system that was first presented
in [7]. A comprehensive introduction to ACP can be found in [3,15].

It is assumed that a fixed but arbitrary set A of atomic action names, with
δ /∈ A, has been given.

The signature of ACP process algebras is a one-sorted signature. We make the
single sort explicit because we will extend this signature to a two-sorted signature
in Section 4. The signature of ACP process algebras consists of the sort P of
processes and the following constants, operators, and predicate symbols:

– the deadlock constant δ : → P;
– for each e ∈ A, the atomic action constant e : → P;
– the binary alternative composition operator + :P×P → P;
– the binary sequential composition operator · :P×P → P;
– the binary parallel composition operator ‖ :P×P → P;
– the binary left merge operator ⌊⌊ :P×P → P;
– the binary communication merge operator | :P×P → P;
– for each H ⊆ A, the unary encapsulation operator ∂H :P → P;
– the unary atomic action predicate symbol A :P.

We assume that there is a countably infinite set X of variables of sort P,
which contains x, y and z, with and without subscripts. Terms are built as usual.
We use infix notation for the binary operators. We use the following precedence
conventions to reduce the need for parentheses: the operator + binds weaker
than all other binary operators and the operator · binds stronger than all other
binary operators.

Let P and Q be closed terms of sort P. Intuitively, the constants, operators
and predicate symbols introduced above can be explained as follows:
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– δ is not capable of doing anything;
– e is only capable of performing atomic action e and next terminating suc-

cessfully;
– P +Q behaves either as P or as Q, but not both;
– P ·Q first behaves as P and on successful termination of P it next behaves

as Q;
– P ‖Q behaves as the process that proceeds with P and Q in parallel;
– P ⌊⌊Q behaves the same as P ‖Q, except that it starts with performing an

atomic action of P ;
– P | Q behaves the same as P ‖ Q, except that it starts with performing an

atomic action of P and an atomic action of Q synchronously;
– ∂H(P ) behaves the same as P , except that atomic actions from H are

blocked;
– A(P ) holds if P is an atomic action.

The operators ⌊⌊ and | are of an auxiliary nature. They are needed for the ax-
iomatization of ACP process algebras.

The predicate symbol A is used to distinguish atomic actions from other
processes. This predicate symbol, which does not occur in the axiom system
ACP, obviates the need to have a constant for each atomic action. An alternative
way to distinguish atomic actions from other processes is to have a subsort A
of the sort P. We have not chosen this alternative way because it complicates
matters considerably. Moreover, we prefer to keep close to elementary algebraic
specification (see e.g. [12]). By the notational convention introduced below, we
seldom have to use the predicate symbol A explicitly.

In equations between terms of sort P, we will use a notational convention
which requires the following assumption: there is a countably infinite set X ′ ⊆ X
that contains a, b and c, with and without subscripts, but does not contain x, y
and z, with and without subscripts. Let φ be an equation between terms of sort
P, and let {a1, . . . , an} be the set of all variables from X ′ that occur in φ. Then
we write φ for A(x1) ∧ . . . ∧ A(xn) ⇒ φ′, where φ′ is φ with, for all i ∈ [1, n],
all occurrences of ai replaced by xi, and x1, . . . , xn are variables from X that do
not occur in φ.

An ACP process algebra is an algebra with the signature of ACP process
algebras that satisfies the formulas given in Table 3. Three formulas in this table
are actually schemas of formulas: e is a syntactic variable which stands for an
arbitrary constant of sort P (i.e. an atomic action constant or the deadlock
constant). A side condition is added to two schemas to restrict the constants for
which the syntactic variable stands.

Because the notational convention introduced above is used, the four equa-
tions in Table 3 that are actually conditional equations look the same as their
counterpart in the axiom system ACP. It happens that these conditional equa-
tions allow for the generalization to meadow enriched ACP process algebras to
proceed smoothly. Apart from this, the set of formulas given in Table 3 differs
from the axiom system ACP on three points. Firstly, the equations x | y = y | x,
(x | y) | z = x | (y | z), and δ | x = δ have been added. In the axiom system ACP,
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Table 3. Axioms for ACP process algebras

x+ y = y + x

(x+ y) + z = x+ (y + z)

x+ x = x

(x+ y) · z = x · z + y · z
(x · y) · z = x · (y · z)
x+ δ = x

δ · x = δ

∂H(e) = e if e /∈ H

∂H(e) = δ if e ∈ H

∂H(x+ y) = ∂H(x) + ∂H(y)

∂H(x · y) = ∂H(x) · ∂H(y)

x ‖ y = (x ⌊⌊ y + y ⌊⌊ x) + x | y
a ⌊⌊ x = a · x
a · x ⌊⌊ y = a · (x ‖ y)
(x+ y) ⌊⌊ z = x ⌊⌊ z + y ⌊⌊ z
a | b · x = (a | b) · x
a · x | b · y = (a | b) · (x ‖ y)
(x+ y) | z = x | z + y | z
x | y = y | x
(x | y) | z = x | (y | z)
δ | x = δ

A(e)

A(x) ∧ A(y) ⇒ A(x | y)

all closed substitution instances of these equations are derivable. Secondly, the
equations a · x | b = (a | b) · x and x | (y + z) = x | y + x | z have been removed.
These equations can be derived using the added equation x|y = y |x. Thirdly, the
formulas A(e) and A(x) ∧ A(y) ⇒ A(x | y) have been added. They express that
the processes denoted by constants of sort P are atomic actions and that the
processes that result from the communication merge of two atomic actions are
atomic actions. This does not exclude that there are additional atomic actions,
which is impossible in the case of ACP.

For each model of the axiom system ACP given in [3], its expansion with the
appropriate interpretation of the atomic action predicate symbol A is an ACP
process algebra.

Not all processes in an ACP process algebra have to be interpretations of
closed terms, even if all atomic actions are interpretations of closed terms. The
processes concerned may be solutions of sets of recursion equations. It is recom-
mendable to restrict the attention to ACP process algebras satisfying additional
axioms by which sets of recursion equations that fulfil a guardedness condition
have unique solutions. For a comprehensive treatment of this issue, the reader
is referred to [3].

4 Meadow Enriched ACP Process Algebras

In this section, we introduce the notion of a meadow enriched ACP process
algebra. This notion is a simple generalization of the notion of an ACP process
algebra introduced in Section 3 to processes in which data are involved. The
elements of a signed meadow are taken as data.

The signature of meadow enriched ACP process algebras is a two-sorted
signature. It consists of the sorts, constants and operators from the signatures

7



of ACP process algebras and signed meadows and in addition the following
operators:

– for each n ∈ N and e ∈ A, the n-ary data handling atomic action operator
e :Q× · · · ×Q

︸ ︷︷ ︸

n times

→ P;

– the binary guarded command operator :→ :Q×P → P.

We take the variables in U for the variables of sort Q and the variables in
X for the variables of sort P. We assume that the sets U and X are disjoint.
Terms are built as usual for a many-sorted signature (see e.g. [28,31]). We use
the same notational conventions as before. In addition, we use infix notation for
the binary operator :→ .

Let p1, . . . , pn and p be closed terms of sort Q and P be a closed term of sort
P. Intuitively, the additional operators can be explained as follows:

– e(p1, . . . , pn) is only capable of performing data handling atomic action
e(p1, . . . , pn) and next terminating successfully;

– p :→ P behaves as the process P if p equals 0 and is not capable of doing
anything otherwise.

The different guarded command operators that have been proposed before in
the setting of ACP have one thing in common: their first operand is considered
to stand for an element of the domain of a Boolean algebra (see e.g. [8]). In
contrast with those guarded command operators, the first operand of the guarded
command operator introduced here is considered to stand for an element of the
domain of a signed meadow.

A meadow enriched ACP process algebra is an algebra with the signature
of meadow enriched ACP process algebras that satisfies the formulas given in
Tables 1–4. Like in Table 3, some formulas in Table 4 are actually schemas of
formulas: e, e′ and e′′ are syntactic variables which stand for arbitrary constants
of sort P different from δ and, in addition, n and m stand for arbitrary natural
numbers.

For meadow enriched ACP process algebras that satisfy the separation axiom
and the cancellation axiom, the five equations concerning the guarded command
operator on the left-hand side in the upper half of Table 4 can easily be under-
stood by taking the view that 0 and 1 represent the Boolean values T and F,
respectively. In that case, we have that

– p/p models the test that yields T if p = 0 and F otherwise;
– if both p and q are equal to 0 or 1, then 1− p models ¬p, p · q models p ∨ q,

and consequently 1− (1 − p) · (1− q) models p ∧ q.

From this view, the equations given in the upper half of Table 4 differ from
the axioms for the most general kind of guarded command operator that has
been proposed in the setting of ACP (see e.g. [8]) on two points only. Firstly,
the equation u :→ x = u/u :→ x has been added. This equation formalizes
the informal explanation of the guarded command given above. Secondly, the

8



Table 4. Additional axioms for meadow enriched ACP process algebras

0 :→ x = x

1 :→ x = δ

u :→ x = (u/u) :→ x

u :→ (v :→ x) = (1− (1− u/u) · (1− v/v)) :→ x

u :→ x+ v :→ x = (u/u · v/v) :→ x

u :→ δ = δ

u :→ (x+ y) = u :→ x+ u :→ y

u :→ x · y = (u :→ x) · y
(u :→ x) ⌊⌊ y = u :→ (x ⌊⌊ y)
(u :→ x) | y = u :→ (x | y)
∂H(u :→ x) = u :→ ∂H(x)

e | e′ = e′′ ⇒
e(u1, . . . , un) | e′(v1, . . . , vn) = (u1 − v1) :→ (· · · :→ ((un − vn) :→ e′′(u1, . . . , un)) · · ·)

e | e′ = δ ⇒ e(u1, . . . , un) | e′(v1, . . . , vn) = δ

e(u1, . . . , un) | e′(v1, . . . , vm) = δ if n 6= m

∂H(e(u1, . . . , un)) = e(u1, . . . , un) if e 6∈ H

∂H(e(u1, . . . , un)) = δ if e ∈ H

A(e(u1, . . . , un))

equation x | (u :→ y) = u :→ (x | y) has been removed. This equation can be
derived using the equation x | y = y | x from Table 3.

The equations in Table 4 concerning the communication merge of data han-
dling atomic actions formalize the intuition that two data handling atomic ac-
tions e(p1, . . . , pn) and e′(q1, . . . , qm) can be performed synchronously iff e and
e′ can be performed synchronously and n = m and p1 = q1 and . . . and pn = qn.
The equations concerning the encapsulation of data handling atomic actions
agree with the way in which the encapsulation of data handling atomic actions
is dealt with in µCRL and PSF. The formula concerning the atomic action pred-
icate simply expresses that data handling atomic actions are also atomic actions.

Henceforth, we will write P ⊳p⊲ Q for (p/p) :→ P + (1 − p/p) :→ Q. For
meadow enriched ACP process algebras that satisfy the separation axiom and
the cancellation axiom, P ⊳p⊲ Q can be read as follows: if p equals 0 then P
else Q.

For each ACP process algebra A′ and each signed non-trivial cancellation
meadow A′′, there exists an amalgamation of A′ and A′′, i.e. a model of the
axioms for both ACP process algebras and signed non-trivial cancellation mead-
ows whose restriction to the signature of ACP process algebras is A′ and whose
restriction to the signature of signed meadows is A′′ (by the amalgamation result
about expansions presented as Theorem 6.1.1 in [19], adapted to the many-sorted
case). For each amalgamation of an ACP process algebra with a countably in-
finite set of atomic actions and a signed non-trivial cancellation meadow, its
expansion with the appropriate interpretation of the data handling atomic ac-
tion operators e and the guarded command operator :→ is a meadow enriched
ACP process algebra.
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In subsequent sections, we write Σmp for the signature of meadow enriched
ACP process algebras.

5 A Calculus for Meadow Enriched ACP Process Algebras

In this section, we associate a calculus with meadow enriched ACP process al-
gebras. For that, we introduce, for all associative operators from the signature
of meadow enriched ACP process algebras that are not of an auxiliary nature,
variable-binding operators as generalizations. To build terms of the calculus,
called binding terms, both the constants and operators from the signature of
meadow enriched ACP process algebras and those variable-binding operators
are available.

The sets of binding terms of sorts Q and P, written BTQ and BTP, respec-
tively, are inductively defined by the following formation rules (where S1, . . . , Sn

and S range over the sorts from Σmp):

– if u ∈ U , then u ∈ BTQ;
– if x ∈ X , then x ∈ BTP;
– if c :→ S is a constant from Σmp, then c ∈ BTS ;
– if o:S1×· · ·×Sn → S is an operator from Σmp and t1 ∈ BTS1

, . . . , tn ∈ BTSn
,

then o(t1, . . . , tn) ∈ BTS ;
– if u ∈ U and t ∈ BTQ, then, for each n ∈ N

+,
∑n

u t ∈ BTQ and
∏n

u t ∈ BTQ;1

– if u ∈ U and t ∈ BTP, then, for each n ∈ N
+,+

n

u t ∈ BTP, •

n

u t ∈ BTP, and

‖n

u t ∈ BTP.

∑n,
∏n, +

n
, •

n
, and ‖n

are the variable-binding operators mentioned
above. They bind variables that range over all quantities that can be denoted
by numerals k where 0 ≤ k < n (in plain terms, quantities that correspond to
natural numbers less than n). Intuitively,

∑n

u t stands for t1 + · · ·+ tn, where ti
(1 ≤ i ≤ n) is t with all occurrences of u replaced by u− 1, and analogously in
the case of

∏n,+
n
, •

n
, and ‖n

.
A binding term t is a comprehended term if it is a binding term of the form

♦
n

u t
′, where ♦

n
is a variable-binding operator.2 Below, we will give the axioms

of the calculus associated with meadow enriched ACP process algebras. We have
to do with a calculus because the distinction between free and bound variables
is essential in applying the axioms concerning comprehended terms.

A variable u ∈ U occurs free in a binding term t if there is an occurrence of
u in t that is not in a subterm of the form♦

n

u t
′, where ♦

n
is a variable-binding

operator. A binding term t is closed if it is a binding term in which no variable
occurs free.

Substitution of a binding term t′ of sort P for a variable x ∈ X in a binding
term t, written t[t′/x], is defined by induction on the structure of t as usual:

1 We write N
+ for the set N \ {0}.

2 The name comprehended term originates from the name comprehended expression
introduced in [27].
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v[t′/x] = v ,

y[t′/x] =







t′

y

if x ≡ y , 3

otherwise ,

c[t′/x] = c ,

o(t1, . . . , tn)[t
′/x] = o(t1[t

′/x], . . . , tn[t
′/x]) ,

(♦
n

v t
′′)[t′/x] =







♦
n

w((t
′′[w/v])[t′/x])

♦
n

v (t
′′[t′/x])

if v occurs free in t′

(w does not occur in t′, t′′) ,

otherwise .

and substitution of a binding term t′ of sort Q for a variable u ∈ U in a binding
term t, written t[t′/u], is defined by induction on the structure of t as follows:

v[t′/u] =







t′

v

if u ≡ v ,

otherwise ,

x[t′/u] = x ,

c[t′/u] = c ,

o(t1, . . . , tn)[t
′/u] = o(t1[t

′/u], . . . , tn[t
′/u]) ,

(♦
n

v t
′′)[t′/u] =







♦
n

v t
′′

♦
n

w((t
′′[w/v])[t′/u])

♦
n

v (t
′′[t′/u])

if u ≡ v ,

if u 6≡ v, v occurs free in t′

(w does not occur in t′, t′′) ,

otherwise .

The essentiality of the distinction between free and bound variables in apply-
ing the axioms concerning comprehended terms originates from the substitutions
involved in applying those axioms.

The axioms of the calculus associated with meadow enriched ACP process
algebras are the formulas given in Tables 1–5. Like some equations in Tables 3
and 4, the equations in Table 5 are actually schemas of equations: p and P are
syntactic variables which stand for arbitrary binding terms of sort Q and sort
P, respectively, and n stands for an arbitrary positive natural number.

The axioms given in Table 5 are called the axioms for comprehended terms.
They consist of three axioms, including an α-conversion axiom, for each of the
variable-binding operators of the calculus. For each comprehended term, we can
derive from these axioms that the comprehended term is equal to a term over
the signature of meadow enriched ACP process algebras.

3 We write ≡ for syntactic identity.
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Table 5. Axioms for comprehended terms

∑

n

u
p =

∑

n

v
(p[v/u]) if v does not occur free in p

∑1
u
p = p[0/u]

∑

n+1
u

p = p[0/u] +
∑

n

u
(p[u+ 1/u])

∏

n

u
p =

∏

n

v
(p[v/u]) if v does not occur free in p

∏1
u
p = p[0/u]

∏

n+1
u

p = p[0/u] ·∏n

u
(p[u+ 1/u])

+
n

u
P =+

n

v
(P [v/u]) if v does not occur free in P

+
1

u
P = P [0/u]

+
n+1

u
P = P [0/u] ++

n

u
(P [u+ 1/u])

•

n

u
P = •

n

v
(P [v/u]) if v does not occur free in P

•

1

u
P = P [0/u]

•

n+1

u
P = P [0/u] · •

n

u
(P [u+ 1/u])

‖n

u
P = ‖n

v
(P [v/u]) if v does not occur free in P

‖1

u
P = P [0/u]

‖n+1

u
P = P [0/u] ‖ ‖n

u
(P [u+ 1/u])

Theorem 1 (Elimination). For all comprehended terms t, there exists a term

t′ over the signature of meadow enriched ACP process algebras such that t = t′

is derivable from the axioms for comprehended terms.

Proof. If t is of the form
∑n

u t
′′,

∏n

u t
′′,+

n

u t
′′, •

n

u t
′′ or ‖n

u t
′′, where t′′ is a term

over the signature of meadow enriched ACP process algebras of the right sort,
then it is easy to prove by induction on n that there exists a term t′ over the
signature of meadow enriched ACP process algebras such that t = t′ is derivable
from the axioms for comprehended terms. Using this fact, the general case is
easily proved by induction on the depth of t. ⊓⊔

The comprehended terms of the calculus associated with meadow enriched
ACP process algebras are finitary comprehended terms because the variable-
binding operators of the calculus bind variables with a finite range only. This is
a prerequisite for elimination of variable-binding operators.

6 The Interpretation of Terms of the Calculus

In this section, we define the interpretation of terms of the calculus associated
with meadow enriched ACP process algebras. We assume that a fixed but arbi-
trary meadow enriched ACP process algebra A has been given.
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We write σA, where σ in Σmp, for the interpretation of σ in A. Moreover, we
write f +1, where f :QA → QA or f :QA → PA, for the function f ′ :QA → QA

or f ′ :QA → PA, respectively, defined by f ′(q) = f(q +A 1A).
The terms of the calculus introduced above can be directly interpreted in

A. To achieve that, we associate with each variable-binding operator ♦
n
of the

calculus a function ♦
n

A
: (QA → QA) → QA or ♦

n

A
: (QA → PA) → PA as

follows:

∑1
A
(f) = f(0A) ,

∑n+1
A

(f) = f(0A) +A

∑n

A
(f + 1) ,

∏1
A
(f) = f(0A) ,

∏n+1
A

(f) = f(0A) ·A
∏n

A
(f + 1) ,

+
1

A
(f) = f(0A) ,

+
n+1

A
(f) = f(0A) +A+

n

A
(f + 1) ,

•

1

A
(f) = f(0A) ,

•

n+1

A
(f) = f(0A) ·A •

n

A
(f + 1) ,

‖1

A
(f) = f(0A) ,

‖n+1

A
(f) = f(0A) ‖A ‖n

A
(f + 1) .

The interpretation of a term of the calculus in A depends on the elements
of QA and PA that are associated with the variables that occur free in it. We
model such associations by functions ρ :(U ∪X ) → (QA∪PA) such that u ∈ U ⇒
ρ(u) ∈ QA and x ∈ X ⇒ ρ(x) ∈ PA. These functions are called assignments

in A. We write AssA for the set of all assignments in A. For each assignment
ρ ∈ AssA, u ∈ U and q ∈ QA, we write ρ(u → q) for the unique assignment
ρ′ ∈ AssA such that ρ′(v) = ρ(v) if v 6≡ u and ρ′(u) = q.

The interpretation of terms of the calculus in a meadow enriched ACP process
algebra A is given by the function [[ ]]

A
: (BTQ ∪ BTP) → (AssA → (QA ∪PA))

defined as follows:

[[u]]
A
(ρ) = ρ(u) ,

[[x]]
A
(ρ) = ρ(x) ,

[[c]]
A
(ρ) = cA ,

[[o(t1, . . . , tn)]]A(ρ) = oA([[t1]]A(ρ), . . . , [[tn]]A(ρ)) ,

[[♦
n

u t]]A(ρ) =♦
n

A
(f), where f is defined by f(q) = [[t]]

A
(ρ(u → q)) .

The axioms of the calculus associated with meadow enriched ACP process
algebras are sound with respect to the interpretation of the terms of the calculus
given above.

Theorem 2 (Soundness). For all equations t = t′ that belong to the axioms

of the calculus associated with meadow enriched ACP process algebras, we have

that [[t]]
A
(ρ) = [[t′]]

A
(ρ) for all assignments ρ ∈ AssA.

Proof. For all equations t = t′ that belong to the axioms for meadow enriched
ACP process algebras, the soundness follows immediately from the fact that A is

13



a meadow enriched ACP process algebra. For all equations t = t′ that belong to
the axioms for comprehended terms, the soundness is easily proved by induction
on the structure of t. ⊓⊔

Because the terms of the calculus associated with meadow enriched ACP
process algebras can be directly interpreted in meadow enriched ACP process
algebras, we consider the variable-binding operators of the calculus to consti-
tute a process algebraic feature. Fitting them in an algebraic framework does
not involve any serious theoretical complication. It is much more difficult to fit
the variable-binding operators from µCRL and PSF that generalize associative
operators of ACP, but do not give rise to finitary comprehended terms, in an
algebraic framework (see e.g. [22]).

7 The Binary Variable-Binding Operators

Full elimination of all variable-binding operators occurring in a comprehended
term can lead to a combinatorial explosion. In this section, we show that no com-
binatorial explosion takes place if variable-binding operators that bind variables
with a two-valued range are still permitted in the resulting term.

We begin by looking at an example. From the axioms for comprehended
terms, we easily derive the equation

∑7
u p = p[0/u] + · · ·+ p[6/u] .

This suggests that, on full elimination of variable-binding operators, the size of
the resulting term grows rapidly as the size of the original term increases (there
are seven substitution instances of p and they have increasing sizes). Using the
axioms for comprehended terms as well as other axioms of the calculus, we derive
the following:

p[0/u] + · · ·+ p[6/u]

= p[0/u] + · · ·+ p[6/u] + 0

= (0 ⊳1− s(u − 6)⊲ p)[0/u] + · · ·+ (0 ⊳1− s(u − 6)⊲ p)[7/u]

=
∑2

u

(∑2
v

(∑2
w

(
(0⊳1− s(u− 6)⊲ p)[22 · w + 21 · v + 20 · u/u]

)))

=
∑2

u

(∑2
v

(∑2
w

(
((0⊳1− s(u− 6)⊲ p)[2 · v + u/u])[2 · w + v/v]

)))
.

This suggests that, if variable-binding operators that bind variables with a two-
valued range are still permitted in the resulting term, its size grows far less
rapidly as the size of the original term increases (there is only one substitution
instance of p). However, a counterpart of the first step in the derivation above
does not exist for comprehended terms of the forms •

n

u p and ‖
n

u p because identity
elements for sequential and parallel composition are missing.

Henceforth, we will use the term binary variable-binding operators for the
variable-binding operators that bind variables with a two-valued range and the
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term non-binary variable-binding operators for the other variable-binding oper-
ators.

The size of binding terms is given by the function size : (BTQ ∪ BTP) → N

defined as follows:

size(u) = 1 ,

size(x) = 1 ,

size(c) = 1 ,

size(o(t1, . . . , tn)) = size(t1) + · · ·+ size(tn) + 1 ,

size
(

♦
n

u(t)
)

= size(t) + log2(n) + 1 .4

The summand log2(n) occurs in the equation for the size of a term of the form

♦
n

u(t) because having (the cardinality of) the range of u encoded in the variable-
binding operator is an artifice that must be taken into account using the most
efficient way in which n could be represented by a binding term. It follows from
Proposition 1 formulated below that the size of this term is of order log2(n).

The important insights relevant to elimination of non-binary variable-binding
operators are brought together in the following proposition.

Proposition 1. From the axioms of the calculus associated with meadow en-

riched ACP process algebras, we can derive the equations from Table 6 for each

binding term p of sort Q, binding term P of sort P, and n,m ∈ N
+.

Proof. It follows immediately from the axioms for comprehended terms that the
first two equations for

∑n
are derivable. It is easy to prove by induction on n

that
∑2·n

u p =
∑n

u(p[2 · u/u]) +
∑n

u(p[2 · u+ 1/u])

is derivable. From this it follows easily that the third equation for
∑n

is deriv-
able. It is easy to prove by case distinction between n = 1 and n > 1 that

∑n

u(0 ⊳1− s(u − 0)⊲ p) = p[0/u]

is derivable. Using this fact, it is easy to prove by induction on n that for all
m ≥ n+ 1:

∑n+1
u p =

∑m

u (0 ⊳1− s(u − n)⊲ p)

is derivable. From this it follows easily that the fourth equation for
∑n

is deriv-
able. The proofs for the equations for

∏n
,+

n
, •

n
and ‖n

go analogously, with

the exception of the fourth equation for •

n
and ‖n

. It is easy to prove by induc-
tion on n that for all m < n:

•

n

u P = •

m

u P · •

n−m

u (P [m+ u/u])

4 We use the convention that, whenever we write log2(n) in a context requiring a
natural number, ⌈log2(n)⌉ is implicitly meant.
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Table 6. Derived equations for comprehended terms

∑1
u
p = p[0/u]

∑2
u
p = p[0/u] + p[1/u]

∑2n+1

u
p =

∑2
u

(

∑2n

v
(p[2 · v + u/u])

)

∑

n+1
u

p =
∑2m

u
(0⊳1− s(u− n)⊲ p) if n+ 1 ≤ 2m

∏1
u
p = p[0/u]

∏2
u
p = p[0/u] · p[1/u]

∏2n+1

u
p =

∏2
u

(

∏2n

v
(p[2 · v + u/u])

)

∏

n+1
u

p =
∏2m

u
(1⊳1− s(u− n)⊲ p) if n+ 1 ≤ 2m

+
1

u
P = P [0/u]

+
2

u
P = P [0/u] + P [1/u]

+
2n+1

u
P =+

2

u

(

+
2n

v
(P [2 · v + u/u])

)

+
n+1

u
P =+

2m

u
(δ ⊳1− s(u− n)⊲ P ) if n+ 1 ≤ 2m

•

1

u
P = P [0/u]

•

2

u
P = P [0/u] · P [1/u]

•

2n+1

u
P = •

2

u

(

•

2n

v
(P [2 · v + u/u])

)

•

n+1

u
P = •

2m

u
P · •

(n+1)−2m

u
(P [2m + u/u]) if 2m < n+ 1 < 2m+1

‖1

u
P = P [0/u]

‖2

u
P = P [0/u] ‖ P [1/u]

‖2n+1

u
P = ‖2

u

(

‖2n

v
(P [2 · v + u/u])

)

‖n+1

u
P = ‖2m

u
P ‖ ‖(n+1)−2m

u
(P [2m + u/u]) if 2m < n+ 1 < 2m+1

is derivable. From this it follows easily that the fourth equation for •

n
is derivable.

The proof for the fourth equation for ‖n
goes analogously. ⊓⊔

The axioms for comprehended terms give rise to a corollary about full elim-
ination of all variable-binding operators.

Corollary 1. Let t be a comprehended term without comprehended terms as

proper subterms, and let k = size(t). Then there exists a term t′ over the sig-

nature of meadow enriched ACP process algebras such that t = t′ is derivable

from the axioms of the calculus associated with meadow enriched ACP process

algebras and

– size(t′) = O(k2 · 2k);
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– size(t′) = Ω(k · 2k−2) if t is a term of the form
∑n

u t
′′ or

∏n

u t
′′ and the

number of times that u occurs free in t′′ is greater than zero;

– size(t′) = Ω(k · 2k−3) if t is a term of the form +
n

u t
′′, •

n

u t
′′ or ‖n

u t
′′ and

the number of times that u occurs free in t′′ is greater than zero.

Proof. Term t is a binding term of the form ♦
n

u t
′′, where ♦

n
is a variable-

binding operator. Let k′ = size(t′′), let k′′ be the number of times that u occurs
free in t′′, and let li (0 ≤ i < n) be the size of the smallest term p over the
signature of meadow enriched ACP process algebras such that p = i. Then
size(t′) = n · k′ +∑n−1

i=0 (k
′′ · li) + n− 1. Because k = k′ + log2(n) + 1, we know

that k′ < k, log2(n) < k and n < 2k. Moreover, we know that k′′ < k′ and
li = Θ(log2(i + 1)). Hence size(t′) = O(k2 · 2k). We also know that k′ ≥ 1
and, because k = k′ + log2(n) + 1, log2(n) ≥ k − 2 and n ≥ 2k−2 if t is of
the form

∑n

u t
′′ or

∏n

u t
′′; and that k′ ≥ 2 and, because k = k′ + log2(n) + 1,

log2(n) ≥ k− 3 and n ≥ 2k−3 if t is of the form+
n

u t
′′, •

n

u t
′′ or ‖n

u t
′′. Hence, in

the case where k′′ ≥ 1, size(t′) = Ω(k · 2k−2) if t is of the form
∑n

u t
′′ or

∏n

u t′′

and size(t′) = Ω(k · 2k−3) if t is of the form+
n

u t
′′, •

n

u t
′′ or ‖n

u t
′′. ⊓⊔

Proposition 1 gives rise to a corollary about full elimination of all non-binary
variable-binding operators.

Corollary 2. Let t be a comprehended term without comprehended terms as

proper subterms, and let k = size(t). Then there exists a binding term t′ with-
out non-binary variable-binding operators such that t = t′ is derivable from the

axioms of the calculus associated with meadow enriched ACP process algebras

and

– size(t′) = O(k3) if t is a term of the form
∑n

u t
′′,

∏n

u t
′′ or +

n

u t
′′;

– size(t′) = Ω(k2) if t is a term of the form
∑n

u t
′′,

∏n

u t
′′ or +

n

u t
′′;

– size(t′) = O(k4) if t is a term of the form •

n

u t
′′ or ‖n

u t
′′;

– size(t′) = Ω(k3) if t is a term of the form •

n

u t
′′ or ‖n

u t
′′ and the number of

times that u occurs free in t′′ is greater than zero.

Proof. Firstly, we consider the case where t is a term of the form
∑n

u t
′′,

∏n

u t′′

or+
n

u t
′′. Let k′ = size(t′′), let k′′ be the number of times that u occurs free in

t′′, and let l′n be the size of the smallest term p over the signature of meadow
enriched ACP process algebras such that p = 1 − s(u − n). Then size(t′) =
k′+

∑log2(n)
i=0 (k′′·(6·i))+log2(n)·(log2(n)+1)+4·l′n+6. Because k = k′+log2(n)+1,

we know that k′ < k and log2(n) < k. Moreover, we know that k′′ < k′ and
l′n = Θ(log2(n + 1)). Hence size(t′) = O(k3). We also know that k′ ≥ 1 and,
because k = k′ + log2(n) + 1, log2(n) ≥ k − 2 if t is of the form

∑n

u t
′′ or

∏n

u t
′′;

and that k′ ≥ 2 and, because k = k′ + log2(n) + 1, log2(n) ≥ k − 3 if t is of the
form+

n

u t
′′. Hence, size(t′) = Ω(k2).

Secondly, we consider the case where t is a term of the form •

n

u t
′′ or ‖n

u t
′′.

Let k′ = size(t′′), and let k′′ be the number of times that u occurs free in
t′′. Then size(t′) ≤ ∑log2(n)

i=0 (k′ +
∑log2(i)

j=0 (k′′ · (6 · j)) + log2(i) · (log2(i) + 1)).
Because k = k′ + log2(n) + 1, we know that k′ < k and log2(n) < k. Moreover,
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we know that k′′ < k′. Hence size(t′) = O(k4). We also have that size(t′) ≥
k′ +

∑log2(n)
i=0 (k′′ · (6 · i)) + log2(n) · (log2(n) + 1). Because k = k′ + log2(n) + 1

and k′ ≥ 2, we also know that log2(n) ≥ k− 3. Hence, in the case where k′′ ≥ 1,
size(t′) = Ω(k3). ⊓⊔

Corollaries 1 and 2 show that much of the compactness that can be achieved
with the variable-binding operators of the calculus associated with meadow en-
riched ACP process algebras can already be achieved with the binary variable-
binding operators.

In Corollary 2, size(t′) is O(k4) instead of O(k3) if t is of the form •

n

u t′′

or ‖n

u t
′′. The origin of this is that ACP process algebras do not have identity

elements for sequential and parallel composition. In the setting of ACP, the
identity element for sequential composition, as well as parallel composition, is
known as the empty process.

8 Adding an Identity Element for Sequential Composition

In this section, we investigate the effect of adding an identity element for sequen-
tial composition to ACP process algebras on the result concerning elimination
of non-binary variable-binding operators presented above.

The signature of these algebras is the signature of ACP process algebras
extended with the following:

– the empty process constant ǫ : → P;
– the unary termination operator

√
:P → P.

Let P be a closed term of sort P. Intuitively, the additional constant and
operator can be explained as follows:

– ǫ is only capable of terminating successfully;
–

√
(P ) is only capable of terminating successfully if P is capable of terminat-

ing successfully and is not capable of doing anything otherwise.

In the setting of ACP, the addition of the empty process constant has been
treated in several ways. The treatment in [21] yields a non-associative parallel
composition operator. The first treatment that yields an associative parallel
composition operator [30] is from 1986, but was not published until 1997. The
treatment in this paper is based on [1].

An ACP process algebra with an identity element for sequential composition

is an algebra with the signature of ACP process algebras with an identity element
for sequential composition that satisfies the formulas given in Table 3 with the
exception of x ‖ y = (x ⌊⌊ y + y ⌊⌊ x) + x | y and the formulas given in Table 7.

We could dispense with the equations a⌊⌊x = a ·x and a |b ·x = (a |b) ·x from
Table 3 because they have become derivable from the other equations. In spite
of the replacement of the equation x ‖ y = (x ⌊⌊ y+ y ⌊⌊ x) + x | y by the equation
x ‖ y = ((x ⌊⌊ y+ y ⌊⌊ x) + x | y) +√

(x) · √(y), the equations characterizing ACP
process algebras with an identity element for sequential composition constitute

18



Table 7. Replacing and additional axioms for empty process constant

x · ǫ = x

ǫ · x = x

x ‖ y = ((x ⌊⌊ y + y ⌊⌊ x) + x | y) +√
(x) · √(y)

x ⌊⌊ ǫ = x

ǫ ⌊⌊ x = δ

ǫ | x = δ

∂H(ǫ) = ǫ

√
(ǫ) = ǫ

√
(a) = δ

√
(x+ y) =

√
(x) +

√
(y)

√
(x · y) = √

(x) · √(y)
√
(x) · √(y) =

√
(y) · √(x)

x+
√
(x) = x

a conservative extension of the equations characterizing ACP process algebras.
The equation

√
(x) · √(y) =

√
(y) · √(x) is of importance because it makes the

equation (x ‖ y) ‖ z = x ‖ (y ‖ z) derivable. The equation x +
√
(x) = x is of

importance because it makes the equation x ‖ ǫ = x derivable.
Meadow enriched ACP process algebras with an identity element for sequen-

tial composition are defined like meadow enriched ACP process algebras. We can
associate a calculus with meadow enriched ACP process algebras with an iden-
tity element for sequential composition like we did before for meadow enriched
ACP process algebras.

By the addition of an identity element for sequential composition, the prop-
erties of •

n
and ‖n

with respect to elimination of non-binary variable-binding

operators become comparable to the properties of
∑n

,
∏n

and+
n
with respect

to elimination of non-binary variable-binding operators.

Proposition 2. From the axioms of the above-mentioned calculus, we can de-

rive the following equations for each binding term P of sort P and n,m ∈ N
+:

•

n+1

u P = •

2m

u (ǫ⊳1− s(u− n)⊲ P ) if n+ 1 ≤ 2m ,

‖n+1

u P = ‖2m

u (ǫ ⊳1− s(u − n)⊲ P ) if n+ 1 ≤ 2m .

Proof. The proofs for these equations go analogously to the proofs for the last
equations for

∑n
,
∏n

and+
n
in the proof of Proposition 1. ⊓⊔

Proposition 2 gives rise to a corollary about full elimination of the non-binary
variable-binding operators for sequential and parallel composition in the presence
of an identity element for sequential composition.

Corollary 3. Let t be a comprehended term of the form •

n

u t
′′ or ‖n

u t
′′ without

comprehended terms as proper subterms, and let k = size(t). Then there exists a

binding term t′ without non-binary variable-binding operators such that t = t′ is
derivable from the axioms of the above-mentioned calculus and size(t′) = O(k3)
and size(t′) = Ω(k2).

Proof. The proof goes analogously to the case where t is of the form
∑n

u t
′′,

∏n

u t
′′ or+

n

u t
′′ in the proof of Corollary 2. ⊓⊔
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Corollaries 2 and 3 imply that, on full elimination of the non-binary variable-
binding operators for sequential and parallel composition, the addition of an
identity element for sequential composition to ACP process algebras gives rise
to polynomially smaller terms.

9 Adding Process Sequences

In this section, we introduce process sequences to demonstrate that there is
an alternative to introducing variable-binding operators for several associative
operators on processes.

The signature of ACP process algebras with an identity element for sequential
composition and process sequences is the signature of ACP process algebras with
an identity element for sequential composition extended with the sort PS of
process sequences and the following constants and operators:

– the empty process sequence constant 〈 〉 :→ PS;
– the unary singleton process sequence operator 〈 〉 :P → PS;
– the binary process sequence concatenation operator y :PS×PS → PS;
– the unary generalized alternative composition operator+ :PS → P;
– the unary generalized sequential composition operator • :PS → P;
– the unary generalized parallel composition operator ‖ :PS → P.

We assume that there is a countably infinite set V of variables of sort PS, which
contains α, β and γ, with and without subscripts. We use the same notational
conventions as before. In addition, we use infix notation for the binary operator
y and mixfix notation for the unary operator 〈 〉.

The constant and the first two operators introduced above are the usual ones
for sequences, which gives an appropriate intuition about them. The remaining
three operators introduced above generalize alternative, sequential and parallel
composition to an arbitrary finite number of processes.

An ACP process algebra with an identity element for sequential composition

and process sequences is an algebra with the signature of ACP process algebras
with an identity element for sequential composition and process sequences that
satisfies the formulas given in Table 3 with the exception of x ‖ y = (x ⌊⌊ y + y ⌊⌊
x) + x | y and the formulas given in Tables 7 and 8.

If we would introduce process sequences in the absence of an identity element
for sequential composition, we should consider non-empty process sequences only.

Meadow enriched ACP process algebras with an identity element for sequen-
tial composition and process sequences are defined like meadow enriched ACP
process algebras. We can associate a calculus with meadow enriched ACP pro-
cess algebras with an identity element for sequential composition and process
sequences like we did before for meadow enriched ACP process algebras. More-
over, we can extend the resulting calculus with variable-binding operators that
generalize the process sequence concatenation operator. For the terms of the
extended calculus, we need the following additional formation rule:

– if u ∈ U and t ∈ BTPS, then, for each n ∈ N
+, y

n

u t ∈ BTPS.
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Table 8. Additional axioms for process sequences

α y 〈 〉 = α

〈 〉 y α = α

(α y β) y γ = α y (β y γ)

+(〈 〉) = δ

+(〈x〉) = x

+(〈x〉 y α) = x++(α)

•(〈 〉) = ǫ

•(〈x〉) = x

•(〈x〉 y α) = x · •(α)

‖(〈 〉) = ǫ

‖(〈x〉) = x

‖(〈x〉 y α) = x ‖ ‖(α)
Table 9. Additional axioms for comprehended terms of sort PS

y
n

u
S =y

n

v
(S[v/u])

y
1

u
S = S[0/u]

y
n+1

u
S = S[0/u] yy

n

u
(S[u+ 1/u])

The axioms of the extended calculus are the formulas given in Tables 1–5
and 7–9. Like some equations in Tables 3–5, the equations in Table 9 are actually
schemas of equations: S is a syntactic variable which stands for an arbitrary
binding term of sort PS, and n stands for an arbitrary positive natural number.

The properties of y
n
with respect to elimination of non-binary variable-

binding operators are comparable to the properties of +
n
, •

n
and ‖n

with
respect to elimination of non-binary variable-binding operators.

Proposition 3. From the axioms of the extended calculus, we can derive the

following equations for each binding term S of sort PS and n,m ∈ N
+:

y
1

u S = S[0/u] ,

y
2

u S = S[0/u] y S[1/u] ,

y
2n+1

u S =y
2

u

(
y

2n

v (S[2 · v + u/u])
)
,

y
n+1

u S = y
2m

u (〈 〉⊳1− s(u− n)⊲ S) if n+ 1 ≤ 2m .

Proof. The proof goes analogously to the case of the equations for
∑n

in the
proof of Proposition 1. ⊓⊔

Proposition 3 gives rise to a corollary about full elimination of the non-binary
variable-binding operators for process sequence concatenation.

Corollary 4. Let t be a comprehended term of the form y
n

u t
′′ without com-

prehended terms as proper subterms, and let k = size(t). Then there exists a

binding term t′ without non-binary variable-binding operators such that t = t′

is derivable from the axioms of the extended calculus and size(t′) = O(k3) and

size(t′) = Ω(k2).

Proof. The proof goes analogously to the case where t is of the form
∑n

u t
′′,

∏n

u t
′′ or+

n

u t
′′ in the proof of Corollary 2. ⊓⊔
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In the presence of the operators+, • and ‖ and the variable-binding operator
y

n
, the variable-binding operators+

n
, •

n
, and ‖n

are superfluous.

Proposition 4. From the axioms of the extended calculus, we can derive the

following equations for each binding term P of sort P and n ∈ N
+:

+
n

u P =+
(
y

n

u〈P 〉
)
, •

n

u P = •

(
y

n

u〈P 〉
)
, ‖n

u P = ‖(yn

u〈P 〉
)
.

Proof. This is easy to prove by induction on n. ⊓⊔

If we would introduce quantity sequences as well, we could get a similar result
for the variable-binding operators

∑n
and

∏n
.

Proposition 4 shows that there is an alternative to introducing variable-
binding operators for alternative, sequential and parallel composition. However,
this proposition also gives rise to a corollary about full elimination of the non-
binary variable-binding operators for alternative, sequential and parallel compo-
sition.

Corollary 5. Let t be a comprehended term of the form +
n

u t
′′, •

n

u t
′′ or ‖n

u t′′

without comprehended terms as proper subterms, and let k = size(t). Then there

exists a binding term t′ without non-binary variable-binding operators such that

t = t′ is derivable from the axioms of the extended calculus and size(t′) = O(k3)
and size(t′) = Ω(k2).

Proof. This is a direct consequence of Corollary 4 and Proposition 4. ⊓⊔

Corollary 5 implies that in the presence of an identity element for sequential
composition, on full elimination of the non-binary variable-binding operators
for alternative, sequential and parallel composition, the addition of process se-
quences to ACP process algebras does not give rise to significantly smaller or
larger terms.

10 Concluding Remarks

We have introduced the notion of an ACP process algebra. The set of equations
that have been taken to characterize ACP process algebras is a revision of the
axiom system ACP. We consider this revision worth mentioning of itself, if only
because it removes the need to have a constant for each atomic action. We have
also introduced the notion of a meadow enriched ACP process algebra. This
notion is a simple generalization of the notion of an ACP process algebra to
processes in which data are involved, the mathematical structure of data being a
meadow. The primary mathematical structure for calculations is unquestionably
a field, and a meadow differs from a field only in that the multiplicative inverse
operation is made total by imposing that the multiplicative inverse of zero is zero.
Therefore, we consider the combination of ACP process algebras and meadows
made in this paper, a combination with potentially many applications.
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For all associative operators from the signature of meadow enriched ACP
process algebras that are not of an auxiliary nature, we have introduced variable-
binding operators as generalizations. Thus, we have obtained a process calculus
whose terms can be interpreted in all meadow enriched ACP process algebras.
We have shown that the use of variable-binding operators that bind variables
with a two-valued range can already have a major impact on the size of terms,
and that the impact can be further increased if we add an identity element for
sequential composition to meadow enriched ACP process algebras. In addition,
we have demonstrated that there is an alternative to introducing variable-binding
operators for several associative operators on processes if we add a sort of process
sequences and suitable operators on process sequences to meadow enriched ACP
process algebras.

All variable-binding operators of the calculus associated with meadow en-
riched ACP process algebras can be eliminated from all terms of the calculus
by means of its axioms, and all terms of the calculus can be directly interpreted
in meadow enriched ACP process algebras. Therefore, although they yield a
calculus, we consider these variable-binding operators to constitute a process
algebraic feature. Fitting them in an algebraic framework does not involve any
serious theoretical complication.

Different from the variable-binding operators introduced in this paper, the
variable-binding operators from µCRL and PSF that generalize associative op-
erators of ACP do not give rise to finitary comprehended terms. It is much more
difficult to fit the variable-binding operators from those formalisms in an alge-
braic framework, see e.g. [22]. This also holds for the integration operator, which
is found in extensions of the axiom system ACP concerning timed processes to al-
low for the alternative composition of a continuum of differently timed processes
to be expressed (see e.g. [2]). It is worth mentioning that in effective µCRL, a
restriction of µCRL for which a simulator is feasible (see e.g. [17]), the variable
bound by the variable binding operator that generalizes alternative composition
must have a finite range.

We have also attempted to fit variable-binding operators that bind variables
with an infinite range in an algebraic framework. We have looked at binding
algebras [29], which are second-order algebras of a specific kind that covers
variable-binding operators. The problem is that the theory of binding algebras
is insufficiently elaborate for our purpose. For example, it is not known whether
the important characterization results from the theory of first-order algebras,
i.e. Birkhoff’s variety result and Malcev’s quasi-variety result (see e.g. [14,26]),
have generalizations for binding algebras.

It is known that many important results from the theory of first-order alge-
bras, including the above-mentioned ones, have generalizations for higher-order
algebras as considered in the theory of general higher-order algebras developed
in [24,20,25]. Therefore, we have also considered the replacement of variable-
binding operators by higher-order operators that give rise to such higher-order
algebras. However, owing to the absence of bound variables, additional higher-
order operators are needed which serve the same purpose as the combinators of
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combinatory logic [18]. Thus, this leads to the line taken earlier with combinatory
process algebra [4].
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