

Meeks, K., and Scott, A. (2014) Spanning trees and the complexity of flood-
filling games. Theory of Computing Systems, 54 (4). pp. 731-753. ISSN
1432-4350

Copyright © 2013 Springer Science+Business Media New York

A copy can be downloaded for personal non-commercial research or
study, without prior permission or charge

Content must not be changed in any way or reproduced in any format or
medium without the formal permission of the copyright holder(s)

When referring to this work, full bibliographic details must be given

http://eprints.gla.ac.uk/97127/

 Deposited on: 29 September 2014

Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

http://eprints.gla.ac.uk/view/author/33044.html
http://eprints.gla.ac.uk/view/journal_volume/Theory_of_Computing_Systems.html
http://eprints.gla.ac.uk/97127/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/

Spanning trees and the complexity of
flood-filling games

Kitty Meeks and Alexander Scott
Mathematical Institute, University of Oxford, 24-29 St Giles, Oxford OX1 3LB, UK

{meeks,scott}@maths.ox.ac.uk

May 29, 2013

Abstract

We consider problems related to the combinatorial game (Free-)
Flood-It, in which players aim to make a coloured graph monochro-
matic with the minimum possible number of flooding operations. We
show that the minimum number of moves required to flood any given
graph G is equal to the minimum, taken over all spanning trees T of
G, of the number of moves required to flood T . This result is then ap-
plied to give two polynomial-time algorithms for flood-filling problems.
Firstly, we can compute in polynomial time the minimum number of
moves required to flood a graph with only a polynomial number of
connected subgraphs. Secondly, given any coloured connected graph
and a subset of the vertices of bounded size, the number of moves
required to connect this subset can be computed in polynomial time.

1 Introduction

In this paper we consider several problems related to the one-player com-
binatorial game (Free-)Flood-It, introduced by Arthur, Clifford, Jalsenius,
Montanaro and Sach [5]. The game is played on a coloured graph, and the
goal is to make the entire graph monochromatic with as few moves as possi-
ble. A move involves picking a vertex v and a colour d, and giving all vertices
in the same monochromatic component as v colour d.

1

When the game is played on a planar graph, it can be regarded as mod-
elling repeated use of the flood-fill tool in Microsoft Paint. Implementations
of the game, played on a square grid, are widely available online, and include
a flash game [1] as well as popular smartphone apps [2, 3]. Mad Virus [4] is
a version of the same game played on a hexagonal grid, and the Honey Bee
Game [6] is a two player variant also played on a hexagonal grid, which has
been analysed by Fleischer and Woeginger [9].

For any coloured graph, we define the following problems.

• Free-Flood-It is the problem of determining the minimum number
of moves required to flood the coloured graph. The number of colours
may be unbounded.

• c-Free-Flood-It is the variant of Free-Flood-It in which only
colours from some fixed set of size c are used.

A related problem which naturally arises when considering algorithms for
Flood-It is to consider the number of moves required to connect a given set
of vertices.

• k-Linking-Flood-It is the problem, given a subset U of at most k
vertices, of determining the minimum number of moves required to cre-
ate a monochromatic component containing U . The number of colours
may be unbounded.

There is another variant of the game in which all moves must be played at
some fixed root vertex; we refer to the problem of determining the minimum
number of moves required to flood the board in this case as Fixed-Flood-
It.1

In [5], Arthur, Clifford, Jalsenius, Montanaro and Sach proved that c-
Free-Flood-It is NP-hard in the case of an n×n grid, for every c ≥ 3, and
that this result also holds for the fixed variant. Lagoutte, Noual and Thierry
[11, 12] showed that the same result holds when the game is played instead
on a hexagonal grid, as in Mad Virus or a one-player version of the Honey
Bee Game respectively. Fleischer and Woeginger [9] proved that c-Fixed-
Flood-It remains NP-hard when restricted to trees, for every c ≥ 4,2 and

1Fixed-Flood-It is often referred to as simply Flood-It, but we use the longer name
to avoid confusion with the free version.

2Note that this proof does in fact require four colours, not three as stated in a previous
version of [9].

2

Fukui, Nakanishi, Uehara, Uno and Uno [10] demonstrated that this result
can be extended to show the hardness of c-Free-Flood-It in the same
setting.

A few positive results are known, however. 2-Free-Flood-It is solvable
in polynomial time on arbitrary graphs, a result shown independently by
Clifford et. al. [7], Lagoutte [11] and Meeks and Scott [13]. It is also known
that Free-Flood-It is solvable in polynomial time on paths [7, 13, 10] and
cycles [10]. Although c-Free-Flood-It is NP-hard on rectangular 3 × n
boards for any c ≥ 4 [13], c-Free-Flood-It is fixed parameter tractable
with parameter c when restricted to 2×n boards (Meeks and Scott [14]), and
the fixed variant can be solved in linear time in this situation [7]. Meeks and
Scott [13] also show that 2-Linking Flood-It can be solved in polynomial
time for arbitrary graphs, even when the number of colours is unbounded.

In this paper we give some more general tractability results, which do not
require the number of colours to be bounded. Our first such result is that
Free-Flood-It can be solved in polynomial time on the class of graphs
which have only a polynomial number of connected subgraphs. This class
includes a number of interesting families of graphs, and the result implies a
conjecture from [13] that the problem can be solved in polynomial time on
subdivisions of any fixed graph. We also consider the fixed variant of the
game on the same class of graphs, and show that the minimum number of
moves can again be computed in polynomial time in this case. This substan-
tially extends results of Lagoutte [11], and Fukui, Nakanishi, Uehara, Uno
and Uno [10], who showed that the fixed and free variants respectively are
polynomially solvable on cycles.

We then go on to consider k-Linking-Flood-It. We prove that, for
any fixed k, it is possible to solve k-Linking-Flood-It in polynomial time,
without imposing any restrictions on the underlying graph or initial colour-
ing.

The key tool we use to prove these tractability results is a theorem which
allows us to consider only spanning trees of the graph G in order to deter-
mine the minimum number of moves required to flood it. Clearly this does
not immediately allow us to solve Free-Flood-It, as the problem remains
hard even on trees, and a graph will in general have an exponential number
of spanning trees. However, the result does provide a very useful method
for reasoning about the behaviour of sequences of flooding operations on
arbitrary graphs.

We begin in Section 2 with some notation and definitions, then in Section

3

3 we prove our result about spanning trees, and a number of corollaries.
Section 4 is concerned with graphs containing only a polynomial number
of connected subgraphs, and in Section 5 we consider the complexity of k-
Linking-Flood-It.

2 Notation and Definitions

Suppose the game is played on a graph G = (V,E), with an initial colouring
ω (not necessarily proper) using colours from the colour-set C. Each move
m = (v, d) then involves choosing some vertex v ∈ V and a colour d ∈ C, and
assigning colour d to all vertices in the same monochromatic component as
v. The goal is to make every vertex in G the same colour, using as few moves
as possible. We define mG(G,ω, d) to be the minimum number of moves
required in the free variant to give all vertices of G colour d, and mG(G,ω)
to be mind∈C m(G,ω, d).

Let A be any subset of V . We set mG(A, ω, d) to be the minimum
number of moves we must play in G (with initial colouring ω) to create a
monochromatic component of colour d that contains every vertex in A, and
mG(A, ω) = mind∈C mG(A, ω, d). We write ω|A for the colouring ω restricted
to the subset A. We say a move m = (v, d) is played in A if v ∈ A, and that
A is linked if it is contained in a single monochromatic component. Subsets
A,B ⊆ V are adjacent if there exists ab ∈ E with a ∈ A and b ∈ B. We will
use the same notation when referring to (the vertex-set of) a subgraph H of
G as for a subset A ⊆ V (G).

For any vertex v ∈ V , we write compG(v, ω) to denote the monochromatic
component of G, with respect to ω, that contains v. Given any sequence of
moves S on a graph G with initial colouring ω, we denote by S(ω,G) the
new colouring obtained by playing S in G.

3 Spanning trees

In this section we investigate the relationship between the number of moves
required to flood a connected graph G and the number of moves required to
flood spanning trees of G. For any connected graph G, let T (G) denote the
set of all spanning trees of G. We prove the following result.

Theorem 3.1. Let G be a connected graph with colouring ω from colour-set

4

C. Then, for any d ∈ C,

mG(G,ω, d) = min
T∈T (G)

mT (T, ω, d).

Since it remains hard to solve 3-Free-Flood-It on trees, this result
does not imply that the number of moves required to flood a graph with only
a polynomial number of spanning trees can be computed in polynomial time.
However, this equality gives rise to a number of corollaries, proved later in
this section, which are then applied to give polynomial-time algorithms for
various flood-filling problems in Sections 4 and 5.

To prove the theorem, we demonstrate that the inequalitiesmG(G,ω, d) ≥
minT∈T (G) mT (T, ω, d) and mG(G,ω, d) ≤ minT∈T (G) mT (T, ω, d) must both
hold. We begin with an auxiliary result which is crucial to the proof of both
inequalities, as it allows us to consider independently optimal sequences to
flood disjoint subtrees of a tree.

Lemma 3.2. Let T be a tree, with colouring ω from colour-set C, and let A
and B be disjoint subsets of V (T) such that V (T) = A ∪ B and T [A], T [B]
are connected. Then, for any d ∈ C,

mT (T, ω, d) ≤ mT [A](A, ω|A, d) +mT [B](B,ω|B, d).

Proof. First observe that the result is trivially true if either A or B is empty,
so assume A,B 6= ∅. We say that a sequence of moves S played in a graph
G with colouring ω affects the subset X of V (G) if playing S in G (with
colouring ω) changes the colour of at least one vertex in X at some stage. If
X and Y are disjoint subsets of G, and SX and SY are sequences of moves
played in X and Y respectively, we say there is a compatible ordering of
(X,SX) and (Y, SY) if at least one of these sequences does not affect the
other subset (i.e. either playing SX in G does not change the colour of any
vertex of Y , or else playing SY in G does not change the colour of any vertex
in X).

In fact we prove the following, stronger claim.

Claim. Let A, B and T be as above, and suppose the sequence SA floods A
with colour d, and that SB floods B with some colour d′ ∈ C. Then, if there
is no compatible ordering of (A, SA) and (B, SB), we have

mT (T, ω, d′) ≤ |SA|+ |SB|.

5

To see that the claim implies the result, we set d = d′, and choose SA and
SB to be optimal sequences to flood T [A] and T [B] respectively with colour
d. If there is no compatible ordering of (A, SA) and (B, SB), the result
then follows immediately from the claim (as |SA| + |SB| = mT [A](A, ω, d) +
mT [B](B,ω, d)), so it suffices to consider the case in which there does exist a
compatible ordering of (A, SA) and (B, SB). Without loss of generality, we
may assume that playing SA in T does not change the colour of any vertex
in B.

Note that if T ′ is a subtree of the tree T , and S is a sequence of moves
played in T ′, then S has exactly the same effect on T ′ whether the moves are
played in the isolated subtree T ′ or in the larger tree T , as no vertices in T ′

can be linked in T before they are linked in T ′. Thus playing SA in T links
A in colour d and (by assumption) does not change the colour of any vertex
in B, so then playing SB in the resulting coloured tree gives B colour d. If
this also changes the colour of A, some vertex b ∈ B is linked to A and so
A must thereafter have the same colour as b, which ends up with colour d.
Thus the sequence SASB gives all of T colour d, implying

mT (T, ω, d) ≤ |SA|+ |SB| = mT [A](A, ω|A, d) +mT [B](B,ω|B, d),

as required.
We now prove the claim by induction on |B|. Note that we may assume

without loss of generality that ω|B is a proper colouring of B, otherwise we
may contract monochromatic components. Suppose |B| = 1. If there is no
compatible ordering, then SA must change the colour of the only vertex in
B (linking it to some a ∈ A), and so playing SA in T makes the whole tree
monochromatic with colour d. Thus mT (T, ω, d) ≤ |SA|, and

mT (T, ω, d′) ≤ mT (T, ω, d) + 1 ≤ |SA|+ 1.

But the fact there is no compatible ordering also implies that |SB| ≥ 1,
otherwise playing the empty sequence SB in T would not affect A. Hence

mT (T, ω, d′) ≤ |SA|+ 1 ≤ |SA|+ |SB|,

as required.
Now suppose |B| > 1, so B is not monochromatic initially, and assume

that the claim holds for smaller B. By the reasoning above, this implies that
the theorem holds in these cases: in other words, whenever T̄ is a tree and Ā

6

and B̄ are disjoint subsets of V (T̄) such that V (T̄) = Ā ∪ B̄, T̄ [Ā] and T̄ [B̄]
are connected, and |B̄| < |B|, for any d̄ ∈ C we have

mT̄ (T̄ , ω|T̄ , d̄) ≤ mT̄ [Ā](Ā, ω|Ā, d̄) +mT̄ [B̄](B̄, ω|B̄, d̄). (1)

Set SB
′ to be the initial segment of SB, up to and including the move that

first makes B monochromatic (in any colour), so any final moves that simply
change the colour of B are omitted. We may, of course, have SB

′ = SB, if B
is not monochromatic before the final move of SB.

By assumption, there is no compatible ordering of (A, SA) and (B, SB).
First suppose that there is no compatible ordering of (A, SA) and (B, SB

′)
either, and that SB

′ gives B colour d′′ ∈ C (note that this must be the
situation if SB = SB

′, in which case d′′ = d′). Before the final move of SB
′

there are r ≥ 2 monochromatic components in B (all but one of which have
colour d′′), with vertex-sets B1, . . . , Br. For 1 ≤ i ≤ r, set Si to be the
subsequence of SB

′ consisting of moves played in Bi, and note that these
subsequences partition SB

′. Observe also that playing Si in T [Bi] gives Bi

colour d′′, so mT [Bi](Bi, ω|Bi
, d′′) ≤ |Si|.

Let B1 be the unique component adjacent to A, and set T1 = T [A ∪B1].
Note that SA floods T [A] with colour d, and S1 floods T [B1] with colour d′′.
Moreover, as there is no compatible ordering of (A, SA) and (B, SB

′), there
cannot be a compatible ordering of (A, SA) and (B1, S1): any move from SB

′

that changes the colour of a vertex in A must belong to S1, and if SA changes
the colour of any vertex in B it must change the colour of at least one vertex
in B1. Thus we can apply the inductive hypothesis to see that

mT1(T1, ω|T1 , d
′′) ≤ |SA|+ |S1|.

Now suppose without loss of generality that B2 is adjacent to B1. We can
then apply (1) to T2 = T [V (T1) ∪B2] to see that

mT2(T2, ω|T2 , d
′′) ≤ mT1(T1, ω|T1 , d

′′)+mT [B2](B2, ω|B2 , d
′′) ≤ |SA|+|S1|+|S2|.

Continuing in this way, each time adding an adjacent component, we see that

mT (T, ω, d′′) ≤ |SA|+
r∑

i=1

|Si| = |SA|+ |SB
′|.

Now, if SB
′ = SB, this immediately gives the desired result, as d′′ = d′.

Otherwise, note that |SB| ≥ |SB
′|+ 1 and so

mT (T, ω, d′) ≤ mT (T, ω, d′′) + 1 ≤ |SA|+ |SB
′|+ 1 ≤ |SA|+ |SB|,

7

as required.
It remains to consider the case in which there exists a compatible ordering

of (A, SA) and (B, SB
′). By assumption, there is no compatible ordering of

(A, SA) and (B, SB), so playing SA in T must change the colour of some vertex
in B. Thus it must be that playing SB

′ in T does not change the colour of
any vertex in A, although playing SB does. Let α be the first move of SB

which, when the sequence is played in T with initial colouring ω, changes the
colour of some vertex in A. Set S̃B to be the initial segment of SB up to but
not including α (so SB

′ and S̃B are both proper initial segments of SB, with
S̃B possibly longer than SB

′). Note that S̃B makes B monochromatic, and
observe also that, as α is played in B but changes the colour of some vertex
a ∈ A, S̃B must link a and B.

Now suppose we play S̃B in T , followed by SA. By definition, S̃B does
not change the colour of any vertex in A, so playing SA in T with colouring
S̃B(ω, T) will make A monochromatic with colour d. However, after playing
S̃B, every vertex in B belongs to the same monochromatic component as
a ∈ A, and so the sequence S̃BSA must also give every vertex in B colour d.
Thus we see that mT (T, ω, d) ≤ |S̃B|+ |SA|, and so

mT (T, ω, d′) ≤ mT (T, ω, d) + 1 ≤ |SA|+ |S̃B|+ 1 ≤ |SA|+ |SB|,

completing the proof of the claim.

This result is easily applied to give a lower bound on mG(G,ω, d).

Lemma 3.3. Let G be a connected graph with colouring ω from colour-set
C. Then, for any d ∈ C,

min
T∈T (G)

mT (T, ω, d) ≤ mG(G,ω, d).

Proof. It suffices to show that there exists a spanning tree T for G such that
mT (T, ω, d) ≤ mG(G,ω, d). We prove this by induction on mG(G,ω, d).

Note that the base case, for mG(G,ω, d) = 0, is trivial: any spanning tree
will do, as all spanning trees are already monochromatic with colour d. So
assume mG(G,ω, d) ≥ 1 and let S be an optimal sequence to flood G with
colour d.

First suppose that G is monochromatic in some colour d′ before the final
move of S, which simply changes the graph’s colour to d, so |S| = 1 +

8

mG(G,ω, d′). Then, by the inductive hypothesis, there exists a spanning tree
T for G such that mT (T, ω, d′) ≤ mG(G,ω, d′). But we then see that

mT (T, ω, d) ≤ 1 +mT (T, ω, d′) ≤ 1 +mG(G,ω, d′) = |S| = mG(G,ω, d),

and so T is the spanning tree we require.
Thus we may assume that, immediately before the final move of S, G has

r ≥ 2 monochromatic components with vertex sets A1, . . . , Ar (all but one of
which have colour d), and that the final move is played in A1. For 1 ≤ i ≤ r,
let Si be the subsequence of S consisting of moves played in Ai; note that
these sequences partition S, and that mG[Ai](Ai, ω|Ai

, d) ≤ |Si| for each i (as
Si, played in G[Ai], makes this subgraph monochromatic with colour d).

For 2 ≤ i ≤ r, we know that |Si| < |S| (as at least one move is
played in A1), so we may apply the inductive hypothesis immediately to
see that there exists a spanning tree Ti for G[Ai] such that mTi

(Ti, ω|Ai
, d) ≤

mG[Ai](Ai, ω|Ai
, d) ≤ |Si|. Now observe that, if S ′1 is the subsequence S1 with

just the final move omitted, S ′1 makes A1 monochromatic with some colour
d′, and |S ′1| < |S|. Thus we can apply the inductive hypothesis here to see
that there exists a spanning tree T1 for G[A1] such that mT1(T1, ω|A1 , d

′) ≤
mG[A1](A1, ω|A1 , d

′) ≤ |S ′1| and so mT1(T1, ω|A1 , d) ≤ 1 + mT1(T1, ω|A1 , d
′) ≤

1 + |S ′1| = |S1|.
Note that, for 2 ≤ i ≤ r, A1 must be adjacent to Ai, and so there exists

an edge ei in G between A1 and Ai. Define T to be
⋃r

i=1 Ti∪{ei : 2 ≤ i ≤ r},
and observe that T is a spanning tree for G. Moreover, by Lemma 3.2 we
see that

mT (T, ω, d) ≤
r∑

i=1

mTi
(Ti, ω|Ai

, d)

≤
r∑

i=1

|Si|

= |S|
= mG(G,ω, d),

so T is as required.

We now proceed to show the reverse inequality. We call a spanning
tree T of G d-minimal (with respect to the colouring ω) if mT (T, ω, d) =

9

minT ′∈T (G) mT ′(T
′, ω, d), and say that a spanning tree T preserves monochro-

matic components of G (with respect to ω) if T and G have the same
monochromatic components, i.e. compG(v, ω) = compT (v, ω) for all v ∈
V (G).

We shall demonstrate that, for any d ∈ C, there exists a d-minimal
spanning tree T that preserves the monochromatic components of G, and
that for such a tree we must have mT (T, ω, d) ≥ mG(G,ω, d). Our first step
is to show that, given any tree T and an edge e /∈ E(T), we can replace T
with another tree T ′ that contains e, without increasing the number of moves
we need to flood the tree.

Lemma 3.4. Let T be a tree with colouring ω from colour-set C, and suppose
e = uv /∈ E(T). Then, for any d ∈ C, there exists a spanning tree T ′ of
T ∪ {e}, with e ∈ E(T ′), such that mT ′(T

′, ω, d) ≤ mT (T, ω, d).

Proof. We proceed by induction on mT (T, ω, d). If mT (T, ω, d) = 0 then T
is already monochromatic with colour d, and we can choose T ′ to be any
spanning tree of T ∪{e} with e ∈ E(T ′). So assume mT (T, ω, d) > 0, and let
S be an optimal sequence to flood T with colour d.

First suppose that T is monochromatic in some colour d′ before the final
move of S, and so this last move just changes the colour to d. We can apply
the inductive hypothesis to see that there exists a spanning tree T ′ of T ∪{e},
with e ∈ E(T ′), such that mT ′(T

′, ω, d′) ≤ mT (T, ω, d′). But then we have

mT ′(T
′, ω, d) ≤ 1 +mT ′(T

′, ω, d′) ≤ 1 +mT (T, ω, d′) = mT (T, ω, d).

Thus we may assume that the last move links r ≥ 2 monochromatic
subtrees of T with vertex sets A1, . . . , Ar, and is played in A1. Note that for
each i the subsequence Si of S, consisting of moves played in Ai, floods the
subtree T [Ai] with colour d, and so mT [Ai](Ai, ω|Ai

, d) ≤ |Si|. Observe also
that S1, . . . , Sr partition S.

Suppose first that u, v ∈ Ai for some i. As at least one move is played
in T1, we have mT [Aj](Aj, ω|Tj

, d) < |S| = mT (T, ω, d) for 2 ≤ j ≤ r, so
if i 6= 1 we may apply the inductive hypothesis to see that there exists a
spanning tree Ti for T [Ai]∪{e}, with e ∈ E(Ti), such that mTi

(Ti, ω|Ai
, d) ≤

mT [Ai](Ai, ω|Ai
, d) ≤ |Si|.

For the case i = 1, observe thatA1 is monochromatic in some colour d′ 6= d
before the final move of S1, so mT [A1](A1, ω|A1 , d

′) < |S1| ≤ |S| = mT (T, ω, d).
Thus, by the inductive hypothesis, there again exists a spanning tree T1 for

10

T [A1]∪{e}, with e ∈ E(T1), such thatmT1(T1, ω|A1 , d
′) ≤ mT [A1](A1, ω|A1 , d

′),
implying

mT1(T1, ω|T1 , d) ≤ 1 +mT1(T1, ω|T1 , d
′) ≤ 1 +mT [A1](A1, ω|A1 , d

′) ≤ |S1|.

Now let us define T ′ to be the tree with vertex-set V (T) and edge-set
(E(T) \ E(T [Ai])) ∪ E(Ti). T

′ clearly contains e, and by Lemma 3.2 we see
that

mT ′(T
′, ω, d) ≤ mTi

(Ti, ω|Ti
, d) +

∑
j 6=i

mT [Aj](Aj, ω|Aj
, d)

≤
r∑

i=1

|Si|

= |S|
= mT (T, ω, d),

so T ′ has the required properties.
It remains to consider the case that the endpoints of e do not lie in the

same subtree. In particular, at most one of u and v lies in A1, so suppose
without loss of generality that v ∈ A2. Suppose f is the unique edge in T
that joins A1 to A2, and set T ′ to be the tree with vertex-set V (T) and edge-
set (E(T) \ {f}) ∪ {e}. Once again, it is clear that T ′ is a tree containing e,
and we can apply Lemma 3.2 to see that

mT ′(T
′, ω, d) ≤

r∑
i=1

mT [Ai](Ai, ω|Ai
, d)

≤
r∑

i=1

|Si|

= |S|
= mT (T, ω, d),

completing the proof.

Next we show that every coloured graph has a d-minimal spanning tree
that preserves monochromatic components.

Lemma 3.5. Let G = (V,E) be a connected graph with colouring ω from
colour-set C. Then, for any d ∈ C, there exists a d-minimal spanning tree
for G that preserves monochromatic components of G with respect to ω.

11

Proof. We proceed by induction on |E|. If |E| = |V |−1 then G is a tree and
the result is trivially true, so suppose |E| ≥ |V |. If ω is a proper colouring
of G then any spanning tree preserves its monochromatic components, so we
may assume that there exists an edge e ∈ E such that both endpoints of e
receive the same colour under ω.

By Lemma 3.4, there exists a d-minimal spanning tree T0 of G that
contains e. Let T1 and G1 be the graphs obtained from T0 and G respec-
tively by contracting the edge e, and let ω1 be the corresponding colouring
of V (T1) = V (G1). Note that T1 is a spanning tree for G1, and we have
mG1(G1, ω1, d) = mG(G,ω, d) and mT1(T1, ω1, d) = mT0(T0, ω, d).

Since e(G1) < e(G), we may apply the inductive hypothesis to G1 to find a
d-minimal spanning tree T2 of G1 that preserves monochromatic components
of G1 with respect to ω1. Let T be a spanning tree of G obtained from T2 by
uncontracting e (note that this tree is not necessarily unique).

It follows immediately that T preserves monochromatic components of G
with respect to ω, so it remains to check that T is d-minimal. It is clear that
mT (T, ω, d) = mT2(T2, ω1, d), so we see that

mT (T, ω, d) = mT2(T2, ω1, d)

= min
T ′∈T (G1)

(T ′, ω1, d)

≤ mT1(T1, ω1, d)

= mT0(T0, ω, d)

= min
T ′∈T (G)

(T ′, ω, d),

as required.

We are now ready to prove our upper bound on mG(G,ω, d).

Lemma 3.6. Let G be a connected graph with colouring ω from colour-set
C. Then, for any d ∈ C,

mG(G,ω, d) ≤ min
T∈T (G)

mT (T, ω, d).

Proof. It suffices to prove that, for any T ∈ T (G), mG(G,ω, d) ≤ mT (T, ω, d).
We proceed by induction on mT (T, ω, d). If mT (T, ω, d) = 0 the result is
trivially true, as G must already be monochromatic with colour d, so assume

12

mT (T, ω, d) > 0. By Lemma 3.5, there exists a d-minimal spanning tree T ′

of G that preserves the monochromatic components of G with respect to ω.
Note that mT (T, ω, d) ≥ mT ′(T

′, ω, d).
Let S be an optimal sequence to flood the tree T ′ (considered in isolation),

and let α = (v, d′) be the first move of S. Note that mT ′(T
′, α(ω, T ′), d) <

mT (T, ω, d). By choice of T ′, we have compG(v, ω) = compT ′(v, ω) for every
v ∈ V (T ′), and so exactly the same vertices have their colour changed to d′

when α is played in G as when it is played in T ′. Thus α(ω,G) = α(ω, T ′).
Note that T ′ does not necessarily preserve monochromatic components of G
with respect to the new colouring α(ω, T ′), but we are nevertheless able to
apply the inductive hypothesis to the graph with this colouring.

Thus we see that

mG(G,ω, d) ≤ 1 +mG(G,α(ω,G), d)

= 1 +mG(G,α(ω, T ′), d)

≤ 1 +mT ′(T
′, α(ω, T ′), d) by inductive hypothesis

= mT ′(T
′, ω, d)

≤ mT (T, ω, d),

as required.

Together with the preceding results, this proves our main theorem.

Proof of Theorem 3.1. The proof follows immediately from Lemma 3.3 and
Lemma 3.6.

We now prove five corollaries of Theorem 3.1, which will be useful in
the following sections. In the first two of these, we exploit Theorem 3.1 to
generalise Lemma 3.2 very substantially. We begin by showing that the result
can be extended from trees to arbitrary graphs.

Corollary 3.7. Let G be a connected graph, with colouring ω from colour-set
C, and let A and B be disjoint subsets of V (G) such that V (G) = A∪B and
G[A], G[B] are connected. Then, for any d ∈ C,

mG(G,ω, d) ≤ mG[A](A, ω|A, d) +mG[B](B,ω|B, d).

13

Proof. First note that, by Theorem 3.1, there exist spanning trees TA and TB

of G[A] and G[B] respectively, such that mTA
(TA, ω|A, d) = mG[A](A, ω|A, d)

and mTB
(TB, ω, d) = mG[B](B,ω|B, d). As G is connected, there exists an

edge e between A and B. Set T to be the tree with vertex set V (G) and edge
set E(TA) ∪ E(TB) ∪ {e}. By Lemma 3.2, mT (T, ω, d) ≤ mTA

(TA, ω|A, d) +
mTB

(TB, ω|B, d); but T is a spanning tree for G so, by Theorem 3.1,

mG(G,ω, d) ≤ mT (T, ω, d)

≤ mTA
(TA, ω|A, d) +mTB

(TB, ω|B, d)

= mG[A](A, ω|A, d) +mG[B](B,ω|B, d).

We now generalise this result even further, demonstrating that we do not
in fact require A and B to be disjoint.

Corollary 3.8. Let G be a connected graph, with colouring ω from colour-
set C, and let A and B be subsets of V (G) such that V (G) = A ∪ B and
G[A], G[B] are connected. Then, for any d ∈ C,

mG(G,ω, d) ≤ mG[A](A, ω|A, d) +mG[B](B,ω|B, d).

Proof. If A ∩ B = ∅ then the result is immediate from Corollary 3.7, so
assume that A∩B = X 6= ∅. We now construct a new graph G′ by “blowing
up” every vertex in X, replacing each v ∈ X with a pair of adjacent vertices.
We set

V (G′) = (V (G) \X) ∪ {vA, vB : v ∈ X},
and

E(G′) =E(G \X)

∪ {vAvB : v ∈ X}
∪ {vAu, vBu : v ∈ X, u /∈ X, uv ∈ E(G)}
∪ {vAwA, vBwB : vw ∈ E(G[X])},

and give G′ a colouring ω′, where ω′(vA) = ω′(vB) = ω(v) for v ∈ X and
ω′(u) = ω(u) for u /∈ X. Observe that contracting monochromatic compo-
nents in both (G,ω) and (G′, ω′) will give identical coloured graphs, so we
must have

mG(G,ω, d) = mG′(G
′, ω′, d).

14

We then define A′ = A\X∪{vA : v ∈ X} and B′ = B\X∪{vB : v ∈ X}.
Now, A′ and B′ partition V (G′) and induce connected subgraphs, so we can
apply Corollary 3.7 to see that

mG′(G
′, ω′, d) ≤ mG[A′](A

′, ω′|A′ , d) +mG[B′](B
′, ω′|B′ , d).

But G[A′] with colouring ω′|A′ is identical to G[A] with colouring ω|A, so
mG[A′](A

′, ω′|A′ , d) = mG[A](A, ω|A, d), and similarly mG[B′](G[B′], ω′|B′ , d) =
mG[B](B,ω|B, d). Thus

mG(G,ω, d) = mG′(G
′, ω′, d) ≤ mG[A](A, ω|A, d) +mG[B](B,ω|B, d),

as required.

The next two corollaries are concerned with the number of moves required
to flood a connected subgraph H of a graph G. We begin by showing that
adding additional edges to H cannot increase the number of moves required
to flood the graph.

Corollary 3.9. Let G be a connected graph with colouring ω from colour-set
C, and H a connected spanning subgraph of G. Then, for any d ∈ C,

mG(G,ω, d) ≤ mH(H,ω, d).

Proof. As H is a connected spanning subgraph of G, we have T (H) ⊆ T (G).
Thus, by Theorem 3.1,

mG(G,ω, d) = min
T∈T (G)

(T, ω, d) ≤ min
T∈T (H)

(T, ω, d) = mH(H,ω, d).

Now we consider the case in which H is an arbitrary subgraph, and show
that the number of moves we must play in G to link the vertices of H is at
most the number required to flood the isolated subgraph H.

Corollary 3.10. Let G be a connected graph with colouring ω from colour-set
C, and H a connected subgraph of G. Then, for any d ∈ C,

mG(V (H), ω, d) ≤ mH(H,ω|H , d).

15

Proof. Set H ′ to be the subgraph of G induced by
⋃

v∈V (H) compG(v, ω), and
note that a sequence of moves played in G floods H ′ if and only if it floods
H (with the same colour). Observe that we can add edges to H to obtain a
coloured graph equivalent to H ′ (when both graphs have colouring inherited
from ω): if an edge is added in H between every pair of vertices that belong
to either the same monochromatic component or adjacent monochromatic
components in G, then contracting monochromatic components in this new
graph will give the same result as contracting monochromatic components of
H ′. Thus, by Corollary 3.9, mH′(H

′, ω|H′ , d) ≤ mH(H,ω|H , d).
We proceed to prove the inequality by induction on mH′(H

′, ω, d). Note
that if mH′(H

′, ω, d) = 0 then the result is trivially true, so assume that
mH′(H

′, ω, d) > 0. Let S be an optimal sequence to flood the (isolated)
subgraph H ′ with colour d, and suppose the first move of S is α. As we have
compH′(v, ω) = compG(v, ω) for every v ∈ V (H ′), the move α changes the
colour of exactly the same vertices when played in H ′ as it does when played
in the larger graph G. Thus α(ω,G)|H′ = α(ω|H′ , H ′).

Note that mH′(H
′, ω|H′ , d) = 1 +mH′(H

′, α(ω|H′ , H ′), d), so

mH′(H
′, α(ω,G)|H′ , d) = mH′(H

′, α(ω|H′ , H ′), d) < mH(H,ω|H , d),

and we can apply the inductive hypothesis to see that

mG(V (H ′), α(ω,G), d) ≤ mH′(H
′, α(ω,G)|H′ , d). (2)

Hence

mG(V (H), ω, d) = mG(V (H ′), ω, d)

≤ 1 +mG(V (H ′), α(ω,G), d)

≤ 1 +mH′(H
′, α(ω,G)|H′ , d)

by (2)

= 1 +mH′(H
′, α(ω|H′ , H ′), d)

as α(ω,G)|H′ = α(ω|H′ , H ′)
= mH′(H

′, ω|H′ , d)

≤ mH(H,ω|H , d),

as required.

Finally, we consider the number of moves required to connect a given
subset of the vertices of G. For any U ⊆ V (G), let T (U,G) be the set of all

16

subtrees T of G such that U ⊆ V (T). We then characterise the number of
moves required to link U in terms of the number of moves required to flood
elements of T (U,G).

Corollary 3.11. Let G be a connected graph with colouring ω from colour-set
C, and let U ⊆ V (G). Then, for any d ∈ C,

mG(U, ω, d) = min
T∈T (U,G)

mT (T, ω|T , d).

Proof. We begin by showing that mG(U, ω, d) ≤ minT∈T (U,G) mT (T, ω|T , d).
Let T ∈ T (U,G). Then, as U ⊆ V (T), we see by definition of mG(U, ω, d)
that mG(U, ω, d) ≤ mG(V (T), ω, d). Moreover, by Corollary 3.10 we know
that mG(V (T), ω, d) ≤ mT (T, ω|T , d), and so mG(U, ω, d) ≤ mT (T, ω|T , d).
As this holds for any T ∈ T (U,G), it follows that

mG(U, ω, d) ≤ min
T∈T (U,G)

mT (T, ω|T , d).

To show the reverse inequality, suppose that S is an optimal sequence
to link U in G. Let A be the vertex set of the monochromatic component,
with respect to S(ω,G), that contains U , and let S ′ be the subsequence of S
consisting of moves played in A. Then S ′ makes G[A] monochromatic with
colour d, and so we have

mG(U, ω, d) = |S| ≥ |S ′| ≥ mG[A](A, ω|A, d).

By Theorem 3.1, there exists a spanning tree TA for A with mA(A, ω|A, d) =
mTA

(TA, ω|TA
, d). But then U ⊆ V (T), so TA ∈ T (U,G) and we have

mG(U, ω, d) ≥ mG[A](A, ω|A, d) = mTA
(TA, ω|TA

, d) ≥ min
T∈T (U,G)

mT (T, ω|T , d).

In summary, we see from Corollary 3.8 that the number of moves re-
quired to flood a graph is bounded above by the sum of the numbers of
moves required to flood connected subgraphs which cover the vertex set,
whereas Corollaries 3.9 and 3.10 show that adding edges and vertices to a
connected graph H can only decrease the number of moves required to make
the vertex-set of H monochromatic. Corollary 3.11 allows us to calculate the
minimum number of moves required to connect some subset of the vertices
by considering the number of moves required to flood subtrees of G.

17

4 Graphs with polynomial bounds on the num-

bers of connected subgraphs

Given a vertex v in an arbitrary graph G, the number of possible values of
compG(v, ω), as ω ranges over all possible colourings of G, will in general
be exponential. However, it is clear that compG(v, ω) must be a connected
subgraph of G containing v, and in some interesting classes of graphs the
number of connected subgraphs containing any given vertex is bounded by
a polynomial function of |G|. In this section we discuss polynomial time
algorithms to solve flood-filling problems in this situation.

First, in Section 4.1, we apply corollaries of Theorem 3.1 to show that
Free-Flood-It can be solved in polynomial time on graphs which have
only a polynomial number of connected subgraphs. Then, in Section 4.2, we
give a direct proof that the same is true for the fixed variant.

It should be noted, however, that this condition is not necessary for a
graph to admit a polynomial-time algorithm to solve Free-Flood-It. Kn

has Θ(2n) connected induced subgraphs, but the number of moves required
to flood the graph in either version of the game is always one fewer than
the number of colours used in the initial colouring. Graphs corresponding
to rectangular 2× n boards give another such example for the fixed case, as
there are Ω(2n) connected subgraphs containing any given vertex but Fixed-
Flood-It can be solved in linear time in this setting [7].

4.1 The FREE-FLOOD-IT case

In this section we prove the following theorem.

Theorem 4.1. Let p be a polynomial, and let Gp be the class of graphs such
that, for any G ∈ Gp, the number of connected subgraphs of G is at most
p(|G|). Suppose G ∈ Gp has colouring ω from colour-set C. Then, for any
d ∈ C, we can compute mG(G,ω, d) in polynomial time, and hence we can
also compute mG(G,ω) in polynomial time.

It is easy to check that, if G is a subdivision of some fixed graph H, the
number of connected subgraphs of G is bounded by a polynomial function of
|G|, and so Theorem 4.1 implies a conjecture of Meeks and Scott [13].

Corollary 4.2. Free-Flood-It is solvable in polynomial time on subdivi-
sions of any fixed graph H.

18

In the next theorem, we give an explicit bound on the time taken to solve
Free-Flood-It in terms of the number of connected subgraphs in the graph
we are considering. Theorem 4.1 follows immediately from this result. The
proof relies on Corollary 3.8, which allows us to consider optimal sequences
in distinct components of the graph independently.

Theorem 4.3. Let G be a connected graph with colouring ω from colour-set
C, and suppose G has at most N connected subgraphs. Then we can compute
mG(G,ω, d) for every d ∈ C, and hence mG(G,ω), in time O(|C|3 ·N3).

Proof. Note that we may assume without loss of generality that ω is a proper
colouring of G, otherwise we can contract monochromatic components to
obtain an equivalent coloured graph. LetH be the set of connected subgraphs
of G. We compute mH(H,ω|H , d1) recursively, for each H ∈ H and d1 ∈ C.
For any H ∈ H we write (A,B) ∈ split(H) if A and B are connected proper
subgraphs of H such that V (A) ∪ V (B) = V (H) and V (A) ∩ V (B) = ∅.

We define a function m∗(H,ω|H , d1), and claim that for any H ∈ H and
d1 ∈ C, we have mH(H,ω|H , d1) = m∗(H,ω|H , d1). We first define

m∗({v}, ω|{v}, d1) =

{
0 if ω(v) = d1

1 otherwise.

and observe that this gives mH(H,ω|H , d1) = m∗(H,ω|H , d1) whenever |H| =
1. Further values of m∗ are defined recursively as follows:

m∗(H,ω|H , d1) =

min{ min
(A,B)∈split(H)

{mA(A, ω|A, d1) +mB(B,ω|B, d1)},

1 + min
(A,B)∈split(H)

d2∈C

{mA(A, ω|A, d2) +mB(B,ωB, d2)}}, (3)

The fact that mH(H,ω|H , d1) ≤ m∗(H,ω|H , d1) follows from Corollary
3.7. To see the reverse inequality in the case that |H| > 1 (and so by assump-
tion H is not monochromatic under ω), we consider the final move α in an op-
timal sequence to flood H with colour d1: either α changes the colour of some
monochromatic area X, linking it to monochromatic areas Y1, . . . , Yr which
already have colour d1, or else H is already monochromatic in some colour d2

before the final move, and α simply changes its colour to d1. In the first case,

19

we set A = Y1 and B = X ∪ Y2 ∪ . . . ∪ Yr, and note that the disjoint subse-
quences of S consisting of moves played in A and B respectively flood the rele-
vant subgraphs with colour d1. Hence |S| ≥ mA(A, ω|A, d1)+mB(B,ω|B, d1).
In the case that H is monochromatic before α, we observe that H cannot be
monochromatic before the penultimate move of S (otherwise S would not be
optimal) and apply the reasoning above to the initial segment S ′ of S in which
the final move is omitted, a sequence which floods H with colour d2: there
exists (A,B) ∈ split(H) such that |S ′| ≥ mA(A, ω|A, d2) + mB(B,ω|B, d2),
and hence |S| ≥ 1 +mA(A, ω|A, d2) +mB(B,ω|B, d2). Thus in either case we
have m∗(H,ω|H , d1) ≤ mH(H,ω|H , d1).

Observe that every subgraph on the right hand side of (3) contains strictly
fewer vertices than H, and so a recursion based on this relationship will
terminate. Thus it remains to show that we can calculate m∗(H,ω|H , d1) for
all H ∈ H and d1 ∈ C in time O(|C|3 ·N3).

First we need to construct a list of all connected subgraphs of G. Clearly
each vertex in the graph is a connected subgraph of order one, and given all
connected subgraphs of order k we can construct all connected subgraphs of
order k + 1 by considering all possible ways of adding a vertex. Thus, if Ni

denotes the number of connected subgraphs of order i in G, we can construct
the list in time

n+
n−1∑
i=1

Ni(n− i) ≤ n ·N = O(N2).

To compute m∗, we begin by initialising the table in time O(|G|), then all
further values of m∗ are then calculated as the minimum over combinations of
two other entries. As our table has N · |C| entries, there are at most N2 · |C|2
combinations we need to consider, and so we can compute all entries in time
at most O(N3 · |C|3). This immediately gives mG(G,ω, d1) for each d1 ∈ C,
and to computemG(G,ω) we simply take the minimum over |C| entries. Thus
we can compute both mG(G,ω, d) and mG(G,ω) in time O(N3 · |C|3).

4.2 The FIXED-FLOOD-IT case

In this section we show that the fixed variant, Fixed-Flood-It, can be
solved in polynomial time on any coloured graph (G,ω) in which there are a
polynomial number of connected subgraphs. As a special case, this gives an
alternative proof of Lagoutte’s result [11] that Fixed-Flood-It ∈ P when

20

restricted to cycles, as a cycle has only a quadratic number of connected
subgraphs.

When considering the fixed variant of the game, we use the same notation
as before but add a superscript to denote the fixed root vertex at which we
play, writing for example m

(v)
G (G,ω, d) for the minimum number of moves

that must be played at v to give all vertices colour d.

Theorem 4.4. Let p be a polynomial, and let Gp be the class of graphs such
that, for any G ∈ Gp, the number of connected subgraphs of G is at most
p(|G|). Suppose G ∈ Gp has colouring ω from colour-set C. Then, for any

d ∈ C and v ∈ V (G), we can compute m
(v)
G (G,ω, d) in polynomial time, and

hence we can also compute m
(v)
G (G,ω) in polynomial time.

Proof. We define a set of states S, where each Si ∈ S is a pair (Ai, di) with
di ∈ C, and Ai a connected subgraph of G containing v; we say we are in
state Si if Ai is the maximal monochromatic component containing v and
has colour di. We now construct a digraph D with vertex-set S and edge
set E, where (Ai, di)(Aj, dj) ∈ E if and only if Ai ⊆ Aj, Aj \ Ai is either
empty or has colour dj under ω, and no vertex in Γ(Aj) \ Aj has colour dj.
Thus there is a directed edge from Si to Sj if and only if we can reach state
Sj from state Si with a single move. Note that we can construct D in time
O(|S|2).

Let us denote by S0 the initial state (so the tuple S0 consists of the maxi-
mal monochromatic area containing v at the start, and its initial colour under
ω), and by Sd the state (G, d) in which the entire graph is monochromatic
with colour d. Then the problem of computing m(v)(G,ω, d) is exactly that
of finding the length of a shortest path from S0 to Sd in D, which can be
done for all d ∈ C in time O(|S|2) (by Dijkstra’s algorithm; see [8]). By
assumption, |S| ≤ p(|G|) · |C|, and so we can construct D and compute
m(v)(G,ω, d) in time O(p(|G|)2 · |C|2). To calculate m(v)(G,ω) we simply
have to take the minimum over |C| values from this computation, so we can
calculate m(v)(G,ω) in time O(p(|G|)2 · |C|2).

5 The complexity of k-LINKING FLOOD IT

In this section we use results from Section 3 to show that k-Linking-Flood-
It, the problem of determining the minimum number of moves required to

21

link some given set of k points (when moves can be played at any vertex), is
solvable in polynomial time for any fixed k.

We begin with some additional notation. Let U be a subset of V (G). We
will say (U1, U2) ∈ part(U) if U1 and U2 are disjoint nonempty subsets of U
such that U = U1 ∪ U2. Recall that T (U,G) is the set of all subtrees T of G
such that U ⊆ V (T). For 1 ≤ i ≤ |G|, set Ti(U,G) = {T ∈ T (U,G) : |T | ≤
i}.

Recall from Corollary 3.11 that, for any U ⊆ V (G),

mG(U, ω, d) = min
T∈T (U,G)

mT (T, ω|T , d).

We use this result to give a dynamic programming algorithm to solve k-
Linking-Flood-It in polynomial time, for any fixed k. Note that the
statement of the theorem assumes that the initial colouring of the graph
being considered is proper, but of course if this is not the case we can sim-
ply contract monochromatic components to obtain an equivalent properly
coloured graph.

Theorem 5.1. Let G = (V,E) be a connected graph of order n, with proper
colouring ω from colour-set C, and let U ⊆ V with |U | = k. Then, for any
d ∈ C, we can compute mG(U, ω, d) in time O(nk+3 · |E| · |C|2 · 2k).

Proof. We demonstrate a dynamic programming algorithm to compute val-
ues of a function f , taking as arguments a nonempty subset W ⊂ V of at
most k vertices, the initial colouring ω of the graph, a colour d1 ∈ C, and an
index i ∈ {1, . . . , n}. We will show that, for any values of these arguments,
we have

f(W,ω, d1, i) =

{
minT∈Ti(W,G)mT (T, ω|T , d1) if Ti(W,G) 6= ∅
∞ otherwise.

Thus, as Tn(U,G) 6= ∅, we see by Corollary 3.11 that

mG(U, ω, d) = min
T∈T (U,G)

mT (T, ω|T , d) = min
T∈Tn(U,G)

mT (T, ω|T , d) = f(U, ω, d, n).

We initialise our table by setting

f(W,ω, d1, 1) =

∞ if |W | ≥ 2

1 if W = {w} and ω(w) 6= d1

0 if W = {w} and ω(w) = d1,

22

and observe that this gives the desired value of f(W,ω, d1, 1) for all choices
of W and d1.

We define further values of f recursively. First, for any W , ω, d1 and i,
we set

poss(W,ω, d1, i) = {((W1 ∪ {x1}, ω, d1, j1), (W2 ∪ {x2}, ω, d1, j2)) :

(W1,W2) ∈ part(W), x1x2 ∈ E, x1 /∈ W2, x2 /∈ W1,

j1 + j2 = i, j1, j2 > 0},

so there is an element of poss(W,ω, d1, i) corresponding to each way of parti-
tioning W into two non-empty subsets, each way of picking an edge in G and
associating one endpoint with each subset, and each pair of positive integers
summing to i. We then define, for i ≥ 2,

f1(W,ω, d1, i) =

{
min(z1,z2)∈poss(W,ω,d1,i){f(z1) + f(z2)} if poss(W,ω, d1, i) 6= ∅
∞ otherwise,

and
f2(W,ω, d1, i) = 1 + min

d2∈C
{f1(W,ω, d2, i)}.

Finally we set

f(W,ω, d1, i) = min{f1(W,ω, d1, i), f2(W,ω, d1, i), f(W,ω, d1, i− 1)}. (4)

To show that f has the required properties, we first prove by induction
on i that we have f(W,ω, d1, i) ≤ minT∈Ti(W,G) mT (T, ω|T , d1) for each choice
of W and d1, if Ti(W,G) 6= ∅. Later we will also prove the reverse inequality.
We have already seen that equality holds in the base case, for i = 1, so let
us consider the case for i > 1 and assume that the result holds for smaller
values.

If |W | = 1, it is clear that

min
T∈Ti(W,G)

mT (T, ω|T , d1) = min
T∈T1(W,G)

mT (T, ω|T , d1) = f(W,ω, d1, 1).

Thus we have

min
T∈Ti(W,G)

mT (T, ω|T , d1) = f(W,ω, d1, 1) ≥ f(W,ω, d1, 2) ≥ · · · ≥ f(W,ω, d1, i),

as required. So we may assume |W | ≥ 2.

23

We may assume that there exists at least one subtree of G of order
at most i that contains the vertices of W . Fix T ∈ Ti(W,G) such that
mT (T, ω|T , d1) = minT ′∈Ti(W,G) mT ′(T

′, ω|T ′ , d1) and |T | is minimal. As |T | ≥
|W | ≥ 2 and ω is a proper colouring of G, T is not monochromatic under ω.
Let S be an optimal sequence to flood T with colour d1. We proceed by case
analysis on the final move, α, of S.

If T is not monochromatic immediately before α, this final move must
link r ≥ 2 monochromatic components, with vertex-sets A1, . . . , Ar. We may
assume α is played in A1, and so that each of A2, . . . , Ar is adjacent only to
A1 in T . By minimality of T , we cannot have W ⊆ V (Al) for any Al, so
without loss of generality we may assume that ∅ 6= W ∩ A2 6= W .

Let x1x2 be the unique edge of T with x1 ∈ A1 and x2 ∈ A2. For l ∈ {1, 2},
set Tl to be the component of T −{x1x2} that contains xl, Wl = W ∩ V (Tl),
and jl = |Tl|. Note that ((W1 ∪ {x1}, ω, d1, j1), (W2 ∪ {x2}, ω, d1, j2)) ∈
poss(W,ω, d1, i), and also that for l ∈ {1, 2}, Tl ∈ Tjl

(Wl ∪ {xl}, G). Set
Sl to be the subsequence of S consisting of moves played in Tl, and observe
that S1 and S2 partition S. Moreover Sl, played in Tl, makes this tree
monochromatic with colour d1, so we have mTl

(Tl, ω|Tl
, d1) ≤ |Sl|.

Observe also that, as j1, j2 < i, the inductive hypothesis implies that, for
l ∈ {1, 2},

f(Wl ∪ {xl}, ω, d1, jl) ≤ min
T ′∈Tjl

(Wl∪{xl},G)
mT ′(T

′, ω|T ′ , d1)

≤ mTl
(Tl, ω|Tl

, d1).

Hence we see that

f(W,ω, d1, i) ≤ f1(W,ω, d1, i)

≤ f(W1 ∪ {x1}, ω, d1, j1) + f(W2 ∪ {x2}, ω, d1, j2)

by definition

≤ mT1(T1, ω|T1 , d1) +mT2(T2, ω|T2 , d1)

≤ |S1|+ |S2|
= |S|
= mT (T, ω|T , d1)

= min
T ′∈Ti(W,G)

mT ′(T
′, ω|T ′ , d1)

by choice of T .

24

We now consider the case in which T is monochromatic in some colour
d2 ∈ C before the final move of S, so α simply changes the colour to d1.
Note that T cannot be monochromatic before the penultimate move of S,
otherwise we could obtain a shorter sequence to flood T with colour d1. Set
S ′ to be the initial segment of S with just the final move omitted. Then S ′

must be an optimal sequence to flood T with colour d2, and does not make T
monochromatic before the final move, so we can apply the reasoning above
to see that

f1(W,ω, d2, i) ≤ |S ′| = mT (T, ω|T , d1)− 1.

But then

f(W,ω, d1, i) ≤ f2(W,ω, d2, i)

≤ 1 + f1(W,ω, d2, i)

by definition

≤ mT (T, ω|T , d1)

= min
T ′∈Ti(W,G)

mT ′(T
′, ω|T ′ , d1)

by choice of T ,

completing the proof that f(W,ω, d1, i) ≤ minT∈Ti(W,G) mT (T, ω|T , d1), for
every W and d1.

To prove the correctness of the algorithm, it remains to show that for
any W ⊂ V (containing at most k vertices) and d1 ∈ C we also have
f(W,ω, d1, i) ≥ minT∈Ti(W,G) mT (T, ω|T , d1). Once again, we proceed by in-
duction on i, and note that the base case for i = 1 holds. Assume that i > 1
and that the result holds for smaller values.

In fact we prove the following claim.

Claim. For any (W1,W2) ∈ part(W), d1 ∈ C, x1x2 ∈ E with x1 /∈ W2 and
x2 /∈ W1, and j1, j2 > 0 such that j1 + j2 = i, we have

min
T∈Ti(W,G)

mT (T, ω|T , d1) ≤

f(W1 ∪ {x1}, ω, d1, j1) + f(W2 ∪ {x2}, ω, d1, j2).

To see that it is sufficient to prove this claim, first observe that the claim
implies immediately that

min
T∈Ti(W,G)

mT (T, ω|t, d1) ≤ f1(W,ω, d1, i). (5)

25

Observe also that

min
T∈Ti(W,G)

mT (T, ω|T , d1) ≤ min
T∈Ti−1(W,G)

mT (T, ω|T , d1)

as Ti−1(W,G) ⊆ Ti(W,G)

≤ f(W,ω, d1, i− 1)

by inductive hypothesis.

Moreover, it is clear that for any d2 ∈ C,

min
T∈Ti(W,G)

mT (T, ω|T , d1) ≤ 1 + min
T∈Ti(W,G)

mT (T, ω|T , d2)

and so, if the claim holds, it follows from (6) that

min
T∈Ti(W,G)

mT (T, ω|T , d1) ≤ f2(W,ω, d1, i).

Thus, if the claim holds, it follows that minT∈Ti(W,G)mT (T, ω|T , d1) is less
than or equal to every expression on the right hand side of (4), giving
f(Q,ω, d1, i) ≥ minT∈Ti(W,G)mT (T, ω, d1), as required. Hence it is indeed
sufficient to prove the claim.

We now prove the claim. Suppose (W1,W2) ∈ part(W), d1 ∈ C, x1x2 ∈ E
with x1 /∈ W2 and x2 /∈ W1, and j1, j2 > 0 such that j1+j2 = i. For l ∈ {1, 2},
pick Tl ∈ Tjl

(Wl ∪ {xl}, G) such that

mTl
(Tl, ω|Tl

, d1) = min
T ′∈Tjl

(Wl∪{xl},G)
mT ′(T

′, ω|T ′ , d1).

Note that, by the inductive hypothesis (as jl < i), we then have

mTl
(Tl, ω|Tl

, d1) ≤ f(Wl ∪ {xl}, ω, d1, jl).

Now set H = T1 ∪ T2 ∪ {x1x2}, and fix a d1-minimal spanning tree T ′ of H
(so, by Theorem 3.1, mH(H,ω|H , d1) = mT ′(T

′, ω|T ′ , d1)). Note that T ′ ∈
Ti(W,G). Thus we see that

min
T∈Ti(W,G)

mT (T, ω|T , d1) ≤ mT ′(T
′, ω|T ′ , d1)

= mH(H,ω|H , d1)

by choice of T ′

≤ mT1(T1, ω|T1 , d1) +mT2(T2, ω|T2 , d1)

by Corollaries 3.8 and 3.10

≤ f(W1 ∪ {x1}, ω, d1, j1) + f(W2 ∪ {x2}, ω, d1, j2),

26

completing the proof of the claim.
It remains only to bound the time taken to compute f(U, ω, d, n). Note

that each value of f(W,ω, d1, 1) (for any W ⊂ V of size at most k and d1 ∈ C)
can be computed in constant time.

Suppose we have computed the value of f(W,ω, d1, i) for each d1 ∈ C and
W ⊂ V of size at most k. To compute f1(W ′, ω, d2, i + 1) for any W ′ and
d2, we take the minimum over at most 2k ways to partition a set of up to
k points, the |E| edges in the graph, the |C| colours in the initial colouring,
and the 2(i − 1) ordered pairs of positive integers that sum to i. Thus we
take the minimum over a set of O(2k · |E| · |C| ·n) values, each of which can be
computed in time O(n) by adding a pair of existing values in the table, and
so compute f1(W ′, ω, d2, i+1) in time O(2k ·|E|·|C|·i·n) = O(2k ·|E|·|C|·n2).

Once we have computed the value of f1 for all entries with index i + 1,
we can compute f2 for each such entry in time O(|C|). Given the values of
f1 and f2 for each entry with index i+ 1, and the values of f for entries with
index i, we can compute f for any entry with index i+ 1 in constant time.

Thus in total we require time at most O(2k · |E| · |C| ·n2) to compute the
value of f for each entry in the table. In total, the table contains O(nk+1 ·|C|)
entries (as there are O(nk) subsets of size at most k, a choice of |C| colours,
and i takes integer values in the range [1, n]), so we can compute all entries,
and hence determine f(U, ω, d, n), in time O(nk+3 · |E| · |C|2 · 2k).

6 Conclusions and Open Problems

We have shown that, for any connected graph G, the minimum number of
Flood-It moves required to make G monochromatic in colour d is equal to
the minimum, taken over all spanning trees T of G, of the number of moves
required to flood T with colour d.

Using this result, we saw that Free-Flood-It, and the fixed variant,
are solvable in polynomial time on graphs with only a polynomial number
of connected subgraphs. This proves a conjecture of Meeks and Scott [13]:
Free-Flood-It is solvable in polynomial time on subdivisions of any fixed
graph. This in turn implies that Free-Flood-It is polynomially solvable
on trees with bounded degree and a bounded number of vertices of degree
at least three, although the problem is known to be NP-hard on arbitrary
trees. It would be interesting to investigate other classes of trees on which
the problem can be solved in polynomial time.

27

Finally, we applied the result on spanning trees to k-Linking-Flood-
It, demonstrating an algorithm to solve the problem in time nO(k). There
is potential for further investigation of the parameterised complexity of this
problem, with parameter k: can k-Linking-Flood-It be shown to be W[1]-
hard, or is there another approach to the problem which might yield a fixed-
parameter algorithm? Such an investigation could also consider a “fixed”
variant of k-Linking-Flood-It, in which all moves must be played at some
fixed vertex.

References

[1] Flood It Game, http://floodit.appspot.com.

[2] Flood It! 2, available at http://itunes.apple.com.

[3] Flood It!, available at https://market.android.com.

[4] Mad Virus, http://www.bubblebox.com/play/puzzle/539.htm.

[5] D. Arthur, R. Clifford, M. Jalsenius, A. Montanaro, and B. Sach,
The Complexity of Flood Filling Games, in Paolo Boldi and Luisa
Gargano, editors, FUN, volume 6099 of Lecture Notes in Computer Sci-
ence, Springer, ISBN 978-3-642-13121-9, 2010, pages 307-318.

[6] A. Born, Flash application for the computer game Biene (Honey-Bee),
2009. http://www.ursulinen.asn-graz.ac.at/Bugs/htm/games/biene.htm.

[7] R. Clifford, M. Jalsenius, A. Montanaro, and B. Sach, The Complexity
of Flood Filling Games, Theory of Computing Systems 50 (2012), 72–92.

[8] T. Cormen, C. Leiserson and R. Rivest, Introduction to Algorithms, MIT
Press and McGraw-Hill, 1990.

[9] R. Fleischer and G. Woeginger, An Algorithmic Analysis of the Honey-
Bee Game, Theoretical Computer Science 452 (2012), 75–87.

[10] H. Fukui, A. Nakanishi, R. Uehara, T. Uno, Y. Uno, The complexity
of free flooding games, Information Processing Society of Jamap (IPSG)
SIG Notes 2011 (August 2011), 1-5.

28

[11] A. Lagoutte, Jeux d’inondation dans les graphes, Technical report, ENS
Lyon, HAL: hal-00509488, August 2010.

[12] A. Lagoutte, M. Noual, E. Thierry, Flooding games on graphs, HAL:
hal-00653714, December 2011.

[13] K. Meeks and A. Scott, The complexity of flood-filling games on graphs,
Discrete Applied Mathematics 160 (2012), 959–969.

[14] K. Meeks and A. Scott, The complexity of Free-Flood-It on 2×n boards,
arxiv.1101.5518v1 [cs.DS], January 2011.

29

