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Abstract

We consider the problem of indexing a string t of length n to report the occurrences of a query
pattern p containing m characters and j wildcards. Let occ be the number of occurrences of p
in t, and σ the size of the alphabet. We obtain the following results.

• A linear space index with query time O(m+σj log logn+occ). This significantly improves
the previously best known linear space index by Lam et al. [ISAAC 2007], which requires
query time Θ(jn) in the worst case.

• An index with query time O(m + j + occ) using space O(σk2

n logk logn), where k is the
maximum number of wildcards allowed in the pattern. This is the first non-trivial bound
with this query time.

• A time-space trade-off, generalizing the index by Cole et al. [STOC 2004].

We also show that these indexes can be generalized to allow variable length gaps in the pattern.
Our results are obtained using a novel combination of well-known and new techniques, which
could be of independent interest.

1 Introduction

The string indexing problem is to build an index for a string t such that the occurrences of a
query pattern p can be reported. The classic suffix tree data structure [38] combined with perfect
hashing [15] gives a linear space solution for string indexing with optimal query time, i.e., an
O(n) space data structure that supports queries in O(m + occ) time, where occ is the number of
occurrences of p in t.

Recently, various extensions of the classic string indexing problem that allow errors or wildcards
(also known as gaps or don’t cares) have been studied [6,11,24,28,32,36,37]. In this paper, we focus
on one of the most basic of these extensions, namely, string indexing for patterns with wildcards.
In this problem, only the pattern contains wildcards, and the goal is to report all occurrences of p
in t, where a wildcard is allowed to match any character in t.

String indexing for patterns with wildcards finds several natural applications in large-scale data
processing areas such as information retrieval, bioinformatics, data mining, and internet traffic
analysis. For instance in bioinformatics, the PROSITE data base [5, 21] supports searching for
protein patterns containing wildcards.

∗Preliminary version appeared in Proceedings of the 13th Scandinavian Symposium and Workshops on Algorithm

Theory. Lecture Notes in Computer Science, vol. 7357, pp. 283–294, Springer 2012.
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Despite significant interest in the problem and its many variations, most of the basic questions
remain unsolved. We introduce three new indexes and obtain several new bounds for string indexing
with wildcards in the pattern. If the index can handle patterns containing an unbounded number
of wildcards, we call it an unbounded wildcard index, otherwise we refer to the index as a k-bounded
wildcard index, where k is the maximum number of wildcards allowed in p. Let n be the length of
the indexed string t, and σ be the size of the alphabet. We define m and j to be the number of
characters and wildcards in p, respectively. Consequently, the length of p is m+ j. We show that,

• There is an unbounded wildcard index with query time O(m + σj log log n + occ) using
linear space. This significantly improves the previously best known linear space index by
Lam et al. [24], which requires query time Θ(jn) in the worst case. Compared to the index
by Cole et al. [11] having the same query time, we improve the space usage by a factor log n.

• There is a k-bounded wildcard index with query timeO(m+j+occ) using spaceO(σk2n logk log n).
This is the first non-trivial space bound with this query time.

• There is a time-space trade-off for k-bounded wildcard indexes. This trade-off generalizes the
index described by Cole et al. [11].

Furthermore, we generalize these indexes to support variable length gaps in the pattern.

1.1 Previous Work

Exact string matching has been generalized with error bounds in many different ways. In particular,
allowing matches within a bounded hamming or edit distance, known as approximate string match-
ing, has been subject to much research [2, 6, 10–12,19,25,26,28,32,35,37]. Another generalization
was suggested by Fischer and Paterson [14], allowing wildcards in the text or pattern.

Work on the wildcard problem has mostly focused on the non-indexing variant, where the string
t is not preprocessed in advance [4,8,9,13,14,23]. Some solutions to the indexing problem consider
the case where wildcards appear only in the indexed string [36] or in both the string and the
pattern [11,24].

In the following, we summarize the known indexes that support wildcards in the pattern only.
We focus on the case where k > 1, since for k = 0 the problem is classic string indexing. For
k = 1, Cole et al. [11] describe a selection of specialized solutions. However, these solutions do not
generalize to larger k.

Several simple solutions to the problem exist for k > 1. Using a suffix tree T for t [38], we can
find all occurrences of p in a top-down traversal starting from the root. When we reach a wildcard
character in p in location ℓ ∈ T , the search branches out, consuming the first character on all
outgoing edges from ℓ. This gives an unbounded wildcard index using O(n) space with query time
O(σjm+ occ), where occ is the total number of occurrences of p in t. Alternatively, we can build a
compressed trie storing all possible modifications of all suffixes of t containing at most k wildcards.
This gives a k-bounded wildcard index using O(nk+1) space with query time O(m+ j + occ).

In 2004, Cole et al. [11] gave an elegant k-bounded wildcard index using O(n logk n) space
and with O(m + 2j log log n + occ) query time. For sufficiently small values of j this significantly
improves the previous bounds. The key components in this solution are a new data structure for
longest common prefix (LCP) queries and a heavy path decomposition [20] of the suffix tree for the
text t. Given a pattern p, the LCP data structure supports efficient insertion of all suffixes of p
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Type Query Time Space Solution

Unbounded

O(m+
∑j

i=0
occ(pi, t)) O(n) Iliopoulos and Rahman [22]

O(m+ jmin0≤i≤j occ(pi, t)) O(n) Lam et al. [24]
O(σjm + occ) O(n) Simple suffix tree index †

O(m + σj log logn + occ) O(n) ART decomposition †

O(m+ σj log logn+ occ) O(n logn) Cole et al. [11]

k-bounded

O(m + βj log logn + occ) O(n logn log
k−1

β
n) Heavy α-tree decomposition †

O(m+ 2j log logn+ occ) O(n logk n) Cole et al. [11]

O(m + j + occ) O(nσk2

logk logn) Special index for m < σk log logn †

O(m + j + occ) O(nk+1) Simple linear time index †

Table 1: † = presented in this paper. The term occ(pi, t) denotes the number of matches of pi in t
and is Θ(n) in the worst case.

into the suffix tree for t, such that subsequent longest common prefix queries between any pair
of suffixes from t and p can be answered in O(log log n) time. This is where the log log n term in
the query time comes from. The heavy path decomposition partitions the suffix tree into disjoint
heavy paths such that any root-to-leaf path contains at most a logarithmic number of heavy paths.
Cole et al. [11] show how to reduce the size of the index by only creating additional wildcard tries
for the off-path subtries. This leads to the O(n logk n) space bound. Secondly, using the new tries,
the top-down search branches at most twice for each wildcard, leading to the 2j term in the query
time. Though Cole et al. [11] did not consider unbounded wildcard indexes, the technique can be
extended to this case by using only the LCP data structure and omitting the additional wildcard
tries. This leads to an unbounded wildcard index with query time O(m+ σj log log n+ occ) using
space O(n log n).

The solutions described by Cole et al. [11] all have bounds which are exponential in the number
of wildcards in the pattern. Very recently, Lewenstein [27] used similar techniques to improve the
bounds to be exponential in the number of gaps in the pattern (a gap is a maximal substring of
consecutive wildcards). Assuming that the pattern contains at most g gaps each of size at most
G, Lewenstein obtains a bounded index with query time O(m + 2γ log log n + occ) using space
O(n(G2 log n)g), where γ ≤ g is the number of gaps in the pattern.

A different approach was taken by Iliopoulos and Rahman [22], who describe an unbounded
wildcard index using linear space. For a pattern p consisting of strings p0, p1, . . . , pj (subpatterns)

interleaved by j wildcards, the query time of the index is O(m +
∑j

i=0 occ(pi, t)), where occ(pi, t)
denotes the number of matches of pi in t. This was later improved by Lam et al. [24] with an index
that determines complete matches by first identifying potential matches of the subpatterns in t and
subsequently verifying each possible match for validity using interval stabbing on the subpatterns.
Their solution is an unbounded wildcard index with query time O (m+ jmin0≤i≤j occ(pi, t)) using
linear space. However, both of these solutions have a worst case query time of Θ(jn), since there
may be Θ(n) matches for a subpattern, but no matches of p. Table 1 summarizes the existing
solutions for the problem in relation to our results.

The unbounded wildcard index by Iliopoulos and Rahman [22] was the first index to achieve
query time linear in m while using O(n) space. Recently, Chan et al. [6] considered the related
problem of obtaining a k-mismatch index supporting queries in time linear in m and using O(n)
space. They describe an index with a query time of O(m+ (log n)k(k+1) log log n+ occ). However,
this bound assumes a constant-size alphabet and a constant number of errors. In this paper we
make no assumptions on the size of these parameters.
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1.2 Our Results

Our main contribution is three new wildcard indexes.

Theorem 1. Let t be a string of length n from an alphabet of size σ. There is an unbounded
wildcard index for t using O(n) space. The index can report the occurrences of a pattern with m
characters and j wildcards in time O(m+ σj log log n+ occ).

Compared to the solution by Cole et al. [11], we obtain the same query time while reducing the
space usage by a factor log n. We also significantly improve upon the previously best known linear
space index by Lam et al. [24], as we match the linear space usage while improving the worst-case
query time from Θ(jn) to O(m+σj log log n+ occ) provided j ≤ logσ n. Our solution is faster than
the simple suffix tree index for m = Ω(log log n). Thus, for sufficiently small j we improve upon
the previously known unbounded wildcard indexes.

The main idea of the solution is to combine an ART decomposition [1] of the suffix tree for t
with the LCP data structure. The suffix tree is decomposed into a number of logarithmic-sized
bottom trees and a single top tree. We introduce a new variant of the LCP data structure for use
on the bottom trees, which supports queries in logarithmic time and linear space. The logarithmic
size of the bottom trees leads to LCP queries in time O(log log n). On the top tree we use the
LCP data structure by Cole et al. [11] to answer queries in time O(log log n). The number of LCP
queries performed during a search for p is O(σj), yielding the σj log log n term in the query time.
The reduced size of the top tree causes the index to be linear in size.

Theorem 2. Let t be a string of length n from an alphabet of size σ. For 2 ≤ β < σ, there is a
k-bounded wildcard index using O(n log(n) logk−1

β n) space. The index can report the occurrences in

t of a pattern with m characters and j ≤ k wildcards in time O(m+ βj log log n+ occ).

The theorem provides a time-space trade-off for k-bounded wildcard indexes. Compared to
the index by Cole et al. [11], we reduce the space usage by a factor logk−1 β by increasing the
branching factor from 2 to β. For β = 2 the index is identical to the index by Cole et al. The
result is obtained by generalizing the wildcard index described by Cole et al. We use a heavy
α-tree decomposition, which is a new technique generalizing the classic heavy path decomposition
by Harel and Tarjan [20]. This decomposition could be of independent interest. We also show that
for β = 1 the same technique yields an index with query time O(m+ j + occ) using space O(nhk),
where h is the height of the suffix tree for t.

Theorem 3. Let t be a string of length n from an alphabet of size σ. There is a k-bounded wildcard
index for t using O(σk2n logk log n) space. The index can report the occurrences of a pattern with
m characters and j ≤ k wildcards in time O(m+ j + occ).

To our knowledge this is the first linear time index with a non-trivial space bound. The result
improves upon the space usage of the simple linear time index when σk < n/ log log n. To achieve
this result, we use the O(nhk) space index to obtain a black-box reduction that can produce a
linear time index from an existing index. The idea is to build the O(nhk) space index with support
for short patterns, and query another index if the pattern is long. This technique is closely related
to the concept of filtering search introduced by Chazelle [7] and has previously been applied for
indexing problems [3, 6]. The theorem follows from applying the black-box reduction to the index
of Theorem 1.
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1.2.1 Variable Length Gaps

We also show that the three indexes support searching for query patterns with variable length gaps,
i.e., patterns of the form p = p0 ∗{a1, b1} p1 ∗{a2, b2} . . . ∗{aj , bj} pj , where ∗{ai, bi} denotes a
variable length gap that matches an arbitrary substring of length between ai and bi, both inclusive.

String indexing for patterns with variable length gaps has applications in information retrieval,
data mining and computational biology [16,18,29,31,33]. In particular, the PROSITE data base [5,
21] uses patterns with variable length gaps to identify and classify protein sequences. The problem
is a generalization of string indexing for patterns with wildcards, since a wildcard ∗ is equivalent
to the variable length gap ∗{1, 1}. Variable length gaps are also known as bounded wildcards, as a
variable length gap ∗{ai, bi} can be regarded as a bounded sequence of wildcards.

String indexing for patterns with variable length gaps is equivalent to string indexing for patterns
with wildcards, with the addition of allowing optional wildcards in the pattern. An optional wildcard
matches any character from Σ or the empty string, i.e., an optional wildcard is equivalent to the
variable length gap ∗{0, 1}. Conversely, we may also consider a variable length gap ∗{ai, bi} as ai
consecutive wildcards followed by bi − ai consecutive optional wildcards.

Lam et al. [24] introduced optional wildcards in the pattern and presented a variant of their
solution for the string indexing for patterns with wildcards problem. The idea is to determine
potential matches and verify complete matches using interval stabbing on the possible positions
for the subpatterns. This leads to an unbounded optional wildcard index with query time O(m+
Bjmin0≤i≤j occ(pi, t)) and space usage O(n). Here B =

∑j
i=1 bi and occ(pi, t) denotes the number

of matches of pi in t, and since occ(pi, t) = Θ(n) in the worst case, the worst case query time
is Θ(Bjn). Recently, Lewenstein [27] considered the special case where the pattern contains at
most g gaps and ai = bi ≤ G for all i, i.e., the gaps are non-variable and of length at most G.
Using techniques similar to those by Cole et al. [11], he gave a bounded index with query time
O(m + 2γ log log n + occ) using space O(n(G2 log n)g), where γ ≤ g is the number of gaps in the
pattern.

The related string matching with variable length gaps problem, where the text may not be
preprocessed in advance, has recieved some research attention recently [4, 17, 30, 33, 34]. However,
none of the results and techniques developed for this problem appear to lead to non-trivial bounds
for the indexing problem.

Our Results for Variable Length Gaps To introduce our results we let A =
∑j

i=1 ai and

B =
∑j

i=1 bi denote the sum of the lower and upper bounds on the variable length gaps in p,
respectively. Hence A and B − A denote the number of normal and optional wildcards in p,
respectively. A wildcard index with support for optional wildcards is called an optional wildcard
index. As for wildcard indexes, we distinguish between bounded and unbounded optional wildcard
indexes. A (k, o)-bounded optional wildcard index supports patterns containing A ≤ k normal
wildcards and B − A ≤ o optional wildcards. An unbounded optional wildcard index supports
patterns with no restriction on the number of normal and optional wildcards.

To accommodate for variable length gaps in the pattern, we only need to modify the way in
which the wildcard indexes are searched, leading to the following new theorems. The proofs are
given in Section 7.

Theorem 4. Let t be a string of length n from an alphabet of size σ. There is an unbounded
optional wildcard index for t using O(n) space. The index can report the occurrences of a pattern
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with m characters, A wildcards and B−A optional wildcards in time O(m+2B−AσB log log n+occ),
where A =

∑j
i=1 ai and B =

∑j
i=1 bi.

Theorem 5. Let t be a string of length n from an alphabet of size σ. For 2 ≤ β < σ, there is
a (k, o)-bounded optional wildcard index for t using O

(

n log(n) logk+o−1
β n

)

space. The index can
report the occurrences of a pattern with m characters, A ≤ k wildcards and B − A ≤ o optional
wildcards in time O

(

m+ 2B−AβB log log n+ occ
)

, where A =
∑j

i=1 ai and B =
∑j

i=1 bi.

Theorem 6. Let t be a string of length n from an alphabet of size σ. There is a (k, o)-bounded
optional wildcard index for t using O(σ(k+o)2n logk+o log n) space. The index can report the occur-
rences of a pattern with m characters, A ≤ k wildcards and B − A ≤ o optional wildcards in time
O(2B−A(m+B) + occ), where A =

∑j
i=1 ai and B =

∑j
i=1 bi.

These results completely generalize our previous solutions, since if the query pattern only contains
variable length gaps of the form ∗{1, 1}, the problem reduces to string indexing for patterns with
wildcards. In that case A = B = j and we obtain exactly Theorem 1, Theorem 2 and Theorem 3.

Compared to the only known index for the problem by Lam et al. [24], Theorem 4 gives an
unbounded optional wildcard index that matches the O(n) space usage, but improves the worst-
case query time from Θ(Bjn) to O

(

m+ 2B−AσB log log n+ occ
)

, provided that B ≤ logσ
√
nj.

2 Preliminaries

We introduce the following notation. Let p = p0 ∗p1 ∗ . . .∗pj be a pattern consisting of j+1 strings
p0, p1, . . . , pj ∈ Σ∗ (subpatterns) interleaved by j ≤ k wildcards. The substring starting at position
l ∈ {1, . . . , n} in t is an occurrence of p if and only if each subpattern pi matches the corresponding
substring in t. That is,

pi = t

[

l + i+
i−1
∑

r=0

|pr|, l + i− 1 +
i
∑

r=0

|pr|
]

for i = 0, 1, . . . , j ,

where t[i, j] denotes the substring of t between indices i and j, both inclusive. We define t[i, j] = ε

for i > j, t[i, j] = t[1, j] for i < 1 and t[i, j] = t[i, |t|] for j > |t|. Furthermore m =
∑j

r=0 |pr| is the
number of characters in p, and we assume without loss of generality that m > 0 and k > 0.

Let pref i(t) = t[1, i] and suffi(t) = t[i, n] denote the prefix and suffix of t of length i and n−i+1,
respectively. Omitting the subscripts, we let pref(t) and suff(t) denote the set of all non-empty
prefixes and suffixes of t, respectively. We extend the definitions of prefix and suffix to sets of
strings S ⊆ Σ∗ as follows.

prefi(S) = {pref i(x) | x ∈ S} suffi(S) = {suffi(x) | x ∈ S}
pref(S) =

⋃

x∈S

pref(x) suff(S) =
⋃

x∈S

suff(x)

A set of strings S is prefix-free if no string in S is a prefix of another string in S. Any string set S
can be made prefix-free by appending the same unique character $ /∈ Σ to each string in S.
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2.1 Trees and Tries

For a tree T , the root is denoted root(T ), while height(T ) is the number of edges on a longest path
from root(T ) to a leaf of T . A compressed trie T (S) is a tree storing a prefix-free set of strings
S ⊂ Σ∗. The edges are labeled with substrings of the strings in S, such that a path from the root
to a leaf corresponds to a unique string in S. All internal vertices (except the root) have at least
two children, and all labels on the outgoing edges of a vertex have different initial characters.

A location ℓ ∈ T (S) may refer to either a vertex or a position on an edge in T (S). Formally,
ℓ = (v, s) where v is a vertex in T (S) and s ∈ Σ∗ is a prefix of the label on an outgoing edge of
v. If s = ε, we also refer to ℓ as an explicit vertex, otherwise ℓ is called an implicit vertex. There
is a one-to-one mapping between locations in T (S) and unique prefixes in pref(S). The prefix
x ∈ pref(S) corresponding to a location ℓ ∈ T (S) is obtained by concatenating the edge labels on
the path from root(T (S)) to ℓ. Consequently, we use x and ℓ interchangeably, and we let |ℓ| = |x|
denote the length of x. Since S is assumed prefix-free, each leaf of T (S) is a string in S, and
conversely. The suffix tree for t denotes the compressed trie over all suffixes of t, i.e., T (suff(t)).
We define Tℓ(S) as the subtrie of T (S) rooted at ℓ. That is, Tℓ(S) contains the suffixes of strings
in T (S) starting from ℓ. Formally, Tℓ(S) = T (Sℓ), where

Sℓ =
{

suff |ℓ|(x) | x ∈ S ∧ pref |ℓ|(x) = ℓ
}

.

2.2 Heavy Path Decomposition

For a vertex v in a rooted tree T , we define weight(v) to be the number of leaves in Tv, where
Tv denotes the subtree rooted at v. We define weight(T ) = weight(root(T )). The heavy path
decomposition of T , introduced by Harel and Tarjan [20], classifies each edge as either light or
heavy. For each vertex v ∈ T , we classify the edge going from v to its child of maximum weight
(breaking ties arbitrarily) as heavy. The remaining edges are light. This construction has the
property that on a path from the root to any vertex, O(log(weight(T ))) heavy paths are traversed.
For a heavy path decomposition of a compressed trie T (S), we assume that the heavy paths are
extended such that the label on each light edge contains exactly one character.

3 The LCP Data Structure

Cole et al. [11] introduced the the Longest Common Prefix (LCP) data structure, which provides a
way to traverse a compressed trie without tracing the query string one character at a time. In this
section we give a brief, self-contained description of the data structure and show a new property
that is essential for obtaining Theorem 1.

The LCP data structure stores a collection of compressed tries T (C1), T (C2), . . . , T (Cq) over
the string sets C1, C2, . . . , Cq ⊂ Σ∗. Each Ci is a set of substrings of the indexed string t. The
purpose of the LCP data structure is to support LCP queries

lcp(x, i, ℓ): Returns the location in T (Ci) where the search for the string x ∈ Σ∗ stops when
starting in location ℓ ∈ T (Ci).

If ℓ is the root of T (Ci), we refer to the above LCP query as a rooted LCP query. Otherwise the
query is called an unrooted LCP query. In addition to the compressed tries T (C1), . . . , T (Cq), the
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LCP data structure also stores the suffix tree for t, denoted T (C) where C = suff(t). The following
lemma is implicit in the paper by Cole et al. [11].

Lemma 1 (Cole et al. [11]). Provided x has been preprocessed in time O(|x|), the LCP data
structure can answer rooted LCP queries on T (Ci) for any suffix of x in time O(log log |C|) using
space O(|C|+∑q

i=1 |Ci|). Unrooted LCP queries on T (Ci) can be performed in time O(log log |C|)
using O(|Ci| log |Ci|) additional space.

We extend the LCP data structure by showing that support for slower unrooted LCP queries
on a compressed trie T (Ci) can be added using linear additional space.

Lemma 2. Unrooted LCP queries on T (Ci) can be performed in time O(log |Ci|+log log |C|) using
O(|Ci|) additional space.

Proof. We initially create a heavy path decomposition for all compressed tries T (C1), . . . , T (Cq).
The search path for x starting in ℓ traverses a number of heavy paths in T (Ci). Intuitively, an
unrooted LCP query can be answered by following the O(log |Ci|) heavy paths that the search
path passes through. For each heavy path, the next heavy path can be identified in constant time.
On the final heavy path, a predecessor query is needed to determine the exact location where the
search path stops.

For a heavy path H, we let h denote the distance that the search path for x follows H.
Cole et al. [11] showed that h can be determined in constant time by performing nearest com-
mon ancestor queries on T (C). To answer lcp(x, i, ℓ) we identify the heavy path H of T (Ci) that
ℓ is part of and compute the distance h as described by Cole et al. If x leaves H on a light edge,
indexing distance h into H from ℓ yields an explicit vertex v. At v, a constant time lookup for
x[h + 1] determines the light edge on which x leaves H. Since the light edge has a label of length
one, the next location ℓ′ on that edge is the root of the next heavy path. We continue the search for
the remaining suffix of x from ℓ′ recursively by a new unrooted LCP query lcp(suffh+2(x), i, ℓ

′). If
H is the heavy path on which the search for x stops, the location at distance h (i.e., the answer to
the original LCP query) is not necessarily an explicit vertex, and may not be found by indexing into
H. In that case a predecessor query for h is performed on H to determine the preceding explicit
vertex and thereby the location lcp(x, i, ℓ). Answering an unrooted LCP query entails at most
log |Ci| recursive steps, each taking constant time. The final recursive step may require a prede-
cessor query taking time O(log log |C|). Consequently, an unrooted LCP query can be answered in
time O(log |Ci|+log log |C|) using O(|Ci|) additional space to store the predecessor data structures
for each heavy path.

4 An Unbounded Wildcard Index Using Linear Space

In this section we show how to obtain Theorem 1 by applying an ART decomposition on the suffix
tree for t and storing the top and bottom trees in the LCP data structure.

4.1 ART Decomposition

The ART decomposition introduced by Alstrup et al. [1] decomposes a tree into a single top tree
and a number of bottom trees. The construction is defined by two rules:

8



1. A bottom tree is a subtree rooted in a vertex of minimal depth such that the subtree contains
no more than χ leaves.

2. Vertices that are not in any bottom tree make up the top tree.

The decomposition has the following key property.

Lemma 3 (Alstrup et al. [1]). The ART decomposition with parameter χ for a rooted tree T with
n leaves produces a top tree with at most n

χ+1 leaves.

4.2 Obtaining the Index

Applying an ART decomposition on T (suff(t)) with χ = log n, we obtain a top tree T ′ and a
number of bottom trees B1, B2, . . . , Bq each of size at most log n. From Lemma 3, T ′ has at most
n

logn leaves and hence O( n
logn) vertices since T ′ is a compressed trie.

To facilitate the search, the top and bottom trees are stored in an LCP data structure, noting
that these compressed tries only contain substrings of t. Using Lemma 2, we add support for
unrooted O(log χ + log log n) = O(log log n) time LCP queries on the bottom trees using O(n)
additional space in total. For the top tree we apply Lemma 1 to add support for unrooted LCP
queries in time O(log log n) using O( n

logn log n
logn) = O(n) additional space. Since the branching

factor is not reduced, O(σi) LCP queries, each taking time O(log log n), are performed for the
subpattern pi. This concludes the proof of Theorem 1.

5 A Time-Space Trade-Off for k-Bounded Wildcard Indexes

In this section we will show Theorem 2. We first introduce the necessary constructions.

5.1 Heavy α-Tree Decomposition

The heavy α-tree decomposition is a generalization of the well-known heavy path decomposition
introduced by Harel and Tarjan [20]. The purpose is to decompose a rooted tree T into a number of
heavy trees joined by light edges, such that a path to the root of T traverses at most a logarithmic
number of heavy trees. For use in the construction, we define a proper weight function on the
vertices of T , to be a function satisfying weight(v) ≥ ∑

w child of v weight(w) . Observe that using
the number of vertices or the number of leaves in the subtree rooted at v as the weight of v satisfies
this property. The decomposition is then constructed by classifying edges in T as being heavy or
light according to the following rule. For every vertex v ∈ T , the edges to the α heaviest children
of v (breaking ties arbitrarily) are heavy, and the remaining edges are light. For α = 1 this results
in a heavy path decomposition. Given a heavy α-tree decomposition of T , we define lightdepthα(v)
to be the number of light edges on a path from the vertex v ∈ T to the root of T . The key property
of this construction is captured by the following lemma.

Lemma 4. For any vertex v in a rooted tree T and α > 0

lightdepthα(v) ≤ logα+1 weight(root(T ))

9



Figure 1: Two different heavy α-tree decompositions with α = 2 of a tree with n = 38 leaves. The
maximum light depth is 3 and 2, respectively, in agreement with Lemma 4.

Proof. Consider a light edge from a vertex v to its child w. We prove that weight(w) ≤ 1
α+1 weight(v),

implying that lightdepthα(v) ≤ logα+1 weight(root(T )). To obtain a contradiction, suppose that
weight(w) > 1

α+1 weight(v). In addition to w, v must have α heavy children, each of which has a
weight greater than or equal to weight(w). Hence

weight(v) ≥ (1 + α) · weight(w) > (1 + α) · 1

α+ 1
weight(v) = weight(v) ,

which is a contradiction.

Lemma 4 holds for any heavy α-tree decomposition obtained using a proper weight function on
T . In the remaining part of the paper we will assume that the weight of a vertex is the number
of leaves in the subtree rooted at v. See Figure 1 for two different examples of heavy α-tree
decompositions.

We define lightheightα(T ) to be the maximum light depth of a vertex in T , and remark that for
α = 0, lightheightα(T ) = height(T ). For a vertex v in a compressed trie T (S), we let lightstrings(v)
denote the set of strings starting in one of the light edges leaving v. That is, lightstrings(v) is the
union of the set of strings in the subtries Tℓ(S) where ℓ is the first location on a light outgoing edge
of v, i.e., |ℓ| = |v|+ 1.

5.2 Wildcard Trees

We introduce the (β, k)-wildcard tree, denoted T k
β (C

′), where 1 ≤ β < σ is a chosen parameter. This

data structure stores a collection of strings C ′ ⊂ Σ+ in a compressed trie such that the search for
a pattern p with at most k wildcards branches to at most β locations in T k

β (C
′) when consuming

a single wildcard of p. In particular for β = 1, the search for p never branches and the search
time becomes linear in the length of p. For a vertex v, we define the wildcard height of v to be
the number of wildcards on the path from v to the root. Intuitively, given a wildcard tree that
supports i wildcards, support for an extra wildcard is added by joining a new tree to each vertex v
with wildcard height i by an edge labeled ∗. This tree is searched if a wildcard is consumed in v.
Formally, T k

β (C
′) is built recursively as follows.

Construction of T i
β(S): Produce a heavy (β − 1)-tree decomposition of T (S), then

for each internal vertex v ∈ T (S) join v to the root of T i−1
β (suff2(lightstrings(v)) by an

edge labeled ∗. Let T 0
β (S) = T (S).

10



The construction is illustrated in Figure 2. Since a leaf ℓ in a compressed trie T (S) is obtained
as the suffix of a string x ∈ C ′, we assume that ℓ inherits the label of x in case the strings in C ′

are labeled. For example, when C ′ denotes the suffixes of t, we will label each suffix in C ′ with its
start position in t. This immediately provides us with a k-bounded wildcard index. Figure 3 shows
some concrete examples of the construction of T k

β (C
′) when C ′ is a set of labeled suffixes.

T k−1

β (suff2(lightstrings(v)))
∗

∗

∗

∗

∗∗

∗

∗

∗

∗
v

∗

β − 1 lightstrings(v)

T 0

β
(C′)

T 1

β
(C′)

T k
β
(C′)

Figure 2: Illustrating of the recursive construction of the wildcard tree T k
β (C

′). The final tree
consists of k layers of compressed tries joined by edges labeled ∗.

5.3 Wildcard Tree Index

Given a collection C ′ of strings and a pattern p, we can identify the strings of C ′ having a prefix
matching p by constructing T k

β (C
′). Searching T k

β (C
′) is similar to the suffix tree search, except

when consuming a wildcard character of p in an explicit vertex v ∈ T k
β (C

′) with more than β
children. In that case the search branches to the root of the wildcard tree joined to v and to the
first location on the β−1 heavy edges of v, effectively letting the wildcard match the first character
on all edges from v. Consequently, the search for p branches to a total of at most

∑j
i=0 β

i = O(βj)
locations, each of which requires O(m) time, resulting in a query time O(βjm + occ). For β = 1
the query time is O(m+ j + occ).

Lemma 5. For any integer 1 ≤ β < σ, the wildcard tree T k
β (C

′) has query time O(βjm+ j + occ).

The wildcard tree stores O(|C ′|Hk) strings, where H is an upper bound on the light height of all
compressed tries T (S) satisfying S ⊆ suffd(C

′) for some integer d.

Proof. We prove that the total number of strings (leaves) in T i
β(S), denoted |T i

β(S)|, is at most

|S|
∑i

j=0H
j = O(|S|H i). The proof is by induction on i. The base case i = 0 holds, since

T 0
β (S) = T (S) contains |S| = |S|∑0

j=0H
j strings. For the inductive step, assume that |T i

β(S)| ≤
|S|∑i

j=0H
j . Let Sv = suff2(lightstrings(v)) for a vertex v ∈ T (S). From the construction we have

that the number of strings in T i+1
β (S) is the number of strings in T (S) plus the number of strings

11
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Figure 3: Showing T k
β (C) for β ∈ {1, 2, 3}, k = 2 and C = suff(bananas$). The recursion levels 0,

1, 2 in the construction are indicated by increasing growth rings in the vertices. All edges in T 2
1 (C)

are light, since the construction is based on a heavy α-tree decomposition with α = β − 1 = 0.
Leaves are labeled with the start position of their corresponding suffix in t.
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in the wildcard trees joined to the vertices of T (S). That is,

∣

∣T i+1
β (S)

∣

∣ =
∣

∣S
∣

∣+
∑

v∈T (S)

∣

∣T i
β(Sv)

∣

∣

IH
≤
∣

∣S
∣

∣+
∑

v∈T (S)

∣

∣Sv

∣

∣

i
∑

j=0

Hj .

The string sets Sv consist of suffixes of strings in S. Consider a string x ∈ S, i.e., a leaf in T (S).
The number of times a suffix of x appears in a set Sv is equal to the light depth of x in T (S). S is
also a set of suffixes of C ′, and hence H is an upper bound on the maximum light depth of T (S).
This establishes that

∑

v∈T (S) |Sv| ≤ |S|H , thus showing that |T i+1
β (S)| ≤ |S|+ |S|H

∑i
j=0H

j =

|S|∑i+1
j=0H

j .

Constructing the wildcard tree T k
β (C), where C = suff(t), we obtain a wildcard index with the

following properties.

Lemma 6. Let t be a string of length n from an alphabet of size σ. For 2 ≤ β < σ there is a
k-bounded wildcard index for t using O

(

n logkβ n
)

space. The index can report the occurrences of a

pattern with m characters and j ≤ k wildcards in time O
(

βjm+ occ
)

.

Proof. The query time follows from Lemma 5. Since T k
β (C) is a compressed trie, and because each

edge label is a substring of t, the space needed to store T k
β (C) is upper bounded by the number of

strings it contains which by Lemma 5 is O(nHk). It follows from Lemma 4 that H = logβ n is an
upper bound on the light height of all compressed tries T (S), since they each contain at most n
vertices. Consequently, the space needed to store the index is O(n logkβ n).

5.4 Wildcard Tree Index Using the LCP Data Structure

The wildcard index of Lemma 6 reduces the branching factor of the suffix tree search from σ to
β, but still has the drawback that the search for a subpattern pi from a location ℓ ∈ T k

β (C) takes
O(|pi|) time. This can be addressed by combining the index with the LCP data structure as in
Cole et al. [11]. In that way, the search for a subpattern can be done in time O(log log n). The index
is obtained by modifying the construction of T i

β(S) such that each T (S) is added to the LCP data
structure prior to joining the (β, i−1)-wildcard trees to the vertices of T (S). For all T (S) except the
final T (S) = T 0

β (S), support for unrooted LCP queries in time O(log log n) is added using additional
O(|S| log |S|) space. For the final T (S), searched when all k wildcards have been matched, we only
need support for rooted queries. Upon receiving the query pattern p = p1 ∗ p2 ∗ . . . ∗ pk, each pi is
preprocessed in time O(|pi|) to support LCP queries for any suffix of pi. The search for p proceeds
as described for the normal wildcard tree, except now rooted and unrooted LCP queries are used
to search for suffixes of p0, p1, . . . , pk.

In the search for p, a total of at most
∑j

i=0 β
i = O(βj) LCP queries, each taking time

O(log log n), are performed. Preprocessing p0, p1, . . . , pj takes
∑j

i=0 |pi| = m time, so the query
time is O(m+βj log log n+ occ). The space needed to store the index is O(n logkβ n) for T

k
β (C) plus

the space needed to store the LCP data structure.
Adding support for rooted LCP queries requires linear space in the total size of the compressed

tries, i.e., O(n logkβ n). Let T (S0), T (S1), . . . , T (Sq) denote the compressed tries with support for

unrooted LCP queries. Since each Si contains at most n strings and
∑q

i=0 |Si| = |T k−1
β (C)|, by
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Lemma 1, the additional space required to support unrooted LCP queries is

O
(

q
∑

i=0

|Si| log |Si|
)

= O
(

log n

q
∑

i=0

|Si|
)

= O
(

log n|T k−1

β (C′)|
)

= O
(

n log(n) logk−1

β n
)

,

which is an upper bound on the total space required to store the wildcard index. This concludes
the proof of Theorem 2. The k-bounded wildcard index described by Cole et al. [11] is obtained as
a special case of Theorem 2.

Corollary 1 (Cole et al. [11]). Let t be a string of length n from an alphabet of size σ. There is a
k-bounded wildcard index for t using O(n logk n) space. The index can report the occurrences of a
pattern with m characters and j ≤ k wildcards in time O(m+ 2j log log n+ occ).

6 A k-Bounded Wildcard Index with Linear Query Time

Consider the k-bounded wildcard index obtained by creating the wildcard tree T k
1 (suff(t)) for t.

This index has linear query time, and we can show that the space usage depends of the height of
the suffix tree.

Lemma 7. Let t be a string of length n from an alphabet of size σ. There is a k-bounded wildcard
index for t using O(nhk) space, where h is the height of the suffix tree for t. The index can report
the occurrences of a pattern with m characters and j wildcards in time O(m+ j + occ).

Proof. Since suff(t) is closed under the suffix operation, the height of T (suff(t)) is an upper bound
on the height of all compressed tries T (S) satisfying S ⊆ suffd(suff(t)) for some d. For β = 1, the
light height of T (S) is equal to the height of T (S), so H = h = height(T (suff(t))) can be used
as an upper bound of the light height in Lemma 5, and consequently the space needed to store
T k
1 (suff(t)) is O(nhk).

In the worst case the height of the suffix tree is close to n, but combining the index with another
wildcard index yields a useful black box reduction. The idea is to query the first index if the pattern
is short, and the second index if the pattern is long.

Lemma 8. Let F ≥ m and let G be independent of m and j. Given a wildcard index A with query
time O(F + G + occ) and space usage S, there is a k-bounded wildcard index B with query time
O(F + j + occ) and taking space O(nmin(G,h)k + S), where h is the height of the suffix tree for t.

Proof. The wildcard index B consists of A as well as a special wildcard index T k
1 (prefG(suff(t))) C,

which is a wildcard tree with β = 1 over the set of all substrings of t of length G. G can be used as
an upper bound for the light height in Lemma 5, so the space required to store C is O(nmin(G,h)k)
by using Lemma 7 if G > h. A query on B results in a query on either A or C. In case G < F + j,
we query A and the query time will be O(F + G + occ) = O(F + j + occ). In case G ≥ F + j,
we query C with query time O(m+ j + occ) = O(F + j + occ). In any case the query time of B is
O(F + j + occ).

Applying Lemma 8 with F = m and G = σk log log n on the unbounded wildcard index from
Theorem 1 yields a new k-bounded wildcard index with linear query time using spaceO(σk2n logk log n).
This concludes the proof of Theorem 3.
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7 Variable Length Gaps

We now consider the string indexing for patterns with variable length gaps problem. By only
changing the search procedure, this problem can be solved using the previously described bounded
and unbounded wildcard indexes.

The string indexing for patterns with variable length gaps problem is to build an index for a
string t that can efficiently report the occurrences of a query pattern p of the form

p = p0 ∗{a1, b1} p1 ∗{a2, b2} . . . ∗{aj , bj} pj .

The query pattern consists of j + 1 strings p0, p1, . . . , pj ∈ Σ∗ interleaved by j variable length gaps
∗{ai, bi}, i = 1, . . . , j, where ai and bi are positive integers such that ai ≤ bi. Intuitively, a variable
length gap ∗{ai, bi} matches an arbitrary string over Σ of length between ai and bi, both inclusive.

Example 1. Consider the string t and pattern p over the alphabet Σ = {a, b, c, d}.

t = acbccbacccddabdaabcdccbccdaa

p = b∗{0, 4}cc∗{3, 5}d

The string t contains five occurrences of the query pattern p as shown in Figure 4.

As shown by Example 1, different occurrences of the query pattern p can start or end at the same
position in t, and the same substring in t can contain multiple occurrences of p. Hence to completely
characterize an occurrence of p in t, we need to report the positions of the individual subpatterns
p0, p1, . . . , pj for each full occurrence of the pattern. However, in the following we will restrict
our attention to reporting the start and end position of each occurrence of p in t. For the above
example, we would thus report the pairs (3, 11), (3, 15), (6, 15) and (18, 26).

7.1 Supporting Variable Length Gaps

Recall that a variable length gap ∗{ai, bi} is equivalent to ai wildcards followed by bi − ai optional
wildcards. Hence to support variable length gaps, we only have to describe how the search algo-
rithms must be modified to match an optional wildcard in p. We simulate an optional wildcard as
matching both a normal wildcard and the empty string. When matching a normal wildcard the
search can only branch in explicit vertices, but for optional wildcards the search will always branch
to at least two locations. This is the reason for the 2B−A factor in the query times of Theorem 4–6.

To report the substrings in t where the query pattern occurs, we assume that each leaf ℓ in
T (suff(t)) has been labeled by the start position, pos(ℓ), of the suffix in t it corresponds to. The
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b ∗ ∗ c c ∗ ∗ ∗ d

Figure 4: The five occurrences of the query pattern p = b∗{0, 4}cc∗{3, 5}d in the string t =
acbccbacccddabdaabcdccbccdaa.
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search for p terminates in a set of locations R, each corresponding to one or more substrings in t
where the query pattern p occurs. We can report the start and end position of these substrings by
traversing the subtrees rooted in the locations of R. For a subtree rooted in ℓ′ ∈ R we identify the
leaves ℓ0, ℓ1, . . . , ℓr corresponding to suffixes of t having ℓ′ as a prefix. The start and end positions
of these substrings are then given by

(

pos(ℓ0),pos(ℓ0) + |ℓ′|
)

,
(

pos(ℓ1),pos(ℓ1) + |ℓ′|
)

, . . . ,
(

pos(ℓr),pos(ℓr) + |ℓ′|
)

.

7.2 Analysis of the Modified Search

To analyse the query time we bound the maximum number of LCP queries performed during the
search for the query pattern

p = p0 ∗{a1, b1} p1 ∗{a2, b2} . . . ∗{aj , bj} pj .

We define Ai =
∑i

l=1 al and Bi =
∑i

l=1 bl. The number of normal and optional wildcards preceding
the subpattern pi in p is Ai and Bi −Ai, respectively. To bound the number of locations in which
an LCP query for the subpattern pi can start, we choose and promote l = 0, 1, . . . , Bi − Ai of the
preceding optional wildcards to normal wildcards and discard the rest. For a specific choice there
are exactly Ai+ l wildcards preceding pi, and thus the number of locations in which an LCP query
for pi can start is at most βAi+l. The term β is an upper bound on the branching factor of the
search when consuming a wildcard. For a suffix tree T (suff(t)) the branching factor is β = σ, but
indexes based on wildcard trees can have a smaller branching factor. There are

(

Bi−Ai

l

)

possibilities
for choosing the l optional wildcards, so the number of locations in which an LCP query for pi can
start is at most

Bi−Ai
∑

l=0

(

Bi −Ai

l

)

βAi+l ≤ 2Bi−AiβBi .

Summing over the j + 1 subpatterns, we obtain a bound of O
(

2B−AβB
)

on the number of LCP
queries performed during a search for the query pattern p. Since LCP queries are performed in time
O(log log n) and we have to preprocess the pattern in time O(m), the total query time becomes
O(m+ 2B−AβB log log n+ occ). This concludes the proof of Theorem 4 and Theorem 5.

To show Theorem 6, we apply a black-box reduction very similar to Lemma 8, leading to a
(k, o)-bounded optional wildcard index, where k and o are the maximum number of normal and
optional wildcards allowed in the pattern, respectively. This index consists of the following two
optional wildcard indexes. A query is performed on one of these indexes depending on the length
m+B of the query pattern p.

1. The unbounded optional wildcard index given by Theorem 4. This index has query time
O(m+ 2B−AσB log log n+ occ) and uses space O(n).

2. The (k, o)-bounded optional wildcard index obtained by using the wildcard tree T k+o
1 (prefG(suff(t)))

without the LCP data structure, where G = σk+o log log n. For β = 1 the search for the sub-
pattern pi can start from at most 2Bi−Ai locations. Searching for pi from each of these
locations takes time O(|pi|+ bi), since the LCP data structure is not used and the tree must
be traversed one character at a time. Summing over the j + 1 subpatterns, we obtain the
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following query time for the index

O

(

j
∑

i=0

2Bi−Ai(|pi|+ bi) + occ

)

= O
(

2B−A(m+B) + occ
)

.

The index is a wildcard tree and by the same argument as for Theorem 3, it can be stored
using space O(nGk+o).

In case the query pattern p has length m + B > G we query the first index. It follows that
2B−AσB log log n ≤ 2B−AG < 2B−A(m+B), so the query time is O(2B−A(m+B) + occ). If p has
length m + B ≤ G all occurrences of p in t can be found by querying the second index in time
O(2B−A(m+B) + occ). The space of the index is

O(n+ nGk+o) = O(n(σk+o log log n)k+o) = O(nσ(k+o)2 logk+o log n) .

This concludes the proof of Theorem 6.

8 Conclusion

We have presented several new indexes supporting patterns containing wildcards and variable length
gaps. All previous wildcard indexes have query times which are either exponential in the number
of wildcards or gaps in the pattern, or linear in the length of the indexed text. We showed that it
is possible to obtain an index with linear query time while avoiding space usage exponential in the
length of the indexed string. Moreover, we gave an index with linear space usage and a fast query
time. For wildcard indexes having a query time sublinear in the length of the indexed string, an
interesting open problem is whether there is an index where neither the size nor the query time is
exponential in the number of wildcards or gaps in the pattern.
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