
ar
X

iv
:1

20
7.

69
44

v2
 [

m
at

h.
G

R
]

 9
 A

ug
 2

01
2

Efficient algorithms for highly compressed data:

The Word Problem in

Generalized Higman Groups is in P

Jürn Laun

Institut für Formale Methoden der Informatik

Universität Stuttgart, Universitätsstraße 38

70199 Stuttgart, Germany

laun@fmi.uni-stuttgart.de

August 17, 2018

Abstract

This paper continues the 2012 STACS contribution by Diekert, Ushakov,

and the author. We extend the results published in the proceedings in

two ways.

First, we show that the data structure of power circuits can be gener-

alized to work with arbitrary bases q ≥ 2. This results in a data structure

that can hold huge integers, arising by iteratively forming powers of q. We

show that the properties of power circuits known for q = 2 translate to the

general case. This generalization is non-trivial and additional techniques

are required to preserve the time bounds of arithmetic operations that

were shown for the case q = 2.
The extended power circuit model permits us to conduct operations in

the Baumslag-Solitar group BS(1, q) as efficiently as in BS(1,2). This

allows us to solve the word problem in the generalization H4(1, q) of

Higman’s group, which is an amalgamated product of four copies of the

Baumslag-Solitar group BS(1, q) rather than BS(1,2) in the original form.

As a second result, we allow arbitrary numbers f ≥ 4 of copies of

BS(1, q), leading to an even more generalized notion of Higman groups

Hf(1, q). We prove that the word problem of the latter can still be solved

within the O(n6) time bound that was shown for H4(1,2).

Keywords: Data structures; Compression; Algorithmic group theory; Word Problem.

1

http://arxiv.org/abs/1207.6944v2

1 Introduction

This work is a sequel to the STACS paper [4] and its journal version [5]. How-
ever, we try to keep it self-contained by reiterating everything of importance
from the two preceeding papers. We extend their results to a more general ver-
sion of power circuits. As a consequence, we can apply them to larger classes of
groups.

The group H4 was introduced by Higman in 1951 and served to provide the
first known example of a finitely generated infinite simple group [6]. It belongs
to a family Hf (f ≥ 1) of groups with f generators and f relators:

Hf = ⟨a1, . . . , af ∣ ai+1aia−1i+1 = a
2
i (i ∈ Z/fZ)⟩

For f < 4 these groups are trivial, which is easy to see for f ∈ {1,2}, but
suprisingly hard for f = 3. The latter case was proven by Hirsch [6], see also §23
in [12] and [1]. If f ≥ 4, then Hf is infinite, see [7], Section 1.4. Since Hf has
no non-trivial normal subgroups of finite index, taking a minimal non-trivial
quotient results in a finitely generated infinite simple group.

Until recently, Higman’s Group H4 was a candidate for a “natural” group
with non-elementary word problem. This was suggested by the huge compres-
sion that this group allows. In fact, there are words of length n over the gen-

erators ai and their inverses, which in the group are equal to a
tow2(n)
1 , where

tow2(n) is the tower function (also called “tetration”) defined by towq(0) = 1
and towq(n + 1) = qtowq(n). However, in [4] it was shown that the word prob-
lem of H4 is decidable in O(n6

⋅ logn) time and [5] improved this bound to
O(n6). Both results rely on a data structure called “power circuit” which was
introduced by Miasnikov, Ushakov, and Won in [9]. Power circuits had already
proven useful in algorithmic group theory. In fact, their invention was entailed
by the wish to efficiently solve the word problem in the Baumslag-Gersten group
G(1,2) (see [10] and Section 3) which shares with H4 the property of huge com-
pression. (In [10] the group G(1,2) is called “Baumslag group”. We use the
equally common name “Baumslag-Gersten group” to avoid confusion with the
Baumslag-Solitar group.) For q = 2, power circuits have been implemented [11]
and there is a computer program solving the word problem in G(1,2).

This paper builds on the work of Diekert, Ushakov, and the author con-
ducted in [4] and [5]. Its contributions are twofold: In Section 2, we extend
power circuits to allow arbitrary bases q ≥ 2. This necessitates changes in the
reduction procedure, the core component of power circuits. In Section 4, we
generalize Higman’s group H4 by replacing the underlying group BS(1,2) by
BS(1, q) = ⟨a, t ∣ tat−1 = aq⟩. Power circuits with base q are naturally suited for
computations in this group.

Furthermore, with the help of rewriting systems, we give a constructive
method of treating any group Hf (f ≥ 4) rather that just H4. Combining
this with base q power circuits leads to an algorithm for the word problem in
generalized Higman groupsHf(1, q) which retains the O(n6) time bound proved
in [5] for q = 2 and f = 4.

2

Notation and preliminaries Algorithms and decision problems are classi-
fied by their time complexity on a random-access machine (RAM). We use the
notion of amortized analysis with respect to a potential function, see Section
17.3 in [3].

With regard to group theory, we use standard notation and facts that can
be found in any textbook on the subject, e.g. [8]. In particular, we apply the
technique of Britton reductions for solving the word problem in HNN extensions
and amalgamated products.

Rewriting systems are of particular importance for this work. We assume
that the reader is familiar with the basic notions of (local) confluence and ter-
mination. See for example the textbook [2] for a quick introduction.

2 Power circuits

Power circuits were introduced by Miasnikov, Ushakov, and Won in [9]. While
the underlying ideas presented in this chapter originate from their work, there
are some important differences. First, we use a different (and hopefully more
accessible) notation, following [4] and [5]. We also allow multiple markings in
one circuit. The most important modification, which also distinguishes this
paper from [4] and [5], is the generalization from base 2 to arbitrary bases q ≥ 2.

2.1 Power Circuit and Evaluation

For the rest of this paper, we fix an integer q ≥ 2 for the base and the interval
D = {−q + 1, . . . , q − 1} (the set of digits). We start with a directed acyclic edge-
labelled graph without multi-edges, given by Π = (Γ, δ). Here, Γ is a finite set
which will act as the set of nodes (or vertices). The labelled edges (or arcs)
are given by the map δ ∶ Γ × Γ → D where δ(u, v) = 0 means that there is no
edge from u to v and δ(u, v) = e ≠ 0 implies an edge from u to v labelled with
the number e. In other words, the edge set is supp δ, the support of the map
δ. In addition, we require that the directed graph (Γ, supp δ) is acyclic. We
shall make this assumption throughout this paper without mentioning it again.
For any operation on graphs introduced in this chapter, it will be obvious that
acyclicity is preserved.

A marking of Π = (Γ, δ) is a mapping M ∶ Γ → D. Often we regard M as
a labelled subset of the nodes of Π, where the subset is suppM and the labels
are given by M ∣suppM ∶ suppM → D. In this sense, M = 0 (the constant zero
marking) and M = ∅ (the empty marking) are the same.

Each node u ∈ Γ induces in a natural way its successor marking Λu defined
by

Λu ∶ Γ→D; v ↦M(u, v).

Intuitively, the successor marking of a node u consists of the target nodes of
edges starting at u and their labels are given by those of the edges.

3

The evaluation function ε assigns a real number to each node and each
marking of a graph Π. As Π is acyclic we can give an inductive definition of ε:

ε(∅) = 0 where ∅ is the empty marking,

ε(M) = ∑
u∈suppM

M(u) ⋅ ε(u) for all other markings M ,

ε(u) = qε(Λu) for each node u ∈ Γ

Note that this implies ε(u) = 1 for all leaves u (nodes without outgoing edges).
For every node u ∈ Γ we have

ε(Λu) = logq ε(u).

Example 2.1. Figure 1 shows an example of such a graph for q = 3. The set
of nodes is Γ = {u1, u2, u3, u4, u5} and δ is given by

δ(u2, u1) = +1, δ(u3, u1) = +2, δ(u4, u1) = −1, δ(u4, u2) = −2,
δ(u4, u3) = +1, δ(u5, u2) = +2, δ(u5, u3) = +1, δ(u5, u4) = −2.

The nodes evaluate to

ε(u1) = 1, ε(u2) = 3, ε(u3) = 9, ε(u4) = 9, and ε(u5) =
1

27
.

u1

u2 u3

u4

u5

+1
+2

−1

−2 +1

+2

+1
−2

Figure 1: Example of an edge-labelled graph (q = 3)

Lemma 2.2. Let Π = (Γ, δ) be as described above. The following statements
are equivalent:

(i) ε(u) ∈ qN0 = {qn ∶ n ∈ N0} for every node u ∈ Γ

(ii) ε(Λu) ≥ 0 for every node u ∈ Γ

(iii) ε(M) ∈ Z for every marking possible marking M in Π

4

Proof. This is easily seen by noetherian induction with respect to a topological
order of Γ (i.e., an order compatible with the edges).

Definition 2.3. A power circuit is a finite acyclic edge-labelled graph Π = (Γ, δ)
without multiple edges that meets the equivalent conditions of Lemma 2.2.

Example 2.4. The graph in Figure 1 is not a power circuit due to ε(u5) /∈ Z.
In contrast, Figure 2 depicts a power circuit for q = 2. The values of the nodes
are given for illustrative purposes only. In general, these number become too
large to be computed. The marking M evaluates to ε(M) = 29.

1 1

2 4

32

+1
+1

+1

−1

+1 +1

M ∶ +1

M ∶ −1

M ∶ +1

Figure 2: Example of a power circuit (q = 2)

In Corollary 2.15 we will show that it can be efficiently tested whether a
given graph is a power circuit. In [9], a power circuit does not have to satisfy
the criteria of Lemma 2.2, but if it does, it is called proper. In this sense, we
only deal with proper power circuits.

Figure 3 shows that a power circuit of linear size can contain markings with
values the magnitude of the tower function.

u0 u1 u2 . . . un
+1 +1 +1 +1

M ∶ +1

Figure 3: Marking with value ε(M) = towq(n)

2.2 Arithmetic Operations

Let Π = (Γ, δ) be a power circuit and u ∈ Γ a node. The operation Clone with
result v = Clone(u) creates a new node v with the same successor marking as
u, but no incoming arcs. We extend this operation to markings M , by cloning

5

every single node in suppM . The resulting marking Clone(M) is defined as
the marking consisting of all these clones, and the signs are copied from M :

Clone(M) ∶ Γ ∪ {Clone(u) ∶ u ∈ suppM}→D; Clone(u)↦M(u),

Γ ∋ u↦ 0.

Example 2.5. In Figure 4, the marking M consisting of two nodes is cloned.

1

3 9

27

+1 −1

+1

−2
+1

M ∶ +2

M ∶ −1

1

3 9

27

9

27

+1 −1

+1

−2
+1

−1
+1

−2

+1

M ∶ +2

M ∶ −1

Clone(M) ∶ +2

Clone(M) ∶ −1

Figure 4: Cloning a marking (q = 3)

Now we can define arithmetic operations. Let Π = (Γ, δ) be a power circuit
and let K and M be markings in Π. If the supports of K and M are disjoint,
the mapping K +M defined by (K +M)(u) = K(u) +M(u) is a marking with
ε(K+M) = ε(K)+ε(M). In general, however, the operandsK andM will not be
disjoint. In this case we have nodes u ∈ suppK∩suppM with K(u)+M(u) /∈D,
hence K+M is not a valid marking. We solve this problem by cloning: for every
node u with K(u) +M(u) /∈ D, we create a clone u′ = Clone(u) and modify
K +M by putting (K +M)(u) ∶= K(u) and (K +M)(u′) ∶=M(u). We obtain
a valid marking in the (now enlarged) circuit with value ε(K)+ ε(M).

Example 2.6. In Figure 5, ε(K) = 7 and ε(M) = 35 are added. In the resulting
marking, the node with value 1 cancels out, whereas both the original node with
value 4 and its newly created clone are included.

The second operation that we need is multiplication by a power of q. We
observe that

ε(K) ⋅ qε(M) = ∑
u∈suppK

qε(Λu) ⋅ qε(M) = ∑
u∈suppK

qε(Λu)+ε(M),

so in principle we would just have to introduce new edges from each node in
suppK to each node in suppM . The label of such an edge would be the value
that M assigns to the respective target node. This operation works as long as

6

1

2

4

16

32

2048

+1

+1

+1

+1

+1

−1

−1

+1

K ∶ +1

K ∶ +1

K ∶ +1

M ∶ +1

M ∶ +1

M ∶ −1 1

2

4

4

16

32

2048

+1

+1
+1

+1

+1

+1

−1

−1

+1

K +M ∶ +1
K +M ∶ +1

K +M ∶ +1

K +M ∶ +1

Figure 5: Addition of markings (q = 2)

1. no cycles are introduced into the circuit,

2. no multi-edges between two nodes are introduced,

3. there are no edges between nodes in suppK, and

4. no other marking in the circuit is affected. (Note here, that the original
value of K is lost in any case.)

Again, the solution is cloning. Create clones K ′ ∶= Clone(K) and M ′
∶=

Clone(M) and introduce new edges by putting δ(u, v) ∶= M(v) for all u ∈
suppK ′, v ∈ suppM ′. Being clones, nodes in suppK ′ and suppM ′ have no
incoming edges, which prevents cycles and multi-edges. Also, no other marking
in the circuit depends on K ′ or M ′ directly (by containing these nodes) or
indirectly (by containing nodes that are topologically above any node in K ′ or
M ′). An example (in which no further cloning is necessary) is shown in Figure
6.

Finally, note that the operation M ↦ −M which negates the value of M is
easy to conduct without any complications or the need for cloning.

7

1

2

4

1

2 4

+1
+1

+1

+1
+1

K ∶ +1

K ∶ +1 M ∶ +1

M ∶ +1 1

2

4

1

2 4

+1
+1

+1

+1
+1

+1

+1

+1
+1

K ⋅ qM ∶ +1

K ⋅ qM ∶ +1

Figure 6: Multiplication of ε(K) by qε(M) (q = 2)

2.3 Reduction

The operations K +M and K ⋅ qM introduced in the previous section are quite
efficient. Assuming that the graph is stored using adjacency lists, the time they
take depends only on the size of the markings M and K, not on the size of the
circuit. The price for this efficieny is that the structure of a power circuit can
quickly become rather intransparent. In particular, it is unclear how (in)equality
of the values of two markings can be determined in an arbitrary circuit. Again,
note that evaluating the nodes or markings is not an option, due to the vast
growth permitted by power circuits. For this reason, we restrict ourselves to a
subclass of circuits and augment them with some additional data:

Definition 2.7. A reduced power circuit is a power circuit Π = (Γ, δ) together
with a list (u1, . . . , un) of its nodes and a bit vector (b1, . . . , bn−1) ∈ Bn−1 such
that

(i) different nodes evaluate to different numbers, i.e., for all u, v ∈ Γ with
u ≠ v, ε(u) ≠ ε(v),

(ii) the list of nodes is sorted by value, i.e., ε(u1) < ε(u2) < . . . < ε(un),

(iii) bi = 1 if and only if q ⋅ ε(ui) = ε(ui+1).

Proposition 2.8. (cf. Prop. 5 in [4] and Section 2.1 in [9]) Given a reduced
circuit and two markings K and M , the values ε(K) and ε(M) can be com-
pared (yielding <, =, or > as the result) in O(∣Γ∣) time. The algorithm can also
determine whether ∣ε(K) − ε(M)∣ = 1.

Proof. Assume that we want to determine whether for a sum ε = ∑n
i=0 δi ⋅q

i with
∣δi∣ ≤ 2q − 2 we have ε ≤ −2, ε = −1, ε = 0, ε = +1 or ε ≥ +2. We can do this
inductively using the following procedure:

8

1.) If δn = 0, use induction on ε = ∑n−1
i=0 δi ⋅ q

i.

2.) If ∣δn∣ ≥ 2, then ∣ε∣ ≥ 2 ⋅ qn −∑n−1
i=0 (2q − 2) ⋅ q

i ≥ 2 and the sign of ε is the
same as the sign of δn.

3.) If ∣δn∣ = 1, look at δn−1. If δn−1 = 0 or if it has the same sign as δn, then
∣ε∣ ≥ qn −∑n−2

i=0 (2q − 2) ⋅ q
i = qn−1(q − 2) + 2 ≥ 2 since q ≥ 2. Again, ε has

the same sign as δn. If δn−1 has the opposite sign of δn, use induction on
ε = δ̂n−1 ⋅ qn−1 +∑

n−2
i=0 δi ⋅ q

i, where δ̂n−1 = δn ⋅ q + δn−1 ∈ {−2q+ 2, . . . ,2q − 2}.

The answer to the original question can be found by applying this algorithm
to the mapping M − K ∶ Γ → {−2q + 2, . . . ,2q − 2} given by (M − K)(u) =
M(u)−K(u). Note, that the absolute indices i of the δi are not actually needed.
Instead one can use the information provided by the reduced circuit.

Corollary 2.9. For two markings K and M in a reduced circuit, it can be
tested in O(∣Γ∣) time whether qε(K) divides ε(M).

Proof. Let u be the node of minimal value in suppM . Then qε(K) ∣ ε(M) if
and only if qε(K) ∣ ε(u). Using Proposition 2.8, we can check the equivalent
condition ε(K) ≤ ε(Λu).

Power circuits arising from a sequence of arithmetic operations are usually
far from being reduced. Every cloning creates a pair of nodes with the same
value. Therefore, we need an algorithm that given an arbitrary circuit produces
an equivalent reduced circuit. In this context, equivalence means that for each
node and each marking in the old circuit, there is one with the same value in
the reduced circuit. Before giving the algorithm, we need some preparations.

Definition 2.10. A list u1 . . . , uk of nodes in a power circuit is called a chain
(starting at u1), if q ⋅ ε(ui) = ε(ui+1) for all 1 ≤ i < n. It is called a maximal
chain (starting at u1), if it is not part of a longer chain (starting at u1).

Note that chains have nothing to do with paths in the graph. In arbitrary
power circuits, chains are difficult to spot. However, in a reduced power circuit,
they can be easily identified using the bit vector.

In a reduced circuit, the maximal chain starting at the unique node of value 1
is of particular interest. It is called the base chain of the power circuit. For later
use, we define in Algorithm 1 a procedure ProlongBaseChain prolonging this
chain by one node without destroying the reducedness property of a circuit. The
procedure ProlongBaseChain takes O(∣Γ∣) time.

Now we can give an algorithm that reduces power circuits. Reduction is done
node by node. This means that at any point during the reduction procedure,
the circuit consists of a reduced part and a part that is not yet reduced. The
nodes in the non-reduced part are processed in topological order. In this way,
the procedure only has to work for nodes all of whose successors are already in
the reduced part.

9

Algorithm 1: Procedure ProlongBaseChain

input : a reduced power circuit Π = (Γ, δ)
output: a reduced power circuit Π′ = (Γ∪̇{u}, δ′) which is Π with an

additional node u prolonging the base chain of Π

1 Let Γ = (v0, . . . , vn) be the ordered list of the nodes of the reduced circuit
Γ. Using this list and the bit vector, find the smallest i ≥ 0 such that
ε(vi) > qi.

2 Write i as a q-ary number i = ∑i−1
ℓ=0 αℓ ⋅ q

ℓ and use this to define the
marking M(vℓ) = αℓ with value ε(M) = i. Insert a new node u with
Λu =M into the circuit.

3 Place u in the ordered list of nodes between vi−1 and vi.
4 Check whether q ⋅ ε(u) = ε(vi) by applying Proposition 2.8 to Λu and Λvi

(both are contained in the reduced circuit Π). Set the bit vector for u
accordingly.

This approach allows us to generalize the reduction procedure. Instead of
reducing the entire circuit, we can take into account that parts of it might al-
ready be reduced. This will turn out to be useful in applications. The procedure
ExtendReduction described in Algorithm 2 takes as input not only the power
circuit but also a listM of markings that need to be adjusted during reduction
in order to preserve their value.

Proposition 2.11. (cf. [4], Thm. 6) The procedure ExtendReduction is
correct and takes Õ ((∣Γ∣ + ∣U ∣) ⋅ (∣U ∣ +m)) time. The circuit growth ∣Γ′ ∖ Γ∣ is
bounded by 2 ∣U ∣.

Proof. At first, a topological order is computed. The time for this is bounded
by the size of the subgraph U (nodes and edges), which is O(∣U ∣2). In the
main loop starting at line 2, the nodes are eliminated from U one by one. Let
n = ∣Γ∣ + ∣U ∣ be the initial size of the whole graph. Since Γ grows by O(∣U ∣)
during the procedure (although we keep calling it Γ for convenience), O(n) is
the correct bound for the size of Γ.

For each node ui ∈ U , its position in the ordering of Γ has to be found in
step 5. Since uj is chosen to be topologically minimal, the successor marking
Λu is contained in the reduced circuit Γ, so u can be compared to any node
v ∈ Γ in O(n) time. Using binary search, O(logn) comparisons are sufficient,
taking Õ(n ⋅ ∣U ∣) time in total.

For the insertion of ui in Γ, we distiguish two cases. In the first one (step 7),
there is no node in Γ with the same value as ui. In this case, ui is moved from
U to Γ without any modification. Markings containing ui (including successor
markings, i.e., edges with target ui) are not affected either.

The second case (step 11), where there is a node vj with the same value as ui

is more difficult. Figure 7 shows an example. The idea is to delete ui and replace
it in all markings M (both markings from M and successor markings of nodes

10

Algorithm 2: Procedure ExtendReduction

input : a graph Π = (Γ∪̇U, δ) such that (Γ, δ∣Γ×Γ) is a reduced power
circuit, a listM= (M1, . . .Mm) of markings in Π

output: a reduced power circuit Π′ = (Γ′, δ′) with Γ ⊆ Γ′ and
δ′∣Γ×Γ = δ∣Γ×Γ, a listM′ = (M ′

1, . . . ,M
′
m) of markings in Π′ such

that ε(Mi) = ε(M ′
i)

1 Compute a topological order of U , i.e., U = (u1, . . . , uk) such that
δ(ui, uj) ≠ 0 implies i > j.

2 for i = 1, . . . , k do

3 U ∶= U ∖ {ui}
4 If Γ = ∅, set Γ ∶= {u1} (a circuit with just one node is obviously

reduced) and continue with the iteration i = 2.
5 Let Γ = (v1, v2, . . .) be the ordered list of the nodes of the reduced

circuit Γ. Using binary search, find the minimal j such that
ε(ui) ≤ ε(vj). Comparing ui to some vj is done by comparing Λui

to
Λvj . Both markings are in the reduced part, so Proposition 2.8
applies.

6 if ε(Λui
) < 0 = ε(Λv1) then the graph Π is not a power circuit; abort

the algorithm.
7 if ε(ui) < ε(vj) (or no such vj exists) then

8 Γ ∶= Γ ∪ {ui}
9 Insert ui into Γ’s sorted list of nodes between vj−1 and vj .

10 Set the bit vector for ui according to whether ε(Λui
) + 1 = ε(Λvj).

11 else ε(ui) = ε(vj)
12 Find the last node vk of the maximal chain starting at vj and

create v ∶= Clone(vk).
13 Multiply the value of v by q by adding 1 to Λv: Let vℓ be the first

node in the base chain with Λv(vℓ) < q − 1. If such vℓ does not
exist, call ProlongBaseChain to create it. Set
Λv(v1) = . . . = Λv(vℓ−1) = 0 and increment M(vℓ) by one.

14 Insert v in the ordered list after vk and set the bit vector for v by
comparing Λv to Λvk+1 .

15 foreach M ∈ {suppΛu ∶ u ∈ U} ∪M with ui ∈ suppM do

16 Replace ui in M by vj , i.e., set M(vj) ∶=M(vj) +M(ui) and
M(ui) ∶= 0. If now M(vj) = α /∈D, write α = β ⋅ q + γ with
γ ∈D, set M(vj) ∶= γ and add β to M(vj+1). If again
M(vj+1) /∈D, repeat. This terminates at the latest at the
newly created node v which is not marked by M .

in U) by vj . This may cause vj to by “overmarked” by M , i.e., M(vj) /∈D. For
example, in the simplest case q = 2, if M(vj) =M(ui) = 1, then M(vj) = 2 after
the replacement. The solution is inspired by the idea of carry digits used when

11

adding two q-ary numbers: if ∣M(vj)∣ ≥ q, subtract the appropriate number α ⋅q
and add α to the value that M assigns to the next node vj+1 in the chain, which
has q times the value of vj . The carry might propagate to the end of the chain,
which is why we preventively prolonged it by one node vk+1.

Note that the time bound for one execution of step 15 is not Õ(∣Γ∣), but
rather O(∣Γ∣ ⋅#of markings). Since this is not sufficient to prove the claimed
bound, instead we count the total amount of time spent in step 15 during
the whole procedure. The key observation is that for every carry that has to
be moved to the next node in the chain, the number C ∶= ∑M ∑v∈Γ∪U ∣M(v)∣
decreases. Initially C ≤ (q − 1) ⋅ (n ⋅ (∣U ∣ +m)), so the total time complexity of
step 15 is O(n ⋅ (∣U ∣ +m)).

Remark 2.12. Not all markings need to be included inM. Since Π remains a
subcircuit of Π′ and the values of nodes in Γ do not change, all markings whose
support is completely contained in Γ are automatically preserved. Only markings
using nodes in U have to be put intoM. In most applications, M consists only
of a constant number of markings.

Remark 2.13. The bound for the circuit growth given in Proposition 2.11 is a
rather crude one. A more detailed analysis shows that calling ProlongBase-

Chain is only necessary once every time ∣Γ∣ grows by a factor q. If one does
some “cleaning up” in the circuit (for instance delete unmarked nodes with no
incoming edges), [9] shows that the growth during reduction is even bounded by
1. However, this bound is of no importance in our applications since cloning
during arithmetic operations increases the size by O(∣U ∣) anyway.

In practice, the circuit size rarely ever increases at all during reduction.
Usually, the cicuit even shrinks.

Theorem 2.14. (cf. [4], Cor. 7) There is a procedure Reduce which given a
power circuit Π = (Γ, δ) and a listM= (M1, . . . ,Mm) of markings in Π, returns
a reduced circuit Π′ = (Γ′, δ′) and a list M′ = (M ′

1, . . . ,M
′
m) of markings in Π′

such that ε(Mi) = ε(M ′
i) (1 ≤ i ≤ m). Reduce takes Õ(∣Γ∣2 + ∣Γ∣ ⋅m) time and

the size of Γ′ is bounded by 2 ∣Γ∣.

Proof. Invoke ExtendReduction taking ∅ as the reduced part and the whole
circuit as U .

Step 6 in ExtendReduction tests whether ε(Λu) ≥ 0. This is one of the
equivalent conditions specified in Lemma 2.2 for a graph to be a power circuit.
Therefore, reduction is at the same time a test whether a graph is a power
circuit:

Corollary 2.15. ([4], Cor. 8) Given a dag Π = (Γ, δ) it can be determined in

Õ(∣Γ∣2) time whether Π is a power circuit.

12

Γ U

1

2

4

8

2

256

+1

+1+1

+1

+1

+1+1

+1

Γ U

1

2

4

8

256

+1

+1+1

+1

+1
+1

+1

Γ U

1

2

4

8

256

+1

+1+1

+1

+1

+1

Γ U

1

2

4

8

256

+1

+1+1

+1

+1

Figure 7: Reduction step (q = 2)

2.4 Compactness

In this section, we will show that using a richer data structure for reduced
circuits, the time complexity of ExtendReduction can be reduced to O((∣Γ∣+
∣U ∣) ⋅ ∣U ∣). This eliminates the logarithmic factors both for Reduce and for the
test presented in Corollary 2.15. We start by taking a closer look at power sums.

13

2.4.1 Compact power sums

A power sum is a formal sum S = ∑i≥0 αi ⋅ q
i whose coefficients αi are in D

and only finitely many of them are non-zero. The value ε(S) ∈ Z of the power
sum S is defined in the obvious way. On the set of all power sums, we define a
rewriting system P generated by the rules

(1) α ⋅ qi + β ⋅ qi+1 Ð→ (α − q) ⋅ qi + (β + 1) ⋅ qi+1 for α > 0, β < 0,

(2) α ⋅ qi + β ⋅ qi+1 Ð→ (α + q) ⋅ qi + (β − 1) ⋅ qi+1 for α < 0, β > 0,

and for i < j

(3) α ⋅ qi + (q − 1) ⋅ (qi+1 + . . . + qj) + β ⋅ qj+1

Ð→ (α − q) ⋅ qi + (β + 1) ⋅ qj+1 for α > 0, β < q − 1,

(4) α ⋅ qi + (−q + 1) ⋅ (qi+1 + . . . + qj) + β ⋅ qj+1

Ð→ (α + q) ⋅ qi + (β − 1) ⋅ qj+1 for α < 0, β > −q + 1.

None of these rules changes the value of the power sum. We omit the proof for
the following lemma, since it consists of a long but simple enumeration of cases.

Lemma 2.16. The rewriting system P is locally confluent.

Lemma 2.17. The rewriting system P is terminating (noetherian) and hence
confluent ([2], Thm. 1.1.13).

Proof. Let S1⇒
P

∗ S2 ⇒
P

∗ . . . be a sequence of rewritings. Since none of the rules

of P increases the number of non-zero coefficients, this number must eventually
reach a minimum. Thus, ignoring a finite number of terms, we can assume that
the number of non-zeros is constant within the sequence. No rule in P moves
a non-zero coefficient to the left (in the direction of smaller exponents). As
the value of the Si is fixed, non-zeros cannot be moved indefinitely to the right
either. Again, by disregarding a finite prefix of the sequence, we assume that the
positions of the non-zero coefficients are fixed. At this point, no application of
(3) or (4) is possible any more. Finally, rules of type (1) and (2) move pairs of
consecutive coefficients with opposite signs to the left (or remove them), which
can also occur only finitely often. Thus, the sequence S1, S2, . . . is eventually
constant.

We call power sums that are irreducible with respect to P compact. If
S = ∑i≥0 αiq

i is compact, then so is −S = ∑i≥0(−αi)qi.

Proposition 2.18.

(i) For each power sum there is a unique compact power sum of the same
value.

(ii) Compact power sums have the minimal number of non-zero coefficients
among all power sums of the same value.

14

(iii) If S and T are compact power sums, then ε(T) = ε(S)+ 1 if and only if

S = U ⋅ qi+1 + αi ⋅ q
i
+

i−1

∑
j=0

αj ⋅ q
j and

T = U ⋅ qi+1 + βi ⋅ q
i
+

i−1

∑
j=0

βj ⋅ q
j

for some power sum U , βi = αi + 1, and for each 0 ≤ j < i either αj = q − 1
and βj = 0 or αj = 0 and βj = −q + 1.

(iv) The usual order on D gives rise to a lexicographical order on power sums
(where coefficients of higher powers of q are compared before those of lower
powers). Restricted to compact power sums, this lexicographical order co-
incides with the order by values.

Proof. For (i) it suffices to show that for two power sums S and T of the same
value, we have S ⇔

P

∗ T . This is true, since applying the rules of P forward

or backward, one can turn any power sum into an ordinary q-ary number with
coefficients from {0, . . . , q − 1}. (For instance, for positive values of S, use rules
of type (1) backward and rules of type (2) forward to push negative coefficients
to the right.)

Claim (ii) follows from the fact that no rule increases the number of non-zero
coefficients.

For the “if” part of (iii), we observe that component-wise subtraction yields

T − S = qi − (q − 1)
i−1

∑
j=0

qj ,

which evaluates to 1. For the “only if” part, let S = ∑ℓ≥0 αℓ ⋅ q
ℓ be compact.

Consider S′ = ∑ℓ≥1 αℓ ⋅ q
ℓ
+ (α0 + 1). If S′ is a valid power sum (i.e. α0 + 1 ∈ D)

and S′ is compact, it already has the desired form (for i = 0). Otherwise we
have one of the following cases:

1.) S′ is not a valid power sum, since α0 = q − 1. Let k > 0 be the maximum
number such that α0 = . . . = αk = q − 1. We transform S′ into

(αk+1 + 1) ⋅ qk+1 + ∑
ℓ>k+1

αℓ ⋅ q
ℓ

and use induction on (αk+1 + 1) ⋅ q0 +∑ℓ>k+1 αℓ ⋅ q
ℓ−k−1.

2.) A rule of type (1) can be applied. We have α0 = 0 and α1 < 0. Applying
the rule gives

S′ Ô⇒
(1)
∑
ℓ≥2

αℓ ⋅ q
ℓ
+ (α1 + 1) ⋅ q + (−q + 1).

Use induction on ∑ℓ≥2 αℓ ⋅ q
ℓ−1
+ (α1 + 1).

15

3.) A rule of type (3) can be applied. We have α0 = 0 and α1 = . . . = αk = q−1
and αk+1 < q − 1 for some k ≥ 1. This yields

S′ Ô⇒
(3)

∑
ℓ>k+1

αℓ ⋅ q
ℓ
+ (αk+1 + 1) ⋅ qk+1 + (−q + 1)

and induction applies to ∑ℓ>k αℓ ⋅ q
ℓ−k−1

+ (αk+1 + 1).

Finally, (iv) is a consequence of (iii).

The notion of compactness was introduced in [9] for q = 2 and subsequently
used in [5]. Our definition is a generalization that inherits most of the original
characteristics.

There is, however, one important difference: it is much less obvious for q > 2
how to make a power sum compact in linear time. In the case q = 2 it suffices to
apply the rules of P from left to right. Yet, if for instance q = 3, the application
of rule (1) to

1 + q + q2 + q3 − 2q4Ô⇒
(1)
+q + q2 − 2q3 − q4

turns the previously compact prefix 1 + q + q2 + q3 into the P-reducible sum
1 + q + q2 − 2q3.

Proposition 2.19. Any power sum S = ∑n
i=0 αi ⋅ q

i can be transformed into a
compact power sum with the same value in O(n) time.

Proof. Any two power sums S and T with ε(S) = ε(T) can be transformed into
each other using only replacements of the form

α ⋅ qi−1 + β ⋅ qi Ð→ (α ± q) ⋅ qi−1 + (β ∓ 1) ⋅ qi. (⋆±i)

Moreover, at most one application of (⋆+i) or (⋆
−
i) is needed for each i. In fact,

whether (⋆+i) or (⋆
−
i) or neither is needed, depends only on S and T . This can

be seen using induction on i.
Let T = ∑n+1

i=0 βi ⋅ q
i be the compact power sum with ε(S) = ε(T). Define

Ji ∈ {+1,−1,0} (1 ≤ i ≤ n) depending on whether the replacement (⋆+i) or (⋆
−
i)

or neither of them occurs in the sequence S Ô⇒
(⋆±

i
)

∗ T . For notational conveniance,

we define J0 = Jn+2 = 0 and αn+1 = 0. Then we have βi = αi + Ji − q ⋅ Ji+1 for
0 ≤ i ≤ n + 1.

It remains to compute the values Ji (1 ≤ i ≤ n + 1). These are the unique
solution of the following system of conditions (0 ≤ i ≤ n + 1):

(◇i) αi−1 + Ji−1 + q ⋅ Ji ∈ D and αi + Ji + q ⋅ Ji+1 ∈ D and

sign(αi−1 + Ji−1 + q ⋅ Ji) ⋅ sign(αi + Ji + q ⋅ Ji+1) ≠ −1 and

if sign(αi−1 + Ji−1 + q ⋅ Ji) = sign(αi + Ji + q ⋅ Ji+1) = ±1,

then αi + Ji + q ⋅ Ji+1 ≠ ±(q − 1).

16

For i = 2, . . . , n+ 1 and for all j, k ∈ {−1,0,+1} we define Ji[j, k] to be the set of
possible values for Ji, provided that Ji−2 = j and Ji−1 = k:

Ji[j, k] ∶= {Ji ∶ there are J1, . . . , Ji−3 such that

J0 = 0, J1, . . . , Ji−3, Ji−2 = j, Ji−1 = k, Ji satisfy (◇0), . . . , (◇i−1)}

Since (◇i−1) only affects Ji−2, Ji−1, Ji, αi−2, αi−1, the sets Ji[⋅, ⋅] can be com-
puted in constant time using Ji−1[⋅, ⋅]. After this, the solution Jn+1, . . . , J1 can
be read from right to left.

Example 2.20. Suppose that q = 3 and we want to make S = 1+ q − 2q2 − 2q3 +
q4 − q5 compact. We get:

Ji[j, k] i = 2 i = 3 i = 4 i = 5 i = 6 i = 7

j = −1, k = −1 ∅ ∅ ∅ {0} ∅ ∅

j = −1, k = 0 ∅ ∅ ∅ ∅ {−1,0} ∅

j = −1, k = +1 ∅ ∅ ∅ ∅ ∅ ∅

j = 0, k = −1 ∅ ∅ {−1} ∅ ∅ ∅

j = 0, k = 0 {0} {−1} ∅ ∅ ∅ {0}
j = 0, k = +1 {+1} ∅ ∅ ∅ ∅ ∅

j = +1, k = −1 ∅ ∅ ∅ ∅ ∅ ∅

j = +1, k = 0 ∅ ∅ ∅ ∅ ∅ ∅

j = +1, k = +1 ∅ {0} ∅ ∅ ∅ ∅

Since J7 = 0, we deduce from the last column that J5 = J6 = 0 as well. The only
0 in the column for i = 6 with k = 0 yields J4 = −1 and so on. We end up with
J0 = J1 = J2 = 0, J3 = J4 = −1, J5 = J6 = J7 = 0 which results in T = 1+q+q2−q5.

2.4.2 Power circuits and trees

Property (iv) of Proposition 2.18 is the main motivation for the following defi-
nition.

Definition 2.21. (cf. [5], Def. 5) A power Π = (Γ, δ) circuit is called treed
(a convenient shorthand for “reduced and equipped with additional data in the
form of a tree”), if

(i) Π is reduced (i.e., different nodes evaluate to different values and it is
equipped with an ordered list Γ = (u1, . . . , un) and a bit vector, see Defini-
tion 2.7)

(ii) Π is equipped with a directed tree T in which each node has up to ∣D∣
outgoing edges, labelled with pairwise distinct values from D (and ordered
from left to right by increasing values). For each leaf in T , the unique
path from the root to this leaf must consist of exactly n = ∣Γ∣ edges. The
sequence of labels α1, . . . , αn of such a path (read from the leaf to the root)
corresponds to a marking M ∶ ui ↦ αi. For all leaves, the power sum

∑n
i=1 αi ⋅ q

i (which evaluates to ε(M)) must be compact. Any marking
represented as a leaf in this way is called compact.

17

u1

u2

u3

u4u5

+1

+1

−1

+1

+1

+1
M ∶ −1

M ∶ +1

0

0

−1 0 +1

0 0 +1 0

+1 0 +1 0 −1 +1u1

u2

u3

u4

u5

M Λv1 Λv2 Λv3 Λv4 Λv5

Figure 8: Treed power circuit (q = 2) with compact marking M

(iii) All successor markings Λu (u ∈ Γ) are compact.

(iv) Any node v ∈ Γ that is contained in the support of some marking (compact
or not) is not the top node of a maximal chain.

(v) For each level in the tree, there is a list containing the nodes of this level.

Example 2.22. Figure 8 shows an example of a treed circuit (for q = 2) along-
side the tree containing its markings. Note that the order of the nodes is im-
plicitly given by the lowest level of the tree.

The most time consuming step in ExtendReduction was to find the po-
sition of a new node in the sorted list of Γ. Using binary search, this took
O(n logn) time. If Γ is treed and Λu is compact, we can improve this to O(n):
the position of the leaf corresponding to Λu already tells the position of u in Γ.
In order to adjust the bit vector, we have to read the paths from the root of the

18

tree to the respective leaves and check the condition given by Proposition 2.18
(iii). Yet, making a circuit treed is more complicated than just reducing it.

For the time analysis, we use amortization with respect to a potential func-
tion pot, mapping power circuits to numbers, see 17.3 in [3]. An algorithm on
power circuits is said to run in amortized time t, if the real running time is
bounded by t + pot(Π) − pot(Π′), where Π is the input and Π′ is the resulting
circuit. Thus, an algorithm may take longer than its indicated amortized time,
as long as it decreases the potential by the same amount. The potential can
be thought of as a debt which is accumulated whenever the algorithm does not
terminate in time.

Definition 2.23. For a power circuit Π = (Γ, δ), the number of maximal chains
is denoted ch(Π). The potential of Π is pot(Π) = ch(Π) ⋅ ∣Γ∣.

In a situation where Π = (Γ∪̇U, δ) is a graph with an embedded power circuit
Π′ = (Γ, δ∣Γ×Γ), we define ch(Π) ∶= ch(Π′) and pot(Π) ∶= pot(Π′).

Lemma 2.24. There is a procedure InsertNode, which takes a treed power
circuit Π = (Γ, δ) and a compact marking M in Π and which inserts a new node
u with Λu =M into Π. InsertNode runs in amortized time O(∣Γ∣).

Proof. Since M is compact, the position of v in the ordered list of nodes is
determined by the position of the leaf corresponding to M in the tree. The bit
vector can be adjusted by comparing M to the successor markings of the nodes
immediately before and after v.

The tree has to be “stretched” by inserting a new level corresponding to v.
All edges on this level are labelled 0, since no marking contains the new node
v. Using the lists of nodes of the same level, this takes O(∣Γ∣) time.

The insertion of v increases ∣Γ∣ and in some cases also ch(Π). Thus, the
potential grows by up to ∣Γ∣ + ch(Π) + 1 ∈ O(∣Γ∣).

Incrementing a compact marking by 1 is easier than doing the same with an
arbitrary marking. Let M be a compact marking in a treed circuit, in which
u1, u2 are the unique nodes with values 1 and 2 respectively (assuming they
exist). If M(u1) < q − 1, M(u1) can be incremented directly. If M(u1) = q − 1,
then M(u2) < q − 1 thanks to compactness. Set M(u1) ∶= 0 and increment
M(u2). However, the resulting marking is not always compact.

Lemma 2.25. There is a procedure CompactifyMarking which, given an
arbitrary marking M in a treed circuit Π = (Γ, δ), computes a compact marking
M ′ with ε(M ′) = ε(M) in O(∣Γ∣) time.

Proof. This is based on the following observation: if S = ∑m
i=n αi ⋅ q

i is a power
sum, then in the corresponding compact power sum T only the coefficients of
qn, . . . , qm+1 can be non-zero. Hence, for each individual chain C ⊆ Γ, we can
apply the algorithm from Proposition 2.19 to the power sum defined by M ∣C .
Note that a node for qm+1 exists due to Property (iv) of the treed circuit Π.

Strictly speaking, we have not proved that the resulting circuit is treed. In
fact, Condition (iv) demanding an unmarked node at the top of every chain

19

might have been lost during compactification. We will fix this shortly. For now,
we content ourselves with the observation that the problem does not arise when
CompactifyMarking is called during ProlongBaseChain. In this special
case, the successor marking of the new node with value qi only uses nodes with
much smaller values from the base chain (approximately the first logq i). This
shows:

Corollary 2.26. The procedure ProlongBaseChain given in Algorithm 1 can
be adapted for treed power circuits. The amortized time complexity is O(∣Γ∣).

Corollary 2.27. There is a procedure IncrementMarking which, given a
compact marking M in a treed power circuit Π = (Γ, δ), computes a compact
marking M ′ with ε(M ′) = ε(M) + 1 and leaves Π treed. IncrementMarking

takes O(∣Γ∣) amortized time and increases the circuit size by 1+ch(Π)−ch(Π′).

Proof. As discussed above, incrementing M by 1 only affects the two nodes
with values 1 and 2. As a consequence, the compactification process of the
incremented marking is limited to the base chain of Π.

In order to fulfill Condition (iv) of Definition 2.21, we invoke Prolong-

BaseChain which creates a new node u. If u is the new top node of the base
chain, we are done. Otherwise the insertion of u has linked two maximal chains,
decreasing ch(Π) by one. We use the released potential to pay for the O(∣Γ∣)
time used so far and repeat.

For treed circuits, the procedure ExtendTree given in Algorithm 3 replaces
ExtendReduction.

Proposition 2.28. The procedure ExtendTree is correct and runs in amor-
tized time O((∣Γ∣ + ∣U ∣) ⋅ (∣U ∣ +m)). The circuit growth ∣Γ′ ∖ Γ∣ is bounded by
4 ⋅ ∣U ∣ + ch(Π) − ch(Π′).

Proof. The basic structure of ExtendTree is the same as that of Extend-

Reduction, so we focus on the differences. Let n = ∣Γ∣ + ∣U ∣. Between cycles
of the main loop, we keep up the following invariants for all markings M ∈
M ∪ {Λu ∶ u ∈ U}:

(a) If the support of M is completely contained in Γ, M is compact.

(b) Γ is treed. In particular, Condition (iv) holds, which means that for all
nodes v ∈ suppM ∩ Γ, the top node of the maximal chain starting at v is
not marked by M .

At the beginning, both invariants are true by definition.
The time complexity for finding vj in step 5 is reduced to O(n) due to the

representation of the markings in the tree.
If Γ contains no node with the same value as ui, we can insert it as we did

in ExtendReduction. Remember that Λui
is compact due to (a). The case

when ε(ui) = ε(vj) also ressembles ExtendReduction and has the same (now
amortized) time bound.

20

Algorithm 3: Procedure ExtendTree

input : a graph Π = (Γ∪̇U, δ) such that (Γ, δ∣Γ×Γ) is a treed power
circuit, a listM = (M1, . . .Mm) of markings in Π with
suppMi /⊆ Γ

output: a treed power circuit Π′ = (Γ′, δ′) with Γ ⊆ Γ′ and δ′∣Γ×Γ = δ∣Γ×Γ,
a listM′ = (M ′

1, . . . ,M
′
m) of compact markings in Π′ such that

ε(Mi) = ε(M ′
i)

1 Compute a topological order U = (u1, . . . , uk).
2 for i = 1, . . . , k do

3 U ∶= U ∖ {ui}
4 if Γ = ∅ then set Γ ∶= {u1}, create a tree for u1 and insert all

markings with support {u1}. Continue with i = 2.
5 Traversing the lowest level of the tree, find the first node vj in the

ordered list Γ = (v1, v2, . . .) such that ε(ui) ≤ ε(vj).
6 if ε(Λui

) < 0 then abort the algorithm.
7 if ε(ui) < e(vj) (or no such vj exists) then

8 Insert ui into Γ using InsertNode.
9 else ε(ui) = ε(vj)

10 Prolong the maximal chain vj , vj+1, . . . , vk by a new node by
creating a copy of Λvk and applying IncrementMarking and
InsertNode.

11 foreach marking M with ui ∈ suppM do

12 Replace ui in M by vj by adding M(ui) to M(vj) and setting
M(ui) ∶= 0. If, after this, M(vj) /∈D, add ±q to M(vj) and
decrease M(vj+1) by ±1. Repeat if M(vj+1) /∈ D and so on.

13 foreach marking M ∈M ∩ {Λu ∶ u ∈ U} of which ui was the last node
not in Γ do CompactifyMarking(M).

14 repeat

15 Prolong the maximal chain starting at vj using
IncrementMarking and InsertNode

16 until the newly created node is the top of the chain

All markings M whose support is completely contained in Γ after the pro-
cessing of ui must be made compact in order to regain (a). This is done in step
13. After that, we have to restore Condition (iv). Using the same argument as
in Corollary 2.27, step 14 takes O(n) amortized time and causes the circuit to
grow by at most 2 + ch(Π) − ch(Π′) nodes. Together with step 10, the overall
circuit growth during ExtendTree is bounded by 4 ⋅ ∣U ∣+ ch(Π) − ch(Π′).

Theorem 2.29. (Treed analogon of Theorem 2.14) There is a procedure Make-

Tree which given a power circuit Π = (Γ, δ) and a list M = (M1, . . . ,Mm) of
markings in Π, returns a treed circuit Π′ = (Γ′, δ′) and a listM′ = (M ′

1, . . . ,M
′
m)

of compact markings in Π′ such that ε(Mi) = ε(M ′
i) (1 ≤ i ≤ m). MakeTree

21

takes O(∣Γ∣2 + ∣Γ∣ ⋅m) time and the size of Γ′ is bounded by 4 ∣Γ∣.

Remark 2.30. (Working with treed power circuits)
The usual strategy when solving a problem using power circuits is to create one
power circuit and keep all integers as markings in this circuit. The power circuit
is kept in treed form in order that comparisons can be done efficiently at any
time. For each arithmetic operation, the markings corresponding to the operands
are cloned, and the operation (addition or multiplication by a power of two) is
performed on the clones. Finally, ExtendTree is called with the set of clones
as U to regain a treed circuit. This takes O((∣Γ∣ + ∣U ∣) ⋅ ∣U ∣) time and this time
bound also absorbs everything else done during the operation.

For an estimate of the time complexity of an entire algorithm, we need to
keep track of the circuit size ∣Γ∣ as well as the size ω of the supports of the
markings. The latter is usually called the “weight” of the ciruit and determines
the growth during each operation. The cost for one operation is O((∣Γ∣+ω) ⋅ω).
If we start with a comparatively small circuit and ω remains constant during the
algorithm (which is normally the case), then after s operations the circuit size
is bounded by O(s ⋅ω) and the time by O(s2ω2). In our main application – the
solution of the word problem in Higman’s group – s will turn out to be quadratic
and ω linear in the input size n, leading to an O(n6) time algorithm.

Remark 2.31. Seen from the outside, ExtendReduction and ExtendTree

as well as Reduce and MakeTree behave very much alike. In applications,
all four procedures are used as “black boxes” and of the resulting circuits only the
weaker property of reducedness is used. Therefore, in order to simplify nomen-
clature, we will speak of “reduction” and “reduced” circuits, subsuming both
concepts. The reader may then choose whether to use the simpler reduction
concept at the cost of logarithmic factors or to go through the more complicated
procedures for treed power circuits with better asymptotic time complexity.

3 The Word Problem in Generalized Baumslag-

Gersten groups

Although the main goal of this paper is to solve the word problem in Higmans’
groups, we sidetrack briefly to present another generalization that is made pos-
sible by power circuits with arbitrary base q.

The Baumslag-Gersten group is defined as

G(1,2) = ⟨a, b ∣ a
ab

= a2⟩

= ⟨a, b ∣ (bab−1)a(bab−1)−1 = a2⟩

≃ ⟨a, b, t ∣ tat−1 = a2, bab−1 = t⟩.

This is an HNN extension of BS(1,2) generated by a and t. Replacing
BS(1,2) by BS(1, q) (for q ≥ 2), we get a family of generalized Baumslag-Gersten

22

groups:

G(1,q) = ⟨a, b ∣ a
ab

= aq⟩

≃ ⟨a, b, t ∣ tat−1 = aq, bab−1 = t⟩

Theorem 3.1. The word problem for the generalized Baumslag-Gersten group
G(1,q) is solvable in O(n3) time.

The proof of Theorem 3.1 is literally the same as that for G(1,2) which was
given in [4] and [5], except that the new base q power circuits from Section 2
are used.

4 The Word Problem in Generalized Higman

groups

We generalize the groups Hf defined in the introduction by replacing the un-
derlying Baumslag-Solitar group BS(1,2) by BS(1, q).

Definition 4.1. The (generalized) Higman group Hf(1, q) is defined as

Hf(1, q) = ⟨a1, . . . , af ∣ ai+1aia−1i+1 = a
q
i (i ∈ Z/fZ)⟩. (1)

While Hf = Hf(1,2) (f > 4) retains all the important properties of H4

(infinite, huge compression, no non-trivial normal subgroup of finite index),
this is not entirely true for Hf(1, q) in general. For example, for all f ≥ 1, the
homomorphism given by

Hf(1,3)↠ Z/2Z;

a1 ↦ 1,

a2, . . . , af ↦ 0

sends Hf(1,3) onto a finite non-trivial group.
In this section, we will prove:

Theorem 4.2. Let q ≥ 2, f ≥ 4. The word problem for the generalized Higman
group Hf(1, q) can be solved in O(n6) time.

The key observation for the solution of the word problem is the decompo-
sition of Hf (1, q) into a series of amalgamations of f copies of the Baumslag-
Solitar group BS(1, q) = ⟨a, t ∣ tat−1 = tq⟩, see [7].

Hf(1, q) = G1,...,f−1 ∗F1,f−1
Gf−1,f,1,

where

G1,...,f−1 = ⟨a1, . . . , af−1 ∣ ai+1aia−1i+1 = a
q
i (1 ≤ i < f − 1)⟩ and

Gf−1,f,1 = ⟨af−1, af , a1 ∣ afaf−1a−1f = a
q

f−1, a1afa
−1
1 = a

q

f
⟩

23

and in both cases F1,f−1 is the subgroup generated by a1 and af−1, which in
fact freely generate F1,f−1 (if f ≥ 4). Furthermore, we can break G1,...,f−1 and
Gf−1,f,1 down to

G1,...,f−1 = G1,2 ∗F2
G2,3 ∗F3

. . . ∗Ff−2
Gf−2,f−1 and

Gf−1,f,1 = Gf−1,f ∗Ff
Gf,1,

where Gi,i+1 = ⟨ai, ai+1 ∣ ai+1aia−1i+1 = a
2
i ⟩ and the indices are read in Z/fZ.

Each group Gi,i+1 is a copy of the Baumslag-Solitar group BS(1, q) and
thus isomorphic to the semidirect product Z[1/q] ⋊ Z which consists of pairs
(u, k) ∈ Z[1/q] ⋊ Z. The isomorphism is given by ai ↦ (1,0) and ai+1 ↦ (0,1).
In Z[1/q] ⋊Z, we have the following formulae for multiplication and inversion:

(u, k)(v, ℓ) = (u + v ⋅ qk, k + ℓ)

(u, k)−1 = (−u ⋅ q−k,−k)

When dealing with more than one group Gi,i+1, we add i as a subscript to
those pairs designating an element of Gi,i+1.

In order to solve the word problem for Hf(1, q), we first need a solution for
the subgroup membership problem of F1,e in G1,...,e (with e ≥ 3; this covers both
G1,...,f−1 and Gf−1,f,1). Furthermore, we have to do this in an effective way, i.e.,
given a sequence of pairs (u, k)i which represents an element of F1,e, we have
to find a corresponding sequence of pairs of the form (u,0)1 and (0, ℓ)e−1.

We start by giving a reduction system L for G1,...,e:

(1) (u, k)i(v, ℓ)i Ð→ (u + v ⋅ q
k, k + ℓ)i for 1 ≤ i ≤ e

(2) (u, k)i(v,0)i+1 Ð→ (u, k + v)i for 1 ≤ i < e and v ∈ Z

(3) (u,0)i+1(v, ℓ)i Ð→ (v ⋅ q
u, ℓ + u)i for 1 ≤ i < e and u ∈ Z

(4) (u, k)i+1(0, ℓ)i Ð→ (u + ℓ ⋅ q
k, k)i+1 for 1 ≤ i < e

(5) (0, k)i(v, ℓ)i+1 Ð→ (k + v, ℓ)i+1 for 1 ≤ i < e

The system L is not confluent in general, but the following property holds:

Proposition 4.3. If w is an L-reduced word that equals 1 in G1,...,e, then w is
the empty word.

This ressembles Britton’s Lemma for HNN extensions. In fact, Bass-Serre
theory provides a unifying notion (and proof) for both phenomena. We give no
further proof here, but instead apply the system L to the subgroup membership
problem.

Let L′ be the system L extended by the rules

(6) (x1,−x2)1(x2,−x3)2 . . . (xe−2,−xe−1)e−2(x̃e−1, xe)e−1

Ð→ (x1,0)1(x̃e−1 − xe−1, xe)e−1 and

(7) (−xe−1 ⋅ q
xe , xe)e−1(−xe−2 ⋅ q

xe−1 , xe−1)e−2 . . . (−x2 ⋅ q
x3 , x3)2(x1 ⋅ q

x2 , x̃2)1

Ð→ (0, xe)e−1(x1, x̃2 − x2)1,

24

where all xi ≠ 0.
The new rules respect the group structure, and hence Proposition 4.3 holds

for L′ as well. The new rules are not length-increasing, since e ≥ 3.
Starting with an arbitrary sequence w of pairs (u, k)i representing an element

in G1,...,e, one can compute an equivalent L′-reduced word ŵ with linearly many
operations: First, compute an L-reduced word w̃, then apply rules (6) and (7).
Note that the latter leave w̃ L-reduced. Only the second pair generated by
either of these rules can be part of another application of (6) or (7). Therefore,
w̃ can be L′-reduced with one pass from left to right.

Proposition 4.4. Let w be a sequence of pairs (u, k)i which represents an
element of the subgroup F1,e ≤ G1,...,e. If w is L′-reduced, then w is already an
alternating sequence of pairs of types (u,0)1 and (0, ℓ)e−1.

Proof. Let w = (u1, k1)i1(u2, k2)i2 . . . (un, kn)in . We assume that

w ∼ w̃ = (v1,0)1(0, ℓ1)e−1(v2,0)1(0, ℓ2)e−1 . . . ∈ F1,e

and that w̃ contains no trivial pairs (0,0)i which makes w̃ L-reduced. The case
where w̃ starts with (0, ℓ1)e−1(v1,0)1 . . . is similar. The sequence

w̃−1w = . . . (−v2,0)1(0,−ℓ1)e−1(−v1,0)1(u1, k1)i1(u2, k2)i2(u3, k3)i3 . . .

equals 1 in G1,...,e and must therefore L-reduce to the empty sequence. Note
that both w̃−1 and w are L-reduced, so any L-reduction can only occur at the
border between the two words.

Clearly, we cannot have i1 ≥ 3 or else w̃−1w would be L-reduced. If i1 = 2,
then a reduction of type (2) is possible if k1 = 0 and u1 ∈ Z, in which case we

get (−v1,0)1(u1,0)2
(2)
Ð→ (−v1, u1)1. But after that, the sequence is L-reduced

since k1 = 0 and u1 ∈ Z imply i2 ≠ 1.

Hence, we are left with i1 = 1. In that case, we get (−v1,0)1(u1, k1)1
(1)
Ð→

(−v1 + u1, k1)1. If this is (0,0)1, we have (u1, k1)i1 = (v1,0)1 and we proceed
inductively with the remaining sequence. Otherwise, we must have u1 = v1
in order to continue applying rules. If e ≥ 4, the next rule can only apply to

(0, k1)1(u2, k2)i2 , so i2 = 2 and we get (0, k1)1(u2, k2)2
(5)
Ð→ (k1+u2, k2)2. Again,

the sequence is L-reduced unless u2 = −k1. We iterate this argument until we
arrive at

w̃−1w
∗
Ô⇒
L

. . . (−v2,0)1(0,−ℓ1)e−1(0, ke−2)e−2(ue−1, ke−1)ie−1

On the way, we have found u1 = v1, u2 = −k1, u3 = −k2, . . . , ue−2 = −ke−3, and
ij = j for 1 ≤ j ≤ e − 2. One further reduction of type (4) brings us to

w̃−1w
∗
Ô⇒
L

. . . (−v2,0)1(ke−2 ⋅ q
−ℓ1 ,−ℓ1)e−1(ue−1, ke−1)ie−1

Since ℓ1 ≠ 0, the next reduction requires ie−1 = e− 1. Thus, rule (6) of L′ can be
applied to the prefix (u1, k1)1 . . . (ue−1, ke−1)e−1 of the original word w.

25

For the amalgamated product Hf (1, q) = G1,...,f−1∗F1,f−1
Gf−1,f,1, a property

similar to 4.3 holds:

Proposition 4.5. Let w = w1w2 . . . ws be a non-empty sequence with wi ∈
{(u, k)i ∶ 1 ≤ i < f − 1}∗ or wi ∈ {(u, k)i ∶ f − 1 ≤ i ≤ f}∗, alternatingly.
If w equals 1 in Hf (1, q), then wi ∈ F1,f−1 for some index i.

Algorithm 4: Procedure for solving the word problem in Hf (1, q)

input : a word w over ai, a
−1
i (1 ≤ i ≤ f)

output: the answer to w
?= 1 in Hf(1, q)

1 Rewrite the input w by replacing each a±1i by (±1,0)i.
2 Break w into subsequences w = w1w2 . . . ws such that in each wj the
subscripts of all pairs are either in {1,2, . . . , f − 2} or in {f − 1, f}.

3 Let t ∶= 0.
4 while (t = 0 ∧ s > 1) ∨ (0 < t < s) do
5 if t = 0 ∧ s > 1 then

6 L′-reduce w1. If w1 becomes emtpy, remove it (thereby decreasing
s) and continue with the next iteration.

7 if w1 ∈ F1,f−1 then

8 Merge w1 and w2. Before doing so, if w1 and w2 are from
different groups (one from G1,...,f−1 and the other one from
Gf−1,f,1), swap all the pairs in w1 using the following rules:
(x,0)1 ↔ (0, x)f and (0, x)f−2↔ (x,0)f−1

9 else

10 Increment t by one.

11 else (0 < t < s)
12 if wt and wt+1 are both from G1,...,f−1 or both from Gf−1,f,1 then

13 Merge wt and wt+1.
14 Decrement t by one.

15 else

16 L′-reduce wt+1. If wt+1 becomes emtpy, remove it and continue
with the next iteration.

17 if wt+1 ∈ F1,f−1 then

18 Perform the replacements (x,0)1 ↔ (0, x)f and
(0, x)f−2 ↔ (x,0)f−1 in wt+1, then merge it with wt.

19 Decrement t by one.

20 else

21 Increment t by one.

22 return whether s = 0.

From this proposition, we can derive Algorithm 4 which solves the word
problem in Hf(1, q). In this algorithm, the word w = w1w2 . . . ws is split into

26

w1 . . . wt and wt+1 . . . ws. The first part is an L′-reduced alternating sequence
of group elements from G1,...,f−1 or Gf−1,f,1 with no wi (1 ≤ i ≤ t) being in the
subgroup F1,f−1. In each loop cycle either t increases, or t decreases by one and
at the same time, some wi is merged with wi+1, which means that s decreases.
Thus, the loop is executed only linearly often.

In order to get a time bound for Algorithm 4, it remains to show how to
perform the tests arithmetic operations on the pairs (u, k)i efficiently.

Since power circuits are designed to work with integers, we have to avoid
fractions for the first components of pairs (u, k)i ∈ Gi,i+1 ≃ Z[1/q]⋊Z. Therefore,
we use the triple notation introduced in [4]. For u,x, k ∈ Z with x ≤ 0 ≤ k, let

[u,x, k]i ∶= (u ⋅ qx, x + k)i ∈ Gi,i+1.

If U , X , and K are markings in a base q power circuit, we call Ti = [U,X,K]i
a triple marking and define its value by ε(Ti) = [ε(U), ε(X), ε(K)]i ∈ Gi,i+1.

Any element of Gi,i+1 can be written as a triple, but not in a unique way. For
instance, [2,0,0]i = (2,0)i = [4,−1,1]i, if q = 2. The group operations translate
to formulae for multiplication and inversion of triples:

[u,x, k] ⋅ [v, y, ℓ] = [u ⋅ q−y + v ⋅ qk, x + y, k + ℓ]

[u,x, k]−1 = [−u,−k,−x]

Furthermore, [u,x, k]i ∈ ⟨ai⟩ ≤ Gi,i+1 if and only if x = −k and u ⋅ qx ∈ Z.
Similarly, [u,x, k]i ∈ ⟨ai+1⟩ ≤ Gi,i+1 if and only if u = 0, and finally [u,x, k]i is
the group identity if and only if u = 0 and x = −k.

At the beginning of Algorithm 4, we create a power circuit with base q

consisting of a single node u with ε(u) = 1. We represent each pair (u, k)i by a
triple marking. Of the three markings in each initial triple, two are zero (empty)
and the third has either value +1 or −1 and can be created using u. Let ω be the
sum of the sizes of (the supports of) all these markings. We call ω the weight
of the circuit. From the multiplication formula for triples we see that ω never
increases during the algorithm, keeping in mind that after an operation we can
“forget” the operand and just keep the result. The initial value of ω is exactly
n = ∣w∣.

After step 1, we reduce the circuit, which takes O(n2) time. From now
on, we keep Π reduced following the strategy proposed in Remark 2.30. The
swapping operation (x,0)↔ (0, x) works in the following way for triples:

[u,x, k]↦
⎧⎪⎪
⎨
⎪⎪⎩

[0,0, u ⋅ qx] if x = −k and qx ∣ u and u ≥ 0
[0, u ⋅ qx,0] if x = −k and qx ∣ u and u < 0

[0, x, k]↦ [x + k,0,0]

The whole algorithm computes O(n) many times an L′-irreducible word.
Each of these computations necessitates O(n) arithmetic operations (and sub-
sequent calls to ExtendReduction). The circuit size remains bounded by
O(n2

⋅ ω) ⊆ O(n3). Thus, one call of ExtendReduction takes O(n3
⋅ ω) ⊆

O(n4) time. We get a total time bound of O(n6).
This concludes the proof of Theorem 4.2.

27

5 Conclusion

We have shown that the word problem for the generalized Higman groups
Hf(1, q) is solvable in polynomial time. An important ingredient for this re-
sult was the extension of the power circuit data structure to arbitrary bases
q ≥ 2. From an algorithmic point of view, this is an interesting result in itself
and may provide a useful tool in group theory as well as other areas.

The techniques used in this paper do not apply to the even more gen-
eral groups Hf(p, q) and G(p,q), where the underlying Baumslag-Solitar group
BS(1, q) is replaced by BS(p, q) = ⟨a, t ∣ tapt−1 = aq⟩ for some p ≥ 1. This is
because BS(p, q) is not a semi-direct product when p > 1. The word problem
for these groups is open. Note that even for f < 4 the group Hf(p, q) can be
non-trivial if p > 1.

References

[1] Daniel Allcock. Triangles of Baumslag-Solitar Groups. Candian J. of Math.,
to appear.

[2] Ronald V. Book and Friedrich Otto. String-rewriting systems. Springer,
1993.

[3] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. MIT Press, 3rd edition edition, 2009.

[4] Volker Diekert, Jürn Laun, and Alexander Ushakov. Efficient algorithms
for highly compressed data: The Word Problem in Higman’s group is in P.
In Proceedings of STACS, 2012.

[5] Volker Diekert, Jürn Laun, and Alexander Ushakov. Efficient algorithms
for highly compressed data: The word problem in Higman’s group is in P.
IJAC, 2013. To appear. Preprint available on arXiv.org.

[6] Graham Higman. A finitely generated infinite simple group. J. London
Math. Soc., 26:61–64, 1951.

[7] Jean-Pierre Serre. Trees. Springer, 2nd corr. printing edition, 2002.

[8] Roger Lyndon and Paul Schupp. Combinatorial Group Theory. Classics in
Mathematics. Springer, 2001.

[9] Alexei G. Myasnikov, Alexander Ushakov, and Dong Wook Won. Power
circuits, exponential algebra, and time complexity. ArXiv e-prints,
abs/1006.2570, 2010. To appear in IJAC.

[10] Alexei G. Myasnikov, Alexander Ushakov, and Dong WookWon. The Word
Problem in the Baumslag group with a non-elementary Dehn function is
polynomial time decidable. Journal of Algebra, 345(1):324–342, 2011.

28

[11] Alexei G. Myasnikov and Sasha Ushakov. Cryptography And Groups
(CRAG). Software Library.

[12] B. H. Neumann. An Essay on Free Products of Groups with Amalgama-
tions. Philosophical Transactions of the Royal Society of London. Series A,
Mathematical and Physical Sciences, 246(919):503–554, 1954.

29

	1 Introduction
	2 Power circuits
	2.1 Power Circuit and Evaluation
	2.2 Arithmetic Operations
	2.3 Reduction
	2.4 Compactness
	2.4.1 Compact power sums
	2.4.2 Power circuits and trees

	3 The Word Problem in Generalized Baumslag-Gersten groups
	4 The Word Problem in Generalized Higman groups
	5 Conclusion
	Bibliography

