
ar
X

iv
:1

30
3.

13
47

v2
 [

cs
.C

C
]

 2
7

O
ct

 2
01

3

Constant Unary Constraints and Symmetric Real-Weighted
Counting Constraint Satisfaction Problems∗

Tomoyuki Yamakami
†

Abstract: A unary constraint (on the Boolean domain) is a function from {0, 1} to the set
of real numbers. A free use of auxiliary unary constraints given besides input instances has
proven to be useful in establishing a complete classification of the computational complexity of
approximately solving weighted counting Boolean constraint satisfaction problems (or #CSPs).
In particular, two special constant unary constraints are a key to an arity reduction of arbitrary
constraints, sufficient for the desired classification. In an exact counting model, both constant
unary constraints are always assumed to be available since they can be eliminated efficiently using
an arbitrary nonempty set of constraints. In contrast, we demonstrate in an approximate counting
model, that at least one of them is efficiently approximated and thus eliminated approximately
by a nonempty constraint set. This fact directly leads to an efficient construction of polynomial-
time randomized approximation-preserving Turing reductions (or AP-reductions) from #CSPs
with designated constraints to any given #CSPs composed of symmetric real-valued constraints
of arbitrary arities even in the presence of arbitrary extra unary constraints.

Keywords: counting constraint satisfaction problem, AP-reducible, effectively T-constructible,
constant unary constraint, symmetric constraint, algebraic real number, p-convergence

1 Roles of Constant Unary Constraints

Constraint satisfaction problems (or CSPs, in short) are combinatorial problems that have been ubiquitously
found in real-life situations. The importance of these problems have led recent intensive studies from various
aspects: for instance, decision CSPs [5, 10], optimization CSPs [3, 15], and counting CSPs [1, 4, 7, 12]. Driven
by theoretical and practical interests, in this paper, we are particularly focused on counting Boolean CSPs
(abbreviated as #CSPs) whose goal is to count the number of variable assignments that satisfy all given
Boolean-valued constraints defined over a fixed series of Boolean variables. The problem of counting the
number of Boolean assignments that satisfy each given propositional formula, known as #SAT (counting sat-
isfiability problem), is a typical counting CSP with three Boolean-valued constraints, AND, OR, and NOT .
As this example demonstrates, in most real-life applications, all available constraints are pre-determined.
Hence, we naturally fix a collection of “allowed” constraints, say, F and wish to solve every #CSP whose
constraints are all chosen from F . Such a counting problem is conventionally denoted #CSP(F) and this
notation will be used throughout this paper. Creignou and Hermann [4] first examined the computational
complexity of exactly counting solutions of unweighted #CSPs. Recently, Dyer, Goldberg, and Jerrum [8]
studied the computational complexity of approximately computing the number of solutions of unweighted
#CSPs using a technical reduction, known as polynomial-time randomized approximation-preserving Turing
reduction (or AP-reduction, hereafter), whose formulation is originated from [6] and it will be explained in
details through Section 2.2.

In a more interesting case of weighted #CSPs, the values of constraints are expanded from Boolean
values to more general values, and each weighted #CSP asks for the sum, over all possible assignments for
Boolean variables, of products of the output values of all given constraints. Earlier, Cai, Lu, and Xia [2] gave a
complete classification of complex-weighted #CSPs restricted on a given set F of constraints according to the
computational complexity of exactly solving them. Another complete classification regarding the complexity
of approximately solving complex-weighted #CSPs was presented by Yamakami [12] when allowing a free
use of auxiliary unary (i.e., arity-1) constraints besides initially given input constraints. More precisely, let
U denote the set of all unary constraints. Given an arbitrary constraint f , the free use of auxiliary unary
constraints makes #SATC (a complex extension of #SAT) AP-reducible to #CSP(f,U) unless f is factored
into three categories of constraints: the binary equality, the binary disequality, and unary constraints [12].
All constraints factored into constraints of those categories form a special set ED. The aforementioned fact
establishes the following complete classification of the approximation complexity of weighted #CSPs in the
presence of U .

∗A preliminary version under a slightly concise title appeared in the Proceedings of the 23rd International Symposium
on Algorithms and Computation (ISAAC 2012), Taipei, Taiwan, December 19–21, 2012, Lecture Notes in Computer Science,
Springer-Verlag, vol. 7676, pp. 237–246, 2012.

†Present Affiliation: Department of Information Science, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan

1

http://arxiv.org/abs/1303.1347v2

Theorem 1.1 [12, Theorem 1.1] Let F be any set of complex-valued constraints. If F ⊆ ED, then #CSP(F ,U)
is solvable in polynomial time; otherwise, it is AP-reduced from #SATC.

In this particular classification, the free use of auxiliary unary constraints provide enormous power that
makes it possible to establish a “dichotomy” theorem beyond a “trichotomy” theorem of Dyer et al. [8] for
Boolean-valued constraints (or simply, Boolean constraints). The proof of Theorem 1.1 in [12] employed two
technical notions: “factorization” and “T-constructibility.” Limited to unweighted #CSPs, on the contrary,
a key to the proof of the trichotomy theorem of [8] is an efficient approximation of so-called constant unary
constraints, conventionally denoted‡ ∆0 = [1, 0] and ∆1 = [0, 1]. A significant use of the constant unary
constraints is a technique known as pinning, with which we can make an arbitrary variable pinned down to
a particular value, reducing the associated constraints of high arity to those of lower arity. To see this arity
reduction, let us consider, for example, an arbitrary constraint f of the form [x, y, z] with three Boolean
variables x1, x2, x3. When we pin a variable x1 down to 0 (resp., 1) in f(x1, x2, x3), we immediately obtain
another constraint of the form [x, y] (resp., [y, z]). Therefore, an efficient approximation of those special
constraints helps us first analyze the approximation complexity of #CSP(F ,∆i0) for an appropriate index
i0 ∈ {0, 1} by the way of pinning and then eliminate ∆i0 completely to obtain a desired classification theorem
for #CSP(F). Their proof of approximately eliminating the constant unary constraints is based on basic
properties of Boolean arithmetic and it is not entirely clear that we can expand their proof to a non-Boolean
case. Therefore, it is natural for us to raise a question of whether we can obtain a similar elimination theorem
for #CSP(F) even when F is composed of real-valued constraints. In the following theorem, we wish to
claim that at least one of the constant unary constraints is always eliminated approximately. This claim can
be sharply contrasted with the case of exact counting of #CSP(F), in which ∆0 and ∆1 are both eliminated
deterministically by a technique known as polynomial interpolation.

Theorem 1.2 For any nonempty set F of real-valued constraints, there exists a constant unary constraint
h ∈ {∆0,∆1} for which #CSP(h,F) is AP-equivalent to #CSP(F) (namely, #CSP(h,F) is AP-reducible
to #CSP(F) and vice versa).

Under a certain set of explicit conditions (given in Proposition 3.1), we further prove that ∆0 and ∆1

are simultaneously eliminated even in an approximation sense.
When the values of constraints in F are all limited to Boolean values, Theorem 1.2 is exactly [8, Lemma

16]. For real-valued constraints, however, we need to develop a quite different argument from [8] to prove
this theorem. An important ingredient of our proof, described in Section 3, is an efficient estimation of a
lower bound of an arbitrary multi-variate polynomial in the values of given constraints. However, since our
constraints can output negative real values, the polynomial may possibly produce arbitrary small values, and
thus we cannot find a polynomial-time computable lower bound. To avoid encountering such an unwanted
situation, we dare to restrict our attention onto algebraic real numbers. In the rest of this paper, all real
numbers will be limited to algebraic numbers.

As a natural application of Theorem 1.2, we give an alternative proof to our classification theorem
(Theorem 1.1) for symmetric real-weighted #CSPs when arbitrary unary constraints are freely available.
Using the constant unary constraints, we can conduct the aforementioned arity reductions. Since Theorem
1.2 guarantees the availability of only one of ∆0 and ∆1, we need to demonstrate such arity reductions of
target constraints even when ∆0 and ∆1 are separately given for free. Furthermore, we intend to build such
reductions with no use of auxiliary unary constraint.

Our alternative proof proceeds roughly as follows. In the first step, we recognize constraints g of the
following three special forms: [0, y, z] and [x, y, 0] with x, y, z > 0 and [x, y, z] with x, y, z > 0 as well as
xz 6= y2. The constraints g of those forms become crucial elements of our later analyses because, when
auxiliary unary constraints are available for free, #CSP(g,U) is computationally at least as hard as #SAT
with respect to the AP-reducibility (Lemma 4.1).

In the second step, we isolate a set F of constraints whose corresponding counting problem #CSP(F ,G)
is AP-reduced from a specific problem #CSP(g,G) for an arbitrary set G of constraints with no use of
extra unary constraints. To be more exact, we wish to establish the following specific AP-reduction from
#CSP(g,G) to #CSP(F ,G).

Theorem 1.3 Let F be any set of symmetric real-valued constraints of arity at least 2. If either F ⊆

DG ∪ ED
(+)
1 or F ⊆ DG(−) ∪ ED1 ∪ AZ ∪ AZ1 ∪ B0 holds, then #CSP(F) is polynomial-time solvable.

‡A bracket notation [x, y] denotes a unary function g satisfying g(0) = x and g(1) = y. Similarly, [x, y, z] expresses a binary
function g for which g(0, 0) = x, g(0, 1) = g(1, 0) = y, and g(1, 1) = z.

2

Otherwise, #CSP(F ,G) are AP-reduced from #CSP(g,G) for any constraint set G, where g is an appropriate
constraint of one of the three special forms described above.

In Theorem 1.3, the constraint set DG consists of degenerate constraints, ED1 indicates a set of equality
and disequality, AZ contains specific symmetric constraints having alternating zeros, AZ1 is similar to AZ
but requiring alternating zeros, “plus” signs, and “minus” signs, and B0 is composed of special constraints of

non-zero entries. Two additional sets DG(−) and ED
(+)
1 are naturally induced from DG and ED1, respectively.

For their precise definitions, refer to Section 4.

In the third step, we recognize distinctive behaviors of two constraint sets DG∪ED
(+)
1 and DG(−)∪ED1∪

AZ ∪AZ1 ∪B0. The counting problems #CSP(DG, ED
(+)
1) and #CSP(DG(−), ED1,AZ,AZ1,B0) are both

solvable in polynomial time [2, 9]. In the presence of the auxiliary set U of arbitrary unary constraints,

the problem #CSP(DG, ED
(+)
1 ,U), which essentially equals #CSP(ED,U), remains solvable in polynomial

time; on the contrary, as a consequence of Theorem 1.3, the problem #CSP(DG(−), ED1,AZ,AZ1,B0,U) is
AP-reduced from #CSP(g,U) for an appropriately chosen g of the prescribed form.

In the final step, since #SAT is AP-reducible to #CSP(g,U) [12], the above results immediately imply
Theorem 1.1 for symmetric real-weighted #CSPs. The above argument exemplifies that the free use of
auxiliary unary constraints can be made only in the third step. The detailed argument is found in Section
4.

A heart of our proof is an efficient, approximate transformation (called effective T-constructibility) of a
target constraint from a given set of constraints. This effective T-constructibility is a powerful tool in showing
AP-reductions between two counting problems. Since our constructibility can locally modify underlying
structures of input instances, this simple tool makes it possible to introduce an auxiliary constraint set G in
Theorem 1.3. A prototype of this technical tool first appeared in [12] and was further extended or modified
in [13, 14].

Comparison of Proof Techniques: Dyer et al. [8] used a notion of “simulatability” to demonstrate
the approximate elimination of the constant unary constraints using any given set of Boolean constraints.
Our proof of Theorem 1.2, however, employs a notion of effectively T-constructibility. While a key proof
technique used in [12] to prove Theorem 1.1 is the factorization of constraints, our proof of Theorem 1.3
(which leads to Theorem 1.1) in Section 4 makes a heavy use of the constant unary constraints. Furthermore,
our proof is quite elementary because it proceeds by examining all possible forms of a target constraint. This
fact makes the proof cleaner and more straightforward to follow.

2 Fundamental Notions and Notations

We will explain basic concepts that are necessary to read through the rest of this paper. First, let N
denote the set of all natural numbers (i.e., nonnegative integers) and let R be the set of all real numbers.
For convenience, define N+ = N − {0} and, for each number n ∈ N+, [n] stands for the integer interval
{1, 2, . . . , n}.

Because our results heavily rely on Lemma 2.3(3), we need to limit our attention within algebraic real
numbers. For this purpose, a special notation A is used to indicate the set of all algebraic real numbers.
To simplify our terminology throughout the paper, whenever we refer to “real numbers,” we actually mean
“algebraic real numbers.”

2.1 Constraints and #CSPs

The term “constraint of arity k” always refers to a function mapping the set {0, 1}k of binary strings
of length k to A. Assuming the standard lexicographic ordering on the set {0, 1}k, we conveniently ex-
press f as a row-vector consisting of its output values; for instance, when f has arity 2, it is expressed as
(f(00), f(01), f(10), f(11)). Given any k-ary constraint f = (f1, f2, . . . , f2k) in a vector form, the notation
‖f‖∞ means maxi∈[2k]{|fi|}. A k-ary constraint f is called symmetric if, for every input x in {0, 1}k, the
value f(x) depends only on the Hamming weight (i.e., the number of 1’s) of the input x; otherwise, f is
called asymmetric. For any symmetric constraint f of arity k, we also use a succinct notation [f0, f1, . . . , fk]
to express f , where each entry fi expresses the value of f on inputs of Hamming weight i. For instance, if
f = [f0, f1, f2] is of arity two, then it holds that f0 = f(00), f1 = f(01) = f(10), and f2 = f(11). Of all
symmetric constraints, we recognize two special unary constraints, ∆0 = [1, 0] and ∆1 = [0, 1], which are
called constant unary constraints.

3

Restricted to a set F of constraints, a real-weighted (Boolean) #CSP, conventionally denoted #CSP(F),
takes a finite set Ω composed of elements of the form 〈h, (xi1 , xi2 , . . . , xik)〉, where h ∈ F is a function on
k Boolean variables xi1 , xi2 , . . . , xik in X = {x1, x2, . . . , xn} with i1, . . . , ik ∈ [n], and its goal is to compute
the real value

cspΩ =def

∑

x1,x2,...,xn∈{0,1}

∏

〈h,x〉∈Ω

h(xi1 , xi2 , . . . , xik), (1)

where x denotes (xi1 , xi2 , . . . , xik). To illustrate Ω graphically, we view it as a labeled undirected bipartite
graph G = (V1|V2, E) whose nodes in V1 are labeled distinctively by x1, x2, . . . , xn in X and nodes in V2 are
labeled by constraints h in F such that, for each pair 〈h, (xi1 , xi2 , . . . , xik)〉, there are k edges between an
associated node labeled h and the nodes labeled xi1 , xi2 , . . . , xik . The labels of nodes are formally specified
by a labeling function π : V1 ∪ V2 → X ∪ F with π(V1) ⊆ X and π(V2) ⊆ F but we often omit it from the
description of G for simplicity. When Ω is viewed as this special bipartite graph, it is called a constraint
frame [12, 13]. More formally, a constraint frame Ω = (G,X |F ′, π) is composed of an undirected bipartite
graph G with its associated labeling function π : V1 ∪ V2 → X ∪F ′, a variable set X = {x1, x2, . . . , xn}, and
a finite set F ′ ⊆ F .

To simplify later descriptions, we wish to use the following simple rule of abbreviation. For instance, when
f is a constraint and both F and G are constraint sets, we write #CSP(f,F ,G) to mean #CSP({f}∪F ∪G).

In the subsequent sections, we will use the following succinct notations. Let f be any constraint of arity
k ∈ N+. Given any index i ∈ [k] and any bit c ∈ {0, 1}, the notation fxi=c stands for the function g of
arity k − 1 satisfying that g(x1, . . . , xi−1, xi+1, . . . , xk) = f(x1, . . . , xi−1, c, xi+1, . . . , xk) for every (k − 1)-
tuple (x1, . . . , xi−1, xi+1, . . . , xk) ∈ {0, 1}k−1. For any two distinct indices i, j ∈ [k], we denote by fxi=xj

the function g defined as g(x1, . . . , xi−1, xi+1, . . . , xk) = f(x1, . . . , xi−1, xj , xi+1, . . . , xk) for every k-tuple
(x1, x2, . . . , xk) ∈ {0, 1}k. Finally, let fxi=∗ express the function g defined by g(x1, . . . , xi−1, xi+1, . . . , xk) =
∑

c∈{0,1} f(x1, . . . , xi−1, c, xi+1, . . . , xk) for every (k − 1)-tuple (x1, . . . , xi−1, xi+1, . . . , xk) ∈ {0, 1}k−1.

2.2 FPA and AP-Reducibility

To connect our results (particularly, Theorems 1.2 and 1.3) to Theorem 1.1, we follow notational conven-
tions used in [12, 13]. First, FPA denotes the collection of all A-valued functions that can be computed
deterministically in polynomial time.

Let F be any function mapping {0, 1}∗ to A and let Σ be any nonempty finite alphabet. A randomized
approximation scheme (or RAS, in short) for F is a randomized algorithm that takes a standard input x ∈ Σ∗

together with an error tolerance parameter ε ∈ (0, 1), and outputs values w with probability at least 3/4 for
which

min{2−εF (x), 2εF (x)} ≤ w ≤ max{2−εF (x), 2εF (x)}. (2)

Given two arbitrary real-valued functions F and G, a polynomial-time randomized approximation-
preserving Turing reduction (or AP-reduction) from F to G [6] is a randomized algorithm M that takes
a pair (x, ε) ∈ Σ∗ × (0, 1) as input, accesses an oracle, and satisfies the following three conditions: (i) when
the oracle is an arbitrary RAS N for G, M is always an RAS for F ; (ii) every oracle call made by M is of
the form (w, δ) ∈ Σ∗ × (0, 1) with 1/δ ≤ poly(|x|, 1/ε) and its answer is the outcome of N on (w, δ); and
(iii) the running time of M is upper-bounded by a certain polynomial in (|x|, 1/ε), which is not dependent
of the choice of N . If such an AP-reduction exists, then we also say that F is AP-reducible to G and we
write F ≤AP G. If both F ≤AP G and G ≤AP F hold, then F and G are said to be AP-equivalent and we
use the special notation F ≡AP G.

Lemma 2.1 For any functions F1, F2, F3 : {0, 1}∗ → A, the following properties hold.

1. F1 ≤AP F1.

2. If F1 ≤AP F2 and F2 ≤AP F3, then F1 ≤AP F3.

2.3 Effective T-Constructibility

Our goal in the subsequent sections is to prove our main theorems, Theorems 1.2 and 1.3. For their desired
proofs, we will introduce a fundamental notion of effective T-constructibility, whose underlying idea comes
from a graph-theoretical formulation of limited T-constructibility [13].

Let us start with the definitions of “representation” and “realization” in [13]. Let f be any constraint
of arity k. We say that an undirected bipartite graph G = (V1|V2, E) (together with a labeling function π)
represents f if V1 consists only of k nodes labeled with x1, . . . , xk, which may possibly have a certain number

4

of dangling edges,§ and V2 contains only a node labeled f to whom each node xi is adjacent. Given a set
G of constraints, a graph G = (V1|V2, E) is said to realize f by G if the following four conditions are met
simultaneously:

(i) π(V2) ⊆ G,
(ii) G contains at least k nodes having the labels x1, . . . , xk, possibly together with nodes associated with

other variables, say, y1, . . . , ym; namely, V1 = {x1, . . . , xk, y1, . . . , ym},
(iii) only the nodes x1, . . . , xk are allowed to have dangling edges, and

(iv) f(x1, . . . , xk) = λ
∑

y1,...,ym∈{0,1}

∏

w∈V2
fw(z1, . . . , zd) for an appropriate constant λ ∈ A−{0}, where

fw denotes a constraint π(w) and z1, . . . , zd ∈ V1.

The sign function, denoted sgn, is defined as follows. For any real number λ, we set sgn(λ) = +1 if λ > 0,
sgn(λ) = 0 if λ = 0, and sgn(λ) = −1 if λ < 0. An infinite series Λ = (g1, g2, g3, . . .) of arity-k constraints is
called a p-convergence series¶ for a target constraint f = (r1, r2, . . . , r2k) of arity k if there exist a constant
λ ∈ (0, 1) and a deterministic Turing machine (abbreviated as DTM) M running in polynomial time such
that, for every number m ∈ N+, (i) M takes an input of the form 1m and outputs a complete description of
the constraint gm in a row-vector form (z1, z2, . . . , z2k), (ii) for every k-tuple x ∈ {0, 1}k, if f(x) 6= 0, then
sgn(f(x)) = sgn(gm(x)), and (iii) for every index i ∈ [2k], if ri 6= 0, then

min{(1 + λm)zi, (1− λm)zi} ≤ ri ≤ max{(1 + λm)zi, (1− λm)zi}, (3)

and otherwise, |zi| ≤ λm.
We then define the effective T-constructibility of a given finite set of constraints.

Definition 2.2 (effective T-constructibility) Let F and G be any two finite sets of constraints. We say that
F is effectively T-constructible from G if there exists a finite series (F1,F2, . . . ,Fn) of finite constraint sets
(which is succinctly called a generating series of F from G) such that

(i) F = F1 and G = Fn, and

(ii) for each adjacent pair (Fi,Fi+1), where i ∈ [n− 1], one of Clauses (I)–(II) should hold.

(I) For every constraint f of arity k in Fi and for any finite graph G representing f with distinct variables
x1, . . . , xk, there exists another finite graph G′ satisfying the following two conditions:

(i’) G′ realizes f by Fi+1, and

(ii’) G′ maintains the same dangling edges as G does.

(II) Let Fi+1 = {g1, g2, . . . , gd}. For every constraint f of arity k in Fi, there exist a p-convergence series
Λ = (f1, f2, . . .) of arity-k constraints and a polynomial-time DTM M such that, for every number m ∈ N+,
(a) M takes an input of the form (1m, G, (g1, g2, . . . , gd)), where G represents fm with distinct variables
x1, . . . , xk and each gj is described in a row-vector form, and (b) M outputs a bipartite graph Gm such that

(i”) Gm realizes fm by Fi+1 and

(ii”) Gm maintains the same dangling edges as G does.

When F is effectively T-constructible from G, we write F ≤e-con G. We are particularly interested in the
case where F is a singleton {f}, and we succinctly write f ≤e-con G. Moreover, when G is also a singleton
{g}, we further write f ≤e-con g.

Lemma 2.3 Let F1, F2, and F3 be three finite constraint sets. Let G be an arbitrary set of constraints.

1. F1 ≤e-con F1.

2. F1 ≤e-con F2 and F2 ≤e-con F3 imply F1 ≤e-con F3.

3. If F1 ≤e-con F2, then #CSP(F1,G) ≤AP #CSP(F2,G).

It is important to note that, since our constraints are permitted to output negative values, the use of
algebraic real numbers for the constraints may be necessary in the proof of Lemma 2.3 because the proof
heavily relies on an explicit lower bound estimation of arbitrary polynomials over algebraic numbers.

In later arguments, a use of effective T-constructibility will play an essential role because a relation
f ≤e-con g leads to #CSP(f,G) ≤AP #CSP(g,G) for any constraint set G by Lemma 2.3(3), whereas a
relation #CSP(f) ≤AP #CSP(g) in general does not imply #CSP(f,G) ≤AP #CSP(g,G).

For the readability, we postpone the proof of Lemma 2.3 until Appendix.

§A dangling edge is obtained from an edge by deleting exactly one end of this edge. These dangling edges are treated as
“normal” edges, and therefore the degree of each node must count dangling edges as well.

¶At a quick glance, the approximation scheme of Eq.(3) appears quite differently from that of Eq.(2). However, by setting
ε = λm, the value 1 + ε approximately equals 2ε and 1− ε is also close to 2−ε for any sufficiently large number m.

5

3 Approximation of the Constant Unary Constraints

Let us prove our first main theorem—Theorem 1.2—which states that, given an arbitrary set of constraints,
we can efficiently approximate at least one of the two constant unary constraints. The theorem allows us to
utilize such a constraint freely for a further analysis of constraints in Section 4.

3.1 Notion of Complement Stability

To prove Theorem 1.2, we will first introduce two useful notions regarding a certain “symmetric” na-
ture of a given constraint. A k-ary constraint f is said to be complement invariant if f(x1, . . . , xk) =
f(x1⊕1, . . . , xk⊕1) holds for every input tuple (x1, . . . , xk) in {0, 1}k, where the notation ⊕ means the (bit-
wise) XOR. In contrast, we say that f is complement anti-invariant if, for every input (x1, . . . , xk) ∈ {0, 1}k,
f(x1, . . . , xk) = −f(x1 ⊕ 1, . . . , xk ⊕ 1) holds. For instance, f = [1, 1] is complement invariant and
f ′ = [1, 0,−1] is complement anti-invariant. In addition, we say that f is complement stable if f is ei-
ther complement invariant or complement anti-invariant. A constraint set F is complement stable if every
constraint in F is complement stable. In the case where f (resp., F) is not complement stable, by contrast,
we conveniently call it complement unstable.

We will split Theorem 1.2 into two separate statements, as shown in Proposition 3.1, depending on
whether or not a given nonempty set F of constraints is complement stable.

Proposition 3.1 Let F be any nonempty set of constraints and let f be any constraint of arity k with k ≥ 1.

1. If F is complement stable, then #CSP(∆i,F) ≡AP #CSP(F) holds for every index i ∈ {0, 1}.

2. Assume that f is complement unstable. If f satisfies one of two conditions (a)–(b) given below, then
∆i ≤e-con f holds for all indices i ∈ {0, 1}. Otherwise, there exists at least one index i ∈ {0, 1} for
which ∆i ≤e-con f holds.

(a) k ≥ 2 and |z1| = |z2k |.

(b) k ≥ 2 and either (|z1| − |z2k |)(|z1 + zj| − |z2k−j+1 + z2k |) < 0 or (|z1| − |z2k |)(|z1 + z2k−j+1| −
|zj + z2k |) < 0 holds for a certain index j ∈ [2k−1]− {1}.

Notice that Proposition 3.1 together with Lemma 2.3(3) implies Theorem 1.2. Proposition 3.1(1) can
be proven rather easily, as presented below, whereas Proposition 3.1(2) requires a slightly more complicated
argument.

Proof of Proposition 3.1(1). In the following proof, we will deal only with ∆0, because the other case is
similarly handled. Let F be any nonempty set of constraints and take any input instance Ω, in the form of
constraint frame (G,X |F ′, π) with F ′ ⊆ F , given to the counting problem #CSP(∆0,F). If ∆0 ∈ F , then
Proposition 3.1(1) is trivially true. Henceforth, we assume that ∆0 6∈ F . Let us consider the case where F
is complement anti-invariant. Since the other case where F is complement invariant is essentially the same,
we omit the case.

To simplify our proof, we modify Ω as follows. First, we merge all variable nodes (i.e., nodes with
“variable” labels) adjacent to nodes labeled ∆0 into a single node having a fresh variable label. If there are
more than one adjacent nodes with the label ∆0, then we delete all those nodes except for one node. After
this modification, we always assume that there is exactly one node, say, v0 whose label is ∆0. Now, let v1
be a unique node adjacent to v0 and let x0 be its variable label. For simplicity, we keep the same notation
Ω for the constraint frame obtained by this modification.

Let m denote the total number of nodes in Ω whose labels are constraints in F . By simply removing
the node v0 having the label ∆0 from Ω, we obtain another instance, say, Ω′, which is obviously an input
instance to #CSP(F). Using basic properties of complement anti-invariance, we wish to prove the following
equality:

cspΩ′ = cspΩ + (−1)mcspΩ. (4)

Let us consider any “partial” assignment σ to all variables appearing in Ω′ except for x0, that is, σ :
X − {x0} → {0, 1}. Associated with σ, we introduce two corresponding Boolean assignments σ0 and σ1.
Firstly, we obtain σ0 from σ by additionally assigning 0 to x0. Now, we assume that σ0 is an satisfying
assignment for Ω′. Secondly, let σ1 be defined by assigning 1 to x0 and 1 − σ(z) to all the other variables
z. Note that cspΩ is calculated over all assignments σ0 induced from any partial assignments σ. Similarly,
to compute cspΩ′ , is is enough to consider all assignments σ0 and σ1. Since all constraints in Ω′ are

6

complement anti-invariant, the product of the values of all constraints by σ1 equals (−1)m times the product
of all constraints’ values by σ0. This establishes Eq.(4).

If m is even, then we immediately obtain the equation cspΩ = 1
2cspΩ′ from Eq.(4). Next, assume that

m is odd and choose any constraint g that is complement anti-invariant in F . We further modify Ω′ into
Ω′′ as follows. Letting g be of arity k, we prepare a new variable, say, x and add to Ω′ a new element
〈g, (x, x, . . . , x)〉, which essentially behaves as e · [1,−1] for a certain constant e 6= 0. A similar argument for
Eq.(4) can prove that

cspΩ′′ = e · cspΩ + (−1)m+1e · cspΩ = 2e · cspΩ.

Thus, from the value cspΩ′′ , we can efficiently compute cspΩ, which equals 1
2ecspΩ′′ . The two equations

cspΩ = 1
2cspΩ′ and cspΩ = 1

2ecspΩ′′ clearly establish an AP-reduction from #CSP(∆i,F) to #CSP(F).
Since the other direction, #CSP(F) ≤AP #CSP(∆i,F), is obvious, we finally obtain the desired AP-

equivalence between #CSP(∆i,F) and #CSP(F). ✷

In Sections 3.2–3.3, we will concentrate on the proof of Proposition 3.1(2). First, let F denote any
nonempty set of constraints. Obviously, #CSP(F) is AP-reducible to #CSP(∆i,F) for every index i ∈ {0, 1}.
It therefore suffices to show the other direction (namely, #CSP(∆i,F) ≤AP #CSP(F)) for an appropriately
chosen index i. Hereafter, we suppose that F is complement unstable, and we choose a constraint f in F
that is complement unstable. Furthermore, we assume that f has arity k (k ≥ 1). Our proof of Proposition
3.1(2) proceeds by induction on this index k.

3.2 Basis Case: k = 1, 2

Under the assumption described at the very end of Section 3.1, we now target the basis case of k ∈ {1, 2}.
The induction case of k ≥ 3 will be discussed in Section 3.3. Notice that Condition (a) of Proposition 3.1(2)
is necessary; to see this claim, consider a constraint set F = {[1, 0]}.

(1) Assuming k = 1, let f = [x, y] with x, y ∈ A. Note that x 6= ±y. This is because, if x = ±y, then f
has the form x · [1,±1] and f must be complement stable, a contradiction. Hence, it follows that |x| 6= |y|.
Henceforth, we wish to assert that |x| > |y| (resp., |x| < |y|) leads to a conclusion that ∆0 (resp., ∆1) is
effectively T-constructible from f . This assertion comes from the following simple observation.

Claim 1 Let x and y be two arbitrary algebraic real numbers with |x| > |y|. The constraint ∆0 = [1, 0] is
effectively T-constructible from [1, y/x] via a p-convergence series Λ = {[1, (y/x)2n] | n ∈ N+} for ∆0. In
the case of ∆1, a similar statement holds if |x| < |y| (in place of |x| > |y|).

Proof. Let us assume that |x| > |y|. We set λ = y/x and define gm = [1, λ2m] for every index m ∈ N+.
It is clear that the series Λ = {gm | m ∈ N+} is indeed a p-convergence series for ∆0 = [1, 0]. In addition,
the definition of gm yields the effective T-constructibility of ∆0 from [1, λ]. The case of |x| < |y| is similarly
treated. ✷

Assuming |x| > |y|, let λ = y/x. Claim 1 implies that ∆0 ≤e-con [1, λ]. Since [1, λ] ≤e-con f , we derive by
Lemma 2.3(2) the desired conclusion that ∆0 ≤e-con f . In the case of |x| < |y|, it suffices to define λ = x/y.

(2) Assume that k = 2 and let f = (x, y, z, w) for certain numbers x, y, z, w ∈ A. For convenience, we
will examine separately the following two cases: |x| = |w| and |x| 6= |w|.

[Case: |x| = |w|] We want to prove the following claim, which corresponds to Condition (a) of Proposition
3.1(2). Recall that f is complement unstable.

Claim 2 Assuming that |x| = |w|, both ∆0 and ∆1 are effectively T-constructible from f .

(a) Let us assume that x = w. Notice that y 6= z, because y = z implies that f is complement
invariant, a contradiction. Since y 6= z, we set g = fx1=∗, which equals [x + z, x + y]. Similarly, define
h = fx2=∗ = [x+y, x+z]. Note that the equation (x+y)2 = (x+z)2 is transformed into (y−z)(2x+y+z) = 0,
which is equivalent to 2x + y + z = 0 since y 6= z. If |x + y| < |x + z|, then we can effectively T-construct
[1, 0] and [0, 1] from g and h, respectively, as done in Case (1). Similarly, when |x+ y| > |x+ z|, we obtain
[0, 1] and [1, 0]. In the other case where 2x+ y+ z = 0, we start with a new constraint f ′ = f2 (which equals
(x2, y2, z2, w2)) in place of f . Obviously, f ′ is effectively T -constructible from f . Let us consider the simple
case where y2 6= z2. Since f ′ is not complement stable and 2x2 + y2 + z2 6= 0, this case is reduced to the
previous case. Finally, let us consider the case where y2 = z2. Since y 6= z, we conclude that y = −z. From

7

2x+ y+ z = 0, instantly x = 0 follows. Thus, f must equal (0, y,−y, 0), which is complement anti-invariant.
This contradicts our assumption.

(b) Assume that x = −w. First, we claim that y 6= −z because, otherwise, f becomes complement
anti-invariant. Let us consider a new constraint f ′ = f2. If y2 6= z2, then f ′ is not complement stable, and
thus we can reduce this case to Case (a). Hence, it suffices to assume that y2 = z2. This implies y = z
and we thus obtain f = [x, y,−x]. Next, we define g = fx1=∗ = [x + y, y − x]. Note that fx1=∗ = fx2=∗.
Consider the case where |x+ y| = |y − x|. This is equivalent to xy = 0. If x = y = 0, then f is complement
invariant. If x = 0 and y 6= 0, then f is also complement invariant. If x 6= 0 and y = 0, then f is complement
anti-invariant. In any case, we obtain an obvious contradiction.

Finally, we deal with the case where |x+y| 6= |y−x| (which is equivalent to xy 6= 0). Define f ′ = fx1=x2 =
[x,−x] and set h(x1, x3) =

∑

x2∈{0,1} f(x1, x2)f
′(x2)f(x2, x3), which equals x · [x2 − y2, 2xy, x2 − y2]. Note

that h ≤e-con f .
(i) If x = y, then we obtain g = [2x, 0]. From this g, we can effectively T-construct [1, 0]. Now, consider

another constraint h′(x1) =
∑

x2
h(x1, x2)g(x2) = [0, 4x4], from which we effectively T-construct [0, 1].

(ii) Assume that x = −y. Since g = [0,−2x], [0, 1] is effectively T-constructible from g. Next, consider
h′ defined as above. Obviously, h′ = [4x4, 0] holds, and thus we effectively T-construct [1, 0] from h′.

(iii) Consider the case where |x| 6= |y|. If |x + y| > |y − x| (equivalently, xy > 0), then we effectively
T-construct [1, 0] from g = [x+ y, y−x] by Claim 1. Since f is of the form [x, y,−x], when |x| < |y|, we take
a series Λ = {[(x/y)2i, 1, (−x/y)2i] | i ∈ N+}, which is obviously a p-convergence series for XOR = [0, 1, 0].
Similar to Claim 1, the following assertion holds.

Claim 3 Let x, y be arbitrary algebraic real numbers with |x| < |y|. The constraint XOR is effectively
T-constructible from [x/y, 1,±x/y] via a p-convergence series Λ = {[(x/y)2i, 1, (±x/y)2i] | i ∈ N+} for
XOR.

Note that [0, 1] is effectively T-constructible from {XOR, [1, 0]}. Since Claim 3 yields XOR ≤e-con f ,
we obtain [0, 1] ≤e-con f .

In the other case where |x| > |y|, h has the form 1
2y · [d, 1, d], where d = (x2− y2)/2xy. If x2− y2 < 2|xy|,

then a series Λ = {[d2i, 1, d2i] | i ∈ N+} is a p-convergence series for XOR = [0, 1, 0] because of |d| < 1. By
Claim 3, XOR is effectively T-constructible from [d, 1, d]. Since [d, 1, d] ≤e-con f , it follows that XOR ≤e-con
f . From this result, the aforementioned relation [0, 1] ≤e-con {XOR, [1, 0]} implies the desired consequence
that [0, 1] ≤e-con f .

In contrast, when |x + y| < |y − x| (equivalently, xy < 0), Claim 1 helps us effectively T-construct [0, 1]
from g = [x+ y, y − x]. A similar argument as before shows that [1, 0] ≤e-con f using XOR.

[Case: |x| 6= |w|] In this case, it is enough to prove the following claim whose last part is equivalent to
Condition (b).

Claim 4 Assume that |x| 6= |w|. There exists an index i ∈ {0, 1} satisfying ∆i ≤e-con f . Moreover, if one
of the following two conditions is satisfied, then both ∆0 and ∆1 are effectively T-constructible from f . The
conditions include (i) |x| > |w|, and either |x + y| < |z + w| or |x + z| < |y + w|, and (ii) |x| < |w|, and
either |x+ y| > |z + w| or |x+ z| > |y + w|.

To show Claim 4, let g0 = fx1=x2 = [x,w], g1 = fx1=∗ = [x+ z, y+ w], and g2 = fx2=∗ = [x+ y, z +w].
Clearly, g0, g1, g2 ≤e-con f holds. In the case where |x| > |w|, we can effectively T-construct ∆0 from g0
using Claim 1. In addition, if either |x + y| < |z + w| or |x + z| < |y + w| holds, we further effectively
T-construct ∆1 from either g1 or g2. Hence, we obtain both ∆0 and ∆1. The case of |x| < |w| is similarly
treated.

3.3 Induction Case: k ≥ 3

As in the previous subsections, let f = (z1, z2, . . . , z2k). We will deal with the remaining case of k ≥ 3. In
the next lemma, from a given complement unstable constraint f of arity k, we can effectively T-construct
another arity-(k − 1) complement unstable constraint g of a special form that helps us apply an induction
hypothesis.

Lemma 3.2 Let k ≥ 3 and let f be any k-ary constraint. If f is complement unstable, then there exists
another constraint g of arity k − 1 for which (i) g is complement unstable, (ii) g ≤e-con f , and (iii) if f
satisfies one of Conditions (a)–(b), then so does g.

8

We will briefly show that the induction case holds for Proposition 3.1(2), assuming that Lemma 3.2 is
true. By Lemma 3.2, we take another arity-(k − 1) constraint g in G that satisfies Conditions (i)–(ii) of
the lemma. We then apply the induction hypothesis for Proposition 3.1(2) to conclude that either ∆0 or
∆1 is effectively T-constructible from f . Next, we assume that f violates one of Conditions (a)–(b) given
in Proposition 3.1(2). If f violates one of Conditions (a)–(b), then the obtained constraint g also violates
one of those conditions. Hence, the induction hypothesis guarantees that both ∆0 and ∆1 are effectively
T-constructible from g.

The above argument completes the induction case for Proposition 3.1(2). Therefore, the remaining task
of ours is to give the proof of Lemma 3.2.

Proof of Lemma 3.2. Let f = (z1, z2, . . . , z2k). Since f is complement unstable, there exists an appro-
priate index ℓ ∈ [2k] satisfying zℓ 6= 0. For each pair of indices i, j ∈ [k] with i < j, we write g(i,j) to
denote fxi=xj and then define G = {g(i,j) | 1 ≤ i < j ≤ k}. Note that each constraint g(i,j) is effectively
T-constructible from f .

Let us begin with a simple observation.

Claim 5 Let k ≥ 3. For any index j ∈ [2k], there exist a constraint g in G and k − 1 bits a1, a2, . . . , ak−1

satisfying zj = g(a1, a2, . . . , ak−1).

Proof. Since zj is an output value of f , there exists an input tuple (a′1, a
′
2, . . . , a

′
k) ∈ {0, 1}k for which zj =

f(a′1, a
′
2, . . . , a

′
k). Since k ≥ 3, there are two indices i, j ∈ [2k] with i < j satisfying a′i = a′j . For this special

pair, it follows that g(i,j)(a′1, . . . , a
′
i−1, a

′
i+1, . . . , a

′
k) = f(a′1, . . . , a

′
i−1, a

′
j, a

′
i+1, . . . , a

′
k) = zj. It therefore

suffices to set the desired constraint g to be g(i,j) and set (a1, a2, . . . , ak−1) to be (a′1, . . . , a
′
i−1, a

′
i+1, . . . , a

′
k).

✷

Let us return to the proof of Lemma 3.2. First, we assume that f satisfies Condition (b). Take an index
j ∈ [2k−1]−{1} for which either (|z1|− |z2k |)(|z1 + zj|− |z2k−j+1+ z2k |) < 0 or (|z1|− |z2k |)(|z1+ z2k−j+1|−
|zj + z2k |) < 0. By Claim 5, we can choose a constraint g ∈ G satisfying that zj = g(a1, a2, . . . , ak−1) for a
certain bit series a1, a2, . . . , ak−1. Note that this constraint g also satisfies Condition (b) and is complement
unstable. The lemma thus follows instantly.

Hereafter, we assume that f does not satisfy Condition (b). When G contains a complement unstable
constraint, say, g, it has arity k− 1 and g ≤e-con f holds. Moreover, if f further satisfies Condition (a), then
g also satisfies the condition because g ∈ G. We then obtain the lemma. It therefore suffices to assume that
G is complement stable.

Since f is complement unstable, either of the following two cases must occur. (1) There exists an index
i ∈ [2k−1] satisfying |zi| 6= |z2k−i+1|. (2) It holds that |zi| = |z2k−i+1| for every index i ∈ [2k−1], but there
are two distinct indices i0, j0 ∈ [2k−1] for which zi0 = z2k−i0+1 6= 0 and zj0 = −z2k−j0+1 6= 0.

(1) In the first case, let us choose an index i ∈ [2k−1] satisfying |zi| 6= |z2k−i+1|. Claim 5 ensures
the existence of a constraint g in G such that zi = g(a1, a2, . . . , ak−1) for appropriately chosen k − 1 bits
a1, a2, . . . , ak−1. This implies that z2k−i+1 = g(a1 ⊕ 1, a2 ⊕ 1, . . . , ak−1 ⊕ 1). By the choice of i, g cannot be
complement stable. Obviously, this is a contradiction against our assumption that G is complement stable.

(2) In the second case, let us take any two indices i0, j0 ∈ [2k−1] satisfying that zi0 = z2k−i0+1 6= 0 and
zj0 = −z2k−j0+1 6= 0. We will examine two possible cases separately.

(i) Assume that a certain constraint g ∈ G satisfies both zi0 = g(a1, a2, . . . , ak−1) and zj0 =
g(b1, b2, . . . , bk−1) for appropriately chosen 2(k − 1) bits a1, a2, . . . , ak−1, b1, b2, . . . , bk−1. From the prop-
erties of zi0 and zj0 , it follows that g is complement unstable, and this fact clearly leads to a contradiction.

(ii) Finally, assume that Case (i) does not hold. This case is much more involved than Case (i). By our
assumption, |zi| = |z2k−i+1| holds for all indices i ∈ [2k−1]. This assumption makes f satisfy Condition (a).
To make the following argument simple, we will introduce several notations. First, we denote by H ′ the set of
all index pairs (i, j) in [2k]× [2k] such that both zi = g(a1, a2, . . . , ak−1) and zj = g(b1, b2, . . . , bk−1) hold for
a certain constraint g in G and certain 2(k − 1) bits a1, a2, . . . , ak−1, b1, b2, . . . , bk−1. Notice that (i, i) ∈ H ′

holds for every index i ∈ [2k]. Since Case (i) fails, we obtain (i0, j0) /∈ H ′. Associated with the set H ′, we
define two new sets H = [2k] × [2k] −H ′ and Ĥ = {i ∈ [2k] | ∃j[(i, j) ∈ H]}. Since |zi| = |z2k−i+1| for all

i ∈ [2k−1], Ĥ can be expressed as the disjoint union Ĥ0 ∪ Ĥ+ ∪ Ĥ−, where Ĥ0 = {i ∈ Ĥ | zi = z2k−i+1 = 0},

Ĥ+ = {i ∈ Ĥ | zi = z2k−i+1 6= 0}, and Ĥ− = {i ∈ Ĥ | zi = −z2k−i+1 6= 0}. Concerning Ĥ+ and Ĥ−, the
following useful properties hold.

Claim 6 Let i, j ∈ [2k] be any two indices with i ≤ 2k−1 and assume that (i, j) ∈ H ′.

9

1. If j ∈ Ĥ+ then zi = z2k−i+1 holds.

2. If j ∈ Ĥ− then zi = −z2k−i+1 holds.

Proof. Assume that zi = 0. From zi = 0 follows z2k−i+1 = 0, because |zi| = |z2k−i+1|. We then
obtain zi = ±z2k−i+1; thus, the claim is trivially true. Henceforth, we consider the case where zi 6= 0.
Since (i, j) ∈ H ′, there exist a constraint g ∈ G and bits a1, a2, . . . , ak−1, b1, b2, . . . , bk−1 for which zi =
g(a1, a2, . . . , ak−1) and zj = g(b1, b2, . . . , bk−1). Recall that g is complement stable by our assumption. In

the case where j ∈ Ĥ+, since zj = z2k−j+1 6= 0 holds, g must be complement invariant. Thus, for the index

i, we obtain zi = z2k−i+1. By a similar argument, when j ∈ Ĥ−, g must be complement anti-invariant and
thus zi = −z2k−i+1 holds. ✷

Here, we claim that Ĥ+ and Ĥ− are both nonempty. To see this claim, recall that the indices i0 and
j0 satisfy (i0, j0) /∈ H ′, and thus they belong to Ĥ ; more specifically, it holds that i0 ∈ Ĥ+ and j0 ∈ Ĥ−

since zi0 = z2k−i0+1 and zj0 = −z2k−j0+1. By symmetry, we also conclude that 2k − i0 + 1 ∈ Ĥ+ and

2k − j0 + 1 ∈ Ĥ−. In Claim 7, we present another useful property of Ĥ .

Claim 7 For any index i ∈ [2k], if i /∈ Ĥ, then zi = 0 holds.

Proof. Let i be any index in [2k] − Ĥ. Without loss of generality, we assume that i ≤ 2k−1. Toward a
contradiction, we assume that zi 6= 0. As noted earlier, Ĥ+ and Ĥ− are nonempty. Now, let us take two
indices j1 ∈ Ĥ+ and j2 ∈ Ĥ− and consider two pairs (i, j1) and (i, j2). For the first pair (i, j1), if (i, j1) /∈ H ′

holds, then (i, j1) must be in H , and thus i belongs to Ĥ . Since this is clearly a contradiction, (i, j1) ∈ H ′

follows. Similarly, we can obtain (i, j2) ∈ H ′ for the second pair (i, j2). Claim 6 then implies zi = z2k−i+1

as well as zi = −z2k−i+1. From these equations, zi = 0 follows. This is also a contradiction. Therefore, the
claim is true. ✷

The rest of the proof proceeds by examining three cases, depending on the value of k ≥ 3.

(a) Let us consider the base case of k = 3 with f = (z1, z2, . . . , z8). By a straightforward calculation, H ′

is comprised of pairs (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (3, 7), (4, 6), (4, 7), (5, 6), (5, 7), (6, 7) and, moreover,
all pairs obtained from those listed pairs, say, (i, j) by exchanging two entries i and j. Thus, Ĥ equals
{2, 3, 4, 5, 6, 7}. Claim 7 yields the equality z1 = z8 = 0. Now, we assume that Ĥ0 6= Ø. In the case where
Ĥ0 = {4, 5}, Ĥ+ is either {2, 7} or {3, 6} because Ĥ− is nonempty. Now, we define h2 = fx2=∗, which
equals (z3, z2, z7, z6). Note that h2 satisfies Condition (a). If h2 is complement stable, then it must hold
that either zi = z9−i for all i ∈ [4] or zi = −z9−i for all i ∈ [4]. This implies that f is complement stable,
a contradiction. Therefore, h2 is complement unstable. The other cases (Ĥ0 = {2, 7} and Ĥ0 = {3, 6}) are
similar.

Next, assume that Ĥ0 = Ø. Recall that |Ĥ+| > 0 and |Ĥ−| > 0 and note that |Ĥ+| 6= |Ĥ−|. Let us
consider the case where |Ĥ+| > |Ĥ−|. If Ĥ+ = {2, 4, 5, 7} and Ĥ− = {3, 6}, then we define h2 = fx2=∗,
which is (z3, z2 + z4, z5 + z7, z6). Obviously, Condition (a) holds for h2. Since 3 ∈ Ĥ−, z3 = −z6 holds;
moreover, since 2, 4 ∈ Ĥ+, it follows that z2 + z4 = z5 + z7. We then conclude that h2 is not complement
stable. Similarly, if Ĥ+ = {2, 3, 6, 7} and Ĥ− = {4, 5} (resp., Ĥ+ = {3, 4, 5, 6} and Ĥ− = {2, 7}), then
consider h1 = fx1=∗ = (z5, z2+ z6, z3+ z7, z4) (resp., h3 = fx3=∗ = (z2, z3 + z4, z5 + z6, z7)). This constraint
h1 is also complement unstable and satisfies Condition (a), as requested. The other case where |Ĥ−| > |Ĥ+|
is similarly treated.

(b) Consider the case where k = 4. It is not difficult to show that Ĥ = {4, 6, 7, 10, 11, 13}. Let us define
h = fx1=∗. This constraint h = (w1, w2, . . . , w8) contains eight entries wi = zi + z8+i for all i ∈ [8]. In
particular, w1 = z1 + z9, w2 = z2 + z10, w3 = z3 + z11, w4 = z4 + z12, w5 = z5 + z13, w6 = z6 + z14,
w7 = z7 + z15, and w8 = z8 + z16. By Claim 7, it follows that h = (0, z10, z11, z4, z13, z6, z7, 0). Condition
(a) is clearly met for this constraint h. If h is complement stable, either zi = z16−i+1 for all i ∈ {4, 6, 7} or
zi = −z16−i+1 for all i ∈ {4, 6, 7}. This is impossible because zi0 = z16−i0+1 6= 0 and zj0 = −z16−j0+1 6= 0.
Therefore, h is complement unstable.

(c) Assume that k ≥ 5. let us claim that H = Ø. Assume otherwise. Let (i, j) ∈ H and consider two
k-bit series a = a1a2 · · · ak and b = b1b2 · · · bk satisfying that zi = f(a) and zj = f(b). Note that, for every
distinct pair s, t ∈ [k], as = at implies bs 6= bt. For convenience, let Pr = {s ∈ [k] | as = r} for each bit
r ∈ {0, 1}. Here, we examine only the case where |P0| ≥ |P1| since the other case is similar. Since k ≥ 5, it
follows that |P0| ≥ k/2 ≥ 3; namely, there are at least three elements in P0. For simplicity, let 1, 2, 3 ∈ P0.
Since a1 = a2 = a3 = 0, there must be two distinct indices i1, i2 ∈ {1, 2, 3} for which bi1 = bi2 . Write
b(i2) for the (k − 1)-bit series b1b2 · · · bi2−1bi2+1 · · · bk. Similarly, we define a(i2). By the choice of (i1, i2), it

10

holds that zi = fxi1
=xi2 (a(i2)) and zj = fxi1

=xi2 (b(i2)). This fact implies that (i, j) ∈ H ′, a contradiction.
Therefore, we conclude that H = Ø; that is, H ′ = [2k]× [2k]. However, this contradicts our assumption that
(i0, j0) /∈ H ′.

This completes the proof of Lemma 3.2 and thus finishes the proof of Proposition 3.1(2). ✷

Throughout the proof of Theorem 1.2, we have required the use of algebraic real numbers only in the
proofs of Claims 1 and 3. It is not known so far that the theorem is still true for arbitrary real numbers.

4 AP-Reductions without Auxiliary Unary Constraints

As a direct application of Theorem 1.2, we wish to prove our second theorem—Theorem 1.3—presented in
Section 1. To clarify the meaning of this theorem, we need to formalize the special constraints described in
Section 1. Let us introduce the following sets of constraints. Recall that all constraints dealt with in this
paper are assumed to output only algebraic real values.

1. Let DG denote the set of all constraints f that are expressed by products of unary functions. A
constraint in DG is called degenerate. When f is symmetric, f must have one of the following three
forms: [x, 0, . . . , 0], [0, . . . , 0, x], and y ·[1, z, z2, . . . , zk] with yz 6= 0. By restricting DG, we define DG(−)

as the set of constraints of the forms [x, 0, . . . , 0], [0, . . . , 0, x], y ·[1, 1, . . . , 1], and y ·[1,−1, 1, . . . ,−1 or1],

where y 6= 0. Naturally, both ∆0 and ∆1 belong to DG(−).

2. The notation ED1 indicates the set of the following constraints: [x,±x], [x, 0, . . . , 0,±x] of arity ≥ 2,

and [0, x, 0] with x 6= 0. As a natural extension of ED1, let ED
(+)
1 be composed of constraints [x, y],

[x, 0, . . . , 0, y] of arity ≥ 2, and [0, x, 0] with x, y 6= 0. Notice that [x, y] also belongs to DG.

3. Let AZ be made up of all constraints of arity at least 3 having the forms [0, x, 0, x, . . . , 0 orx] and
[x, 0, x, 0, . . . , x or 0] with x 6= 0. The term “AZ” indicates “alternating zeros.” Similarly, AZ1 de-
notes the set of all constraints of arity at least 3 of the forms [0, x, 0,−x, 0, x, 0, . . . , 0 orx or − x] and
[x, 0,−x, 0, x, 0 . . . ,−x orx or 0] with alternating 0, x, and −x, where x 6= 0.

4. The set B0 consists of all constraints [z0, z1, . . . , zk] with k ≥ 2 and z0 6= 0 that satisfy either (i)
z2i+1 = z2i+2 = (−1)i+1z0 for all i ∈ N satisfying 2i+1 ∈ [k] or 2i+2 ∈ [k], or (ii) z2i = z2i+1 = (−1)iz0
for all i ∈ N with 2i ∈ [k] or 2i+ 1 ∈ [k]. As simple examples, [1, 1,−1] and [1,−1,−1] belong to B0.

5. Let OR denote the set of all constraints of the form [0, x, y] with x, y > 0. For instance, a special
constraint OR = [0, 1, 1] belongs to OR.

6. Let NAND consist of all constraints of the form [x, y, 0] with x, y > 0. A Boolean constraintNAND =
[1, 1, 0] is in NAND.

7. Let B be comprised of all constraints of the form [x, y, z] with x, y, z > 0 and xz 6= y2.

In the presence of U , we obtain (i) #SAT ≤AP #CSP(OR,U) [12, Lemma 4.1], (ii) #CSP(OR,U) ≤AP

#CSP(g,U) for every constraint g in OR ∪ NAND [12, Lemma 6.3], and (iii) #CSP(OR,U) ≤AP

#CSP(g,U) for every constraint g ∈ B [12, Proposition 6.8]. In conclusion, we can derive the following
lemma.

Lemma 4.1 For every constraint g in OR ∪NAND ∪ B, it holds that #SAT ≤AP #CSP(g,U).

The first part of Theorem 1.3 concerns the tractability of #CSP(F) when one of the two containments

F ⊆ DG ∪ ED
(+)
1 and F ⊆ DG(−) ∪ ED1 ∪ AZ ∪ AZ1 ∪ B0 holds. For such a counting problem #CSP(F),

it is already known in [2, Theorem 5.2] and [9, Theorem 1.2] that #CSP(F) is solvable in polynomial time.

Proposition 4.2 [2, 9] Let F be any set of symmetric real-valued constraints. If either F ⊆ DG ∪ ED
(+)
1

or F ⊆ DG(−) ∪ ED1 ∪ AZ ∪AZ1 ∪ B0 holds, then #CSP(F) belongs to FPA.

Now, we come to the point of proving the second part of Theorem 1.3. Let us first analyze the approxima-

tion complexity of #CSP(f) for an arbitrary symmetric constraint f that are not included inDG∪ED
(+)
1 ∪AZ.

Note that, when f is in DG ∪ ED
(+)
1 ∪ AZ ∪ AZ1 ∪ B0, #CSP(f) belongs to FPA by Proposition 4.2. The

following is a key claim required for the proof of Theorem 1.3.

Lemma 4.3 Let f be any symmetric real-valued constraint of arity at least 2. If f /∈ DG ∪ ED
(+)
1 ∪ AZ ∪

AZ1 ∪ B0, then, for any index i ∈ {0, 1}, there exists a constraint g in OR ∪ NAND ∪ B such that g is
effectively T-constructible from {f,∆i}.

11

Theorem 1.3 then follows, as shown below, by combining Theorem 1.2 and Proposition 4.2 with an
application of Lemma 4.3.

Proof of Theorem 1.3. Since Proposition 4.2 has already shown the first part of Theorem 1.3, we

are focused on the last part of the theorem. To prove this part, we assume that F 6⊆ DG ∪ ED
(+)
1 and

F 6⊆ DG(−) ∪ ED1 ∪AZ ∪AZ1 ∪B0. Notice that, by our assumption, F should contain a certain constraint
whose entries are not all zero. Given a constraint set G, by applying Theorem 1.2 to F ∪ G, we obtain an
index i0 ∈ {0, 1} for which #CSP(∆i0 ,F ,G) ≡AP #CSP(F ,G).

If there exists a constraint f in F not in DG∪ED
(+)
1 ∪AZ∪AZ1∪B0, then we apply Lemma 4.3 to obtain

an appropriate constraint g ∈ OR ∪ NAND ∪ B for which g is effectively T-constructible from {f,∆i0}.
By Lemma 2.3(3), the theorem immediately follows. Therefore, it is sufficient to consider the case where

F ⊆ DG∪ED
(+)
1 ∪AZ ∪AZ1∪B0. Now, let us choose two constraints f1, f2 ∈ DG ∪ED

(+)
1 ∪AZ ∪AZ1∪B0

in F for which f1 /∈ DG(−) ∪ ED1 ∪AZ ∪AZ1 ∪ B0 and f2 /∈ DG ∪ ED
(+)
1 . Note that f1 ∈ DG ∪ ED

(+)
1 and

f2 ∈ AZ ∪ AZ1 ∪ B0. Hereafter, we will prove the following claim.

Claim 8 There exists a constraint g in OR∪NAND∪B that is effectively T-constructible from {f1, f2,∆i0}.

Proof. The proof of the claim proceeds as follows. In general, f1 has one of the following three forms:
[x, y], [x, 0, . . . , 0, y], and x · [1, z, z2, . . . , zk] with x, y 6= 0, |x| 6= |y|, |z| 6= 1, and k ≥ 2. Notice that we can
effectively T-construct [x, y] from [x, 0, . . . , 0, y]. If f1 is of the form y · [1, z, z2, . . . , zk] with y 6= 0, |z| 6= 1,
and k ≥ 2, then no matter which of ∆0 and ∆1 is available, we can effectively T-construct [1, z]. Hence, we
can assume that f1 has the form [1, z]. In what follows, it suffices to assume that f1 = [x, y] with xy 6= 0
and |x| 6= |y|.

(1) When f2 ∈ AZ, there are two possibilities f2 = u · [0, 1, 0, 1, . . . , 0 or 1] and f2 = u · [1, 0, 1, 0, . . . , 1 or 0]

to occur. Since f2 /∈ DG ∪ ED
(+)
1 , the arity k of f2 must be at least 3. For simplicity, we set u = 1. When

k > 3, we use the given constant constraint ∆i0 to reduce f2 to either [1, 0, 1, 0] or [0, 1, 0, 1]. Here, let us
consider only the case where f2 = [1, 0, 1, 0] because the other case is similarly handled.

Here, we define two constraints f(x1, x2, x3) = f1(x1)f2(x1, x2, x3) and h(x1, x2, x3) =
f(x1, x2, x3)f(x2, x3, x1)f(x3, x1, x2). A simple calculation shows that h equals x · [x2, 0, y2, 0]. Since

x2 6= y2, we conclude that h /∈ DG ∪ ED
(+)
1 ∪ AZ ∪ AZ1 ∪ B0. Now, we apply Lemma 4.3 and then

obtain g ≤e-con {h,∆i0} for a certain constraint g in OR ∪ NAND ∪ B. Since h ≤e-con {f1, f2}, Lemma
2.3(2) implies that g ≤e-con {f1, f2,∆i0}.

(2) If f2 ∈ AZ1, then we take f2
2 , which belongs to AZ, and reduce this case to Case (1).

(3) Assume that f2 is in B0. The constraint f2 has either form u·[1, 1,−1, . . . ,±1] or u·[1,−1,−1, . . . ,±1]
with u 6= 0. Apply ∆i0 to f2 appropriately and reduce f2 to either ±u · [1, 1,−1] or ±u · [1,−1,−1]. Here,
we assume that the constants “±u” to be 1 for simplicity. If f2 = [1, 1,−1], then we define h(x1, x2) =
∑

x3∈{0,1} f2(x1, x3)f1(x3)f2(x2, x3). which equals [x+ y, x− y, x+ y]. Since y 6= 0, it follows that (x+ y)2−

(x− y)2 = 4xy 6= 0. Since |x| 6= |y|, h belongs to B. If f2 = [1,−1,−1], then h equals [x+ y, y− x, x+ y]. A
similar argument shows that h also belongs to B. By the definition of h, it holds that h ≤e-con {f1, f2,∆i0}.
✷

Let us return to the proof of the theorem. Let G be any constraint set. By Claim 8, an appro-
priately chosen constraint g in OR ∪ NAND ∪ B can be effectively T-constructible from {f1, f2,∆i0}.
Lemma 2.3(3) then implies that #CSP(g,G) ≤AP #CSP(f1, f2,∆i0 ,G). It follows from f1, f2 ∈ F that
#CSP(f1, f2,∆i0 ,G) ≤AP #CSP(F ,∆i0 ,G) ≡AP #CSP(F ,G), where the last AP-equivalence comes from
the choice of i0. Similarly, g ≤e-con {f1, f2,∆i0} implies #CSP(g,G) ≤AP #CSP(f1, f2,∆i0 ,G). Thus, com-
bining all AP-reductions yields the desired consequence that #CSP(g,G) ≤AP #CSP(F ,G). ✷

Briefly, we will describe how to prove Theorem 1.1 even though a sketchy proof outline has been given
in Section 1. First, we consider the case where F ⊆ ED. Since U ⊆ DG, the problem #CSP(ED,U) is AP-

equivalent to #CSP(DG, ED
(+)
1) and, by Proposition 4.2, it is solvable in polynomial time. On the contrary,

assume that F * ED. Since DG∪ED
(+)
1 ⊆ ED, it follows that F * DG∪ED

(+)
1 . Consider the first case where

F * DG(−) ∪ED1 ∪AZ ∪AZ1 ∪B0. Since F * DG ∪ED
(+)
1 , Theorem 1.3 ensures the existence of a special

constraint g in OR ∪ NAND ∪ B satisfying #CSP(g,U) ≤AP #CSP(F ,U). Using Lemma 4.1, we obtain
#SAT ≤AP #CSP(g,U). By the choice of g, we easily conclude that #SAT is AP-reducible to #CSP(F ,U).

12

Next, we consider the second case where F ⊆ DG(−) ∪ED1 ∪AZ ∪AZ1 ∪B0. Since F * DG ∪ED
(+)
1 , let us

take a constraint f2 from F − (DG ∪ ED
(+)
1). It follows that f2 ∈ AZ ∪AZ1 ∪ B0. Next, we choose another

constraint f1 from U − (DG(−) ∪ ED1). It is clear by its definition that f1 /∈ DG(−) ∪ ED1 ∪AZ ∪AZ1 ∪B0.
Applying Claim 8, we obtain a constraint g in OR∪NAND∪B for which g ≤e-con {f1, f2,∆0,∆1}. Lemma
2.3(3) then implies that #CSP(g,U) ≤AP #CSP(f1, f2,∆0,∆1,U). Since f1, f2 ∈ F and ∆0,∆1 ∈ U ,
we conclude that #CSP(g,U) ≤AP #CSP(F ,U). Together with Lemma 4.1, the desired AP-reduction
#SAT ≤AP #CSP(F ,U) follows.

To finish our entire argument, we still need to prove Lemma 4.3.

Proof of Lemma 4.3. Let f be any symmetric real-valued constraint of arity k ≥ 2. For convenience, we

write Γ for DG ∪ ED
(+)
1 ∪ AZ ∪ AZ1 ∪ B0. Throughout this proof, we assume that f /∈ Γ and that, for a

fixed index i0 ∈ {0, 1}, ∆i0 is given to use. Our proof proceeds by induction on k.

Case of k = 2. Let f be any binary constraint not in Γ. There are three major cases to consider separately,
depending on the number of zeros in the output values of f .

(B1) Consider the case where there are two zeros in the entries of f . Obviously, f must have one of
the following three forms: [x, 0, 0] (∈ DG), [0, 0, x] (∈ DG), and [0, x, 0] (∈ ED1) with x 6= 0, yielding a
contradiction against the assumption on f .

(B2) Consider the case where there is exactly one zero in f . Note that f must have one of the following
forms: [0, x, y], [x, 0, y], and [x, y, 0], where xy 6= 0. For the first and the last forms, f2 respectively belongs

to OR and NAND. Moreover, [x, 0, y] is in ED
(+)
1 . The lemma thus follows.

(B3) Finally, consider the case where there is no entry of zero in f = [x, y, z]. When |xz| 6= y2, the
constraint f2 = [x2, y2, z2] obviously belongs to B; thus, it suffices to set g in the lemma to be f2. If
xz = y2, then f has the form [x, y, y2/x] and thus it is in DG. Finally, if xz = −y2, then we obtain
f = [x, y,−y2/x]. Here, we wish to claim that |x| 6= |y| 6= | − y2/x|, because this claim establishes the
membership of f to B. If x = y, then we obtain −y2/x = −x and thus f = x · [1, 1,−1], which is obviously
in B0, a contradiction. When x = −y, we obtain f = x · [1,−1,−1], leading to another contradiction. Note
that y = y2/x implies x = y, and y = −y2/x implies y = −x. Therefore, our claim is true.

Case of k = 3. We assume that f has arity 3. For convenience, notations x, y, z, w that will appear below
as real values are assumed to be non-zero.

(T1) Consider the case where f has exactly three zeros; that is, f is one of the following four forms:
[x, 0, 0, 0], [0, x, 0, 0], [0, 0, x, 0], and [0, 0, 0, x] with x 6= 0. If f ∈ {[x, 0, 0, 0], [0, 0, 0, x]}, then f falls into DG,
a contradiction. Now, assume that f = [0, x, 0, 0]. We then define the desired constraint g as fx1=∗, which
equals x · [1, 1, 0] = x ·NAND, and thus it belongs to NAND. Clearly, g ≤e-con f holds without use of ∆i0 .
The case of f = [0, 0, x, 0] is treated similarly using OR.

(T2) Let us consider the case where f has exactly two zeros; namely, f has one of the forms: [x, 0, 0, y],
[x, y, 0, 0], [0, 0, x, y], [x, 0, y, 0], [0, x, 0, y], and [0, x, y, 0] with xy 6= 0. We exclude the case of f = [x, 0, 0, y]

because it belongs to ED
(+)
1 . Remember that ∆i0 is available to use.

(a) If f = [x, y, 0, 0], then we define g = fx1=x2=x3 , which yields x ·∆0. Since x 6= 0, we can freely use
∆0. From the set {f,∆0}, we can effectively T-construct a new constraint h = [x, y, 0]. Thus, the constraint
h2 = [x2, y2, 0], which is also effectively T-constructible, belongs to NAND. The case f = [0, 0, x, y] is
handled similarly using OR instead of NAND.

(b) Assume that f = [0, x, y, 0]. From {∆i0 , f}, we can effectively T-construct either [0, x, y] or [x, y, 0],
which is then reduced to Case (B2).

(c) Finally, let f = [x, 0, y, 0]. In the case where x = y, we obtain f = x · [1, 0, 1, 0], which belongs to AZ.
Moreover, if x = −y, then f = x · [1, 0,−1, 0] is in AZ1. In those cases, we clearly obtain a contradiction.
Hence, |x| 6= |y| must hold. Let us consider another constraint g = fx1=∗, which equals [x, y, y]. Since
|xy| 6= y2, the constraint g2 = [x2, y2, y2] belongs to B. Since g2 ≤e-con f , the lemma instantly follows. The
other case f = [0, x, 0, y] is similarly treated.

(T3) Consider the case where f has exactly one zero; that is, f = [x, y, z, 0], [0, x, y, z], [x, y, 0, z], [x, 0, y, z]
with xyz 6= 0.

(a) If f is of the form [x, y, z, 0], then we define g = fx1=x2 , which equals (x, y, z, 0). We then define
h(x1, x2) = g(x1, x2)

2g(x2, x1)
2, implying h = [x4, y2z2, 0]. This constraint h is in NAND. By duality, we

effectively T-construct h′ = [0, (xy)2, z4] from [0, x, y, z]. Clearly, h′ is a member of OR.

13

(b) If f = [x, 0, y, z], then define g(x1, x2) =
∑

x3,x4∈{0,1} f(x1, x3, x4)f(x2, x3, x4). This new constraint

g has the form [A,B,C] with A = x2 + y2, B = yz, and C = 2y2 + z2. Note that A,C > 0 and B 6= 0
because of xyz 6= 0. We want to claim that AC 6= B2. To show this inequality, assume that AC = B2, that

is, (x2 + y2)(2y2 + z2) = y2z2, or equivalently 2y4 + 2x2y2 + x2z2 = 0. Since z2 = − 2y2(x2+y2)
x2 , it follows

that z2 < 0, a contradiction; hence, we obtain AC 6= B2. Now, consider g2 = [A2, B2, C2]. This constraint
g2 is clearly in B. By duality, we can handle the case of f = [x, y, 0, z].

(T4) Let us consider the case where f has no zero; namely, f is of the form [x, y, z, w] with xyzw 6=
0. For the subsequent argument, we let h1(x1, x2) =

∑

x3,x4∈{0,1} f(x1, x3, x4)f(x2, x3, x4), h2(x1, x2) =
∑

x3∈{0,1} f(x1, x3, x3)f(x2, x3, x3), and h3(x1, x3) =
∑

x2∈{0,1} f(x1, x1, x2)f(x2, x3, x3). Note that h1, h2,
and h3 are effectively T-constructible from f alone.

(a) If |xz| 6= y2 and |yw| 6= z2, then define h = fx1=i0 (i.e.,
∑

x1∈{0,1} f(x1, x2, x3)∆i0(x1)) and then

obtain either [x, y, z] or [y, z, w]. By our assumption, h2 belongs to B.
(b) Now, assume that |xz| 6= y2 and |yw| = z2.
(i) We consider the first case where yw = z2. Without loss of generality, we can assume that x = 1. Since

w = z2/y, f equals [1, y, z, z2/y]. Note that h3 is of the form [A,B,C] with A = 1 + y2, B = z(z + 1), and
C = z2(1 + z2/y2). Clearly, A,C > 0 holds. Now, let us study the case where B 6= 0. Since y2[AC − B2]
equals z2(y2 − z)2, it holds that AC = B2 iff z = y2. Since |z| 6= y2 by our assumption, we conclude that
AC 6= B2. The constraint h2

3 = [A2, B2, C2] therefore belongs to B. Next, we consider the other case of
B = 0. Since B = z(z + 1), we immediately obtain z = −1; thus, f must be of the form [1, y,−1, 1/y].
Note that h1 = [A′, B′, C′], where A′ = 2(1 + y2), B′ = −(y + 1/y), and C′ = 2 + y2 + 1/y2. Obviously,
A′, C′ > 0 and B′ 6= 0 because y 6= −1/y. The term y2[AC −B2] is expressed as y2(y2 +1)2(2y2 +1), which
is obviously non-zero. We thus conclude that AC 6= B2. Therefore, the constraint h2

1 = [(A′)2, (B′)2, (C′)2]
is in B. From h2

1 ≤e-con f and h3 ≤e-con f , the lemma instantly follows.
(ii) The second case is that yw = −z2. As did before, we assume that x = 1. Since w = −z2/y, f

equals [1, y, z,−z2/y]. We then focus on the constraint h3 = [A,B,C], where A = 1 + y2, B = z(1 − z),
and C = z2(1 + z2/y2). Firstly, we examine the case of B 6= 0. Note that the value y2[AC − B2] equals
z2(y2 + z); thus, it holds that AC = B2 iff z = −y2. Since |xz| 6= y2 and A,C > 0, we conclude that
|AC| 6= B2. This places the constraint h2

3 = [A2, B2, C2] into B. Secondly, we study the other case where
B = 0, or equivalently, z = 1 because B = z(1− z). In this case, we use another constraint h2 = [A′, B′, C′],
which is actually of the form [2, y− 1/y, y2+1/y2]. If |y| 6= 1, then B′ 6= 0 holds. Since y2[A′C′ − (B′)2] has
a non-zero value (y2 +1)2, the constraint h2

2 is a member of B. On the contrary, assume that |y| = 1. When
y = 1, f equals [1, 1, 1,−1], from which we obtain h1 = [4, 2, 4]. Obviously, h1 belongs to B. If y = −1, then
we obtain f = [1,−1, 1, 1], and thus h1 = [4,−2, 4] is also in B.

(c) Consider the remaining case where xz = δy2 and yw = δ′z2 for certain constants δ, δ′ ∈ {±1}.
(i) In the case where xz = y2 and yw = z2, the constraint f = [x, y, y2/x, y3/x2] is obviously in DG, a

contradiction.
(ii) When xz = y2 and yw = −z2, we obtain f = [x, y, y2/x,−y3/x2]. Let us consider h2. For simplicity,

let x = 1. The constraint h2 therefore has the form [A,B,C], where A = 1+y4, B = y−y5, and C = y2+y6.
Note that A,C > 0. It follows from AC − B2 = 4y6 that AC is different from B2. Moreover, note that
B = 0 iff y = 1. Therefore, when y 6= 1, the constraint h2

2 = [A2, B2, C2] belongs to B. When y = 1, f has
the form [1, 1, 1,−1]. The constraint h1, which equals [4, 2, 4], is clearly in B. The proof for the case where
xz = −y2 and yw = z2 is essentially the same.

(iii) Finally, we consider the case where xz = −y2 and yw = −z2. This case implies f =
[x, y,−y2/x,−y3/x2]. By assuming x = 1, we obtain h1 = [A,B,C], where A = 1+2y2+y4, B = y(y2−1)2,
and C = y2+2y4+y6. Obviously, A,C > 0 holds. By a simple calculation, we obtain AC−B2 = 8y4(y4+1).
It thus follows that AC 6= B2. Note that B = 0 iff y = ±1. If |y| 6= 1, then the constraint h2

1 = [A2, B2, C2]
belongs to B. When y = 1 and y = −1, we obtain f = [1, 1,−1,−1] and f = [1,−1,−1, 1], respectively,
which are both in B0, a contradiction.

Case of k ≥ 4. For convenience, let u = f(0k) and w = f(1k). There are four fundamental cases to
examine, depending on the values of u and w.

[Case: u = 0 and w 6= 0] Since the other case where u 6= 0 and w = 0 is symmetric, we omit that
case. First, we note that g cannot belong to B0 because u = 0. Now, let us consider the constraint
h′ = fx1=x2=···=xk = [0, w]. Since w 6= 0, from this constraint h′, we can effectively T-construct ∆1 = [0, 1].
We then set g as fx1=1 (equivalently,

∑

x1∈{0,1} f(x1, . . . , xk)∆1(x1)). Since g /∈ Γ implies the desired
consequence, in what follows, we assume that g ∈ Γ.

14

(a) In the case where g ∈ DG, g cannot be [x, 0, 0, . . . , 0] because w 6= 0. If g = [0, 0, . . . , 0, x], then f
must equal [0, 0, 0, . . . , 0, x], which belongs to DG, a contradiction. The remaining case is that g has the
form x · [1, y, y2, . . . , yk−1] with xy 6= 0. Notice that f = x · [0, 1, y, y2, . . . , yk−1]. If y 6= −1, then we define
h = fx1=∗, which is x · [1, y+1, y(y+1), . . . , yk−2(y+1)]. Since y(y+1) 6= (y+1)2, h is not in DG. Because
y 6= 0, we obtain y + 1 6= 1; moreover, y + 1 = y(y + 1) implies y + 1 6= −1. Therefore, h cannot belong
to B0. In conclusion, g is not in Γ. We then apply the induction hypothesis to obtain the lemma. On the
contrary, when y = −1, we consider another constraint f2 = x2 · [0, 1, 1, . . . , 1]. This case can be reduced to
the previous case of y 6= −1.

(b) Let us consider the case where g belongs to ED
(+)
1 . Since k ≥ 4, g cannot have the form [0, x, 0]. If

g equals [x, 0, . . . , 0, w], then f must be [0, x, 0, . . . , 0, w]. Define h = fx1=∗, implying h = [x, x, 0, . . . , 0, w].
Since h /∈ Γ, the induction hypothesis leads to the desired consequence.

(c) The next case to examine is that g is in AZ. The cases of g = [x, 0, x, 0, . . . , x, 0] and g =
[0, x, 0, x, . . . , x, 0] never occur because of w 6= 0. If g has the form [x, 0, x, 0, . . . , x], then f must be of
the form [0, x, 0, x, 0, . . . , x]; thus, f belongs to AZ, a contradiction. Moreover, if g = [0, x, 0, x, . . . , 0, x or 0],
then f equals [0, 0, x, 0, x, . . . , 0, x or 0]. Let us define h = fx1=∗, which equals x · [0, 1, 1, . . . , 1]. Since h /∈ Γ,
we can apply the induction hypothesis to h.

(d) In the case of g ∈ AZ1, it holds that either g = [x, 0,−x, 0, . . . , w] or g = [0, x, 0,−x, 0, . . . , w], where
w ∈ {±x}. In the former case, f is of the form [0, x, 0,−x, 0, . . . , w] and falls into AZ1, a contradiction. In
the latter case, we obtain f = [0, 0, x, 0,−x, 0, . . . , w]. Consider a new constraint h = fx1=∗, which equals
[0, x, x,−x,−x, . . . , w orw ± x]. Clearly, this does not belong to Γ, and thus we can apply the induction
hypothesis to h.

[Case: uw 6= 0] This case is split into three subcases: |u| = |w|, |u| < |w|, and |u| > |w|. The last subcase
is essentially the same as the second one, we omit it.

(i) Let us assume that |u| = |w|. If u = −w, then the constraint f ′ = f2 satisfies f ′(0, . . . , 0) =
f ′(1, . . . , 1), and thus it falls into the case of u = w. Henceforth, we will discuss only the case of u = w.
Here, we assume that ∆0 is available for free (i.e., i0 = 0). The other case i0 = 1 is similar. Note that the
constraint g = fx1=0 is effectively T-constructible from {f,∆0}. When g /∈ Γ, the induction hypothesis can
be directly applied to g; therefore, we assume below that g is a member of Γ.

(a) We start with the case where g ∈ DG. When g = [u, 0, . . . , 0], f has the form [u, 0, . . . , 0, u]. This

constraint f thus belongs to ED1, a contradiction against f /∈ ED
(+)
1 . When g = [0, 0, . . . , 0, x] with x 6= 0,

since f = [0, 0, . . . , 0, x, u], we can effectively T-construct ∆1 = [0, 1] from f . We then define h = fx1=∗ of
the form [0, 0, . . . , x, x+ u]. If x 6= −u, then the constraint h′ = hx1=x2=···=xk−3=1 has the form [0, x, x+ u],
and thus its induced constraint (h′)2 belongs to OR. Otherwise, we consider f ′ = f2 = [0, 0, . . . , u2, u2]
and reduce this case to the previous case of x 6= −u. Next, assume that g = x · [1, z, z2, . . . , zk−1] for
x, z 6= 0. In what follows, when z = −1, we use f ′ = f2 instead of f . If z 6= −1, then f is of the form
x · [1, z, z2, . . . , zk−1, u/x]. Since f /∈ DG, it follows that u/x 6= zk (equivalently, u 6= xzk). Let us consider

h = fx1=∗ of the form x(1+z)· [1, z, z2, . . . , zk−2, A], where A = xzk−1+u
x(1+z) . Notice that x = u/zk iff A = zk−1.

This equivalence leads to A 6= zk−1. Therefore, h does not belong to Γ. We simply apply the induction
hypothesis to h.

(b) Assume that g ∈ ED
(+)
1 . Since g equals [u, 0, . . . , 0, x], f has the form [u, 0, . . . , 0, x, u]. Let us define

h = fx1=∗, which equals [u, 0, . . . , x, u+ x]. When u 6= −x, we apply the induction hypothesis to h because
of h /∈ Γ. On the contrary, if u = −x, then we consider another constraint f2 (= [u2, 0, . . . , 0, x2, u2]) and
reduce this case to the previous case of u 6= −x.

(c) Next, we assume that g is in AZ. Note that g cannot have the form g = [u, 0, u, 0, . . . , 0] because,
otherwise, f equals [u, 0, u, 0, . . . , 0, u] ∈ AZ, a contradiction. When g is of the form [u, 0, u, 0, . . . , 0, u], we
easily obtain [u, 2u] from the constraint h = fx1=∗ = [u, u, . . . , u, 2u]. By Claim 1, we effectively T-construct
∆1 = [0, 1] from [u, 2u]. Now, we apply ∆1 repeatedly to f and then obtain g′ = [0, u, u] = u · OR, which
obviously belongs to OR.

(d) When g is in AZ1, g is not of the form [u, 0,−u, 0, . . . ,−u, 0] since, otherwise, f is
[u, 0,−u, . . . ,−u, 0, u] and it belongs to AZ1, a contradiction. If g equals [u, 0,−u, . . . , 0,±u], then f has
the form [u, 0,−u, . . . , 0,±u, u]. We then take f2 = [u2, 0, u2, . . . , 0, u2, u2] and reduce this case to Case
(c). Next, assume that g = [u, 0,−u, . . . , u, 0]. Since f = [u, 0,−u, . . . , u, 0, u], the constraint fx1=∗,x2=∗

equals [0,−2u, 0, . . . , 0, 2u, 2u], from which we immediately obtain [0, 2u] = 2u ·∆1. Using this ∆1, we can
effectively T-construct [0, 2u, 2u] = 2u · OR, which obviously is in OR.

(e) Assuming that g ∈ B0, let g = [u,−u,−u, u, . . . , zk−1, zk], where zk−1, zk ∈ {u,−u}. As the first case,
consider the case where (zk−1, zk) = (−u, u); namely, f has the form u · [1,−1,−1, 1, . . . ,−1, 1, 1]. Obviously,
f belongs to B0, a contradiction. A similar argument works for the case of (zk−1, zk) = (−u,−u). Now,

15

assume that (zk−1, zk) = (u, u). Since f = u · [1,−1,−1, . . . , 1, 1, 1], the constraint fx1=∗ must be of the form
u · [0,−2, 0, . . . , 0, 2, 2]. From this constraint, we effectively T-construct ∆1 = [0, 1]. Hence, [0, 2, 2] is also
effectively T-constructed from {f,∆1}. The resulted constraint [0, 2, 2] is clearly in OR. Finally, consider
the case of (zk−1, zk) = (u,−u). Since f = u · [1,−1,−1, . . . , 1,−1, 1], the constraint fx1=∗,x2=∗,...,xk−1=∗

has the form [0, y] for a certain non-zero value y. This allows us to use ∆1 freely. Applying ∆1 repeatedly,
we easily obtain [−2,−2, 0] from fx1=∗,x2=∗ = u · [−2,−2, . . . , 0]. This constraint [−2,−2, 0] = −2 ·NAND
belongs to NAND.

(ii) Let us consider the second case where |u| < |w|. Here, we define h′(x1) = f(x1, x1, . . . , x1). Since
h′ = [u,w] holds, we effectively T-construct ∆1 = [0, 1] from h′ by Claim 1. As a result, from {f,∆1}, we
further effectively T-construct two constraints g = fx1=1 and h = fx1=∗. In the case of g /∈ Γ, the desired
result follows from the induction hypothesis. Hereafter, we assume that g is indeed in Γ.

(a) If g ∈ DG, then g must be either [0, 0, . . . , 0, w] or x · [1, z, z2, . . . , zk−1]. In the former case, f equals

[u, 0, 0, . . . , 0, w], and thus it belongs to ED
(+)
1 . This is a clear contradiction. In the latter case, f has the

form x · [u/x, 1, z, z2, . . . , zk−1].
If x = uz, then f equals x

z
· [1, z, z2, . . . , zk−1], which belongs to DG, a contradiction. Therefore, we

obtain x 6= uz. Now assume that z = −1. Since x 6= uz, x + u 6= 0 holds. Note that the constraint h is
of the form x · [u+x

x
, 0, 0, . . . , 0], from which we can effectively T-construct [u+x

x
, 0]. This unary constraint

allows us to use ∆0 = [1, 0] freely. An application of ∆0 to f generates g′ = x · [u/x, 1, z, z2, . . . , zk−2]. Since
g′ /∈ Γ, we can apply the induction hypothesis. Next, assume that z 6= −1. By a simple calculation, we
obtain h = x(1 + z) · [u+x

x(1+z) , 1, z, . . . , z
k−2]. It follows from x 6= uz that u+x

x(1+z) 6= 1
z
. Hence, h is not in Γ.

The induction hypothesis then leads to the desired consequence.

(b) Consider the case of g ∈ ED
(+)
1 . Let g be [x, 0, . . . , 0, w] for a certain constant x 6= 0; thus, f equals

[u, x, 0, . . . , 0, w]. If u 6= −x, then the constraint h has the form [u+x, x, 0, . . . , 0, w]. Since u+x 6= 0, h does
not belong to Γ. We then apply the induction hypothesis to h. On the contrary, when u = −x, we instead
substitute f2 = [u2, x2, 0, . . . , 0, w2] for f and make this case reduced to the previous case of u 6= −x.

(c) Let us consider the case where g is in AZ. Since g cannot have the form [0, x, 0, x, . . . , x, 0], we
first assume that g = [0, x, 0, x, . . . , x]. The original constraint f then has the form [u, 0, x, 0, x, . . . , x] with
x = w. Notice that x 6= u because |u| < |w| = |x|. Since 0 < |u| < |x|, the constraint h = [u, x, x, . . . , x]
does not belong to Γ. The induction hypothesis can be applied to h. In the case of g = [x, 0, x, 0, . . . , x], on
the contrary, we consider g′ = (f2)x1=∗, which is [u2 + x2, x2, . . . , x2]. From this g′, we obtain [u2 + x2, x2].
Claim 1 again allows us to use ∆0 = [1, 0]. Apply ∆0 repeatedly to the constraint f2. We then obtain
[u2, x2, 0], which clearly belongs to NAND.

(d) Assume that g belongs to AZ1. Note that g = [0, x, 0,−x, 0, . . . , 0] and g = [x, 0,−x, 0, x, . . . , 0] are
both impossible. First, we assume that g = [0, x, 0,−x, . . . ,±x]; thus, f has the form [u, 0, x, 0,−x, . . . ,±x],
where w = ±x. Since |u| < |w| = |x|, the constraint h (= [u, x, x,−x,−x, . . . ,±x]) cannot belong to Γ. We
then apply the induction hypothesis to h. Next, assume that g = [x, 0,−x, 0, x, . . . ,±x]. Since f has the form
[u, x, 0,−x, 0, x, . . . ,±x], we consider a new constraint g′ = (f2)x1=∗, which equals [u2 + x2, x2, x2, . . . , x2].
From this constraint g′, we obtain [u2 +x2, x2]. The constant unary constraint ∆0 = [1, 0] can be effectively
T-constructed from [u2 + x2, x2] by Claim 1. Using this ∆0, we obtain from f2 the constraint [u2, x2, 0],
which belongs to NAND.

(e) Assuming that g ∈ B0, we first consider the case where g = [x,−x,−x, x, . . . ,±x] with x = ±w. Note
that f must have the form x · [u/x,−1,−1, 1, . . . ,−1,±1]. Since f /∈ AZ1, u 6= x (equivalently, u+ x 6= 2x)
follows. If u + x 6= −2x, then the constraint h = x · [(u + x)/x,−2, 0, 2, 0, · · · , 0 or ± 2] cannot belong to
Γ, and thus we can apply the induction hypothesis to h. The remaining case is u + x = −2x (equivalently,
u = −3x). In this case, we obtain f = x · [−3, 1,−1,−1, 1, · · · ,±1]. Since fx1=x2=···=xk is [−3,±1], we can
effectively T-construct ∆0 = [1, 0] by Claim 1. Applying ∆0 repeatedly to f , we obtain a new constraint
h′ = [−3, 1,−1], which clearly belongs to B. The case where g = [x, x,−x,−x, . . . ,±x] can be similarly
handled.

[Case: u = w = 0] Here, we assume that ∆i0 = ∆0. The other case of ∆i0 = ∆1 is similarly handled.
Now, we effectively T-construct g = fx1=0 from {f,∆0}. Note that g(0k−1) = 0. As done before, it suffices

to consider the case where g is in Γ. Clearly, g /∈ ED
(+)
1 ∪ B0, and thus g must be in DG ∪ AZ ∪ AZ1. In

the following argument, h refers to fx1=∗.
(a) Assume that g is in DG. Since g(0k−1) = 0, g is of the form [0, 0, . . . , 0, x] with x 6= 0. Since f equals

[0, 0, . . . , 0, x, 0], h coincides with [0, 0, . . . , x, x]. Obviously, h /∈ Γ, and thus the induction hypothesis can be
applied to h.

(b) When g belongs to AZ , g must have the form [0, x, 0, x, . . . , 0], because g = [0, x, 0, x, . . . , x] implies
f = [0, x, 0, x, . . . , x, 0] ∈ AZ, which leads to a contradiction. Since f = [0, x, 0, x, . . . , 0, 0], we obtain

16

h = [x, x, x, . . . , x, 0]. Since h /∈ Γ, the induction hypothesis then leads to the desired consequence.
(c) Assume that g ∈ AZ1. If g = [0, x, 0,−x, . . . ,±x], then the original constraint f =

[0, x, 0,−x, . . . ,±x, 0] is already in AZ1, a contradiction. Hence, g must have the form [0, x, 0,−x, . . . , 0],
yielding h = [x, x,−x, . . . , 0]. Clearly, h does not belong to Γ. Finally, we apply the induction hypothesis to
h. ✷

Appendix: Proof of Lemma 2.3

In what follows, we will give the missing proof of Lemma 2.3. For any constraint f of arity k, the notation
max |f | indicates the maximum value |f(x)| over all inputs x ∈ {0, 1}k.

(1)–(2) These properties (reflexivity and transitivity) directly come from the definition of effective T-
constructibility.

(3) Let (H1,H2, . . . ,Hn) be a generating series of F1 from F2. We need to show that #CSP(Hi,G) ≤AP

#CSP(Hi+1,G) for each adjacent pair (Hi,Hi+1), where i ∈ [n−1]. By Lemma 2.1, ≤AP is transitive; thus, it
follows that #CSP(H1,G) ≤AP #CSP(Hn,G). This is clearly equivalent to #CSP(F1,G) ≤AP #CSP(F2,G),
as requested.

Taking an arbitrary pair (Hi,Hi+1) with i ∈ [n − 1], we treat the first case where (Hi,Hi+1) satisfies
Clause (I) of Definition 2.2. Consider a constraint frame Ω = (G,X |H′, π) withH′ ⊆ Hi∪G. For convenience,
let H′ = {f1, f2, . . . , fd}. Take fi inductively and consider all subgraphs of G that represents fi. Choose
such subgraphs one by one. Now, let Gfi be such a subgraph. By Clause (I), there exists another finite
graph G′ that realizes fi by Hi+1. We replace Gfi in G by G′

fi
. After all the subgraphs representing fi

are replaced, the obtained graph, say, G′ constitutes a new constraint frame Ω′. It is not difficult to show
that cspΩ′ equals cspΩ. We continue this replacement process for all fi’s. In the end, we conclude that
#CSP(Hi,G) ≤AP #CSP(Hi+1,G).

We will examine the second case where (Hi,Hi+1) satisfies Clause (II) of Definition 2.2. In what fol-
lows, for ease of our argument, we assume that Hi = {f} and we want to claim that #CSP(f,G) ≤AP

#CSP(Hi+1,G). Take a p-convergence series Λ for f , which is effectively T-constructible from Hi+1. Our
claim is split into two parts: (a) #CSP(f,G) ≤AP #CSP(Λ,G) and (b) #CSP(Λ,G) ≤AP #CSP(Hi+1,G).
We will prove these parts separately. Since (b) is easy, we start with (b).

(b) We intend to show that #CSP(Λ,G) ≤AP #CSP(Hi+1,G). Let Λ = (f1, f2, . . .) and Hi+1 =
{g1, g2, . . . , gd}. Now, we take any constraint frame Ω = (G,X |G′, π) with G′ ⊆ Λ ∪ G, given to
#CSP(Λ,G). Since the constraint set G′ is finite, for simplicity, we assume that G′ is composed of con-
straints h1, h2, . . . , hs, fi1 , fi2 , . . . , fit , where s ∈ N, t ∈ N+, and each constraint hi belongs to F − Λ. For
this constraint frame Ω, we will explain how to compute the value cspΩ. Since Λ is effectively T-constructible
from G, there exists a polynomial-time DTM M that, for each index j ∈ [t], generates an appropriate graph
G̃ij realizing fij from any graph Gij representing fij .

Each node v labelled fij (j ∈ [t]) in G corresponds to a unique subgraph Gij , including all dangling edges

adjacent to v, that represents fij . By running M on Gij , we obtain another subgraph G̃ij realizing fij , which

contains all the dangling edges of Gij . It is therefore possible to generate from G another bipartite graph G̃

in which every subgraph Gij of G representing fij is replaced by its associated subgraph G̃ij obtained from

Gij by M . We denote by Ω′ the constraint frame obtained from Ω by replacing G with G̃ and by modifying
π accordingly. The definition of “realizability” implies that cspΩ′ equals γ · cspΩ for an appropriate number
γ ∈ A. Since G̃ contains only constraints in Hi+1 ∪ G, Ω′ must be a valid input instance to #CSP(Hi+1,G).
As a result, we conclude that #CSP(Λ,G) is AP-reducible to #CSP(Hi+1,G).

(a) We want to claim that #CSP(f,G) ≤AP #CSP(Λ,G). This claim is proven by modifying the proof of
[12, Lemma 9.2]. Hereafter, assume that f is of arity k and let Λ = (g1, g2, . . .). For convenience, we define
AC = {x ∈ {0, 1}k | f(x) 6= 0}. By Eq.(3), there exists a constant λ ∈ (0, 1) such that, for every m ∈ N+

and every x ∈ {0, 1}k, certain constants c, d ∈ {±1} satisfies the following condition:

(*) (1 + λmc)gm(x) ≤ f(x) ≤ (1 + λmd)gm(x) for all x ∈ AC, and |gm(x)| ≤ λm for all
x ∈ {0, 1}k −AC.

Without loss of generality, we can assume that γ is an algebraic real number.
Let us take any constraint frame Ω = (G,X |G′, π) with G = (V1|V2, E) and G′ ⊆ {f} ∪ G given as an

input instance to #CSP(f,G). It is enough to consider the case where f appears in G′. Let pf denote
the total number of nodes in V2 whose labels are f . For simplicity, write L for the set of all 2k-tuples

ℓ = (ℓx1
, ℓx2

, . . . , ℓx
2k
) ∈ N2k satisfying that

∑

i∈[2k] ℓxi
= pf , where each xi denotes the lexicographically

17

ith string in {0, 1}k. In addition, we set Lf = {ℓ ∈ L | ∀i ∈ [2k] [f(xi) = 0 → ℓxi
= 0]}. It is not difficult to

show by Eq.(1) that cspΩ can be expressed in the form
∑

ℓ∈Lf
αℓ(

∏

x∈AC f(x)ℓx) for appropriately chosen

numbers αℓ ∈ A, provided that 00 is treated as 1 for technical reason.
We set a0 = 2k! 24k and b0 = [1 + (2max |f |)|V2|] ·

∑

ℓ∈L−Lf
|αℓ|, which are obviously independent of m.

Meanwhile, we arbitrarily fix an integer m ∈ N+ that satisfies both λma0 < 1 and λmb0 < 1, and we denote
by Ωm the constraint frame obtained from Ω by replacing every node labeled f with a new node having the
label gm. Concerning this Ωm, its value cspΩm

coincides with the sum Γ1,m + Γ2,m, where

Γ1,m =
∑

ℓ∈Lf

αℓ

∏

x∈AC

gm(x)ℓx and Γ2,m =
∑

ℓ∈L−Lf

αℓ

∏

x∈{0,1}k∧ℓx>0

gm(x)ℓx .

Next, we will establish a close relationship between cspΩ and Γ1,m; more specifically, we intend to prove
the following key claim.

Claim 9 It holds that (1+λmB)Γ1,m ≤ cspΩ ≤ (1+λmB′)Γ1,m for appropriate numbers B,B′ ∈ A satisfying
|B|, |B′| ≤ a0. Therefore, sgn(cspΩ) = sgn(Γ1,m) holds.

Proof. It is obvious that the second part of the claim follows from the first part, because λm|B| ≤ λma0 < 1
and similarly λm|B′| < 1 by our choice of m. Henceforth, we aim at proving the first part. Fix ℓ ∈ Lf

arbitrarily. From Condition (*), for appropriate selections of cℓ,x’s and dℓ,x’s in {±1}, we obtain

∏

x∈AC

(1 + λmcℓ,x)
ℓxgm(x)ℓx ≤

∏

x∈AC

f(x)ℓx ≤
∏

x∈AC

(1 + λmdℓ,x)
ℓxgm(x)ℓx . (5)

Note that, when all elements in F ′ are limited to nonnegative constraints, we can always set cℓ,x = −1 and
dℓ,x = 1. Eq.(5) leads to upper and lower bounds of cspΩ:

∑

ℓ∈Lf

αℓ

∏

x∈AC

(1 + λmcℓ,x)
ℓxgm(x)ℓx ≤ cspΩ ≤

∑

ℓ∈Lf

αℓ

∏

x∈AC

(1 + λmdℓ,x)
ℓxgm(x)ℓx . (6)

Let us further estimate the first and the last terms in Eq.(6). Let us handle the first term. By considering
the binomial expansion of (1 + z)n, it holds that, for any numbers n ∈ N+ and z ∈ R satisfying that
−1/n ≤ z ≤ 2/n, there exists a number e ∈ {1/2, n} such that 1 + nz ≤ (1 + z)n ≤ 1 + enz (more precisely,
if z ≥ 0 then e = n; otherwise, e = 1/2). Hence, by choosing appropriate numbers eℓ,x ∈ {±1/2,±ℓx}, we
obtain

∏

x∈AC

(1 + λmcℓ,x)
ℓxgm(x)ℓx ≥

∏

x∈AC

(1 + λmℓxeℓ,x)gm(x)ℓx =
∏

x∈AC

(1 + λmℓxeℓ,x)
∏

x∈AC

gm(x)ℓx

since m satisfies that −1 < λmℓxeℓ,x < 1.
For a further estimation, let us focus on the value

∏

x∈AC(1 + λmzx) for any series {zx}x∈AC ⊆

[−22k, 22k]Z. Since
∏

x∈AC(1 + λmzx) has the form 1 +
∑|AC|

i=1

∑

y1,y2,...,yi∈AC λimzy1
zy2

· · · zyi
, where all

indices y1, y2, . . . , yi are distinct, if we set B̃ =
∑|AC|

i=1

∑

y1,y2,...,yi∈AC λ(i−1)m|zy1
zy2

· · · zyi
|, then we derive

that 1 − λmB̃ ≤
∏

x∈AC(1 + λmzx) ≤ 1 + λmB̃. Note that |λmzx| ≤ λm22k ≤ λma0 < 1 for any x ∈ AC

since zx ∈ [−22k, 22k]Z. It therefore follows that

∑

y1,...,yi∈AC

λ(i−1)m|zy1
· · · zyi

| ≤
∑

y1∈AC

|zy1
|

∑

y2,...,yi∈AC

1 ≤ |AC|2k
(

|AC|
i

)

≤ |AC|22k|AC|!.

We then conclude that B̃ satisfies that |B̃| ≤
∑|AC|

i=1 |AC|22k|AC|! ≤ |AC|222k|AC|! ≤ a0 since |AC| ≤ 2k.
From this fact, there exists a series {Bℓ}ℓ∈Lf

⊆ A with |Bℓ| ≤ a0 such that

∏

x∈AC

(1 + λmℓxeℓ,x)
∏

x∈AC

gm(x)ℓx ≥ (1 + λmBℓ)
∏

x∈AC

gm(x)ℓx .

Finally, we choose an appropriate number B ∈ A with |B| ≤ a0 that satisfies

∑

ℓ∈Lf

αℓ(1 + λmBℓ)
∏

x∈AC

gm(x)ℓx ≥ (1 + λmB)
∑

ℓ∈Lf

αℓ

∏

x∈AC

gm(x)ℓx = (1 + λmB)Γ1,m.

18

Concerning the third term in Eq.(6), a similar argument used for the first term shows the existence of
an algebraic real number B′ ∈ A such that |B′| ≤ a0 and

∑

ℓ∈Lf

αℓ

∏

x∈AC

(1 + λmdℓ,x)
ℓxgm(x)ℓx ≤ (1 + λmB′)Γ1,m.

By the selection of B and B′, they certainly satisfy the claim. ✷

Next, we will give an upper-bound of |Γ2,m|. Recall that b0 = C
∑

ℓ∈L−Lf
|αℓ|, where C = 1 +

(2max |f |)|V2|.

Claim 10 It holds that |Γ2,m| ≤ λmb0.

Proof. For the time being, we fix a series ℓ ∈ L−Lf and conduct a basic analysis. For this series ℓ, there
exists an element x ∈ {0, 1}k such that x /∈ AC and ℓx > 0. For convenience, we define D = {x ∈ {0, 1}k |
ℓx > 0} and further partition it into two sets: D1 = {x ∈ D | x ∈ AC} and D2 = {x ∈ D | x /∈ AC}. Notice
that D2 is nonempty. Since λ < 1 and |gm(x)| ≤ λm for all x ∈ D2, it follows that

∣

∣

∣

∣

∣

∏

x∈D2

gm(x)ℓx

∣

∣

∣

∣

∣

=
∏

x∈D2

|gm(x)|ℓx ≤
∏

x∈D2

λmℓx ≤ λm.

Condition (*) implies that |gm(x)| ≤ |f(x)|/min{1 + λmc, 1 + λmd} ≤ 2|f(x)| for any x ∈ AC because
|λmc|, |λmd| < 1/2. If max |gm| ≥ 1, then we obtain

∣

∣

∣

∣

∣

∏

x∈D1

gm(x)ℓx

∣

∣

∣

∣

∣

≤
∏

x∈D1

|gm(x)|ℓx ≤ (max |gm|)
∑

x∈D1
ℓx ≤ (max |gm|)pf ≤ (2max |f |)|V2|

since
∑

x∈D1
ℓx ≤ pf ≤ |V2|. When max |gm| < 1, we instead obtain

∏

x∈D1
|gm(x)|ℓx ≤ 1. Therefore, it

holds that
∣

∣

∣

∣

∣

∏

x∈D

gm(x)ℓx

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∏

x∈D2

gm(x)ℓx

∣

∣

∣

∣

∣

·

∣

∣

∣

∣

∣

∏

x∈D1

gm(x)ℓx

∣

∣

∣

∣

∣

≤ λmC.

The value |Γ2,m| is upper-bounded by

|Γ2,m| ≤
∑

ℓ∈L−Lf

|αℓ|

∣

∣

∣

∣

∣

∏

x∈D

gm(x)ℓx

∣

∣

∣

∣

∣

≤ λmC
∑

ℓ∈L−Lf

|αℓ| ≤ λmb0.

This completes the proof of the claim. ✷

To finish the proof of Lemma 2.3, we will present a randomized oracle computation that solves #CSP(f,G)
with a single query to the oracle #CSP(Λ,G). First, we want to define a special constant d0 corresponding to
Ω. The definition of d0 requires the following well-known lower bound of the absolute values of polynomials
in algebraic real numbers.

Lemma 4.4 [11] Let α1, . . . , αm ∈ A and let c be the degree of Q(α1, . . . , αm)/Q. There exists a constant

e > 0 that satisfies the following statement for any complex number α of the form
∑

k ak

(

∏m
i=1 α

ki

i

)

,

where k = (k1, . . . , km) ranges over [N1] × · · · × [Nm], (N1, . . . , Nm) ∈ Nm, and ak ∈ Z. If α 6= 0, then

|α| ≥ (
∑

k |ak|)
1−c ∏m

i=1 e
−cNi.

Following the proof of [12, Lemma 9.2] under the assumption that cspΩ 6= 0, it is possible to set values of
four series {Ni}i, {ak}k, {αi}i, and {ki}i appropriately so that Lemma 4.4 provides two constants c, e > 0 for
which |cspΩ| ≥ (

∑

k |ak|)
1−c

∏

i e
−cNi . The desired constant d0 is now defined to be (

∑

k |ak|)
1−c

∏

i e
−cNi.

Notice that d0 is an algebraic real number.
Let us describe our randomized approximation algorithm.

[Algorithm M] On input instance (Ω, 1/ε), set δ = ε/2 and find in polynomial time an integer
m ≥ 1 satisfying that λma0 < min{1, δ} and λmb0 < min{d0, δ}. Produce another constraint
frame Ωm. make a query with a query word (Ωm, 1/δ) to the oracle and let w be an answer from
the oracle. Notice that w is a random variable since the oracle is a RAS. Compute d0 defined
above. If |w| < d0, then output 0; otherwise, output w.

19

We want to prove that the above randomized algorithm M approximately solves #CSP(f,G) with high
probability. Let us consider two cases separately.

(1) For the first case where cspΩ = 0, we need to prove that M outputs 0 with high probability. Let us
evaluate the values Γ1,m and Γ2,m. Obviously, Claim 9 implies Γ1,m = 0. By Claim 10 and the choice of m,
we derive |Γ2,m| ≤ λmb0 < d0. From cspΩm

= Γ1,m + Γ2,m, it follows that |cspΩm
| < d0. This means that

M outputs 0 with high probability.

(2) Next, we consider the case where cspΩ 6= 0. We consider only the case where cspΩ > 0 because the
other case cspΩ < 0 can be similarly handled. The choice of d0 implies that cspΩ ≥ d0. We then choose a
number α, not depending on m, for which α(Γ1,m + sgn(α)b0) + b0 ≤ BΓ1,m and |α| ≤ max{a0, b0}. For
this α, it holds by Claim 10 that

(1 + λmα)cspΩm
= (1 + λmα)(Γ1,m + Γ2,m)

≤ Γ1,m + λmαΓ1,m + (1 + |α|)λmb0

= Γ1,m + λm[α(Γ1,m + sgn(α)b0) + b0]

≤ Γ1,m + λmBΓ1,m = (1 + λmB)Γ1,m.

Similarly, we choose α′ with |α′| ≤ max{a0, b0} such that (1 + λmB)Γ1,m ≤ (1 + λmα′)(Γ1,m + Γ2,m) =
(1 + λmα′)cspΩm

.
For simplicity, let γ = max{|α|, |α′|}. Note that δ ≥ λmγ. Since λmγ < 1, it holds that log2(1 + λmγ) ≤

λmγ ≤ δ. Thus, we conclude that 1 + λmα′ ≤ 2log2(1+λmγ) ≤ 2δ. Moreover, since log2(1− λmγ) ≥ −λmγ, it
follows that 1 + λmα ≥ 2log2(1−λmγ) ≥ 2−δ. In conclusion, it holds that 2−δcspΩ ≤ cspΩm

≤ 2δcspΩ. From
this follows cspΩm

> 0.
If w is any oracle answer, then it must satisfy that 2−δcspΩm

≤ w ≤ 2δcspΩm
because cspΩm

> 0.
Therefore, we derive that w ≤ 2δcspΩm

≤ 22δcspΩ and w ≥ 2−δcspΩm
≥ 2−2δcspΩ. Since ε = 2δ, M outputs

a 2ε-approximate solution using any 2δ-approximate solution for (Ωm, 1/δ) as an oracle answer.

This completes the proof of Lemma 2.3

References

[1] J. Cai and P. Lu. Holographic algorithms: from arts to science. J. Comput. System Sci., 77 (2011), 41–61.

[2] J. Cai, P. Lu, M. Xia. Holant problems and counting CSP. In Proc. of the 41st Annual ACM Symposium

on Theory of Computing (STOC 2009), pp.715–724, 2009.

[3] N. Creignou. A dichotomy theorem for maximum generalized satisfiability problems. J. Comput. System

Sci., 51 (1995) 511–522.

[4] N. Creignou and M. Hermann. Complexity of generalized satisfiability counting problems. Inform. Comput.,
125 (1996) 1–12.

[5] V. Dalmau and D. K. Ford. Generalized satisfiability with limited occurrences per variable: a study through
∆-matroid parity. In Proc. of the 28th International Symposium on Mathematical Foundations of Computer

Science (MFCS 2003), Lecture Notes in Computer Science, Springer-Verlag, Vol.2747, pp.358–367, 2003.

[6] M. Dyer, L. A. Goldberg, C. Greenhill, M. Jerrum. The relative complexity of approximating counting
problems. Algorithmica, 38 (2004), 471–500.

[7] M. Dyer, L. A. Goldberg, and M. Jerrum. The complexity of weighted Boolean #CSP. SIAM J. Comput.,
38 (2009), 1970–1986.

[8] M. Dyer, L. A. Goldberg, and M. Jerrum. An approximation trichotomy for Boolean #CSP. J. Comput.

System Sci., 76 (2010) 267–277.

[9] L. A. Goldberg, M. Grohe, M. Jerrum, and M. Thurley. A complexity dichotomy for partition functions
with mixed signs. SIAM J. Comput. 39 (2010) 3336–3402.

[10] T. J. Schaefer. The complexity of satisfiability problems. In Proc. of the 10th Annual ACM Symposium on

Theory of Computing (STOC 1978), pp.216–226, 1978.

[11] K. B. Stolarsky. Algebraic Numbers and Diophantine Approximations., Marcel Dekker, 1974.

[12] T. Yamakami. Approximate counting for complex-weighted Boolean constraint satisfaction problems. In-
form. Comput., 219 (2012) 17–38. An early version appeared in the Proccedings of the 8th Workshop on
Approximation and Online Algorithms (WAOA 2010), Lecture Notes in Computer Science, Springer-Verlag,
vol.6534, pp.261–272, 2011.

20

[13] T. Yamakami. A dichotomy theorem for the approximation complexity of complex-weighted bounded-degree
Boolean #CSPs. Thoer. Comput. Sci. 447 (2012) 120–135. An extended abstract appeared under a slightly
different title in the Proceedings of the 4th International Conference on Combinatorial Optimization and Ap-
plications (COCOA 2010), Lecture Notes in Computer Science, Springer-Verlag, vol.6508 (Part I), pp.285–
299, 2010.

[14] T. Yamakami. Approximation complexity of complex-weighted degree-two counting constraint satisfaction
problems. Theor. Comput. Sci. 461 (2012) 86–105. A preliminary version appeared in the Proceedings of
the 17th Annual International Computing and Combinatorics Conference (COCOON 2011), Lecture Notes
in Computer Science, Springer-Verlag, vol.6842, pp.122-133, 2011.

[15] T. Yamakami. Optimization, randomized approximability, and constraint satisfaction problems. In Proc.

of the 22nd International Symposium on Algorithms and Computation (ISAAC 2011), Lecture Notes in
Computer Science, Springer-Verlag, vol.7074, pp.454–463, 2011.

[16] T. Yamakami. Constant unary constraints and symmetric real-weighted counting CSPs. In Proc. of the

23rd International Symposium on Algorithms and Computation (ISAAC 2012), Lecture Notes in Computer
Science, Springer-Verlag, vol.7676, pp.237–246, 2012.

21

	1 Roles of Constant Unary Constraints
	2 Fundamental Notions and Notations
	2.1 Constraints and #CSPs
	2.2 FPA and AP-Reducibility
	2.3 Effective T-Constructibility

	3 Approximation of the Constant Unary Constraints
	3.1 Notion of Complement Stability
	3.2 Basis Case: k = 1, 2
	3.3 Induction Case: k 3

	4 AP-Reductions without Auxiliary Unary Constraints

