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Abstract

Two standard algorithms for approximately solving two-player zero-sum concurrent reachability

games are value iteration and strategy iteration. We prove upper and lower bounds of 2m
Θ(N)

on the worst

case number of iterations needed by both of these algorithms for providing non-trivial approximations

to the value of a game with N non-terminal positions and m actions for each player in each position.

In particular, both algorithms have doubly-exponential complexity. Even when the game given as input

has only one non-terminal position, we prove an exponential lower bound on the worst case number of

iterations needed to provide non-trivial approximations.

1 Introduction

1.1 Statement of problem and overview of results

We consider finite state, two-player, zero-sum, deterministic, concurrent reachability games. For brevity,
we shall henceforth refer to these as just reachability games. The class of reachability games is a subclass
of the class of games dubbed recursive games by Everett [8] and was introduced to the computer science
community in a seminal paper by de Alfaro, Henzinger and Kupferman [1]. A reachability game G is played
between two players, Player I and Player II. The game has a finite set of non-terminal positions and special
terminal positions GOAL and TRAP. 1 In this paper, we let N denote the number of non-terminal positions
and assume positions are indexed 1, . . . , N while GOAL is indexed N + 1 and TRAP 0. At any point in
time during play, a pebble rests at some position. The position holding the pebble is called the current

position. The objective for Player I is to eventually make the current position GOAL. If this happens, play
ends and Player I wins. The objective for Player II is to forever prevent this from happening. This may
be accomplished either by the pebble reaching TRAP from where it cannot escape or by it moving between
non-terminal positions indefinitely. To each non-terminal position i is associated a finite set of actions A1

i , A
2
i

∗Work supported by Center for Algorithmic Game Theory, funded by the Carlsberg Foundation. The authors acknowledge
support from The Danish National Research Foundation and The National Science Foundation of China (under the grant
61061130540) for the Sino-Danish Center for the Theory of Interactive Computation, under which part of this work was
performed. A preliminary version of this paper appeared in the proceedings of CSR’11.

1Including the TRAP position in the setup is actually not strictly needed, as one could replace it with any non-terminal
position from which no escape is possible, but including it is quite convenient and fairly standard. In particular, including it
makes “a reachability game with one non-terminal position” mean what we think it should.
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for each of the two players. In this paper, we assume that all these sets have the same size m (if not, we
may “copy” actions to make this so) and that A1

i = A2
i = {1, . . . ,m}. At each point in time, if the current

position is i, Player I and Player II simultaneously choose actions in {1, . . . ,m}. For each position i and
each action pair (a, a′) ∈ {1, . . . ,m}2 is associated a position π(i, a, a′). In other words, each position holds
an m×m matrix of pointers to positions. When the current position at time t is i and the players play the
action pair (a, a′), the new position of the pebble at time t+ 1 is π(i, a, a′).

A strategy for a reachability game is a (possibly randomized) procedure for selecting which action to
take, given the history of the play so far. A strategy profile is a pair of strategies, one for each player. A
stationary strategy is the special case of a strategy where the choice only depends on the current position.
Such a strategy is given by a family of probability distributions on actions, one distribution for each position,
with the probability of an action according to such a distribution being called a behavior probability. We
let µi(x, y) denote the probability that Player I eventually reaches GOAL if the players play using the
strategy profile (x, y) and the pebble starts in position i. The lower value of position i is defined as:
vi = supx∈S1 infy∈S2 µi(x, y) where S1 (S2) is the set of strategies for Player I (Player II). Similarly, the
upper value of a position i is vi = infy∈S2 supx∈S1 µi(x, y). Everett [8] showed that for all positions i in a
reachability game, the lower value vi in fact equals the upper value vi, and this number is therefore simply
called the value vi of that position. The vector v is called the value vector of the game. Furthermore, Everett
showed that for any ǫ > 0, there is a stationary strategy x∗ of Player I so that for all positions i, we have
infy∈S2 µi(x

∗, y) ≥ vi − ǫ, i.e. the strategy x∗ guarantees the value of any position within ǫ when play starts
in that position. Such a strategy is called ǫ-optimal. Note that x∗ does not depend on i. It may however
depend on ǫ > 0 and this dependence may be necessary, as shown by examples of Everett. In contrast, it
is known that Player II has an exact optimal strategy that is guaranteed to achieve the value of the game,
without any additive error [17, 13].

In this paper, we consider algorithms for solving reachability games. There are two notions of solving a
reachability game relevant for this paper:

1. Quantitatively: Given a game, compute ǫ-approximations of the entries of its value vector (we con-
sider approximations, rather than exact computations, as the value of a reachability game may be an
irrational number).

2. Strategically: Given a game, compute an ǫ-optimal strategy for Player I.

Once a game has been solved strategically, it is straightforward to also solve it quantitatively (for the same ǫ)
by analyzing, using linear programming, the finite state Markov decision process for Player II resulting when
freezing the computed strategy for Player I. The converse direction is far from obvious, and it was in fact
shown by Hansen, Koucký and Miltersen [12] that if standard binary representation of behavior probabilities
is used, merely exhibiting an (1/4)-optimal strategy requires worst case exponential space in the size of the
game. In contrast, a (1/4)-approximation to the value vector obviously only requires polynomial space to
describe and it may be possible to compute it in polynomial time, though it is currently not known how to
do so [6].

There is a large and growing literature on solving reachability games [1, 7, 4, 2, 3, 12]. In this paper,
we focus on the two perhaps best-known and best-studied algorithms, value iteration and strategy iteration.
Both were originally derived from similar algorithms for solving Markov decision processes [15] and discounted

stochastic games [19]. We describe these algorithms next. Value iteration is Algorithm 1. Value iteration
approximately solves reachability games quantitatively.
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Algorithm 1: Value Iteration

1 t := 0 ;
2 ṽ0 := (0, . . . , 0, 1) // the vector ṽ0 is indexed 0, 1, . . . , N,N + 1
3 while true do
4 t := t+ 1 ;
5 ṽt0 := 0 ;
6 ṽtN+1 := 1 ;
7 for i ∈ {1, 2, . . . , N} do
8 ṽti := val(Ai(ṽ

t−1)) ;

Algorithm 2: Strategy Iteration

1 t := 1 ;
2 x1 := the strategy for Player I playing uniformly at each position;
3 while true do
4 yt := an optimal best reply by Player II to xt ;
5 for i ∈ {0, 1, 2, . . . , N,N + 1} do
6 vti := µi(x

t, yt) ;

7 t := t+ 1;
8 for i ∈ {1, 2, . . . , N} do
9 if val(Ai(v

t−1)) > vt−1
i then

10 xt
i := maximin(Ai(v

t−1)) ;
11 else
12 xt

i := xt−1
i ;

In the pseudocode of Algorithm 1, the matrix Ai(ṽ
t−1) denotes the result of replacing each pointer to

a position j in the m × m matrix of pointers at position i with the real number ṽt−1
j . That is, Ai(ṽ

t−1)

is a matrix of m ×m real numbers. Also, val(Ai(ṽ
t−1)) denotes the value of the matrix game with matrix

Ai(ṽ
t−1) and the row player being the maximizer. This value may be found using linear programming.

Value iteration works by iteratively updating a valuation of the positions, i.e., the numbers ṽti . Clearly, when
implementing the algorithm, valuations ṽti only have to be kept for one iteration of the while loop after the
iteration in which they are computed and the algorithm thus only needs to store O(N) real numbers.2 As
stated, the algorithm is non-terminating, but has the property that as t approaches infinity, the valuations ṽti
approach the correct values vi from below. We present an easy (though not self-contained) proof of this well-
known fact in section 2.1 below, and also explain the intuition behind the truth of this statement. However,
until the present paper, there has been no published information on the number of iterations needed for the
approximation to be an ǫ-approximation to the correct value for the general case of concurrent reachability
games, though Condon [5] observed that for the case of turn-based games (or “simple stochastic games”),
the number of iterations has to be at least exponential in N in order to achieve an ǫ-approximation. Clearly,
the concurrent case is at least as bad. In fact, this paper will show that the concurrent case is in fact much
worse.

Strategy iteration is Algorithm 2. It approximately solves reachability games quantitatively as well as
strategically. In the pseudocode of Algorithm 2, the line “yt := an optimal best reply to xt” should be
interpreted as follows: When Player I’s strategy has been “frozen” to xt, the resulting game is a one-player
game for Player II, also known as an absorbing Markov decision process. For such a process, an optimal
stationary strategy yt that is pure is known to exist, and can be found in polynomial time using linear
programming [15]. The expression maximin(Ai(v

t−1)) denotes a maximin mixed strategy (an “optimal

2 In this paper, we assume the real number model of computation and ignore the (severe) technical issues arising when
implementing the algorithm using finite-precision arithmetic.
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strategy”) for the maximizing row player in the matrix game Ai(v
t−1). This optimal strategy may again be

found using linear programming. The strategy iteration algorithm was originally described for one-player

games by Howard [15], with Player I being the single player – in that case, in the pseudocode, the line “yt :=
an optimal best reply to xt” is simply omitted. Subsequently, a variant of the pseudocode of Algorithm 2
was shown by Hoffman and Karp [14] to be a correct approximation algorithm for the class of recurrent
undiscounted stochastic games and by Rao, Chandrasekaran and Nair [18] to be a correct algorithm for the
class of discounted stochastic games. Finally, Chatterjee, de Alfaro and Henzinger [2] showed the pseudocode
of Algorithm 2 to be a correct approximation algorithm for the class of reachability games. As is the case for
value iteration, the strategy iteration algorithm is non-terminating, but has the property that as t approaches
infinity, the valuations vti approach the correct values vi from below. Chatterjee et al. [2, Lemma 8] prove
this by relating the algorithm to the value iteration algorithm. In particular, they prove:

ṽti ≤ vti ≤ vi. (1)

That is, strategy iteration needs at most as many iterations of the while loop as value iteration to achieve a
particular degree of approximation to the correct values vi. Also, the strategies xt guarantee the valuations
vti for Player I, so whenever these valuations are ǫ-close to the values, the corresponding xt is an ǫ-optimal
strategy. However, until the present paper, there has been no published information on the number of
iterations needed for the approximation to be an ǫ-optimal solution, though a recent breakthrough result of
Friedman [9] proved that for the case of turn-based games, the number of iterations is at least exponential
in N in the worst case. Clearly, the concurrent case is at least as bad. In fact, this paper will show that the
concurrent case is much worse!

As our main result, we exhibit a family of reachability games with N positions and m actions for each
player in each position, such that all non-terminal positions have value one and such that value iteration as

well as strategy iteration need at least a doubly exponential 2m
Ω(N)

number of iterations to obtain valuations
larger than any fixed constant (say 0.01). By inequality (1), it is enough to consider the strategy iteration
algorithm to establish this. However, our proof is much easier and cleaner for the value iteration algorithm,
the exact bounds are somewhat better, and our much more technical proof for the strategy iteration case is
in fact based upon it. So, we shall present separate proofs for the two cases.

Our hard instances P (N,m) for both algorithms are generalizations of the “Purgatory” games defined by
Hansen, Miltersen and Koucký [12] (these occur as special cases by setting m = 2). Following the conventions
of that paper, we describe these games as being games between Dante (Player I) and Lucifer (Player II). The
game P (N,m) can be described succinctly as follows: Lucifer repeatedly selects and hides a number between

1 and m. Each time Lucifer hides such a number, Dante must try to guess which number it is. After the

guess, the hidden number is revealed. If Dante ever guesses a number which is strictly higher than the one

Lucifer is hiding, Dante loses the game. If Dante ever guesses correctly N times in a row, the game ends

with Dante being the winner. If neither of these two events ever happen and the play thus continues forever,

Dante loses. It is easy to see that P (N,m) can be described as a deterministic concurrent reachability
game with N non-terminal positions and m actions for each player in each position. Also, by applying a
polynomial-time algorithm by de Alfaro et al. [1] for determining which positions in a reachability game
have value 1, we find that all positions except TRAP have value 1 in P (N,m). That is, Dante can win this
game with arbitrarily high probability.

We note that these hard instances are very natural and easy to describe as games that one might even
conceivably have a bit of fun playing (the reader is invited to try playing P (3, 2) or P (1, 5) with an uninitiated
party)! In this respect, they are quite different from the recent extremely ingenious turn-based games due
to Friedman [9] where strategy iteration exhibits exponential behavior.

Using recent improved upper bounds on the patience of ǫ-optimal strategies for Everett’s recursive games,

we provide matching 2m
O(N)

upper bounds on the number of iterations sufficient for getting adequate approx-
imate values, by each of the algorithms. In particular, both algorithms are also of at most doubly-exponential
complexity.

That the doubly-exponential complexity is a real phenomenon is illustrated in Table 12 which tabulates
the valuations computed by strategy iteration for the initial position of P (7, 2), i.e., “Dante’s Purgatory”
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# Iterations 100 101 102 103 104 105 106 107 108

Valuation 0.013 0.035 0.069 0.102 0.134 0.165 0.194 0.223 0.248

Table 1: Running Strategy Iteration on P (7, 2).

[12], a 7-position game of value 1. The algorithm was implemented using double precision floating point
arithmetic and was allowed to run for one hundred million iterations at which point the arithmetic precision
was inadequate for representing the computed strategies (note that the main result of Hansen, Miltersen and
Koucký [12] implies that roughly 64 decimal digits of precision is needed to describe a strategy achieving a
valuation above 0.9).

Interestingly, when introduced as an algorithm for solving concurrent reachability games [2], strategy
iteration was proposed as a practical alternative to generic algorithms having an exponential worst case
complexity. More precisely, one obtains a generic algorithm for solving reachability games quantitatively by
reducing the problem to the decision problem for the existential fragment of the first order theory of the real
numbers [7]. This yields an exponential time (in fact a PSPACE) algorithm. Our results show that this
generic algorithm is in fact astronomically more practical than strategy iteration on very simple and natural
instances. Still, it is not practical in any real sense of this term, even given state-of-the-art implementations
of the best known decision procedures for the theory of the reals. Finding a practical algorithm remains a
very interesting open problem.

1.2 Overview of proof techniques

Our proof of the lower bound for the case of value iteration is very intuitive. It is based on combining the
following facts:

1. The valuations ṽti obtained in iteration t of value iteration is in fact the values of a time bounded version
of the reachability game, where Player I loses if he has not reached GOAL at time t.

2. While the value of the game P (N,m) is 1, the value of its time bounded version is very close to 0 for
all small values of t.

The second fact was established by Hansen et al. [12] for the case m = 2 by relating the so-called patience of
reachability games to the values of their time bounded version, without the connection to the value iteration
algorithm being made explicit, by giving bounds on the patience of the games P (N, 2). The present paper
provides a different and arguably simpler proof of the lower bound on the value of the time bounded game
that gives bounds also for other values of m than 2. It is based on exhibiting a fixed strategy for Lucifer
that prevents Dante from winning fast.

The lower bound for strategy iteration is much more technical. We remark that the analysis of value
iteration is used twice and in two different ways in the proof. It proceeds roughly as follows: The analysis
of value iteration yields that when value iteration is applied to P (1,m), exponentially many iterations (in
m) are needed to yield a close approximation of the value. We can also show that when strategy iteration is
applied to P (1,m), exactly the same sequence of valuations is computed as when value iteration is applied
to the same game. From these two facts, we can derive an upper bound on the patience of the strategies
computed by strategy iteration on P (1,m). Next, a quite involved argument shows that when applying
strategy iteration to P (N,m), the sequence of strategies computed for one of the positions (the initial one)
is exactly the same as the one computed when strategy iteration is applied to P (1,m). We also show that
the smallest behavior probability in the computed strategy for P (N,m) occurs in the initial position. In
particular, the patiences of the sequence of strategies computed for P (N,m) is the same as the patiences of
the sequence of strategies computed for P (1,m). Finally, our analysis of value iteration for P (N,m) and the
relationship between patience and value iteration allow us to conclude that a strategy with low patience for
P (N,m) cannot be near-optimal, yielding the desired doubly-exponential lower bound.
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2 Theorems and Proofs

2.1 The connection between patience, the value of time bounded games, and

the complexity of value iteration

The key to understanding value iteration is the following folklore lemma. Given a concurrent reachability
game G, we define GT to be the finite extensive form game with the same rules as G, except that Player 1
loses if he has not reached GOAL after T moves of the pebble. The positions of GT are denoted by (i, t),
where i is a position of G and t is an integer denoting the number of time steps left until Dante’s time is
out.

Lemma 1 The valuation ṽti computed by the value iteration algorithm when applied to a game G is the exact

value of position (i, t) in the game Gt.

The proof is an easy induction in t (“Backward induction”). A very general result by Mertens and Neyman
[16] establishes that for a much more general class of games (undiscounted stochastic games), the value of
the time bounded version converges to the value of the infinite version as the time bound approaches infinity.
Combining this with Lemma 1 immediately yields the correctness of the value iteration algorithm.

The patience [8] of a stationary strategy for a concurrent reachability game is 1/p, where p is the smallest
non-zero behavior probability employed by the strategy in any position. The following lemma relates the
patience of near-optimal strategies of a reachability game to the difference between the values of the time
bounded and the infinite game and hence to the convergence rate of value iteration.

Lemma 2 Let G be a reachability game with N non-terminal positions and with an ǫ-optimal strategy of

patience at most l, for some l ≥ 1, ǫ > 0. Let T = kNlN for some k ≥ 1, and u be any position of G. Then,

the value of position (u, T ) of GT differs from the value of the position u of G by at most ǫ+ e−k.

Proof We want to show that the value of (u, T ) in GT is at least vu − ǫ − e−k, where vu is the value of
position u in G. We can assume that vu > ǫ, because otherwise we are done. Fix an ǫ-optimal stationary
strategy x for Dante in G of patience at most l. Consider this as a strategy of GT and consider play starting
in u. We shall show that x guarantees Dante to win GT with probability at least vu − ǫ− e−k, thus proving
the statement. Consider a best reply y by Lucifer to x in GT . Note that y does not necessarily correspond
to a stationary strategy in G. The strategy can still be played by Lucifer in G, by playing by it for the first
T time steps and playing arbitrarily afterwards.

Call a position v of G alive if there are paths from v to GOAL in all directed graphs obtained from G
in the following way: The nodes of the graphs are the positions of G. We then select for each position an
arbitrary column for the corresponding matrix, and let the edges going out from this node correspond to
the pointers of the chosen column and rows where Dante assigns positive probability. That is, intuitively,
a position v is alive, if and only if there is no absolutely sure way for Lucifer for preventing Dante from
reaching GOAL when play starts in v. Positions that are not alive are called dead. Note that if a position v
is dead, the strategy y, being a best reply of Lucifer, will pick actions so that the probability of play reaching
GOAL, conditioned on play having reached v, is 0. On the other hand, if the current position v is alive,
the conditional probability that play reaches GOAL within the next N steps is at least (1/l)N . That is,
looking at the entire play, the probability that play has not reached either GOAL or a dead state after T

steps is at most (1 − l−N)T/N = (1 − l−N)kl
N

≤ e−k. Suppose now that GOAL is reached in T steps with
probability strictly less than vu − ǫ− e−k when play starts in u. This means that a dead position is reached
with probability strictly greater than 1 − (vu − ǫ − e−k) − e−k, i.e., strictly greater than 1 − (vu − ǫ). But
this means that if Lucifer plays y as a reply to x in the infinite game G he will in fact succeed in getting
the pebble to reach a dead position and hence prevent Dante from ever reaching GOAL, with probability
strictly greater than 1− (vu− ǫ). This contradicts x being ǫ-optimal for Dante in G. Thus, we conclude that
GOAL is in fact reached in T steps with probability at least vu − ǫ− e−k when play starts in u with x and
y being played against each other in GT , as desired. �

The connection between the convergence of value iteration and the time bounded version of the game allows
us to reformulate the lemma in the following very useful way.
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Lemma 3 Let G be a reachability game with an ǫ-optimal strategy of patience at most l, for some ǫ > 0.
Then, T = kNlN rounds of value iteration is sufficient to approximate the values of all positions of the game

with additive error at most ǫ+ e−k.

We can use this lemma to prove our upper bound on the number of iterations of value iteration (and hence
also strategy iteration). The following lemma is from Hansen et al. [11].

Lemma 4 (Hansen, Koucký, Lauritzen, Miltersen and Tsigaridas) Let ǫ > 0 be arbitrary. Any

concurrent reachability game with N positions and at most m ≥ 2 actions in each position has an ǫ-optimal

stationary strategy of patience at most (1/ǫ)m
O(N)

.

This lemma is an asymptotic improvement of Theorem 4 of Hansen et al. [12], that gave an upper bound of

(1/ǫ)2
30M

, for a total number of M actions, when M ≥ 10 and 0 < ǫ < 1
2 . This result does however have the

advantage of an explicit constant in the exponent, which the bound of Lemma 4 lacks.
Combining Lemma 3, Lemma 4, and also applying inequality (1), we get the following upper bound:

Theorem 5 Let ǫ > 0 be arbitrary. When applying value iteration or strategy iteration to a concurrent

reachability game with N non-terminal positions and m ≥ 2 choices for each player in each position, after

at most (1/ǫ)m
O(N)

iterations, an ǫ-approximation to the value has been obtained.

Also, Lemma 3 will be very useful for us below when applied in the contrapositive. Specifically, below, we
will directly analyze and compare the value of P (N,m) with the value of its time bounded version, and use
this to conclude that the value iteration algorithm does not converge quickly when applied to this game.
The lemma then implies that the patience of any ǫ-optimal strategy is large. When we later consider the
strategy iteration algorithm applied to the same game, we will show that the strategy computed after any
sub-astronomical number of iterations has too low patience to be ǫ-optimal.

2.2 The value of time bounded Generalized Purgatory and the complexity of

value iteration

In this section we give an upper bound on the value of a time bounded version of the Generalized Purgatory
game P (N,m). As explained in Section 2.1, this upper bound immediately implies a lower bound on the
number of iterations needed by value iteration to approximate the value of the original game.

We let PT (N,m) be the time bounded version of P (N,m) as defined in Section 2.1, i.e. PT (N,m) is
syntactic sugar for (P (N,m))T . Also, we need to fix an indexing of the positions of P (N,m). We define
position i for i = 1, . . . , N to be the position where Dante already guessed correctly i− 1 times in a row and
still needs to guess correctly N − i+ 1 times in a row to win the game.

First we give a rather precise analysis of the one-position case. Besides being interesting in its own right
(to establish that value iteration is exponential even for this case), this will also be useful later when we
analyze strategy iteration.

Theorem 6 Let m ≥ 2 and T ≥ 1. The value of position (1, T ) of PT (1,m) is less than

1− (1−
1

m
)(

1

mT
)1/(m−1).

Proof Let ǫ = (1/mT )1/(m−1). Consider any strategy (not necessarily stationary) for Dante for playing
PT (1,m). In each round of play, Dante chooses his action with a probability distribution that may depend
on previous play and time left. We define a reply by Lucifer in a round-to-round fashion.

Fix a history of play leading to some current round and let p1, p2, . . . , pm be the probabilities by which
Dante plays 1, 2, . . . ,m in this current round. There are two cases.

1. There is an i so that pi < (1−ǫ
ǫ )

∑

j≥i+1 pj . We call such a round a green round. In this case, Lucifer
plays i.

7



2. For all i, pi ≥ (1−ǫ
ǫ )

∑

j≥i+1 pj . We call such a round a red round. In this case, Lucifer plays m.

This completes the definition of Lucifer’s reply.
We now analyze the probability that Dante wins PT (1,m) when he plays his strategy and Lucifer plays

this reply. We show this probability to be at most

1− (1−
1

m
)(

1

mT
)1/(m−1)

and we shall be done.
Let us consider a green round. We claim that the probability that Dante wins in this round, conditioned

on the previous history of play, and conditioned on play ending in this round, is at most 1− ǫ. Indeed, this
conditional probability is given by

pi
pi + (pi+1 + · · ·+ pm)

<
(1−ǫ

ǫ )(
∑

j≥i+1 pj)

(1−ǫ
ǫ )(

∑

j≥i+1 pj) + (
∑

j≥i+1 pj)

=
(1− ǫ)/ǫ

(1− ǫ)/ǫ+ ǫ/ǫ

= 1− ǫ.

Let us next consider a red round. We claim that the probability of play ending in this round, conditioned
on the previous history of play, is at most ǫm−1. Indeed, note that this conditional probability is exactly pm,
and that

1 =

m
∑

j=1

pj = p1 +

m
∑

j=2

pj ≥ (1 +
1− ǫ

ǫ
)(

m
∑

j=2

pj) = (1 +
1− ǫ

ǫ
)(p2 +

m
∑

j=3

pj)

≥ (1 +
1− ǫ

ǫ
)2(

m
∑

j=3

pj) ≥ · · · ≥ (1 +
1− ǫ

ǫ
)m−1pm = (

1

ǫ
)m−1pm

from which pm ≤ ǫm−1. That is, in every round of play, conditioned on previous play, either it is the
case that the probability that play ends in this round is at most ǫm−1 (for the case of a red round) or it is
the case that conditioned on play ending, the probability of win for Dante is at most 1− ǫ (for the case of a
green round).

Now let us estimate the probability of a win for Dante in the entire game PT (1,m). Let W denote the
event that Dante wins. Let G be the event that play ends in a green round. Also, let R be the event that
play ends in a red round. Then, we have

Pr[W ] = Pr[W |R] Pr[R] + Pr[W |G] Pr[G]

≤ Pr[R] + Pr[W |G] Pr[G]

= Pr[R] + Pr[W |G](1 − Pr[R])

= Pr[R] + Pr[W |G]− Pr[R] Pr[W |G]

< (ǫm−1)T + (1− ǫ)− (ǫm−1)T (1− ǫ)

= 1− ǫ+ T ǫm

= 1− (
1

mT
)1/(m−1) + T (

1

mT
)

m
m−1

= 1− (1−
1

m
)(

1

mT
)1/(m−1).

�

Combining Lemma 1 with Theorem 6 we get the result that value iteration needs exponential time, even
for one-position games.

8



Corollary 7 Let 0 < ǫ < 1. Applying less than 1
em (1/ǫ)m−1 iterations of the value iteration algorithm to

P (1,m) yields a valuation at least ǫ smaller than the exact value.

Next, we analyze the N -position case, where we give a somewhat coarser bound.

Theorem 8 Let N,m, k, T be integers with N ≥ 2,m ≥ 2, 1 ≤ k ≤ N − 2 and T ≤ 2m
N−k

. Then, the value

of PT (N,m) is at most 2m−k + 2−mN−k−1

.

Proof We show an upper bound on the value of PT (N,m) of 2m−k + 2−mN−k−1

by exhibiting a particular
strategy of Lucifer and showing that any response by Dante to this particular strategy of Lucifer will make

Dante win with probability at most 2m−k + 2−mN−k−1

.
To structure the proof, we divide the play into epochs. An epoch begins and another ends immediately

after each time Dante has guessed incorrectly by undershooting, so that he now finds himself in exactly the
same situation as when the play begins (but in general with less time left to win). That is, Dante wins if and
only if there is an epoch of length N containing only correct guesses. For convenience, we make the game a
little more attractive for Dante by continuing play for T epochs, rather than T rounds. Call this prolonged
game G′

T . Clearly, the value of GT is at most the value of G′
T , so it is okay to prove the upper bound for

the latter. We index the epochs 1, 2, . . . , T .
To define the strategy of Lucifer, we first define a function f : N×N → N as follows:

f(i, j) = 1 + (j − 1)

i−1
∑

r=0

mr.

Then, it is easy to see that f satisfies the following two equations.

f(i,m) = mi (2)

f(i, j + 1) = f(i, j) +

i−1
∑

r=0

f(r,m) (3)

The specific strategy of Lucifer is this: Let d be the number of rounds already played in the current
epoch. If d ≥ N − k, Lucifer chooses a number between 1 and m uniformly at random. If d < N − k, he
hides the numbers j = 1, . . . ,m − 1 with probabilities pj(d) = 2−f(N−k−d,m+1−j) and puts all remaining
probability mass on the number m (since N − k − d ≥ 1 and m ≥ 2, there is indeed some probability mass
left for m).

Freeze the strategy of Lucifer to this strategy. From the point of view of Dante, the game GT is now
a finite horizon absorbing Markov decision process. Thus, he has an optimal policy that is deterministic
and history independent. That is, the choices of Dante according to this policy depend only on the number
of rounds already played in the present epoch and the remaining number of epochs before the limit of T
epochs has been played, or, equivalently, on the index of the current epoch. We can assume without loss of
generality that Dante plays such an optimal policy. That is, his optimal policy for epoch t can be described
by a specific sequence of actions at0, at1, at2, . . . , at(N−1) in {1, . . . ,m} to make in the next N rounds (with
the caveat that this sequence of choices will be aborted if the epoch ends).

Se define the following mutually exclusive events Wt, Lt:

• Wt: Dante wins the game in epoch t (by guessing correctly N times).

• Lt: Dante loses the game in epoch t (by overshooting Lucifer’s number)

We make the following claim:

Claim: For each t, either Pr[Wt] ≤ 2−mN−k−mN−k−1

or Pr[Wt]/Pr[Lt] ≤ 2m−k.
First, let us see that the claim implies the lemma. Indeed, the probability of Dante winning can be split

into the contributions from those epochs where Dante wins with probability at most 2−mN−k−mN−k−1

and

the remaining epochs. The total winning probability mass from the first is at most T 2−mN−k−mN−k−1

≤

9



2−mN−k−1

and the total winning probability mass of the rest is at most 2m−k, giving an upper bound for

Dante’s winning probability of 2m−k + 2−mN−k−1

.
So let us prove the claim. Fix an epoch t and let at0, at1, at3, . . . , at(N−1) be Dante’s sequence of actions.

Suppose at0 = 1 and at1 = 1. Then, since Lucifer only plays 1 in the first two rounds with probabil-
ity p1(0)p1(1) = 2−f(N−k,m) · 2−f(N−k−1,m), Dante only wins the game in this epoch with at most that

probability, which by equation (2) is equal to 2−mN−k−mN−k−1

, as desired.
Now assume at0 > 1 or at1 > 1. We want to show that Pr[Wt]/Pr[Lt] ≤ 2m−k. Let d be the largest

index so that d < N − k and so that atd > 1. Since at0 > 1 or at1 > 1, such a d exists. Let E be
the event that epoch t lasts for at least d rounds. We will show that Pr[Wt|E]/Pr[Lt|E] ≤ 2m−k. Since
Wt ⊆ E, this also implies that Pr[Wt]/Pr[Lt] ≤ 2m−k. Since we condition on E we look at Dante’s
decision after d rounds of epoch t. He chooses the action j = atd > 1. If Lucifer at this point chooses a
number small than j, Dante loses. In particular, since Lucifer chooses the number j − 1 with probability
2−f(N−k−d,m+1−(j−1), Dante loses the entire game by his action atd with probability at least 2−f(N−k−d,m−j),
conditioned on E. On the other hand the probability that he wins the game in this epoch conditioned on
E is at most (2−f(N−k−d,m+1−j))(

∏N−k−1
i=d+1 2−f(N−k−i,m))(m−k)), the first factor being the probability that

Lucifer chooses j at round d, the second factor being the probability that Lucifer like Dante repeatedly
chooses 1 until the last k rounds of the epoch begin, and the third factor being the probability that Lucifer
matches Dante’s choices in those k rounds. Now we have

Pr[Wt]/Pr[Lt] ≤

Pr[Wt|E]/Pr[Lt|E] ≤

(2−f(N−k−d,m+1−j))(

N−k−1
∏

i=d+1

2−f(N−k−i,m))(m−k))2f(N−k−d,m−j) ≤

m−k2f(N−k−d,m−j)−f(N−k−d,m+1−j)−
∑N−k−d−1

r=1 f(r,m) =

2m−k2f(N−k−d,m−j)−f(N−k−d,m+1−j)−
∑N−k−d−1

r=0 f(r,m) =

2m−k

as desired. �

Combining Lemma 1 with Theorem 8 we get the result that value iteration needs doubly exponential time
to obtain any non-trivial approximation:

Corollary 9 Let N be even. Applying less than 2m
N/2

iterations of the value iteration algorithm to P (N,m)
yields a valuation of the initial position of at most 3m−N/2, even though the actual value of the game is 1.

We also get the following bound on the patience of near-optimal strategies of P (N,m) that will be useful
when analyzing strategy iteration.

Theorem 10 Suppose N is sufficiently large and m ≥ 2. Let ǫ = 1− 4m−N/2. Then all ǫ-optimal strategies

of P (N,m) have patience at least 2m
N/3

.

Proof Putting c = N lnm
2 , Lemma 2 tells us that if P (N,m) has an ǫ-optimal strategy of patience less than

l = 2m
N/3

, then the value of Pt(N,m) is at least 1 − ǫ − e−c = 3m−N/2, where t = cNlN ≤ 2m
N/2

. But

putting k = N/2, Theorem 8 tells us that the value of Pt(N,m) is at most 2m−N/2 + 2−mN/2−1

< 3m−N/2,
a contradiction. �

2.3 Strategy Iteration

The technical content of this section is a number of lemmas on what happens when the strategy iteration
algorithm is applied to P (N,m), leading up to the following crucial lemma:
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Lemma 11 When applying strategy iteration to P (N,m), the patience of the strategy xt computed in itera-

tion t is at most e ·m · t.

Before we prove Lemma 11, we show that it implies the lower bound we are looking for.

Theorem 12 Suppose N is sufficiently large. Applying less than 2m
N/4

iterations of strategy iteration to

P (N,m) yields a valuation of the initial position of less than 4m−N/2, despite the fact that the value of the

position is 1.

Proof Lemma 11 implies that the patience of the strategy xt computed in iteration t for t = 2m
N/4

is at

most em2m
N/4

. Theorem 10 states that if ǫ = 1 − 4m−N/2, then all ǫ-optimal strategies of P (N,m) have

patience at least 2m
N/3

. So xt is not ǫ-optimal and the bound follows. �

To prove Lemma 11 we need to understand strategy iteration on P (m,N) and shall through a number
of lemmas establish:

• For the one-position case P (1,m), value iteration and strategy iteration are “in synch”, i.e., ṽti = vti
for all i and t.

• When applying strategy iteration to P (N,m), the strategy computed for position 1 after t iterations
is the same as that computed by strategy iteration applied to P (1,m) after t iterations.

• When applying strategy iteration to P (N,m), the smallest behavior probability computed occurs at
position 1 and the patience of the strategy computed can therefore be determined by looking at that
position.

In all lemmas below, unless otherwise mentioned, we consider applying the strategy iteration algorithm
to P (N,m) and the quantities vt, xt, etc., are those computed by this algorithm.

Lemma 13 ∀t, i ∈ 1, 2, . . . , N + 1 : vti > 0

Proof For t = 1, we have that x1 is the uniform distribution at each position. We then see that v1n = 1
m > 0,

since no matter which number Lucifer chooses, Dante selects the right one with probability 1
m . We also see

that Dante has a probability of winning i times in a row of 1
mi > 0. We therefore have that v1N−i+1 ≥ 1

mi > 0.
We know that vt+1 ≥ vt (see, e.g., Chatterjee et al. [2]), so ∀t, i : 0 < v0i ≤ vti . �

Lemma 14 ∀t, i ∈ {1, . . . , N}, j ∈ {1, . . . ,m} : 0 < xt
i,j < 1

Proof Since ∀i, t :
∑m

j=1 x
t
i,j = 1 we only need to show that xt

i,j > 0. We will do the proof by contradiction.

Assume that ∃t, i, j : xt
i,j = 0. If Lucifer replies to xt by choosing j in position i, play reaches GOAL with

probability 0. Therefore vti = 0 which we showed was not the case in Lemma 13. �

Lemma 15 ∀t, i : vti < 1

Proof Since ∀t, i, j : xt
i,j > 0, by Lemma 14, we have that all strategies for Lucifer in position i, y, except

for Lucifer always choosing m, will make Dante lose with positive probability. In particular, the best reply
by Lucifer to xt must have that property. �

Lemma 16 ∀t, i, n : vti > vti−1

Proof Recall that vti is the winning probability of Dante if play starts in position i when he plays using
xt and Lucifer plays a best reply. By construction of P (N,m) we have that any winning play starting in
position i− 1 must subsequently visit position i. Therefore, vti ≥ vti−1. By Lemma 14 we have that, Lucifer
can play 1 in position i− 1 and hence prevent, with positive probability, Dante from proceeding to position i

11



from position i−1. Dante therefore might lose the game in position i−1 with positive probability. Therefore,
vti > vti−1. �

To proceed, we need to consider the matrix games that arises when strategy iteration is executed on
P (N,m). Fortunately, these are all of a special form that can be easily analyzed.

For a real number z with 0 ≤ z < 1, let B(z) be the m×m matrix of real numbers with 1 in the diagonal,
0 in all entries below the diagonal, and z in all entries above the diagonal. Also, considering B(z) as a matrix
game with the row player being the maximizer, let pz be an optimal strategy for the row player and qz be an
optimal strategy for the column player. Finally, we let vz be the value of the matrix game. Straightforward
calculations, which we will omit, yield the following facts about the matrix game B(z).

Lemma 17 For all values 0 ≤ z < 1, the matrix game B(z) has the following properties.

• The row player has a uniquely determined optimal strategy pz. This strategy is fully mixed.

• val(B(z)) = pz1 = 1
∑m−1

i=0 (1−z)i
,

• For all i > 1, we have that pzi = pz1(1− z)i−1.

Lemma 18 If 0 < y < z < 1, the optimal strategies py, pz satisfy: py1 < pz1 and pym > pzm.

The connection between strategy iteration and the matrix game B(z) is given by:

Lemma 19 For all t, i, let z =

{

0 for t = 1
vt−1
1

vt−1
i+1

for t > 1
. Under the assumption that ∀i, t′ ≤ t : val

(

Ai

(

vt
′

))

>

vt
′

i , the strategy xt
i computed by strategy iteration on P (N,m) is pz.

Proof For t = 1, we see that the optimal strategy for both players in the matrix game B(z) which is in this
case the matrix defined by the identity matrix is to play uniformly in B(0) which is the same strategy as x0

i

and y0i .
For t > 1, we see that, if we update xt

i, which we do by assumption, xt
i is the optimal solution for the row

player in the matrix game given by the m×m with vt−1
i+1 in the diagonal, 0 in all entries below the diagonal

and vt−1
1 in all entries above the diagonal. We can divide each entry in this matrix by vt−1

i+1 , per Lemma 13.

This yields the matrix B

(

vt−1
1

vt−1
i+1

)

. The new matrix will have the same optimal strategies for the row player.

By Lemma 13 and 16 we have that 0 <
vt−1
1

vt−1
i+1

< 1. Therefore, xt
i is exactly pz. �

Lemma 20 When applying strategy iteration to P (N,m), if Lucifer’s best reply yt is equal to the strategy

that chooses 1 in all positions, then

vt1
vti+1

=

i
∏

j=1

xt−1
j,1

Proof vtk =
∏N

j=k x
t−1
j,1 from which the statement follows. �

Lemma 21 If Lucifer’s best reply ys is equal to the strategy that plays 1 in all positions for all s ≤ t, then
∀i, t′ ≤ t : val(Ai(v

t′)) > vt
′

i .

Proof We will show the statement using induction in t′.

We see that val(Ai(v
t′)) = vt

′

i+1 · val(Ai(
vt′

vt′
i+1

)) = vt
′

i+1 · val(B(
vt′

1

vt′
i+1

)).

We can also see that vt
′

i = vt
′

i+1 · x
t′

i,1, since we know that Lucifer played 1 at time t′ (so Dante loses if he
plays p > 1 and must win from position i+ 1 otherwise).
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So we just need to show that xt′

i,1 < val(B(
vt′

1

vt′
i+1

)).

For t′ = 1:
We can see that x1

i,1 = val(B(0)).

By Lemma 17, we have that xt′

i,1 = val(B(0)) < val(B(
v1
1

v1
i+1

)) and the result follows.

For t′ > 1:
Since Lucifer played 1 at time t′ − 1, we can use Lemma 17 and Lemma 19 and get that, for all j,

xt′

j,1 = val(B(
vt′−1
1

vt′−1
j+1

)), especially for i = j. By Lemma 18, we just need to show that
vt′

1

vt′
i+1

>
vt′−1
1

vt′−1
i+1

.

We can use Lemma 20 and we get that
vt′

1

vt′
i+1

=
∏i

j=1 x
t′

j,1 and that
vt′−1
1

vt′−1
i+1

=
∏i

j=1 x
t′−1
j,1 . We will show that

xt′

j,1 > xt′−1
j,1 and the result follows, since xt′−1

j,1 > 0, by Lemma 14. But since xt′

j,1 = val(B(
vt′−1
1

vt′−1
j+1

)), this is the

induction hypothesis. �

Lemma 22 For all t, i, let z =

{

0 for t = 1
vt−1
1

vt−1
i+1

for t > 1
. Then, the strategy xt

i computed by strategy iteration

on P (N,m) is pz, under the assumption that Lucifer chooses 1 for ∀t′ < t and all positions.

Proof The result follows from Lemma 19 and Lemma 21. �

Lemma 23 ∀t, i, j : xt
i,j = xt

i,1(1 −
vt−1
1

vt−1
i+1

)j−1, under the assumption that Lucifer chooses 1 for ∀t′ < t and

all positions.

Proof This follows from Lemma 17 and Lemma 22. �

Lemma 24 ∀t, i > 1 : xt
i−1,m < xt

i,m, under the assumption that Lucifer chooses 1 for ∀t′ < t and all

positions.

Proof The result follows from Lemma 22 and Lemma 17, since we have that

vt−1
i+1 > vt−1

i ⇒
vt−1
1

vt−1
i+1

<
vt−1
1

vt−1
i

from Lemma 13 and 16. �

Lemma 25 When applying strategy iteration to P (N,m), if Lucifers best replies y1, . . . , yt are all equal to

the strategy that chooses 1 in all positions, then ∀t′ ≤ t, i : xt′

i,1 < xt′+1
i,1

Proof The proof will be by induction in t′.
For t′ = 1 : From Lemma 22, we have that x1

i is the optimal strategy of the row player of the matrix

game B(0). Since 0 <
v0
1

v0
i+1

< 1, by Lemma 13, the result follows from Lemma 18.

For t′ > 1, we have the induction hypothesis: ∀i : xt′−1
i,1 < xt′

i,1. By Lemma 22 we have that xt′

i is an

optimal strategy for the row player in B

(

vt′−1
1

vt′−1
i+1

)

and xt′+1
i is an optimal strategy for the row player in

B

(

vt′

1

vt′
i+1

)

. By Lemma 20, we have
vt′−1
1

vt′−1
i+1

=
∏i

j=1 x
t′−1
j,1 and

vt′

1

vt′
i+1

=
∏i

j=1 x
t′

j,1 From the induction hypothesis

and Lemma 14 we have that
∏i

j=1 x
t′−1
j,1 <

∏i
j=1 x

t′

j,1.

So, xt′

i is the optimal strategy for the row player in B
(

∏i
j=1 x

t′−1
j,1

)

and xt′+1
i is the optimal strategy for

the row player in B
(

∏i
j=1 x

t′

j,1

)

and the lemma follows from Lemma 18. �
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Lemma 26 Consider a stationary strategy x for Dante in P (N,m) that is fully mixed, i.e., assigns positive
probability to all actions. We may consider x to be a strategy also for P (k,m) for some k < N by identifying

each position i ∈ {1, .., k} in P (k,m) with position i in P (N,m). Suppose a pure strategy y of Lucifer is a

best reply to x in P (N,m). Then, its restriction to positions 1, . . . , k is also a best reply to x in P (k,m).

Proof
We divide the non-terminal positions of P (N,m) into two sets of positions, S = {1, 2, . . . , k} and T =

{k+1, . . . , N}. We note that the only position the pebble can move to in T directly from S is k+1. Similarly
we note that the only position the pebble can move to in S directly from T is 1.

For a specific fully mixed x and a reply y for P (N,m), an absorbing Markov process on the set of positions
is induced. Let QS,T be the probability that the pebble eventually arrives at position k + 1, if the process
is started in position 1. Let QT,S be the probability that the pebble eventually arrives at 1, if the process is
started in k + 1. Let QS,TRAP be the probability that the pebble goes to TRAP, without first visiting T , if
the process is started in position 1. Similarly, define QT,GOAL to be the probability that the pebble arrives at
GOAL without first visiting 1 if the process is started in position k + 1, and QT,TRAP to be the probability
that the pebble arrives at TRAP without first visiting 1 if the process is started in position k + 1. Observe
that QS,∗ and QT,∗ are probability distributions, since the probability for a play of infinite length within S
and T is 0, because x is assumed to be fully mixed.

For u ∈ {1, . . . , k} let Qu,T be the probability that the pebble reaches T when started in u when x and y
are played. Note that best replies y to x in the restricted game P (k,m) are characterized by being those y
minimizing all probabilities Qu,T simultaneously for all u ∈ {1, . . . , k}, among all possible y, since reaching
GOAL in P (k,m) amounts to reaching T in P (N,m). But note that in the original P (N,m) game, the
probability of Dante reaching GOAL, when play starts in some u ∈ {1, . . . , k} is given by

Qu,TQT,GOAL

∞
∑

j=0

(QT,SQS,T )
j =

Qu,TQT,GOAL

1−QT,SQS,T
. (4)

Since QS,T = Q1,T , we have that if the behavior of y in positions k + 1, . . . ,m is fixed (and hence also QT,∗

is fixed), the behavior of y in positions 1, . . . , k that simultaneously minimizes (4) for all u is exactly the
same behavior that simultaneously minimizes Qu,T . This concludes the proof. �

Lemma 27 When applying strategy iteration to P (N,m), we have that for all t ≥ 1, the best reply yt

computed is the one where Lucifer chooses 1 in all positions.

Proof For t = 1, we see that for all strategies Lucifer can select Dante guess correctly with probability 1
m as

x1 is the uniform choice in each position. If Lucifer plays 1, Dante will lose the entire game immediately with
probability m−1

m at each position and advance one step with probability 1
m . Any other choice of Lucifer will

preserve the advancement probability but decrease the probability that Dante loses the game immediately
(replacing the probability mass with a probability of going to the initial position). We conclude that choosing
1 is Lucifer’s best reply.

So we only need to look at t > 1. We will do the proof using contradiction.
Let t be the lowest value, such that there exists N,m so that when applying strategy iteration to P (N,m),

the reply yt does not choose 1 in every position. Also, let N be the lowest such N and let i be the smallest
i so that yt does not pick 1 in position i.

That is, for any position k < i, yt chooses action 1 in position k, so to determine the best reply yt, we just
need to determine its action in position i. By Lemma 26, if we restrict xt to positions 1, . . . , i and consider
the game P (i,m), the reply yt, restricted to P (i,m), is also a best reply to xt in this game. We shall in fact
prove that in this game, Lucifer’s reply is not best, unless it chooses 1, also in position i. This will yield the
desired contradiction. We shall look at each of Lucifer’s possible actions in position i.

If Lucifer chooses 1, and play starts in position i, Dante wins P (i,m) if he chooses 1. This Dante has a
probability of xt

i,1 of doing.
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On the other hand, if Lucifer chooses p > 1, at position i, Dante will go back to state 1 if he chooses
1, . . . , p− 1 and win immediately if he chooses p.

So each time Dante chooses 1, . . . , p− 1, which he does with probability
∑p−1

j=1 x
t
i,j he has to get back to

position i from position 1. Since Lucifer uses strategy yt, Dante needs to chooses 1 in all positions from 1
to i− 1, which he has a probability of

∑p−1
j=1 x

t
i,j of doing. Each time he is at position i′ he has a probability

of xt
i,p to win.
His probability for winning is therefore

xt
i,p

∞
∑

l=0









p−1
∑

j=1

xt
i,j









i−1
∏

j=1

xt
j,1









l

=
xt
i,p

1−
(

∑p−1
j=1 x

t
i,j

)(

∏i−1
j=1 x

t
j,1

) (5)

which, by Lemma 23 is equal to

xt
i,1

(

1−
vt−1
1

vt−1
i+1

)p−1

1−
(

∑p−1
j=1 x

t
i,j

)(

∏i−1
j=1 x

t
j,1

)

which, by Lemma 20 is equal to

xt
i,1

(

1−
∏i

j=1 x
t−1
j,1

)p−1

1−
(

∑p−1
j=1 x

t
i,j

)(

∏i−1
j=1 x

t
j,1

) .

We will show using induction in p > 1, that Lucifer is better off if he always chooses 1, than if he always
chooses p. That is:

∀p > 1 : xt
i,1 <

xt
i,1

(

1−
∏i

j=1 x
t−1
j,1

)p−1

1−
(

∑p−1
j=1 x

t
i,j

)(

∏i−1
j=1 x

t
j,1

) . (6)

For p = 2, we may argue as follows. By Lemma 25 we have that
∏i

j=1 x
t−1
j,1 <

∏i
j=1 x

t
j,1. Since xt

i,1 > 0,
this implies

xt
i,1 <

xt
i,1

(

1−
∏i

j=1 x
t−1
j,1

)

1−
∏i

j=1 x
t
j,1

(7)

which is the statement we wanted to prove.
For p > 2, we argue as follows. The right hand side of (6) is

xt
i,1

(

1−
∏i

j=1 x
t−1
j,1

)p−1

1−
(

∑p−1
j=1 x

t
i,j

)(

∏i−1
j=1 x

t
j,1

) .
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Applying Lemma 23, this may be rewritten as

xt
i,1

(

1−
∏i

j=1 x
t−1
j,1

)p−1

1−

(

∑p−1
j=1

(

xt
i,1

(

1−
∏i

j=1 x
t−1
j,1

)j−1
))

(

∏i−1
j=1 x

t
j,1

)

=
xt
i,1

(

1−
∏i

j=1 x
t−1
j,1

)p−1

1−

(

∑p−1
j=1

(

1−
∏i

j=1 x
t−1
j,1

)j−1
)

(

∏i
j=1 x

t
j,1

)

=
xt
i,1

(

1−
∏i

j=1 x
t−1
j,1

)p−1

1−

(

∑p−2
j=1

(

1−
∏i

j=1 x
t−1
j,1

)j−1
)

(

∏i
j=1 x

t
j,1

)

−
(

1−
∏i

j=1 x
t−1
j,1

)p−2 (
∏i

j=1 x
t
j,1

)

=
xt
i,1

(

1−
∏i

j=1 x
t−1
j,1

)

1−
(

∑p−2
j=1 (1−

∏i
j=1 xt−1

j,1 )
j−1

)

(
∏i

j=1 xt
j,1)

(1−
∏i

j=1 xt−1
j,1 )p−2 −

∏i
j=1 x

t
j,1

(8)

To bound (8), we use the induction hypothesis:

xt
i,1 <

xt
i,1

(

1−
∏i

j=1 x
t−1
j,1

)p−2

1−
(

∑p−2
j=1 x

t
i,j

)(

∏i−1
j=1 x

t
j,1

)

We note that the induction hypothesis implies

1 >
1−

(

∑p−2
j=1 x

t
i,j

)(

∏i−1
j=1 x

t
j,1

)

(

1−
∏i

j=1 x
t−1
j,1

)p−2

and conclude that the expression (8) is at least:

xt
i,1

(

1−
∏i

j=1 x
t−1
j,1

)

1−
∏i

j=1 x
t
j,1

which, by equation (7) is strictly greater than xt
i,1, as desired. �

Lemma 28 Let xt be the behavior strategies computed when applying strategy iteration to P (N,m). Let x̂t

be the behavior strategies computed when applying strategy iteration to P (1,m). Then, for all t, xt
1 = x̂t

1.

Proof We show this by induction in t. For t = 1, both x1
1 = 1

m and x̂t
1 = 1

m . For t > 1, Lemma 27 states

that yt chooses 1 in every position. By Lemma 22, we have that xt
1 = pz, where z =

vt−1
1

vt−1
2

= xt−1
1 , where the

last equation is by Lemma 20.
On the other hand, applying strategy iteration to P (1,m), yielding strategies x̂t

1, we similarly get x̂t
1 = pz,

where z = x̂t−1
1 . Since xt−1

1 = x̂t−1
1 by induction, we are done. �

Lemma 29 Applying strategy iteration to P (1,m) yields valuations vt = ṽt, i.e. strategy iteration computes

the same valuations as value iteration.
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Proof We show this by induction in t. By Lemma 27, yt−1 is the strategy that chooses 1. Thus, Dante
wins if and only if he chooses 1 in the first round and we have vt−1

1 = xt−1
1,1 . On the other hand, by Lemma

22, we have that xt
1,1 = pz where z = xt−1

1,1 . Thus, vt = pz where z = vt−1
1 . Inspecting the value iteration

algorithm we find that we also have that ṽt = pz where z = ṽt−1
1 , and since we can see by inspection that

we also have v1 = ṽ1, we are done. �

Note that Lemma 29 together with Corollary 7 yields our previously stated claim that strategy iteration
may need exponential time to achieve non-trivial approximations for a one-position game.

Finally, the proof of Lemma 11, (stating that when applying strategy iteration to P (N,m), the patience
of the strategy xt computed in iteration t is at most emt) Proof [Proof of Lemma 11] By Lemma 24, Lemma
17 and Lemma 18, we have that the smallest behavior probability in xt is xt

1,m, i.e., the probability of playing
m in the start position where Dante still has to guess correctly N times to win.

Then, by Lemma 28, to estimate this probability, we can consider P (1,m) instead of P (N,m). In fact
we shall consider the valuations vt computed when applying strategy iteration to P (1,m). By Lemma 29
the values computed are the same as those ṽt computed by value iteration on P (1,m). So, by Theorem 6
and Lemma 1 we have that vt ≤ 1 − (1 − 1

m )( 1
mT )

1/(m−1). That is, 1 − vt ≥ (1 − 1
m )( 1

mt )
1/(m−1). Now,

Lemma 17 tells us that xt
1,m ≥ ((1 − 1

m )( 1
mt )

1/(m−1))m−1 = (1 − 1
m )m−1( 1

mt ) ≥
1

emt and we are done. �
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