
Foundations of Software Technology and Theoretical Computer Science (Bangalore) 2008.
Editors: R. Hariharan, M. Mukund, V. Vinay; pp 268-279

Dynamic matrix rank with partial
lookahead

Telikepalli Kavitha
Indian Institute of Science, Bangalore, India

kavitha@csa.iisc.ernet.in

ABSTRACT. We consider the problem of maintaining information about the rank of a matrix M
under changes to its entries. For an n× nmatrix M, we show an amortized upper bound ofO(nω−1)
arithmetic operations per change for this problem, where ω < 2.376 is the exponent for matrix
multiplication, under the assumption that there is a lookahead of up to Θ(n) locations. That is, we
know up to the next Θ(n) locations (i1, j1), (i2, j2), . . . , whose entries are going to change, in advance;
however we do not know the new entries in these locations in advance. We get the new entries in
these locations in a dynamic manner.

1 Introduction

The dynamic matrix rank problem is that of computing the rank of an n × n matrix M =
{mij} under changes to the entries of M. The rank of a matrix M is the maximum number

of linearly independent rows (or equivalently, columns) in M. The entries of M come from

a field F, and the operation changeij(v) changes the value of the (i, j)-th entry of M to v,

where i, j ∈ {1, . . . , n} and v ∈ F. We have a sequence of changeij(v) operations and the

dynamic matrix rank problem is that of designing an efficient algorithm to return the rank

of M under every change operation.

Here we consider a simpler variant of the above problem, where we assume that we

can lookahead up to Θ(n) operations in advance so that we know location indices (i, j) of the
entries of M that the next Θ(n) operations changeij are going to change. Note that we get

to know the new value v of mij only when the operation changeij(v) actually happens, the

assumption of lookahead is only regarding the location indices.

1.1 Earlier Work

The dynamic matrix rank problem was first studied by Frandsen and Frandsen [2] in 2006.

They showed an upper bound ofO(n1.575) and a lower bound of Ω(n) for this problem (the

lower bound is valid for algebraically closed fields). Frandsen and Frandsen present two

algorithms for the dynamic matrix rank problem - the first algorithm is quite elementary

and finds the rank by recomputing a reduced row echelon form of M for every change. This

takesO(n2) time per change. This bound is valid also when a change alters arbitrarily many

entries in a single column of the matrix. The second algorithm uses an implicit represen-

tation of the reduced row echelon form and this implicit representation is kept sufficiently

compact by using fast rectangular matrix multiplication for global rebuilding. This yields

a complexity of O(n1.575) arithmetic operations per change, and this bound is valid when a

change alters up to O(n0.575) entries in a single column of M.
c© T. Kavitha; licensed under Creative Commons License-NC-ND

FSTTCS 2008
IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science
http://drops.dagstuhl.de/opus/volltexte/2008/1759

T. KAVITHA FSTTCS 2008 269

Sankowski [7] in 2004 gave several dynamic algorithms for computing matrix inverse,

matrix determinant and solving systems of linear equations. The best of these algorithms

obtains a worst case time of O(n1.495) per change/query. These algorithms assume that the

matrix M remains non-singular during the changes. In 2007 Sankowski [8] showed a ran-

domized (there is a small probability of error here) reduction from the dynamic matrix rank

problem to the dynamic matrix inverse problem: this yields a randomized upper bound of

O(n1.495) for the dynamic matrix rank problem.

Dynamic problems with lookahead. Dynamic graph problems with lookahead were con-

sidered by Khanna et al. in [5]. However their results have been superseded by dynamic

algorithms without lookahead. Very recently, Sankowski and Mucha [9] worked on the dy-

namic transitive closure problem with lookahead. They present a randomized one-sided

error algorithm with changes and queries in O(nω(1,1,ǫ)−ǫ) time given a lookahead of nǫ op-

erations, where ω(1, 1, ǫ) is the exponent of multiplication of an n× n matrix by an n× nǫ

matrix. For ǫ ≤ 0.294, this yields an algorithm with queries and changes in O(n2−ǫ) time,

whereas for ǫ = 1, the time is O(nω−1), where ω < 2.376 is the exponent for matrix mul-

tiplication. Their algorithm is based on a dynamic algorithm with lookahead for matrix

inverse. This algorithm also assumes that the matrix M remains non-singular during the

changes, which need not be true for the dynamic matrix rank problem. However using the

randomized reduction of Sankowski [8] mentioned above, this algorithm for dynamic ma-

trix inverse implies a Monte Carlo algorithm with the same bounds for the dynamic matrix

rank problem with lookahead.

In this paper we use a direct approach for solving the dynamic matrix rank problem

rather than routing through the dynamic matrix inverse problem. The dynamic matrix rank

problem was also originally motivated by its application to the maximum rank matrix com-

pletion problem. The maximum rank matrix completion problem is that of assigning values

to the undefined entries in a mixed matrix (this is a matrix where some entries are unde-

fined) such that the rank of the resulting fully defined matrix is maximized. Geelen [3]

gave a simple O(n9) time algorithm for the maximum rank completion problem that uses

a data structure for dynamic matrix rank. However this application has been superseded

by newer results: Berdan [1] reduced this complexity to O(n4) and Harvey et al. [4] gave

anO(n3 log n) algorithm for the maximum rank completion problem using a different tech-

nique.

Here we show a deterministic upper bound of O(nω−1) for the dynamic matrix rank

problem assuming that we are given a lookahead ofO(n) location indices. The trade-off be-

tween the number of locations that we can lookahead and the running time of our algorithm

is: if we are allowed a lookahead of s ≤ n locations, then our amortized time per change

is O(nω/s + nsω−2). Taking s = Θ(n) balances the two terms. Our algorithm relies on the

idea of maintaining some “important entries” of certain matrices related to M. We describe

this in more detail in the next section.

Organization of the paper. We discuss preliminaries in Section 2. Our algorithm for dynamic

matrix rank is presented in Section 3. Our update subroutine is described and analyzed in

Section 4. Due to lack of space, we omit some proofs from this version of the paper.

270 DYNAMIC MATRIX RANK WITH PARTIAL LOOKAHEAD

2 Preliminaries

We are given an n× n matrix M with entries from a field F. Our problem is that of comput-

ing the rank of M as elements of M change under the change() operations.
As a preprocessing step, in O(nω) time, where ω < 2.376, we compute matrices U and

E such that UM = E where E has a special form, similar to reduced row-echelon form.

Every row in E that is not the all-zeros row has a special element, whose value is non-zero;

let us call this element the “leading element” of its row - such an element is the unique

non-zero element in its column. We call such columns clean columns (a clean column is a

vector with exactly one non-zero coordinate, which is the leading element of its row) and the

remaining columns of E are the dirty columns. In E we have rank(M) many clean columns,

n− rank(M) many dirty columns, n− rank(M) many rows that are all-zeros and rank(M)
many non-zero rows. As an example, let us consider the matrix M0 below to be our starting

matrix. To the right we have U0M0 = E0 where U0 is our transformation matrix and E0 is in

our special form. In the preprocessing step we compute U0 and E0.

M0 =









1 2 3 4

2 4 6 8

1 1 0 1

2 0 0 5









;









0 0 0 0.5

−2 1 0 0

0 0 −1 0.5

2 0 −4 1

















1 2 3 4

2 4 6 8

1 1 0 1

2 0 0 5









=









1 0 0 2.5

0 0 0 0

0 −1 0 1.5

0 0 6 9









In the matrix E0 above, the first, second, and third columns are clean, while the fourth is

a dirty column. Let us use the following terminology - right after the preprocessing step,

we will define a function π0 : [n] → {0, 1, 2, . . . , n} that tells us which coordinate of a clean

column of E0 contains the unique non-zero element of that column. That is, only the π0(i)-
th coordinate of a clean column i is non-zero. So in the example above, we have π0(1) = 1,

π0(2) = 3, and π0(3) = 4. We define π0(i) = 0 if column i is a dirty column. We will also

use the function Zero0 : [n] → {true, f alse}where Zero0(i) = true if and only if row i of E0 is

an all-zeros row. In our example, Zero0(2) = true while Zero0(w) = f alse for w ∈ {1, 3, 4}.
At the beginning of Step t we have the matrix Mt−1 and let us see what we need to do

in Step t, when the operation changeij(v) happens: here we are given the new value v of mij

and say, the previous value of mij is u. So the new matrix Mt = Mt−1 + Z, where Z is the

all-zeros matrix except for its (i, j)-th coordinate that is v − u. Let E′
t−1 denote the matrix

Ut−1(Mt−1 + Z).
Let the symbols r(X, s) and c(X, ℓ) denote the s-th row and ℓ-th column of matrix X,

respectively. E′
t−1 is the same as Et−1, except for its j-th column which is c(Et−1, j) + (v−

u)c(Ut−1, i). Even if we assume that we had the matrix Et−1 with us at the beginning of

Step t, we now need to “clean up” E′
t−1 by elementary row operations to obtain Et in our

special form and this could take as much as Θ(n2) time. (Repeating these row operations

on Ut−1 yields Ut.) Thus we will not be able to maintain the matrices Uk, Ek at the end of

Step k, for each k.

Thus at the beginning of Step t we in fact do not know the matrices Ut−1 and Et−1.

However we will know certain important entries of Et−1 and Ut−1. For this purpose, we

need to recall the functions π and Zero defined earlier; πt−1(i) is 0 if column i is a dirty

column of Et−1, else it gives the row coordinate of the unique non-zero element of column

T. KAVITHA FSTTCS 2008 271

i; Zerot−1(i) is true if row i is an all-zeros row in Et−1, else Zerot−1(i) is f alse. What we will

ensure at the beginning of Step t (to process changeij(·)) is the following:

• we will know the entire πt−1(j)-th row of Et−1: this is r(Et−1,πt−1(j))
• we will know the i-th column of Ut−1 in its πt−1(j)-th coordinate and all those coordi-

nates w such that Zerot−1(w) = true; we call this the sub-column c̃(Ut−1, i).
We describe our algorithm in Section 3 and show that these entries suffice to determine

the rank of E′
t−1. Now in Step twe also compute certain rows of Et and certain entries of the

matrix Ut. We postpone the work of computing the other rows of Et and the other entries

of Ut for now and this postponed work will be executed in batches at various points in the

algorithm. The technique of postponing work for a while and executing this postponed

work in batches at some other time in the algorithm has been used for other problems too

(for instance, for computing maximum matchings in [6]). The novelty in our paper is that

when we run our update step (to compute certain entries of Et and Ut), we do not update

entire columns since that is too expensive. Instead, we are able to identify these columns

in their “critical” coordinates and update columns only in their critical coordinates. We are

able to identify these critical coordinates in advance due to the function π on column indices

of E and the function Zero on row indices of E that we maintain throughout our algorithm

and also due to the lookahead on location indices that our problem assumes.

3 The algorithm for dynamic matrix rank

Let us assume that we have a lookahead of up to s locations; for convenience let s be a

power of 2. After the preprocessing step, our algorithm can process 2s change operations as

follows: let changeij(v) be the t-th change operation, where 1 ≤ t ≤ 2s. When this change

operation occurs, we do the following:

∗ first call rank(i, j, v, r(Et−1,πt−1(j)), c̃(Ut−1, i)); this returns the rank of the matrix Mt.

∗ if t < 2s then call update({t + 1, . . . , t + k}) where k is the largest power of 2 that

divides t. This subroutine computes the rows πt(jt+1), . . . ,πt(jt+k) of Et and the sub-

columns it+1, . . . , it+k of Ut, where (it+1, jt+1), . . . , (it+k, jt+k) are the location indices of

the change operations in Steps t + 1, . . . , t + k.

We consider processing 2s change operations as described above as one phase. Each

phase starts with the preprocessing step of computing the matrices U and E corresponding

to the current M so that UM = E. Then we process 2s change operations. This finishes

one phase. We will show in Section 4 that the update({t + 1, . . . , t + k}) subroutine takes

O(nkω−1) time. Thus the total running time, T(2s), for all the update subroutines in a phase

is given by: T(2s) = O(nsω−1 + 2n(s/2)ω−1 + 4n(s/4)ω−1 + . . . + sn(s/s)ω−1), which is

O(nsω−1).
In Section 3.1 we describe the rank() subroutine and show that its running time isO(n).

Hence the time for processing 2s change operations in a phase, after the initialization step, is

O(nsω−1). We incur a cost ofO(nω) per phase for the initialization step and for every phase

other than the first, let us distribute the cost of the initialization step of that phase among

the 2s change operations of the previous phase. Thus the amortized cost of processing each

change isO(nω/s+ nsω−2). With s = Θ(n), our algorithm has a cost ofO(nω−1) per change,
which proves the following theorem.

272 DYNAMIC MATRIX RANK WITH PARTIAL LOOKAHEAD

THEOREM 1. Dynamic matrix rank over an arbitrary field can be solved using amortized
O(nω−1) arithmetic operations per change (where ω < 2.376) with a preprocessing cost of
O(nω), provided that we are allowed a lookahead of up to Θ(n) locations.

3.1 The subroutine rank(i, j, v, r(Et−1,πt−1(j)), c̃(Ut−1, i))

The rank subroutine is called after every change operation. Let changeij(v) be the current

change operation - this changes the matrix Mt−1 to Mt. The input to rank() consists of

i, j, v, the πt−1(j)-th row of Et−1, and the i-th column of Ut−1 restricted to certain critical

coordinates. Let u be the value of (i, j)-th coordinate of Mt−1. We can assume that the new

value v 6= u since Mt = Mt−1 if v = u.

Recall that we defined E′
t−1 to be the matrix Ut−1Mt. Below we determine the rank of

E′
t−1 and it is easy to see that rank(Mt) = rank(E′

t−1) since Ut−1 is just a transformation

matrix that is a product of elementary row operations (adding a scalar multiple of one row

to another row).

Let the rank of Mt−1 be ρ. Then the rank of Mt is one of ρ − 1, ρ, ρ + 1. To decide which

of these 3 numbers is the rank of Mt, we need to read only those entries of E′
t−1 as given by

checks (1), (2), and (3) below. It can be shown that these entries suffice to determine the rank

of E′
t−1.

(1) We first check if there exists any row index w such that Zerot−1(w) = true and the w-th

coordinate of c(Ut−1, i) is non-zero.

CLAIM 2. If j is a dirty column in Et−1, then rank(E′
t−1) = ρ + 1 if there is a w such that

Zerot−1(w) = true and the w-th coordinate of c(Ut−1, i) is non-zero; else rank(E
′
t−1) = ρ.

Thus the case when j is a dirty column in Et−1 (i.e., πt−1(j) = 0) is easy. Just knowing

those coordinates w of column c(Ut−1, i) such that Zerot−1(w) = true suffices to determine

the rank of Et. The case when j is a clean column is only a little more difficult. If πt−1(j) 6= 0,

then we also do the checks as given by (2) and (3).

(2) We check if there exists any index d such that πt−1(d) = 0 and the d-th coordinate of

r(Et−1,πt−1(j)) is non-zero.
(3) If there is neither a d of check (2) nor a w of check (1), then we check if E′

t−1[πt−1(j), j] is
non-zero or 0. This tells us if the πt−1(j)-th row of Et will be all-zeros or not.

CLAIM 3. If j is a clean column in Et−1, then we have the following cases:
(i) If there is a w with Zerot−1(w) = true and Ut−1[w, i] 6= 0 and if there is a d with

πt−1(d) = 0 and Et−1[πt−1(j), d] 6= 0, then the rank of E′
t−1 is ρ + 1.

(ii) If there is no w with Zerot−1(w) = true and Ut−1[w, i] 6= 0 and the row πt−1(j) in E′
t−1

is all 0’s, then the rank of E′
t−1 is ρ − 1.

(iii) Else the rank of E′
t−1 is ρ.

Thus at the end of this step we know the rank of Mt. In summary, note that we did not

really need to know the entire column c(Ut−1, i) here - its entries in coordinates w such that

Zerot−1(w) = true and in its πt−1(j)-th coordinate are what we needed; also we needed to

know the row r(Et−1,πt−1(j)) in the dirty column coordinates and in its πt−1(j)-th coordi-

nate in order to know if this row remains a non-zero row or if it becomes the all-zeros row in

T. KAVITHA FSTTCS 2008 273

Et. Thus the two vectors: r(Et−1,πt−1(j)) and c̃(Ut−1, i) were sufficient for us to determine

the rank of Mt.

Now we compute the functions πt and Zerot from the functions πt−1 and Zerot−1. The

only values w for which πt−1(w) and πt(w) might be possibly different are w = j, w = d

(where d is a dirty column in Et−1 but will be a clean column in Et). The only rows r for

which Zerot(r) and Zerot−1(r) might be possibly different are row πt−1(j) and row w (where

w is a zero row in Et−1 but will be a non-zero row in Et). We omit the details of computing

the functions πt and Zerot here.

It is easy to see that the time taken by the rank subroutine isO(n). Hence the following

lemma can be concluded.

LEMMA 4. The subroutine rank(i, j, v, r(Et−1,πt−1(j)), c̃(Ut−1, i)) computes the rank of the
matrix Mt inO(n) time. It also maintains the functions πt (on column indices) and Zerot (on
row indices).

4 The update() subroutine

In each update subroutine, we will compute certain rows of Et and certain columns of Ut in

“critical coordinates” that will be useful in the next few change operations. In particular, we

will compute k rows of Et and k sub-columns of Ut, where k ≥ 1 is the largest power of 2

that is a divisor of t (recall that the current change operation is the t-th change operation in

this phase).

Let the change operations that will occur in in the next k steps be in the locations

(x1, y1), . . ., (xk, yk), respectively. Note that we know (x1, y1), . . . , (xk, yk) due to the looka-

head allowed to us. Define the set St = {πt(y1), . . . ,πt(yk), o1, . . . , oh} where o1, . . . , oh are

all the row indices o such that Zerot(o) = true. The set St is the set of critical coordinates for

update({t + 1, . . . , t + k}).
In update({t + 1, . . . , t + k}), we will compute the k rows πt(y1), . . . ,πt(yk) of Et (note

that this implies that we know all those rows s of Et, for s ∈ St since rows o1, . . . , oh are

all-zeros in Et) and the k columns x1, . . . , xk of Ut in the coordinates s for s ∈ St. Once we

compute the above rows and sub-columns, we will store them so that we can use/reuse

them at later steps of this phase. In our current update subroutine, we will be reusing the

rows and sub-columns that we computed in the update subroutine of Step t− k.

Let us see what rows and sub-columns were computed in the update subroutine of

Step t− k. Let us use the symbol γ to denote t− k. Let changeiℓ jℓ(vℓ) be the change operation
in Step ℓ, for γ + 1 ≤ ℓ ≤ t. Since the number k is the largest power of 2 that is a divisor of

t, it follows that γ = t− k is a multiple of 2k. Hence the set of critical coordinates for Step γ,

call it Sγ, contains {πγ(jγ+1), . . . ,πγ(jt), πγ(y1), . . . ,πγ(yk), z1, . . . , zg} where z1, . . . , zg are

the row indices for which Zeroγ is true. We have the following claim stated as Proposition 5.

Its proof is omitted here.

PROPOSITION 5. St ⊆ Sγ.

Since the update subroutine of Step t computes the rows s of Et for s ∈ St, it follows that

the update subroutine of Step γ computed the rows s′ of Eγ for s′ ∈ Sγ. Lemma 6 follows

from this fact and Proposition 5.

274 DYNAMIC MATRIX RANK WITH PARTIAL LOOKAHEAD

LEMMA 6. The update subroutine of Step γ computes the rows πt(y1), . . . ,πt(yk) of Eγ and
the columns x1, . . . , xk of Uγ restricted to the coordinates of St.

Now we are in a position to specify what tasks have to be performed in our current

update subroutine, i.e., update({t + 1, . . . , t + k}). Here we have to perform the following

tasks:

(i) update the row r(Eγ,πt(yh)) to r(Et,πt(yh)), for 1 ≤ h ≤ k

(ii) update the sub-column c̃(Uγ, xh) to c̃(Ut, xh), for 1 ≤ h ≤ k (all these sub-columns are

restricted to the coordinates s ∈ St)

Theorem 7 is our main tool here to perform the updates given by (i) and (ii) above.

During each Step ℓ, where γ + 1 ≤ ℓ ≤ t, recall that the matrix Mℓ−1 gets changed to Mℓ by

a changeiℓ jℓ(vℓ) operation; we have Uℓ−1Mℓ = E′
ℓ−1. In order to “clean” the matrix E′

ℓ−1 we

might need to clean up to 2 columns (column jℓ and a dirty column dℓ) of E
′
ℓ−1. The cleaning

of column jℓ will be done by the row πℓ(jℓ) and the cleaning of column dℓ will be done by

the row πℓ−1(jℓ). Let us use the symbols aℓ and bℓ for πℓ−1(jℓ) and for πℓ(jℓ), respectively.
The row operations performed on E′

ℓ−1 have to be then performed on Uℓ−1 and this yields

Uℓ.

Let us use the symbol Ẽ′
ℓ−1 (similarly, Ũℓ−1) to denote the matrix E′

ℓ−1 (resp.,Uℓ−1) after

the “cleaning” of column jℓ and before the “cleaning” of column dℓ. Let ejℓ denote the unit

vector with a 1 in its jℓ-th coordinate.

Note that the equalities given in Theorem 7 hold for all row indices s ∈ {1, . . . , n},
however we focus only on row indices s ∈ St here. (For simplicity of exposition, we will

not qualify statements on a row πℓ(s) of E with “if πℓ(s) 6= 0”, thus we might refer to a row

r′ where r′ = 0 - such a row will be the all 0’s row.) The proof of Theorem 7 is omitted here.

THEOREM 7. For each s ∈ St, we have the following relation between row s of Et and row s

of Eγ:

r(Et, s) = r(Eγ, s) −
t

∑
ℓ=γ+1

δs,ℓ · ejℓ −
t

∑
ℓ=γ+1

αs,ℓ · r(Ẽ′
ℓ−1, aℓ)

and the following relation between row s of Ut and row s of Uγ:

r(Ut, s) = r(Uγ, s) −
t

∑
ℓ=γ+1

βs,ℓ · r(Uℓ, bℓ) −
t

∑
ℓ=γ+1

αs,ℓ · r(Ũℓ−1, aℓ)

where the scalars δs,ℓ, αs,ℓ and βs,ℓ are defined as follows:

∗ If bℓ = 0, then δs,ℓ = (uℓ − vℓ) ·Uℓ−1[s, iℓ].

Else δs,ℓ =

{

(uℓ − vℓ) ·Uℓ−1[bℓ, iℓ] if s = bℓ

Eℓ−1[s, jℓ] otherwise

∗ If bℓ = 0 then βs,ℓ = 0.

Else βs,ℓ =

{

0 if s = bℓ

E′
ℓ−1[s, jℓ]/E

′
ℓ−1[bℓ, jℓ] otherwise

T. KAVITHA FSTTCS 2008 275

∗ If aℓ = 0 or aℓ = bℓ then αs,ℓ = 0.
Else let dℓ be the leading element of row aℓ in Eℓ, i.e., πℓ(dℓ) = aℓ. We have:

αs,ℓ =

{

0 if s = aℓ

E′
ℓ−1[s, dℓ]/E

′
ℓ−1[aℓ, dℓ] otherwise

The above theorem can be written in matrix form as follows. For simplicity let us call

the elements of St as s1, . . . , sp, and the δs,ℓ, βs,ℓ and αs,ℓ values for s ∈ St and 1 ≤ ℓ ≤ k as

δ1,1, . . . , δp,k, β1,1, . . . , βp,k and α1,1, . . . , αp,k, respectively.







r(Et, s1)
...

r(Et, sp)






=







r(Eγ, s1)
...

r(Eγ, sp)






−







δ1,1 α1,1 . . . δ1,k α1,k
...

...
...

...
...

δp,1 αp,1 . . . δp,1 αp,k













ejγ+1

...

r(Ẽ′
t−1, at)






(1)







r(Ut, s1)
...

r(Ut, sp)






=







r(Uγ, s1)
...

r(Uγ, sp)






−







β1,1 α1,1 . . . β1,k α1,k
...

...
...

...
...

βp,1 αp,1 . . . βp,k αp,k













r(Uγ, bγ+1)
...

r(Ũt−1, at)






(2)

Our goal is to determine the matrices on the left of Eqns. (1) and (2). However notice

that these matrices can be quite large. Each matrix on the left is a p × n matrix, where

p = |St|. The value of |St| could be Θ(n) and then we would spend Θ(n2) time only to just

write down all the entries of such amatrix. We certainly do not want to spend Θ(n2) time for

update({t + 1, . . . , t + k}). Recall that we promised to show that update({t + 1, . . . , t + k})
takes O(nkω−1) time. Hence we do not perform all the matrix arithmetic as specified by

Eqns. (1) and (2).

Instead, to compute the relevant rows of Et, we restrict the matrices of Eqn. (1) solely

to the row indices πt(y1), . . . ,πt(yk) since job (i) only needs these rows of Et. This involves

multiplying a k× 2kmatrix (of α’s and δ’s) with a 2k× nmatrix which takesO(nkω−1) time,

once we know the matrices involved. To compute the sub-columns of Ut, we restrict the

matrices of Eqn. (2) only to the column indices x1, . . . , xk, since job (ii) only needs columns

x1, . . . , xk of Ut, restricted to coordinates in St. This involves multiplying a p× 2k matrix (of

α’s and β’s) with a 2k× kmatrix of sub-rows, which again takesO(nkω−1) time. Observe that

we need the entire p× 2k matrix of β’s and α’s written above for this matrix multiplication.

Determining the β’s, α’s, and δ’s is, in fact, the crux of the update subroutine. We will show

the following lemma here. Section 4.1 contains the algorithm that proves this lemma.

LEMMA 8. The δs,ℓ, αs,ℓ, βs,ℓ values for all s ∈ St and γ + 1 ≤ ℓ ≤ t can be computed in time
O(nkω−1).

Once we compute the matrix of α’s and δ’s, task (i) of update({t + 1, . . . , t + k}) is es-

sentially done since we now know all the matrices on the right of Eqn. (1): the matrix whose

rows are r(Eγ, s) for s ∈ {πt(y1), . . . ,πt(yk)} is known to us (by Lemma 6) and each odd

indexed row in the rightmost matrix is a unit vector (ejℓ is the (2(ℓ − γ) − 1)-th row). Re-

garding the even indexed rows, the vector r(E′
ℓ−1, aℓ) was a part of the input to the rank sub-

routine of Step ℓ (recall that aℓ = πℓ−1(jℓ)) and we have r(Ẽ′
ℓ−1, aℓ) = r(E′

ℓ−1, aℓ)− βaℓ,ℓ · ejℓ .

276 DYNAMIC MATRIX RANK WITH PARTIAL LOOKAHEAD

Completing task (ii) of update({t + 1, . . . , t + k}) is more difficult, the rightmost matrix

of Eqn. (2) is unknown to us. We describe how we compute this matrix after we present the

proof of Lemma 8.

4.1 Proof of Lemma 8

We compute the δs,ℓ, αs,ℓ, βs,ℓ values for all s ∈ St and γ + 1 ≤ ℓ ≤ t using a recursive subrou-

tine UpdateColumns({γ + 1, . . . , t}). This subroutine computes these scalars by determining

the sub-columns c̃(Uℓ−1, iℓ), c̃(Eℓ−1, jℓ), c̃(Eℓ−1, dℓ) in the coordinates of St for γ + 1 ≤ ℓ ≤ t;

recall that these sub-columns determine the δs,ℓ, αs,ℓ, βs,ℓ values by Theorem 7.

Here we describe a generic subroutineUpdateColumns({w+ 1, . . . ,w+ q}) (this is either
the original subroutineUpdateColumns({γ + 1, . . . , t}) or a subroutine invoked in a recursive

call). This subroutine will compute δs,ℓ, αs,ℓ, βs,ℓ values for all s ∈ St and w + 1 ≤ ℓ ≤ w + q.

We will maintain the invariant that we know (restricted to the coordinates of St) the sub-

columns jℓ, dℓ of Ew and the sub-columns iℓ of Uw, for w + 1 ≤ ℓ ≤ w + q, at the time

UpdateColumns({w + 1, . . . ,w + q}) is called. Observe that this invariant is true at the onset

when UpdateColumns({γ + 1, . . . , t}) is called, since we know the vectors c̃(Eγ, jℓ), c̃(Eγ, dℓ),
c̃(Uγ, iℓ) in the coordinates of St for γ + 1 ≤ ℓ ≤ t (by the update subroutine of Step γ and

because Sγ ⊇ St).

UpdateColumns({w + 1, . . . ,w + q}):
• If q = 1 then it is the base case: we compute the values δs,w+1, βs,w+1 and αs,w+1

for all s ∈ St from c̃(Ew, jw+1), c̃(Ew, dw+1), c̃(Uw, iw+1), and scalars vw+1, uw+1 using

Theorem 7.

• Else

(1) Call UpdateColumns({w + 1, . . . ,w + q/2}) recursively.
(2) Perform a bulk update step to update

(I) the sub-columns jℓ, dℓ of Ew to Ew+q/2 for w + q/2+ 1 ≤ ℓ ≤ w + q

(II) the sub-columns iℓ of Uw to Uw+q/2 for w + q/2+ 1 ≤ ℓ ≤ w + q

(3) Call UpdateColumns({w + q/2+ 1, . . . ,w + q}) recursively.
Remark. Observe that Step (2) enables us to maintain the following invariant that is nec-

essary when UpdateColumns({w + q/2 + 1, . . . ,w + q}) is called in Step (3): we know the

columns c̃(Ew+q/2, jℓ), c̃(Ew+q/2, dℓ), c̃(Uw+q/2, iℓ) in the coordinates of St for w + q/2+ 1 ≤
ℓ ≤ w + q.

The base case is easy since we had maintained the invariant that we know the sub-

columns c̃(Ew, jw+1), c̃(Ew, dw+1), c̃(Uw, iw+1) in the coordinates s, where s ∈ St, when the

subroutine UpdateColumns({w+ 1}) is called. The base case takesO(n) time. Thus we have

the following recurrence for the running time T′(q) of UpdateColumns({w + 1, . . . ,w + q}):

T′(q) =

{

2T′(q/2) + time for the bulk update step if q > 1

O(n) if q = 1
(3)

Nowwe need to describe the bulk update step. The bulk update step has to perform the

updates given by (I) and (II) of Step (2) in the algorithm UpdateColumns({w+ 1, . . . ,w+ q})
described above. We describe first how we do (I) and then (II).

T. KAVITHA FSTTCS 2008 277

(I): Update columns jℓ, dℓ of Ew to Ew+q/2. Here we need to update the columns jℓ, dℓ

of Ew to Ew+q/2, for w + q/2 + 1 ≤ ℓ ≤ w + q. This amounts to updating the coordinates

jw+q/2+1, . . . , jw+q, dw+q/2+1, . . . , dw+q of certain rows of Ew to Ew+q/2. These row indices are

the numbers s in St. The updates on these rows of Ew are given by equations analogous to

the ones in Theorem 7. We have for each s ∈ St the following equation:

r(Ew+q/2, s) = r(Ew, s) −
w+q/2

∑
ℓ=w+1

δs,ℓ · ejℓ −
w+q/2

∑
ℓ=w+1

αs,ℓ · r(Ẽ′
ℓ−1, aℓ)

where the δs,ℓ’s and αs,ℓ’s are defined in Theorem 7. Note that we already know all δs,ℓ, αs,ℓ, βs,ℓ

values forw+ 1 ≤ ℓ ≤ w+ q/2, sincewe computed these values in theUpdateColumns({w+
1, . . . ,w+ q/2}) subroutine, that was called in Step 1 of UpdateColumns({w+ 1, . . . ,w+ q}).
The above equations in matrix form become:







r(Ew+q/2, s1)
...

r(Ew+q/2, sp)






=







r(Ew, s1)
...

r(Ew, sp)






−







δ1,1 . . . α1,q/2
...

...
...

δp,1 . . . αp,q/2













ejw+1

...

r(Ẽ′
w+q/2−1, aw+q/2)






(4)

where the rows of the Ematrices are restricted to the coordinates jw+q/2+1, . . . , jw+q, dw+q/2+1,

. . . , dw+q. Recall that s1, . . . , sp are the elements of St and for convenience, we called the δs,ℓ
and αs,ℓ values that we computed in UpdateColumns({w + 1, . . . ,w + q/2}) as δ1,1, . . . , δp,q/2
and α1,1, . . . , αp,q/2.

We know all the matrices on the right in Eqn. (4) (regarding the rows of the right-

most matrix, refer to the paragraph after the statement of Lemma 8). Since we multiply a

p× q matrix with a q× q matrix in Eqn. (4), the time taken for this matrix multiplication is

O((p/q)qω), which is O(nqω−1). We thus determine for each s ∈ St, the row s of Ew+q/2 re-

stricted to coordinates jℓ, dℓ, for w+ q/2+ 1 ≤ ℓ ≤ w+ q, inO(nqω−1) time; in other words,

we know the columns jℓ, dℓ, for w + q/2 + 1 ≤ ℓ ≤ w + q, of Ew+q/2, in the coordinates of

elements in St in O(nqω−1) time.

(II): Update columns iℓ of Uw to Uw+q/2. Here we need to update columns iℓ, for w +
q/2 + 1 ≤ ℓ ≤ w + q of Uw to Uw+q/2. We follow the same method that we used to update

the columns of Ew to Ew+q/2. For each s ∈ St we have the following equation:

r(Uw+q/2+1, s) = r(Uw, s) −
w+q/2

∑
ℓ=w+1

βs,ℓ · r(Uℓ−1, bℓ) −
w+q/2

∑
ℓ=w+1

αs,ℓ · r(Ũℓ−1, aℓ)

where the βs,ℓ’s and αs,ℓ’s are defined in Theorem 7. The bulk update step for the rows of

U (written in matrix form) is analogous to Eqn. (4) - note that here these rows are restricted

to the coordinates iℓ for w + q/2 + 1 ≤ ℓ ≤ w + q. However, here we cannot claim that we

know all the matrices on the right of the analogous equation of Eqn. (4) for U. The right-

most matrix, whose rows are the sub-rows r(Uw, bw+1), r(Ũw, aw+1), . . . , r(Ũw+q/2−1, aw+q/2)
is unknown to us and we have to determine it now. We will compute the rows of this ma-

trix using the same recursive strategy as was used in the UpdateColumns algorithm. The

subroutine UpdateRowsU({w + 1, . . . ,w + q/2}), described below, computes these rows.

278 DYNAMIC MATRIX RANK WITH PARTIAL LOOKAHEAD

Wepresent a generic subroutineUpdateRowsU({z+ 1, . . . , z+ l}) (this is either the origi-
nal subroutine UpdateRowsU({w+ 1, . . . ,w+ q/2}) or one invoked in a recursive call). Note

that w + 1 ≤ z + 1 ≤ z + l ≤ w + q/2. We maintain the invariant that at the time of

calling UpdateRowsU({z + 1, . . . , z + l}), we have the rows bz+1, . . . , az+l of Uz in the coor-

dinates of iw+q/2+1, . . . , iw+q; in this subroutine we update these sub-rows to the sub-rows

r(Uz, bz+1), . . ., r(Ũz+l−1, az+l)), respectively. Observe that this invariant is true at the onset

when we call UpdateRowsU({w + 1, . . . ,w + q/2}) by the invariant that we had maintained

when UpdateRowsU({w + 1, . . . ,w + q}) was called.

UpdateRowsU({z + 1, . . . , z + l}):
• If l = 1 then it is the base case: by our invariant, we have the rows r(Uz, bz+1) and

r(Uz, az+1) in the coordinates iw+q/2+1, . . . , iw+q. We need to update r(Uz, az+1) to

r(Ũz, az+1). This is easily done.

• Else

– Call UpdateRowsU({z + 1, . . . , z + l/2}).
– Simultaneously update the sub-rows bz+l/2+1, . . . , az+l (call these row indices

s′1, . . . , s
′
l for convenience) of Uz to Uz+l/2 as follows:







r(Uz+l/2, s
′
1)

...

r(Uz+l/2, s
′
l)






=







r(Uz, s
′
1)

...

r(Uz, s
′
l)






−







β1,1 . . . α1,l/2
...

...
...

βl,1 . . . αl,l/2













r(Uz, (bz+1)
...

r(Ũz+l/2−1, az+l/2)







We know all the matrices on the right side above, since we have already com-

puted the matrix of α’s and β’s corresponding to {z + 1, . . . , z + l} during the

subroutine UpdateColumns({w + 1, . . . ,w + q/2}) and the rightmost matrix was

computed in the earlier recursive call UpdateRowsU({z + 1, . . . , z + l/2}).
– Call UpdateRowsU({z + l/2 + 1, . . . , z + l}). [Note that the update of the above

step ensures that our invariant is maintained for this call of UpdateRowsU.]

It is easy to see that the recurrence relation for the running time T′′(l) of the above

algorithm UpdateRowsU({z + 1, . . . , z + l}) is:

T′′(l) =

{

2T′′(l/2) +O(qlω−1) if l > 1

O(q) if l = 1

T′′(l) solves to O(qlω−1). Thus T′′(q) is O(qω). This is the time taken to compute the right-

most matrix in the equation analogous to Eqn. (4) forU. Once this matrix is determined, the

matrix multiplication is performed in O(nqω−1) time. Thus we determine the sub-rows s of

Uw+q/2 for s ∈ St in the coordinates iw+q/2+1, . . . , iw+q. In other words, we computed the

columns iw+q/2+1, . . . , iw+q ofUw+q/2 in the coordinates of St. This completes the description

of the bulk update step of the subroutine UpdateColumns({w + 1, . . . ,w + q}).
We can now analyse the running time T′(q) of UpdateColumns({w + 1, . . . ,w + q}) (see

Eqn. (3)). We have T′(q) = 2T′(q/2) + O(nqω−1) and T′(1) = O(n). Thus T′(q) solves to

O(nqω−1). Hence T′(k), the running time of UpdateColumns({γ + 1, . . . , t}), is O(nkω−1).

This proves Lemma 8.

T. KAVITHA FSTTCS 2008 279

Completing task (ii) of update({t + 1, . . . , t + k}). We have to determine all the matrices

on the right hand side of Eqn. (2) - we currently know two of these matrices: the matrix

whose rows are r(Uγ, s) restricted to columns iγ+1, . . . , it (by Lemma 6) and the matrix of α’s

and β’s that we just computed. The rightmost matrix of Eqn. (2) is currently unknown to

us; however we know the matrix whose rows are b1, a1, . . . , bk, ak of Uγ. We need to update

this matrix to the desired matrix. This is done by calling the subroutine UpdateRowsU({γ +
1, . . . , t}) described in the previous section. This takes O(nkω−1) time by our analysis given

there. Now we know all the matrices on the right of Eqn. (2). Thus we can compute the

matrix on the left of Eqn. (2) in timeO(nkω−1). This completes the description of the update

subroutine. We have thus shown the following theorem.

THEOREM 9. The update({t+ 1, . . . , t+ k}) subroutine obtains the rows r(Et,πt(jh)) and the
sub-columns c̃(Ut, ih) in the coordinates s for s ∈ St, for γ + 1 ≤ h ≤ t, in time O(nkω−1).

Conclusions

We showed that the dynamic matrix rank problem for an n × n matrix with entries from

any field can be solved using amortized O(nω−1) arithmetic operations per change (where

ω < 2.376) with a preprocessing cost of O(nω), provided that we are allowed a lookahead

of up to Θ(n) locations. An open problem is to show such a bound without lookahead.

References

[1] M. Berdan. A matrix rank problem. Master’s thesis, University of Waterloo, December

2003.

[2] G. S. Frandsen and P. F. Frandsen. Dynamic Matrix Rank. In Proc. of the 33rd ICALP,

LNCS 4051: 395-406, 2006.

[3] J. F. Geelen. Maximum rank matrix completion. Linear Algebra Appl., 288(1-3): 211-217,

1999.

[4] N. J. A. Harvey, D. R. Karger, and K. Murota. Deterministic network coding by matrix

completion. In Proc. of the 16th Annual ACM-SODA, 489-498, 2005.

[5] S. Khanna, R. Motwani, and R. H. Wilson. On certificates and lookahead on dynamic

graph problems. In Proc. of the 7th Annual ACM-SIAM SODA: 222-231, 1996.

[6] M. Mucha and P. Sankowski. Maximum Matchings via Gaussian Elimination. In Proc.

of the 45th Annual IEEE FOCS: 248-255, 2004.

[7] P. Sankowski. Dynamic Transitive Closure via Dynamic Matrix Inverse. In Proc. of the

45th Annual IEEE FOCS: 509-517, 2004.

[8] P. Sankowski. Faster Dynamic Matchings and Vertex Connectivity. In Proc. of the 18th

Annual ACM-SIAM SODA: 118-126, 2007.

[9] P. Sankowski and M. Mucha. Fast Dynamic Transitive Closure with

Lookahead. To appear in Algorithmica. Online version available at

http://www.springerlink.com/content/1q86442762411268/

This work is licensed under the Creative Commons Attribution-
NonCommercial-No Derivative Works 3.0 License.

