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Abstract. The secure instantiation of the random oracle is one of the major open
problems in modern cryptography. We investigate this problem using concepts and
methods of algorithmic randomness.

In modern cryptography, the random oracle model is widely used as an imaginary
framework in which the security of a cryptographic scheme is discussed. In the ran-
dom oracle model, the cryptographic hash function used in a cryptographic scheme is
formulated as a random variable uniformly distributed over all possibility of the func-
tion, called the random oracle. The main result of this paper is to show that, for any
secure signature scheme in the random oracle model, there exists a specific computable
function which can instantiate the random oracle while keeping the security originally
proved in the random oracle model. In modern cryptography the generic group model
is used also for a similar purpose to the random oracle model. We show that the same
results hold for the generic group model.

In the process of proving the results, we introduce the notion of effective security,
demonstrating the importance of this notion in modern cryptography.

Key words: cryptography, random oracle model, generic group model, provable security,
algorithmic randomness, computable analysis

1 Introduction

In modern cryptography, the random oracle model [1] is widely used as an imaginary framework in
which the security of a cryptographic scheme is discussed. In the random oracle model, the crypto-
graphic hash function used in a cryptographic scheme is formulated as a random variable uniformly
distributed over all possibility of the function, called the random oracle, and the legitimate users
and the adversary against the scheme are modeled so as to get the values of the hash function not
by evaluating it in their own but by querying the random oracle. Since the random oracle is an

∗A part of this work was presented at the Seventh International Conference on Computability, Complexity and
Randomness (CCR 2012), July 2-6, 2012, Cambridge, Great Britain.
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imaginary object, even if the security of a cryptographic scheme is proved in the random oracle
model, the random oracle has to be instantiated using a concrete cryptographic hash function such
as the SHA hash functions if we want to use the scheme in the real world. In fact, the instanti-
ations of the random oracle by concrete cryptographic hash functions are widely used in modern
cryptography to produce efficient cryptographic schemes. Once the random oracle is instantiated,
however, the original security proof in the random oracle model is spoiled and goes back to square
one. Actually, it is not clear how much the instantiation can maintain the security originally proved
in the random oracle model, nor is it clear whether the random oracle can be instantiated somehow
while keeping the original security.

The question of securely instantiating the random oracle within cryptographic schemes proven
secure in the random oracle model is one of the most intriguing problems in modern cryptography.
Actually, many researches on the secure instantiation of the random oracle have been done so far,
which include Canetti, et al. [5], Bellare, et al. [2], Leurent and Nguyen [17], Fischlin, et al. [11].
These mainly give negative results.

In this paper we investigate the problem of secure instantiation of the random oracle, using con-
cepts and methods of algorithmic randomness. Algorithmic randomness, also known as algorithmic
information theory, enables us to consider the randomness of an individual object. It originated in
the groundbreaking works of Solomonoff [28], Kolmogorov [16], and Chaitin [6] in the mid-1960s.
They independently introduced the notion of program-size complexity, also known as Kolmogorov
complexity, in order to quantify the randomness of an individual object. Around the same time,
Martin-Löf [18] introduced a measure theoretic approach to characterize the randomness of an
individual infinite binary sequence. This approach, called Martin-Löf randomness nowadays, is
one of the major notions in algorithmic randomness as well as program-size complexity. Later on,
in the 1970s Schnorr [26] and Chaitin [7] showed that Martin-Löf randomness is equivalent to the
randomness defined by program-size complexity in characterizing random infinite binary sequences.
In the 21st century, algorithmic randomness makes remarkable progress through close interaction
with recursion theory [23, 10].

In cryptography, the randomness is just a probability distribution or its sequence. Namely,
the true randomness in cryptography is a uniform probability distribution such as the random
oracle, while the pseudorandomness is a sequence of probability distributions which has a certain
asymptotic property defined based on computational complexity theory. Thus, cryptology seems to
have had no concern with the randomness of an individual object so far. In algorithmic randomness,
on the other hand, the notion of a random real plays a central role. It is an individual infinite binary
sequence which is classified as “random”, and not a random variable, unlike in cryptography.
Algorithmic randomness enables us to classify an individual infinite binary sequence into random
or not.

To summarize our contributions, we first review the security proof in the random oracle model
(see e.g. Katz and Lindell [15, Chapter 13] for the detail). In the random oracle model, a crypto-
graphic scheme Π relies on an oracle h which is a certain type of function mapping finite strings to
finite strings, depending on a security parameter n. Let Hashn denote the set of all such functions h
on a security parameter n. Then the random oracle is the sequence {Hn} of random variables such
that each Hn is uniformly distributed over functions in Hashn. Now, in order to introduce a secu-
rity notion, such as CCA-security for encryption schemes and EUF-ACMA security for signature
schemes, into the scheme Π, we first consider an appropriately designed experiment ExptAHn ,ΠHn

defined for the scheme Π and any adversary A, where Π and A are both allowed to have an
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oracle access to Hn. Then a definition of security for Π in the random oracle model takes the
following general form: the scheme Π is secure in the random oracle model if, for all probabilistic
polynomial-time adversaries A and all d ∈ N+ there exists N ∈ N+ such that, for all n ≥ N ,

Pr
[

ExptAHn ,ΠHn (n) = 1
]

≤ γ +
1

nd
, (1)

where the probability is taken over the random variable Hn, i.e., the random choice of a function
in Hashn, as well as the random choices of the parties running Π and those of the adversary A.
The value γ indicates the maximum desired probability of some “bad” event (e.g., for encryption
schemes γ = 1/2 and for signature schemes γ = 0). Since the random variable Hn is uniformly
distributed over Hashn for every n, the definition (1) of security in the random oracle model is
equivalently rewritten into the following form: for all probabilistic polynomial-time adversaries A
and all d ∈ N+ there exists N ∈ N+ such that, for all n ≥ N ,

1

#Hashn

∑

h∈Hashn

Pr
[

ExptAHn ,ΠHn (n) = 1
∣

∣ Hn = h
]

≤ γ +
1

nd
, (2)

where #Hashn denotes the number of functions in Hashn, and the probability is now conditioned
on that the random variable Hn takes a specific function h ∈ Hashn as its value.

Let {hn} be an arbitrary sequence of functions such that hn ∈ Hashn for all n. In this paper, we
introduce the notion of security of Π relative to a specific oracle {hn}, which can be formulated as
follows: the scheme Π is secure relative to {hn} if, for all probabilistic polynomial-time adversaries
A and all d ∈ N+ there exists N ∈ N+ such that, for all n ≥ N ,

Pr
[

ExptAHn ,ΠHn (n) = 1
∣

∣ Hn = hn
]

≤ γ +
1

nd
. (3)

The specific sequence {hn} of functions is an instantiation of the random oracle {Hn}. Note that,
in the case where {hn} is polynomial-time computable, i.e., there exists a deterministic Turing
machine which on every input (1n, x) operates and outputs hn(x) within time polynomial in n, the
condition (3) implies that the scheme Π is just secure in the standard model. Here, the standard
model is the normal model of a cryptographic scheme, where no random oracle is present.

In this paper, we investigate the properties of a specific oracle {hn} relative to which Π is secure,
under the assumption that Π is secure in the random oracle model. The contributions of the paper
to the random oracle methodology are as follows:

(i) We investigate the instantiation of the random oracle by a random real in a signature scheme
already proved secure in the random oracle model. We present equivalent conditions for a
specific oracle {hn} instantiating the random oracle to keep a signature scheme secure, using
a concept of algorithmic randomness, i.e., a variant of Martin-Löf randomness. Based on
this, in particular we show that the security proved in the random oracle model is firmly
maintained after instantiating the random oracle by a random real.

(ii) We introduce the notion of effective security, which is a constructive strengthen of the conven-
tional (non-constructive) notions of security. In terms of the definitions (1) and (3) of security,
the “effectiveness” means that the natural number N can be computed from the code of an
adversary A and a natural number d. We consider signature schemes in the random oracle

3



model, and show that some specific computable function {hn} can instantiate the random
oracle while keeping the effective security originally proved in the random oracle model. We
demonstrate that the effective security notions are a natural alternative to the conventional
security notions in modern cryptography by reconsidering the security notions required in
modern cryptography.

The results in the contributions (i) and (ii) above are based only on the general form of the
definitions of security notions for a signature scheme in modern cryptography, and depend neither
on specific schemes nor on specific security notions. On the other hand, our results on the secure
instantiation of the random oracle are valid only if the security in the random oracle model is
confirmed already. This may imply that the random oracle model is not necessarily an imaginary
framework to discuss the security of a cryptographic scheme, but may have substantial implications
for the security in the standard model.

In addition to the random oracle model, in modern cryptography the generic group model [27] is
used also as an imaginary framework in which the security of a cryptographic scheme is discussed. In
particular, the generic group model is often used to discuss the computational hardness of problems,
such as the discrete logarithm problem and the Diffie-Hellman problem in finite cyclic groups, which
is used as a computational hardness assumption to prove the security of a cryptographic scheme.
In the generic group model, the generic group, i.e., a random encoding of the group elements, is
an imaginary object, just like the random oracle. Therefore, even if the security of a cryptographic
scheme or the hardness of a computational problem is proved in the generic group model, the
generic group has to be instantiated using a concrete finite cyclic group whose group operations are
efficiently computable, for use of the cryptographic scheme in the real world. Hence, the problem
of the secure instantiation of the generic group exists in the generic group model, just like in the
random oracle model.

In this paper we introduce the notion of effective hardness for computational problems, which
corresponds to the effective security for cryptographic schemes. Based on concepts and methods
of algorithmic randomness, we then show that, for the discrete logarithm problem and the Diffie-
Hellman problem in the generic group model, the generic group can be instantiated by a specific
computable function while keeping the effective hardness originally proved in the generic group
model. This result corresponds to the contribution (ii) above for the random oracle model. We
can show the results for the generic group model which corresponds to the contribution (i) for the
random oracle model. However, this task is not difficult and therefore omitted in this paper.

1.1 Organization of the paper

The paper is organized as follows. As preliminaries we first review some definitions and results of
algorithmic randomness in Section 2.

We then begin the study of the random oracle model in Section 3, where we present the general
form of signature schemes which we consider in this paper, and introduce the (conventional) security
notion for the signature schemes. In Section 4 we present the contribution (i) above for the random
oracle model. Subsequently we present the contribution (ii) above in Sections 5 and 6, where we
introduce the notion of effective security and then show a secure instantiation of the random oracle
by a computable function in Sections 5, and we demonstrate the importance of the effective security
notions in Section 6.
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We then begin the study of the generic group model in Section 7, where we explain the discrete
logarithm problem in the generic group model. In Section 8 we develop the Lebesgue outer measure
on families of encoding functions. It is needed in Section 9, where we introduce the notion of effective
hardness and then show a secure instantiation of the generic group in the discrete logarithm problem
by a computable function. In Section 10 we show that the same results hold for the Diffie-Hellman
problem. We conclude this paper with the clarification of the notion of effective hardness in
Section 11.

2 Preliminaries

We start with some notation about numbers and strings which will be used in this paper. #S is
the cardinality of S for any set S. N = {0, 1, 2, 3, . . . } is the set of natural numbers, and N+ is the
set of positive integers. Q is the set of rationals, and R is the set of reals.
{0, 1}∗ = {λ, 0, 1, 00, 01, 10, 11, 000, 001, 010, . . . } is the set of finite binary strings where λ de-

notes the empty string, and {0, 1}∗ is ordered as indicated. We identify any string in {0, 1}∗ with a
natural number in this order, i.e., we consider a map ϕ : {0, 1}∗ → N such that ϕ(x) = 1x−1 where
the concatenation 1x of the strings 1 and x is regarded as a dyadic integer, and then we identify
x with ϕ(x). For any x ∈ {0, 1}∗, |x| is the length of x. For any n ∈ N, we denote by {0, 1}n and
{0, 1}≤n the sets {x | x ∈ {0, 1}∗ & |x| = n} and {x | x ∈ {0, 1}∗ & |x| ≤ n}, respectively. For any
n,m ∈ N, we denote by Funcmn and Funcm≤n the set of all functions mapping {0, 1}n to {0, 1}m and
the set of all functions mapping {0, 1}≤n to {0, 1}m, respectively. A subset S of {0, 1}∗ is called
prefix-free if no string in S is a prefix of another string in S. We write “r.e.” instead of “recursively
enumerable.”
{0, 1}∞ is the set of infinite binary sequences, where an infinite binary sequence is infinite to

the right but finite to the left. For any α ∈ {0, 1}∞ and any n ∈ N, we denote by α↾n∈ {0, 1}∗ the
first n bits of α. For any S ⊂ {0, 1}∗, the set {α ∈ {0, 1}∞ | ∃n ∈ N α↾n∈ S} is denoted by [S]≺.
Note that (i) [S]≺ ⊂ [T ]≺ for every S ⊂ T ⊂ {0, 1}∗, and (ii) for every set S ⊂ {0, 1}∗ there exists
a prefix-free set P ⊂ {0, 1}∗ such that [S]≺ = [P ]≺.

Lebesgue outer measure L on {0, 1}∞ is a function mapping any subset of {0, 1}∞ to a non-
negative real. In this paper, we use the following properties of L.

Proposition 2.1 (Properties of Lebesgue outer measure on {0, 1}∞).

(i) L
(

[P ]≺
)

=
∑

x∈P 2−|x| for every prefix-free set P ⊂ {0, 1}∗. Therefore L (∅) = L
(

[∅]≺
)

= 0
and L ({0, 1}∞) = L

(

[{λ}]≺
)

= 1.

(ii) L (C) ≤ L (D) for every C ⊂ D ⊂ {0, 1}∞.

(iii) L (⋃i Ci) ≤
∑

i L (Ci) for every sequence {Ci}i∈N of subsets of {0, 1}∞.

A function f : N → {0, 1}∗ or f : N → Q is called computable if there exists a deterministic
Turing machine which on every input n ∈ N halts and outputs f(n). A computable function is
also called a total recursive function. A real a is called computable if there exists a computable
function g : N→ Q such that |a− g(k)| < 2−k for all k ∈ N. We say that α ∈ {0, 1}∞ is computable
if the mapping N ∋ n 7→ α↾n is a computable function, which is equivalent to that the real 0.α in
base-two notation is computable.
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2.1 Algorithmic randomness

In the following we concisely review some definitions and results of algorithmic randomness [7, 8,
23, 10]. The idea in algorithmic randomness is to think of a real, i.e., an infinite binary sequence,
as random if it is in no effective null set. An effective null set is a subset S of {0, 1}∞ such
that L (S) = 0 and S has some type of effective property. To specify an algorithmic randomness
notion, one has to specify a type of effective null set, which is usually done by introducing a test
concept. Failing the test is the same as being in the null set. In this manner, various randomness
notions, such as 2-randomness, weak 2-randomness, Demuth randomness, Martin-Löf randomness,
Schnorr randomness, Kurtz randomness, have been introduced so far, and a hierarchy of algorithmic
randomness notions has been developed (see [23, 10] for the detail).

Among all randomness notions, Martin-Löf randomness is a central one. This is because in
many respects, Martin-Löf randomness is well-behaved, in that the many properties of Martin-Löf
random infinite sequences do match our intuition of what random infinite sequence should look
like. Moreover, the concept of Martin-Löf randomness is robust in the sense that it admits various
equivalent definitions that are all natural and intuitively meaningful, as we will see in Theorem 2.4.
Martin-Löf randomness is defined as follows based on the notion of Martin-Löf test.

Definition 2.2 (Martin-Löf randomness, Martin-Löf [18]). A subset C of N+ × {0, 1}∗ is called a
Martin-Löf test if C is an r.e. set and there exists a total recursive function f : N+ → Q ∩ (0,∞)
such that limn→∞ f(n) = 0 and for every n ∈ N+,

L
(

[Cn]≺
)

≤ f(n),

where Cn =
{

x
∣

∣ (n, x) ∈ C
}

.
For any α ∈ {0, 1}∞, we say that α is Martin-Löf random if for every Martin-Löf test C there

exists n ∈ N+ such that α /∈ [Cn]≺.1

Let C be a Martin-Löf test. Then, for each k ∈ N+, using (ii) of Proposition 2.1 we see that
L
(
⋂∞

n=1 [Cn]≺
)

≤ L
(

[Ck]≺
)

≤ f(k). On letting k → ∞, we have L
(
⋂∞

n=1 [Cn]≺
)

= 0. Thus, the
set

⋂∞
n=1 [Cn]≺ forms an effective null set in the notion of Martin-Löf randomness. Definition 2.2

says that an infinite binary sequence α is Martin-Löf random if α is not in the effective null set
⋂∞

n=1 [Cn]≺ for any Martin-Löf test C.
One of the equivalent variants of Martin-Löf randomness is Solovay randomness, which plays

an important role in this paper, as well as Martin-Löf randomness.

Definition 2.3 (Solovay randomness, Solovay [29]). A subset C of N+×{0, 1}∗ is called a Solovay
test if C is an r.e. set and

∞
∑

n=1

L
(

[Cn]≺
)

<∞.

For any α ∈ {0, 1}∞, we say that α is Solovay random if for every Solovay test C, there exists
N ∈ N+ such that, for every n ≥ N , α /∈ [Cn]≺.

1Normally, Martin-Löf random is defined with fixing the total recursive function f : N+ → Q ∩ (0,∞) to the form
f(n) = 2−n. However, the relaxation of the function f as in Definition 2.2 does not alter the class of Martin-Löf
random infinite binary sequences.
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For each Solovay test C, we can show that L
(
⋂∞

n=1

⋃∞
k=n [Ck]≺

)

= 0. The set
⋂∞

n=1

⋃∞
k=n [Ck]≺

forms an effective null set in the notion of Solovay randomness.
The robustness of Martin-Löf randomness is mainly due to the fact that it admits characteriza-

tions based on the notion of program-size complexity, as shown in Theorem 2.4. The program-size
complexity (or Kolmogorov complexity) K(x) of a finite binary string x is defined as the length
of the shortest binary input for a universal decoding algorithm U , called an optimal prefix-free
machine, to output x (see Chaitin [7] for the detail). By the definition, K(x) can be thought of as
the randomness contained in the individual finite binary string x.

Theorem 2.4 (Schnorr [26], Chaitin [7], and Solovay [29], and Miller and Yu [21]). For every
α ∈ {0, 1}∞, the following conditions are equivalent:

(i) α is Martin-Löf random.

(ii) α is Solovay random.

(iii) There exists c ∈ N such that, for all n ∈ N+, n− c ≤ K(α↾n).

(iv)
∑∞

n=1 2
n−K(α↾n) <∞.

In particular, the condition (iii) means that the infinite binary sequence α is incompressible.
We denote by MLR the set of all infinite binary sequences which are Martin-Löf random. Since

there are only countably infinitely many algorithms and every Martin-Löf test induces an effective
null set, it is easy to show the following theorem.

Theorem 2.5 (Martin-Löf [18]). L(MLR) = 1.

3 Signature schemes and their security

We begin by presenting the general form of signature scheme whose security we consider in this
paper. For modern cryptography in general, we refer the reader to Katz and Lindell [15].

In 1993 Bellare and Rogaway proposed the notion of full-domain hash (FDH) signature scheme
in their original paper on the random oracle model [1]. They showed that the RSA-FDH signature
scheme, which is an instantiation of the FDH signature scheme with the RSA function as a trapdoor
permutation, is effectively existentially unforgeable under an adaptive chosen-message attack (EUF-
ACMA secure) in the random oracle model under the RSA assumption (see Theorem 6.1; for the
detail of RSA-FDH see also [15, Chapter 13]). In the first half of this paper, we consider a general
form of the FDH signature scheme and give our results about the secure instantiation of the random
oracle for that general scheme.

Let ℓ(n) be a polynomial with integer coefficients such that ℓ(n) > 0 for all n ∈ N+. An
ℓ-function is a function H : N × {0, 1}∗ → {0, 1}∗ such that |H(n, x)| = ℓ(n) for all n ∈ N and
x ∈ {0, 1}∗. For each ℓ-function H and n ∈ N, we define a function Hn : {0, 1}∗ → {0, 1}ℓ(n)
by Hn(x) = H(n, x). An ℓ-function serves as an instantiation of the random oracle, such as a
cryptographic hash function.

Definition 3.1. Let ℓ(n) be a polynomial. A signature scheme relative to ℓ-functions is a tuple
(Gen,Sign,Vrfy) of three polynomial-time algorithms such that, for every ℓ-function H,
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1. The key generation algorithm Gen is a probabilistic algorithm which takes as input a security
parameter 1n and outputs a pair of keys (pk, sk). These are called the public key and the
private key, respectively. We assume that n can be determined from each of pk and sk.

2. The signing algorithm Sign is a probabilistic algorithm which takes as input a private key sk
and a message m ∈ {0, 1}∗. It is given oracle access to Hn(·), and then outputs a signature

σ, denoted as σ ← Sign
Hn(·)
sk (m).

3. The verification algorithm Vrfy is a deterministic algorithm which takes as input a public key
pk, a massage m, and a signature σ. It is given oracle access to Hn(·), and then outputs a bit

b, with b = 1 meaning valid and b = 0 meaning invalid. We write this as b := Vrfy
Hn(·)
pk (m,σ).

It is required that, for every ℓ-function H, for every n ∈ N+, for every (pk, sk) output by Gen(1n),
and for every m ∈ {0, 1}∗,

Vrfy
Hn(·)
pk (m,Sign

Hn(·)
sk (m)) = 1. (4)

In general, a signature scheme is used in the following way. One party S, who acts as the signer,
runs Gen(1n) to obtain keys (pk, sk). The public key pk is then publicized as belonging to S; e.g.,
S can put the public key on its webpage or place it in some public directory. We assume that
any other party is able to obtain a legitimate copy of S’s public key. When S wants to transmit

a message m, it computes σ ← Sign
Hn(·)
sk (m) and sends (m,σ). Upon receipt of (m,σ), a receiver

who knows pk can verify the authenticity of m by checking whether Vrfy
Hn(·)
pk (m,σ) = 1, or not.

This establishes both that S sent m, and also that m was not modified in transmit. Note here that
Definition 3.1 only defines the syntax of signature schemes and does not define the security of them
at all, which is defined in what follows.

As the security notion of signature schemes, in this paper we consider the existential unforge-
ability under adaptive chosen-message attacks (EUF-ACMA security) as an example. We can
show the same results for other security notions, such as the existential unforgeability against key
only attacks (EUF-KOA security), the existential unforgeability against known-message attacks
(EUF-KMA security), and the existential unforgeability against generic chosen-massage attacks
(EUF-GCMA security), which are all weaker than the EUF-ACMA security.

Given a public key pk generated by a signer S to an adversary, we say that the adversary outputs
a forgery if it outputs a message m along with a valid signature σ on m, and furthermore m was
not previously signed by S using the private key sk which corresponds to pk. The EUF-ACMA
security of a signature scheme means that an adversary cannot output a forgery even if it is allowed
to obtain signatures on many other messages of its choice. The formal definition is given as follows.

Let Π = (Gen,Sign,Vrfy) be a signature scheme relative to ℓ-functions, and consider the following
experiment for a probabilistic polynomial-time adversary A,2 a parameter n, and a function G
mapping a superset of {0, 1}≤q(n) to {0, 1}ℓ(n) where q(n) is the maximum value among the running
time of Sign, the running time of Vrfy, and the running time of A on the parameter n:

The signature experiment Sig-forgeA,Π(n,G):

2Normally, a probabilistic (uniform) polynomial-time Turing machine is called a probabilistic polynomial-time

adversary when it is used as an adversary against a cryptographic scheme.
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1. Gen(1n) is run to obtain keys (pk, sk).

2. Adversary A is given pk and oracle access to both Sign
G(·)
sk (·) and G(·). (The first

oracle returns a signature Sign
G(·)
sk (m′) for any message m′ of the adversary’s choice

while having oracle access to G(·) of itself.) The adversary then outputs (m,σ).
Let Q denotes the set of messages whose signatures were requested by A during its
execution.

3. The output of the experiment is defined to be 1 if both m /∈ Q and Vrfy
G(·)
pk (m,σ) = 1

hold true, and 0 otherwise.

Here the function G serves as an instantiation of the random oracle. Since the running time of
each of Sign, Vrfy, and A on the parameter n is at most q(n), the lengths of the strings queried to
the oracle G(·) by these three algorithms during their computations are at most q(n). Thus the
function G only have to be defined on the set {0, 1}≤q(n).

On the one hand, the EUF-ACMA security of signature schemes relative to a specific ℓ-function
is defined as follows. This form of the definition corresponds to the condition (3) with γ = 0 for
the security of a signature scheme relative to a specific oracle {hn} considered in the introduction.

Definition 3.2. Let H be an ℓ-function. A signature scheme Π = (Gen,Sign,Vrfy) relative to
ℓ-functions is existentially unforgeable under an adaptive chosen-message attack (or EUF-ACMA
secure) relative to H if for all probabilistic polynomial-time adversaries A and all d ∈ N+ there
exists N ∈ N+ such that, for all n ≥ N ,

Pr[Sig-forgeA,Π(n,Hn) = 1] ≤ 1

nd
.

On the other hand, the EUF-ACMA security of signature schemes in the random oracle model
is formulated as follows. This form of the definition corresponds to the condition (2), and is justified
based on the consideration in the introduction.

Definition 3.3. A signature scheme Π = (Gen,Sign,Vrfy) relative to ℓ-functions is existentially
unforgeable under an adaptive chosen-message attack (or EUF-ACMA secure) in the random oracle
model if for all probabilistic polynomial-time adversaries A and all d ∈ N+ there exists N ∈ N+

such that, for all n ≥ N ,

1

#Func
ℓ(n)
≤q(n)

∑

G∈Func
ℓ(n)
≤q(n)

Pr[Sig-forgeA,Π(n,G) = 1] ≤ 1

nd
,

where q(n) is the maximum value among the running time of Sign, the running time of Vrfy, and
the running time of A on the parameter n.

4 Conditions for secure instantiation of the random oracle

In this section, we present equivalent conditions for a specific oracle instantiating the random oracle
to keep a signature scheme secure, using a concept of algorithmic randomness.

9



In order to apply the method of algorithmic randomness to the random oracle methodology, we
identify an ℓ-function with an infinite binary sequence in the following manner: We first choose a
particular bijective total recursive function b : N→ N×N with b(k) = (b1(k), b2(k)) as the standard
one for use throughout the rest of this paper. We assume for convenience that, for every k, l ∈ N,
if b1(k) = b1(l) and k < l then b2(k) < b2(l). For example, the inverse function of a function
c : N×N→ N with c(m,n) = (m+ n)(m+ n+1)/2 + n can serve as such a function b. Then each
ℓ-function H : N× {0, 1}∗ → {0, 1}∗ is identified with the infinite binary sequence

H(b(0))H(b(1))H(b(2))H(b(3)) · · · · · · , (5)

where the countably infinite finite binary strings H(b(0)),H(b(1)),H(b(2)),H(b(3)), . . . are con-
catenated. Recall that we identify {0, 1}∗ with N, as explained in Section 2, and therefore each
b2(k) is regarded as a finite binary string in (5). In what follows, we work with this intuition of the
identification.

We will give the main result of this section, i.e., Theorem 4.10, in terms of Solovay randomness
and Martin-Löf randomness. For that purpose we generalize these two randomness notions in
Definitions 4.1 and 4.6, respectively.

Definition 4.1 (Solovay randomness with respect to an arbitrary set of Solovay tests). Let S be
a set of Solovay tests. For any α ∈ {0, 1}∞, we say that α is Solovay random with respect to S if
for every Solovay test C ∈ S, there exists N ∈ N+ such that, for every n ≥ N , α /∈ [Cn]≺.

Definition 4.2. Let ℓ(n) be a polynomial, and let Π = (Gen,Sign,Vrfy) be a signature scheme
relative to ℓ-functions.

For each probabilistic polynomial-time adversary A and each d, n ∈ N+ we define a subset
[CA,d,n]

≺ of {0, 1}∞ as the set of all ℓ-functions H such that

Pr[Sig-forgeA,Π(n,Hn) = 1] >
1

nd
.

To be precise, we define a subset CA,d,n of {0, 1}∗ as the set of all finite binary strings of the form
x0G(λ)x1G(0)x2G(1)x3 · · · xLG(1q) such that the following properties (i), (ii), (iii), and (iv) hold
for q, L, x0, x1, x2, x3, . . . , xL, and G:

(i) q is the maximum value among the running time of Sign, the running time of Vrfy, and the
running time of A on the parameter n.

(ii) L+ 1 = #{0, 1}≤q (i.e., L = 2q+1 − 2).

(iii) For each j ∈ {0, . . . , L}, xj ∈ {0, 1}∗ and

|x0G(λ)x1G(0)x2G(1)x3 · · · xj| =
kj−1
∑

k=0

ℓ(b1(k))

where kj is a natural number such that b(kj) = (n, j).

(iv) G ∈ Func
ℓ(n)
≤q and

Pr[Sig-forgeA,Π(n,G) = 1] >
1

nd
.
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We then define S-TESTEUF-ACMA
Π as the class of all subsets C of N+ × {0, 1}∗ for which there

exist a probabilistic polynomial-time adversary A and d ≥ 2 such that C = {(n, y) | n ∈ N+ & y ∈
CA,d,n}.
Theorem 4.3. Let ℓ(n) be a polynomial. Suppose that a signature scheme Π = (Gen,Sign,Vrfy)
relative to ℓ-functions is EUF-ACMA secure in the random oracle model. Then S-TESTEUF-ACMA

Π

contains only Solovay tests.

In order to prove Theorem 4.3, we need the following two lemmas.

Lemma 4.4. Let f1, . . . , fN be reals. Suppose that 1
N

∑N
i=1 fi ≤ ε. Then, for every α > 0, the

number of i for which αε < fi is less than N/α.

Proof. We prove the contraposition of Lemma 4.4. Assume that the number of i for which αε < fi
is at least N/α. Then

∑N
i=1 fi > αεN/α = εN and therefore 1

N

∑N
i=1 fi > ε.

Lemma 4.5. Let d ≥ 2. Then
∑∞

k=n 1/k
d ≤ 2/n for every n ∈ N+.

Proof. In the case of n ≥ 2, we have

∞
∑

k=n

1

kd
≤

∞
∑

k=n

∫ k

k−1

1

kd
=

∫ ∞

n−1

1

xd
dx =

1

(d− 1)(n − 1)d−1
≤ 1

n− 1
≤ 1

n− n/2
=

2

n
. (6)

On the other hand, in the case of n = 1, using (6) we have

∞
∑

k=n

1

kd
= 1 +

∞
∑

k=2

1

kd
≤ 1 +

2

2
= 2 =

2

n
.

Thus
∑∞

k=n 1/k
d ≤ 2/n holds in any case.

Proof of Theorem 4.3. Let C ∈ S-TESTEUF-ACMA
Π . Then there exist a probabilistic polynomial-time

adversary A and d ≥ 2 such that, for every n ∈ N+, Cn = CA,d,n. Suppose that Π is EUF-ACMA
secure in the random oracle model. Then it follows from Definition 3.3 that there exists N ∈ N+

such that, for all n ≥ N ,

1

#Func
ℓ(n)
≤q(n)

∑

G∈Func
ℓ(n)
≤q(n)

Pr[Sig-forgeA,Π(n,G) = 1] ≤ 1

n2d
, (7)

where q(n) is the maximum value among the running time of Sign, the running time of Vrfy, and
the running time of A on the parameter n.

On the one hand, it follows from Definition 4.2 that C is an r.e. set, since the dyadic rational

Pr[Sig-forgeA,Π(n,G) = 1]

is computable, given n and G ∈ Func
ℓ(n)
≤q(n).

On the other hand, using (7) and Lemma 4.4 with ε = 1/n2d and α = nd, we see that, for every
n ≥ N ,

#

{

G ∈ Func
ℓ(n)
≤q(n)

∣

∣

∣

∣

Pr[Sig-forgeA,Π(n,G) = 1] >
1

nd

}

<
#Func

ℓ(n)
≤q(n)

nd
.
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Since
#Func

ℓ(n)
≤q(n) = 2ℓ(n)#{0,1}≤q(n)

,

it follows from Definition 4.2 and (i) of Proposition 2.1 that

∞
∑

n=N

L
(

[Cn]≺
)

=

∞
∑

n=N

∑

y∈Cn

2−|y| <

∞
∑

n=N

#Func
ℓ(n)
≤q(n)

nd
2−ℓ(n)#{0,1}≤q(n)

=

∞
∑

n=N

1

nd
<∞,

where the last inequality follows from Lemma 4.5. Thus C is a Solovay test.

Definition 4.6 (Martin-Löf randomness with respect to an arbitrary set of Martin-Löf tests). Let
S be a set of Martin-Löf tests. For any α ∈ {0, 1}∞, we say that α is Martin-Löf random with
respect to S if for every Martin-Löf test C ∈ S, there exists n ∈ N+ such that α /∈ [Cn]≺.

Definition 4.7. Let ℓ(n) be a polynomial, and let Π = (Gen,Sign,Vrfy) be a signature scheme
relative to ℓ-functions. We define ML-TESTEUF-ACMA

Π as the class of all subsets C of N+ × {0, 1}∗
for which there exists D ∈ S-TESTEUF-ACMA

Π such that, for every n ∈ N+, Cn =
⋃∞

k=nDk.

Theorem 4.8. Let ℓ(n) be a polynomial. Suppose that a signature scheme Π = (Gen,Sign,Vrfy)
relative to ℓ-functions is EUF-ACMA secure in the random oracle model. Then ML-TESTEUF-ACMA

Π

contains only Martin-Löf tests.3

Proof. Let C ∈ ML-TESTEUF-ACMA
Π . Then there exists D ∈ S-TESTEUF-ACMA

Π such that, for every
n ∈ N+, Cn =

⋃∞
k=nDk. Suppose that Π is EUF-ACMA secure in the random oracle model. It

follows from Theorem 4.3 that D is a Solovay test. It is then easy to see that C is an r.e. set,
since D is an r.e. set. On the other hand, since D ∈ S-TESTEUF-ACMA

Π , there exist a probabilistic
polynomial-time adversary A and d ≥ 2 such that, for every n ∈ N+, Dn = CA,d,n. Then, in the
same manner as the proof of Theorem 4.3 we can show that there exists N ∈ N+ such that, for
every n ≥ N ,

#

{

G ∈ Func
ℓ(n)
≤q(n)

∣

∣

∣

∣

Pr[Sig-forgeA,Π(n,G) = 1] >
1

nd

}

<
#Func

ℓ(n)
≤q(n)

nd
,

where q(n) is the maximum value among the running time of Sign, the running time of Vrfy, and
the running time of A on the parameter n. It follows from (i) and (iii) of Proposition 2.1 and
Definition 4.2 that, for each n ≥ N ,

L
(

[Cn]≺
)

≤
∞
∑

k=n

L
(

[Dk]
≺) =

∞
∑

k=n

∑

y∈Dk

2−|y| <

∞
∑

k=n

#Func
ℓ(k)
≤q(k)

kd
2−ℓ(k)#{0,1}≤q(k)

=

∞
∑

k=n

1

kd
≤ 2

n
,

where the last inequality follows from Lemma 4.5. Thus C is a Martin-Löf test.

Obviously, the following proposition holds.

Proposition 4.9. Let α ∈ {0, 1}∞.

3In fact, ML-TESTEUF-ACMA

Π contains only Schnorr tests, where a Schnorr test is defined as a Martin-Löf test
C ⊂ N+ × {0, 1}∗ such that L

(

[Cn]
≺
)

is computable uniformly in n. For the detail of Schnorr tests, see e.g. Section
3.5 of Nies [23].
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(i) For every set S of Martin-Löf tests, if α is Martin-Löf random then α is Martin-Löf random
with respect to S.

(ii) For every set S of Solovay tests, if α is Solovay random then α is Solovay random with respect
to S.

The following theorem gives equivalent conditions for a specific oracle instantiating the random
oracle to keep the EUF-ACMA security of a signature scheme originally proved in the random
oracle model, in terms of algorithmic randomness.

Theorem 4.10 (Main result I). Let ℓ(n) be a polynomial. Suppose that a signature scheme Π =
(Gen,Sign,Vrfy) relative to ℓ-functions is EUF-ACMA secure in the random oracle model. Let H
be an ℓ-function. Then the following conditions are equivalent:

(i) Π is EUF-ACMA secure relative to H.

(ii) H is Solovay random with respect to S-TESTEUF-ACMA
Π .

(iii) H is Martin-Löf random with respect to ML-TESTEUF-ACMA
Π .

Proof. First we show the equivalence between the conditions (i) and (ii). The negation of the
condition (i) is that there exist a probabilistic polynomial-time adversary A and d ≥ 2 such that,
for infinitely many n ∈ N+,

Pr[Sig-forgeA,Π(n,Hn) = 1] >
1

nd
.

However, from Definition 4.2, it is easy to see that this is equivalent to the condition that there
exists C ∈ S-TESTEUF-ACMA

Π such that, for infinitely many n ∈ N+, H ∈ [Cn]≺. This is further
equivalent to the condition that H is not Solovay random with respect to S-TESTEUF-ACMA

Π , since
S-TESTEUF-ACMA

Π contains only Solovay tests by Theorem 4.3. Thus the conditions (i) and (ii) are
equivalent to each other.

Next we show the equivalence between the conditions (ii) and (iii). Suppose that C ∈ ML-TESTEUF-ACMA
Π

and D ∈ S-TESTEUF-ACMA
Π satisfy that Cn =

⋃∞
k=nDk for all n ∈ N+. Then the condition that

H ∈ [Cn]≺ for all n ∈ N+ is equivalent to the condition that H ∈ [Dn]
≺ for infinitely many

n ∈ N+. Note here that ML-TESTEUF-ACMA
Π contains only Martin-Löf tests by Theorem 4.8, and

S-TESTEUF-ACMA
Π contains only Solovay tests by Theorem 4.3. Thus, H is not Martin-Löf ran-

dom with respect to ML-TESTEUF-ACMA
Π if and only if H is not Solovay random with respect to

S-TESTEUF-ACMA
Π . This completes the proof.

As noted in the previous section, Theorem 5.3 holds for other security notions for signature
schemes, such as the EUF-GCMA security, in place of the EUF-ACMA security. Thus, given
arbitrary security notion UF and signature scheme Π which is UF secure in the random oracle
model, one can define a variant of Martin-Löf randomness, i.e., Martin-Löf randomness with respect
to ML-TESTUF

Π , which gives a equivalent condition for a specific oracle instantiating the random
oracle in Π to keep the UF security. In this manner, given a security notion and a signature scheme
satisfying this security notion in the random oracle model, one can define an algorithmic randomness
notion which is specified by an appropriate type of effective null sets based on these security notion
and scheme, and which corresponds exactly to the secure instantiation of the random oracle with
respect to this security notion.
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In the next section we show in Theorem 5.3 that a signature scheme Π can be EUF-ACMA
secure relative to some computable ℓ-function H, in the case where Π satisfies a stronger security
notion, called the effective EUF-ACMA security, in the random oracle model. Hence, in such a
case, it follows from Theorem 4.10 that there exists a computable infinite binary sequence H which
is Martin-Löf random with respect to ML-TESTEUF-ACMA

Π .
The following theorem shows that the EUF-ACMA security proved in the random oracle model

is firmly maintained after instantiating the random oracle by a random real.

Theorem 4.11. Let ℓ(n) be a polynomial. Suppose that a signature scheme Π = (Gen,Sign,Vrfy)
relative to ℓ-functions is EUF-ACMA secure in the random oracle model. For every ℓ-function H,
if H is Martin-Löf random then Π is EUF-ACMA secure relative to H.

Proof. The result follows immediately from (i) of Proposition 4.9 and Theorem 4.10.

The following theorem shows that a specific oracle instantiating the random oracle almost surely
keeps the EUF-ACMA security of a signature scheme originally proved in the random oracle model.

Theorem 4.12. Let ℓ(n) be a polynomial. Suppose that a signature scheme Π = (Gen,Sign,Vrfy)
relative to ℓ-functions is EUF-ACMA secure in the random oracle model. Then L(EUFacma

Π ) = 1,
where EUFacma

Π is the set of all ℓ-functions H such that Π is EUF-ACMA secure relative to H.

Proof. The result follows immediately from Theorem 2.5, Theorem 4.11, and (i) and (ii) of Propo-
sition 2.1.

Impagliazzo and Rudich [14] showed a similar result to Theorem 4.12 for a one-way permutation
and derived the negative result about the existence of a secure secret key agreement protocol.

5 Secure instantiation of the random oracle by computable func-

tion

Let H be an ℓ-function. We say that H is computable if there exists a deterministic Turing
machine which on every input (n, x) halts and outputs H(n, x). On the other hand, we say that H
is polynomial-time computable if there exists a deterministic Turing machine which on every input
(1n, x) operates and outputs H(n, x) within time polynomial in n and |x|.

Conjecture 1 below means that, in the case where a signature scheme Π satisfies a certain
condition C, the EUF-ACMA security of Π originally proved in the random oracle model can be
firmly maintained in the standard model after instantiating the random oracle by some polynomial-
time computable ℓ-function (or some polynomial-time computable family of ℓ-functions).

Conjecture 1. Let ℓ(n) be a polynomial. Suppose that a signature scheme Π = (Gen,Sign,Vrfy)
relative to ℓ-functions is EUF-ACMA secure in the random oracle model. If Π satisfies C, then
there exists a polynomial-time computable ℓ-function (or a polynomial-time computable family of
ℓ-functions) relative to which Π is EUF-ACMA secure.

Note that an appropriate restriction on a signature scheme Π, i.e., the condition C on Π, might
be necessary to prove Conjecture 1, due to the negative results in the secure instantiation of the
random oracle by Canetti, Goldreich, and Halevi [5], who show “contrived” signature schemes (and
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encryption schemes) that are secure in the random oracle model but are demonstrably insecure for
any concrete instantiation of the random oracle. At present, however, it would seem very difficult
to prove it with identifying an appropriate nontrivial condition C.

The second best thing is to investigate whether Conjecture 2 below holds true or not, where
we consider the instantiation of the random oracle by simply a computable ℓ-function, which is not
necessarily polynomial-time computable.

Conjecture 2. Let ℓ(n) be a polynomial. Suppose that a signature scheme Π = (Gen,Sign,Vrfy)
relative to ℓ-functions is EUF-ACMA secure in the random oracle model. Then there exists a
computable ℓ-function H such that Π is EUF-ACMA secure relative to H.

In what follows, we show that an “effective” variant of Conjecture 2 holds true. We introduce
the notion of effective EUF-ACMA security, which is a constructive strengthen of the conventional
(non-constructive) notions of EUF-ACMA security. In terms of Definitions 3.2 and 3.3 for the con-
ventional EUF-ACMA security, the “effectiveness” means that the number N in the definitions can
be computed, given the code of an adversary A and a number d. To begin with a formal definition,
we choose a particular recursive enumeration A1,A2,A3, . . . of all probabilistic polynomial-time
adversaries as the standard one for use throughout the rest of this section. It is easy to show
that such an enumeration exists. In fact, the kth probabilistic polynomial-time adversary Ak can
be chosen as a probabilistic Turing machine obtained by executing the kth probabilistic Turing
machineMk in at most nk + k steps, where n is the length of the input ofMk.

On the one hand, the effective EUF-ACMA security relative to a specific ℓ-function is defined
as follows.

Definition 5.1. Let H be an ℓ-function. A signature scheme Π = (Gen,Sign,Vrfy) relative to
ℓ-functions is effectively existentially unforgeable under an adaptive chosen-message attack (or
effectively EUF-ACMA secure) relative toH if there exists a computable function f : N+×N+ → N+

such that, for all i, d, n ∈ N+, if n ≥ f(i, d) then

Pr[Sig-forgeAi,Π(n,Hn) = 1] ≤ 1

nd
.

Obviously, if a signature scheme Π relative to ℓ-functions is effectively EUF-ACMA secure
relative to H, then Π is simply EUF-ACMA secure relative to H.

On the other hand, the effective EUF-ACMA security in the random oracle model is defined as
follows.

Definition 5.2. A signature scheme Π = (Gen,Sign,Vrfy) relative to ℓ-functions is effectively exis-
tentially unforgeable under an adaptive chosen-message attack (or effectively EUF-ACMA secure)
in the random oracle model if there exists a computable function f : N+ ×N+ → N+ such that, for
all i, d, n ∈ N+, if n ≥ f(i, d) then

1

#Func
ℓ(n)
≤qi(n)

∑

G∈Func
ℓ(n)
≤qi(n)

Pr[Sig-forgeAi,Π(n,G) = 1] ≤ 1

nd
,

where qi(n) is the maximum value among the running time of Sign, the running time of Vrfy, and
the running time of Ai on the parameter n.
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Obviously, if a signature scheme Π relative to ℓ-functions is effectively EUF-ACMA secure in
the random oracle model, then Π is simply EUF-ACMA secure in the random oracle model.

The effective variant of Conjecture 2 is then presented as follows.

Theorem 5.3 (Main result II). Let ℓ(n) be a polynomial. Suppose that a signature scheme Π =
(Gen,Sign,Vrfy) relative to ℓ-functions is effectively EUF-ACMA secure in the random oracle model.
Then there exists a computable ℓ-function H such that Π is effectively EUF-ACMA secure relative
to H.

In order to prove Theorem 5.3, we need Lemmas 4.4 and 4.5 in the previous section, and
Lemma 5.4 below. The last one is Exercise 1.9.21 of Nies’s textbook [23] of algorithmic randomness.4

In Section 8 we will prove a modification of Lemma 5.4, i.e., Theorem 8.2. The proof of Lemma 5.4
can be obtained by simplifying the proof of Theorem 8.2.

Lemma 5.4. Let S be an r.e. subset of {0, 1}∗. Suppose that L
(

[S]≺
)

< 1 and L
(

[S]≺
)

is a
computable real. Then there exists α ∈ {0, 1}∞ such that α is computable and α /∈ [S]≺.

Proof of Theorem 5.3. Suppose that a signature scheme Π = (Gen,Sign,Vrfy) relative to ℓ-functions
is effectively EUF-ACMA secure in the random oracle model. Then there exists a computable
function f : N+ × N+ → N+ such that, for all i, d, n ∈ N+, if n ≥ f(i, d) then

1

#Func
ℓ(n)
≤qi(n)

∑

G∈Func
ℓ(n)
≤qi(n)

Pr[Sig-forgeAi,Π(n,G) = 1] ≤ 1

nd
,

where qi(n) is the maximum value among the running time of Sign, the running time of Vrfy, and
the running time of Ai on the parameter n. Note that the value qi(n) can be computed, given i
and n. It follows from Lemma 4.4 that, for all i, d, n ∈ N+, if n ≥ f(i, 2d) then

#

{

G ∈ Func
ℓ(n)
≤qi(n)

∣

∣

∣

∣

Pr[Sig-forgeAi,Π(n,G) = 1] >
1

nd

}

<
#Func

ℓ(n)
≤qi(n)

nd
. (8)

For each i, d, n ∈ N+ we define a subset Ci,d,n of {0, 1}∗ as CAi,d,n (see Definition 4.2). Since

#Func
ℓ(n)
≤qi(n)

= 2ℓ(n)#{0,1}≤qi(n)
, it follows from Definition 4.2, (i) of Proposition 2.1, and (8) that,

for each i, d, n ∈ N+, if n ≥ f(i, 2d) then

L
(

[Ci,d,n]
≺) =

∑

s∈Ci,d,n

2−|s| <
#Func

ℓ(n)
≤qi(n)

nd
2−ℓ(n)#{0,1}≤qi(n)

=
1

nd
. (9)

We choose a particular computable bijection

ϕ : N+ → { (i, d) | i ∈ N+ & d ≥ 2 },
and define (ϕ1(m), ϕ2(m)) = ϕ(m). We then define a computable function g : N+ → N+ by
g(m) = {f(ϕ1(m), 2ϕ2(m)) + 1}m+1. For each m ∈ N+, we define a subset Cm of {0, 1}∗ by

Cm =
∞
⋃

n=g(m)

Cϕ1(m),ϕ2(m),n. (10)

4Lemma 5.4 can be used to prove the non-existence of universal Schnorr test for the notion of Schnorr randomness
for an infinite binary sequence. See Fact 3.5.9 of [23] for the detail.
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It follows from (iii) of Proposition 2.1, (9), and Lemma 4.5 that, for each m ∈ N+,

L
(

[Cm]≺
)

≤
∞
∑

n=g(m)

L
(

[

Cϕ1(m),ϕ2(m),n

]≺
)

<
∞
∑

n=g(m)

1

nϕ2(m)
≤ 2

g(m)
≤ 1

2m
. (11)

We then define C by

C =

∞
⋃

m=1

Cm. (12)

Therefore, using (iii) of Proposition 2.1,

L
(

[C]≺
)

≤
∞
∑

m=1

L
(

[Cm]≺
)

<

∞
∑

m=1

1

2m
= 1. (13)

Next we show that C is an r.e. subset of {0, 1}∗. It follows from Definition 4.2 that, given i, d, and
n, one can decide the finite subset Ci,d,n of {0, 1}∗, since the dyadic rational Pr[Sig-forgeAi,Π(n,G) =

1] is computable, given i, n, and G ∈ Func
ℓ(n)
≤qi(n)

. Thus, since ϕ and g are computable functions, it

follows from (10) and (12) that C is an r.e. subset of {0, 1}∗.
We then show that L

(

[C]≺
)

is a computable real. For each k ∈ N, we define a finite subset Dk

of C by

Dk =

k
⋃

m=1

g(m)2k−1
⋃

n=g(m)

Cϕ1(m),ϕ2(m),n.

Given k ∈ N, one can decides the finite set Dk, since ϕ and g are computable functions and moreover
one can decide the finite set Ci,d,n, given i, d, and n. Therefore, given k ∈ N, one can calculate the
dyadic rational L

(

[Dk]
≺) based on (i) of Proposition 2.1. On the other hand, note that

C \Dk ⊂





k
⋃

m=1

∞
⋃

n=g(m)2k

Cϕ1(m),ϕ2(m),n



 ∪
∞
⋃

m=k+1

Cm.

Thus, using (ii) and (iii) of Proposition 2.1, (9), Lemma 4.5, and (11) we see that, for each k ∈ N,

L
(

[C \Dk]
≺) ≤

k
∑

m=1

∞
∑

n=g(m)2k

L
(

[

Cϕ1(m),ϕ2(m),n

]≺
)

+

∞
∑

m=k+1

L
(

[Cm]≺
)

<
k

∑

m=1

2

g(m)2k
+

∞
∑

m=k+1

1

2m
≤

k
∑

m=1

1

2m+k
+

1

2k
<

1

2k−1
.

Therefore, since [C]≺ = [Dk+1]
≺ ∪ [C \Dk+1]

≺, using (ii) and (iii) of Proposition 2.1 we have

∣

∣L
(

[C]≺
)

−L
(

[Dk+1]
≺)

∣

∣ ≤ L
(

[C \Dk+1]
≺) ≤ 2−k

for each k ∈ N. Hence, L
(

[C]≺
)

is a computable real.
Now, it follows from Lemma 5.4 that there exists H ∈ {0, 1}∞ such that H is computable and

H /∈ [C]≺. Since H is computable as an infinite binary sequence, it is easy to see that H is also
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computable as an ℓ-function. On the other hand, let i, d, n ∈ N+ with n ≥ g(ϕ−1(i, d + 1)). We
then define m = ϕ−1(i, d+1), i.e., ϕ(m) = (i, d+1). Since H /∈ [C]≺ and n ≥ g(m), it follows from
(12) and (10) that H /∈

[

Cϕ1(m),ϕ2(m),n

]≺
= [Ci,d+1,n]

≺. Therefore, based on the identification (5)

of an ℓ-function with an infinite binary sequence, we see that the function Hn : {0, 1}∗ → {0, 1}ℓ(n)
satisfies that Pr[Sig-forgeAi,Π(n,Hn) = 1] ≤ 1/nd+1 < 1/nd. Thus, since the mapping N+ × N+ ∋
(i, d) 7→ g(ϕ−1(i, d+1)) is a computable function, it follows from Definition 5.1 that Π is effectively
EUF-ACMA secure relative to H.

6 Computable analysis on cryptography

In this section, we show that the effective security notions introduced in the previous section are a
natural alternative to the conventional security notions in modern cryptography.

In Definitions 3.2 and 3.3 for the conventional EUF-ACMA security, the number N is only
required to exist, depending on the adversary A and the number d, that is, the success probability
of the attack by an adversary A on a security parameter n is required to be less than 1/nd for
all sufficiently large n, where the lower bound of such n is not required to be computable from A
and d. On the other hand, in Definitions 5.1 and 5.2 for the effective EUF-ACMA security, it is
required that the lower bound N of such n can be computed from the code of A and d.

In modern cryptography based on computational security, it is important to choose the security
parameter n of a cryptographic scheme as small as possible to the extent that the security require-
ments are satisfied, in order to make the efficiency of the scheme as high as possible. For that
purpose, it is desirable to be able to calculate a concrete value of N , given the code of A and d,
since N gives a lower bound of the security parameter for which the security requirements specified
by A and d are satisfied. This results in the notion of effective security.

Does the replacement of the conventional security notions by the corresponding effective security
notions bring difficulties to modern cryptography over all ? We do not think so. It would seem
plausible that all the conventional security notions can be replaced by the corresponding effective
security notions in modern cryptography with little cost. As an example, let us consider the EUF-
ACMA security of the RSA-FDH signature scheme under the RSA assumption and its effective
counterpart. Let SuccRSAA (n) be the success probability of an algorithm A in solving the RSA
problem on a security parameter n. On the one hand, the (conventional) RSA assumption is
defined as the condition that, for all probabilistic polynomial-time algorithms A and all d ∈ N+

there exists N ∈ N+ such that, for all n ≥ N ,

SuccRSAA (n) ≤ 1

nd
.

On the other hand, the effective RSA assumption is defined as the condition that there exists a
computable function f : N+ × N+ → N+ such that, for all i, d, n ∈ N+, if n ≥ f(i, d) then

SuccRSAAi
(n) ≤ 1

nd
,

where Ai is the ith algorithm in a particular recursive enumeration of all probabilistic polynomial-
time algorithms. Now, recall the following theorem.

Theorem 6.1 (Bellare and Rogaway [1]). RSA-FDH is EUF-ACMA secure in the random oracle
model under the RSA assumption.
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By analyzing the proof of Theorem 6.1 given in [1], we can see that the following effective
version of Theorem 6.1 holds. We can do this task very easily, compared with the non-triviality of
the original proof itself.

Theorem 6.2. RSA-FDH is effectively EUF-ACMA secure in the random oracle model under the
effective RSA assumption.

Note that the effective RSA assumption seems more difficult to prove than the RSA assumption.
However, in modern cryptography based on computational security, we must make a computational
assumption, such as the RSA assumption, somehow to guarantee the security of a cryptographic
scheme. Since making any computational assumption does not cost at all in the development of
theory of cryptography, making the effective RSA assumption instead of the RSA assumption would
not seem to bring any trouble to modern cryptography. In this manner, we would expect that all
the conventional security notions can be replaced by the corresponding effective security notions in
modern cryptography with little cost. Thus, it would seem plausible that we can easily reconstruct
the theory of cryptography based on the effective security notions instead of the conventional
security notions.

In the above, we consider the validity of the effective security notions in modern cryptography.
Actually, it would seem more natural to require that the functions f : N+ × N+ → N+ in Defini-
tions 5.1 and 5.2 are polynomial-time computable rather than simply computable. We call this type
of effective security polynomial-time effective security. Conjecture 3 below is a polynomial-time ef-
fective version of Conjecture 1, and states that the security in the random oracle model implies
one in the standard model. In the future, it would be challenging to prove Conjecture 3 (or its
appropriate modification) with identifying an appropriate computational assumption COMP and
an appropriate nontrivial condition C on a signature scheme Π.

Conjecture 3. Let ℓ(n) be a polynomial. Suppose that a signature scheme Π relative to ℓ-functions
is polynomial-time effectively EUF-ACMA secure in the random oracle model. Under the as-
sumption COMP, if Π satisfies the condition C, then there exists a polynomial-time computable ℓ-
function (or a polynomial-time computable family of ℓ-functions) relative to which Π is polynomial-
time effectively EUF-ACMA secure.

Note that the computational assumption COMP should be needed in Conjecture 3. Without
this assumption, Conjecture 3 implies that the complexity class P is a proper subclass of the
class NP , unless no signature scheme Π satisfies the condition C. Thus, Conjecture 3 without the
computational assumption COMP would become very difficult to prove. Actually, in the random
oracle methodology, the random oracle is instantiated by a concrete cryptographic hash function
such as the SHA hash functions (without adequate theoretical reason). Thus, from a theoretical
point of view, it would seem reasonable to assume at least the existence of a collision resistant hash
function5 as the computational assumption COMP.

Computable analysis [24, 30] is a branch of computation theory which studies the computability
and the computational complexity of mathematical notions appearing in analysis. It is closely
related to algorithmic randomness. In particular, computable analysis considers the notion of the
effective convergence of a sequence of reals, where a sequence {an}n∈N+ of reals is called converges
effectively to a real α if there exists a computable function f : N+ → N+ such that, for every N,n ∈

5See [15, Chapter 4] for the detail of collision resistant hash function.
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N+, if n ≥ f(N) then |an − α| < 1/N . On the one hand, we can see that the form of the definition
of the convergence of a sequence of reals in analysis well corresponds to the definitions of security in
modern cryptography based on computational security, such as Definitions 3.2 and 3.3. On the other
hand, we can see that the notion of the effective convergence of a sequence of reals in computable
analysis well corresponds to the effective security notions introduced in Definitions 5.1 and 5.2.
Thus, the replacement of the conventional security notion by the corresponding effective security
notion moder cryptography is just regarded as performing computable analysis over cryptography.
The results of the previous section shows that performing computable analysis over cryptography
results in the secure instantiation of the random oracle.

In what follows we continue to perform computable analysis over cryptography by introducing
the notion of effective hardness for computational problems, whose hardness is used as a com-
putational assumption to prove the security of a cryptographic scheme in moder cryptography.
In particular, we consider the discrete logarithm problem and the Diffie-Hellman problem in the
generic group model, and investigate the secure instantiation of the generic group, i.e., a random
encoding of the group elements, in what follows.

7 The discrete logarithm problem in the generic group model

In this section we review the discrete logarithm problem in the generic group model. For the
discrete logarithm problem in the standard model and its related problems, such as the Diffie-
Hellman problem in the standard model, we refer the reader to Katz and Lindell [15, Chapter
7].

Shoup [27] introduced the notion of generic algorithm to study the computational complexity of
the discrete logarithm and related problems in the generic group model, where the generic algorithm
does not exploit any special properties of the encodings of group elements, other than the property
that each group element is encoded as a unique binary string. Formally, a generic algorithm is
defined as follows.

For any integer N ≥ 2, we denote by ZN the additive group of integers modulo N and sometimes
the set {0, 1, . . . , N − 1}. For any n ∈ N+, an encoding function into n bitstrings is a bijective
function mapping {0, 1, . . . , 2n − 1} to {0, 1}n. Let N be a positive integer with N ≤ 2n, and let
GN be the set of all finite cyclic groups G of order N with G ⊂ {0, 1}n. Given an arbitrary finite
cyclic group G of order N , we can represent each element of G by a unique n bits string, since
N ≤ 2n. Thus, every finite cyclic group G of order N is in GN in

(2n

N

)

distinct representations.
Recall that every finite cyclic group G of order N can be isomorphic to the additive group ZN

based on a generator of G. Thus, we see that, for every pair of a finite cyclic group G ∈ GN and its
generator g, there is an encoding function σ into n bitstrings such that ZN is isomorphic to G via
σ and σ(1) = g. Conversely, for every encoding function σ into n bitstrings, by defining a binary
operation ◦ : σ(ZN )× σ(ZN )→ σ(ZN ) by

σ(x) ◦ σ(y) := σ(x+ y),

the set σ(ZN ) becomes a finite cyclic group in GN with the generator σ(1) and ZN is isomorphic
to σ(ZN ) via σ. In this manner, there is a surjective mapping from an encoding function σ into n
bitstrings to a pair of a finite cyclic group G ∈ GN and its generator. If we restrict the domain of
definition of encoding functions into n bitstrings to ZN , the mapping becomes bijective.
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A generic algorithm is a probabilistic oracle Turing machine A which behaves as follows [27, 19]:
Let n ∈ N+, and let σ be an encoding function into n bitstrings and N a positive integer with
N ≤ 2n.

(i) A takes as input a list σ(x1), . . . , σ(xk) with x1, . . . , xk ∈ ZN , as well as (the binary repre-
sentations of) N and its prime factorization.

(ii) AsA is executed, it is allowed to make calls to oracles which compute the functions add : σ(ZN )×
σ(ZN )→ σ(ZN ) and inv : σ(ZN )→ σ(ZN ) with

add(σ(x), σ(y)) = σ(x+ y) and inv(σ(x)) = σ(−x).

(iii) Eventually, A halts and outputs a finite binary string, denoted by

A(N ;σ(x1), . . . , σ(xk)).

Consider the following experiment for a polynomial-time generic algorithm A, a parameter n,
and a positive integer N ≤ 2n:

The discrete logarithm experiment DLogA(n,N):

1. Generate an encoding function σ into n bitstrings uniformly.

2. Generate x ∈ ZN uniformly.

3. The output of the experiment is defined to be 1 if A(N ;σ(1), σ(x)) = x and 0
otherwise.

Note here that x ∈ ZN is the discrete logarithm of σ(x) with respect to the generator σ(1)
in the finite cyclic group σ(ZN ) of order N . Thus in the experiment, given a generator σ(1) of a
finite cyclic group σ(ZN ) and an element σ(x) of σ(ZN ), the generic algorithm A tries to calculate
the discrete logarithm x of σ(x) while making calls to oracles which compute the functions add
and inv. Shoup [27] showed the following lower bound for the complexity of the discrete logarithm
problem in the generic group model.

Theorem 7.1 (Shoup [27]). There exists C ∈ N+ such that, for every generic algorithm A, n ∈ N+,
and N with 2 ≤ N ≤ 2n − 1,

Pr[DLogA(n,N) = 1] ≤ Cm2

p
,

where p is the largest prime divisor of N and m is the maximum number of the oracle queries
among all the computation paths of A.

Theorem 7.1 says that any generic algorithm that solves with nonzero constant probability the
discrete logarithm problem in finite cyclic groups of order N must perform at least Ω(

√
p) group

operations (i.e., oracle queries).
In what follows, we show that the generic group, i.e, the random encoding function σ into

n bitstrings, used in the discrete logarithm problem can be instantiated by a deterministic and
computable one while keeping the computational hardness originally proved in the generic group
model, as in Theorem 7.1. Before that, we develop the Lebesgue outer measure on families of
encoding functions in the next section.
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8 Lebesgue outer measure on families of encoding functions

For each n ∈ N+, we denote by Encfn the set of all encoding functions into n bitstrings. Note that
#Encfn = (2n)!. A family of encoding functions is an infinite sequence {σn}n∈N+ such that σn is
an encoding function into n bitstrings for all n ∈ N+. A family of encoding functions serves as an
instantiation of an infinite sequence of the generic groups, i.e., random encoding functions, over all
security parameters. We denote by Encf∞ the set of all families of encoding functions. Namely,

Encf∞ :=

∞
∏

k=1

Encfk = Encf1 × Encf2 × Encf3 × · · · · · · .

On the other hand, a finite family of encoding functions is a finite sequence s = (σ1, . . . , σn)
such that σk is an encoding function into k bitstrings for all k = 1, . . . , n. Here, n is called the
length of s and denoted by |s|. A finite family of encoding functions is an initial segment (a prefix)
of a family of encoding functions. For each n ∈ N, we denote by Encfn the set of all finite families
of encoding functions of length n. Namely,

Encfn :=

n
∏

k=1

Encfk = Encf1 × · · · × Encfn.

Note that Encf0 = {λ} where λ := () is the empty sequence. We denote by Encf∗ the set of all finite
families of encoding functions, i.e., Encf∗ :=

⋃∞
n=0 Encf

n. For any sequences s = (σ1, . . . , σn) and
t = (τ1, . . . , τm) in Encf∗, we say that s is a prefix of t if n ≤ m and σk = τk for all k ≤ n. A subset
P of Encf∗ is called prefix-free if no sequence in P is a prefix of another sequence in P .

In what follows we use the notion of Lebesgue outer measure on Encf∞, which is defined as
follows. For any sequence s = (σ1, . . . , σn) ∈ Encf∗, I(s) is defined as the set of all families {τk}k∈N+

of encoding functions for which σk = τk for all k ≤ n, and |I(s)| is defined by

|I(s)| :=
n
∏

k=1

1

#Encfk
=

1

#Encf1 × · · · ×#Encfn
.

Note that I(λ) = Encf∞ and |I(λ)| = 1. Lebesgue outer measure L on Encf∞ is a function mapping
any subset A of Encf∞ to a non-negative real, and is defined by

L (A) := inf

∞
∑

n=1

|I(sn)| ,

where the infimum extends over all infinite sequences s1, s2, . . . ∈ Encf∗ for which A ⊂ ⋃∞
n=1 I(sn).

In what follows, we use the properties of L presented in Proposition 8.1 below. For any subset
T of Encf∗, we denote by [T ]≺ the set

⋃

s∈T I(s).

Proposition 8.1.

(i) For every prefix-free set P ⊂ Encf∗,

L
(

[P ]≺
)

=
∑

s∈P

|I(s)| .

Therefore L (∅) = L
(

[∅]≺
)

= 0 and L (Encf∞) = L
(

[{λ}]≺
)

= 1.
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(ii) L (A) ≤ L (B) for every sets A ⊂ B ⊂ Encf∞.

(iii) L (⋃i Ai) ≤
∑

i L (Ai) for every sequence {Ai}i∈N of subsets of Encf∞.

(iv) L
(
⋃

i [Pi]
≺) =

∑

i L
(

[Pi]
≺) for every finite or infinite sequence {Pi}i of subsets of Encf∗ such

that [Pi]
≺ ∩ [Pj ]

≺ = ∅ for every i 6= j.

For any subset S of Encf∗, we say that S is recursively enumerable (r.e., for short) if there exists
a deterministic Turing machine which on every input s ∈ Encf∗ halts if and only if s ∈ S. Note here
that any sequence in Encf∗ is a finite object, which can be represented as a finite binary string, and
thus can be manipulated by a Turing machine. Finally, a family {σn}n∈N+ of encoding functions is
called computable if there exists a deterministic Turing machine which on every input (n, x) with
x ∈ {0, 1, . . . , 2n − 1} halts and outputs σn(x).

Theorem 8.2 below plays a crucial role in what follows. It is a modification of Lemma 5.4. We
can prove this theorem based on the properties of L in Proposition 8.1, as well as the computability
of the mapping N+ ∋ n 7→ #Encfn.

Theorem 8.2. Let S be an r.e. subset of Encf∗. Suppose that L
(

[S]≺
)

< 1 and L
(

[S]≺
)

is a
computable real. Then there exists a computable family of encoding functions which is not in [S]≺.

Proof. We define F : Encf∗ → [0, 1] by F (t) = L
(

[S]≺ ∩ I(t)
)

. First, we show that the real-valued
function F is computable, i.e., there exists a computable function f : Encf∗ × N→ Q such that

|F (t)− f(t, k)| < 2−k (14)

for all t ∈ Encf∗ and k ∈ N.
Let n ∈ N. Since

⋃

t∈Encfn I(t) = Encf∞ we have

⋃

t∈Encfn

[S]≺ ∩ I(t) = [S]≺

and
(

[S]≺ ∩ I(t)
)

∩
(

[S]≺ ∩ I(t′)
)

= ∅ for any distinct t, t′ ∈ Encfn. Note that, for every t ∈ Encf∗,
there is S′ ⊂ Encf∗ such that [S]≺ ∩ I(t) = [S′]≺.6 It follows from (iv) of Proposition 8.1 that

∑

u∈Encfn

F (u) = L
(

[S]≺
)

(15)

for every n ∈ N.
Since S is an r.e. set, there is a deterministic Turing machine which enumerates S, i.e., there

is a deterministic Turing machine which on every input m ∈ N+ outputs a finite subset Sm of S,
where Sm ⊂ Sm+1 for every m ∈ N+ and

⋃∞
m=1 Sm = S. Therefore, for each t ∈ Encf∗, we have

[Sm]≺ ∩ I(t) ⊂ [Sm+1]
≺ ∩ I(t) for every m ∈ N+ and

⋃∞
m=1

(

[Sm]≺ ∩ I(t)
)

= [S]≺ ∩ I(t). Using
(ii) and (iv) of Proposition 8.1 it is easy to show that, for each t ∈ Encf∗, L

(

[Sm]≺ ∩ I(t)
)

≤
L
(

[Sm+1]
≺ ∩ I(t)

)

for every m ∈ N+ and limm→∞ L
(

[Sm]≺ ∩ I(t)
)

= F (t). It follows from (15)
that, for each n ∈ N,

∑

u∈Encfn

L
(

[Sm]≺ ∩ I(u)
)

≤ F (t) +
∑

u∈Encfn and u 6=t

L
(

[Sm]≺ ∩ I(u)
)

≤ L
(

[S]≺
)

(16)

6As such S′, the set T ∪ {s ∈ S | t is a prefix of s} suffices, where T = {t} if there is a prefix s ∈ S of t and T = ∅
otherwise.
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for every m ∈ N+ and t ∈ Encfn, and

lim
m→∞

∑

u∈Encfn

L
(

[Sm]≺ ∩ I(u)
)

= L
(

[S]≺
)

. (17)

Note that, any given finite set P ⊂ Encf∗, one can compute a finite prefix-free set Q ⊂ Encf∗ such
that [Q]≺ = [P ]≺. It follows from (i) of Proposition 8.1 and the computability of the mapping N+ ∋
l 7→ #Encf l that, any given t ∈ Encf∗ and m ∈ N+, one can compute the rational L

(

[Sm]≺ ∩ I(t)
)

.
Therefore, any given n ∈ N and m ∈ N+, one can compute the rational

∑

u∈Encfn L
(

[Sm]≺ ∩ I(u)
)

.
Now, since L

(

[S]≺
)

is a computable real by the assumption, there exists a computable function
g : N→ Q such that

∣

∣L
(

[S]≺
)

− g(k)
∣

∣ < 2−k (18)

for all k ∈ N. It follows from (17) that there exists a computable function h : Encf∗×N→ N+ such
that, for every t ∈ Encf∗ and k ∈ N,

g(k) − 2−k <
∑

u∈Encf|t|

L
(

[

Sh(t,k)

]≺ ∩ I(u)
)

.

But, by (16) and (18), the right-hand side is at most

F (t) +
∑

u∈Encf|t| and u 6=t

L
(

[

Sh(t,k)

]≺ ∩ I(u)
)

< g(k) + 2−k.

Thus we define a function f : Encf∗ × N→ Q by

f(t, k) = g(k) −
∑

u∈Encf|t| and u 6=t

L
(

[

Sh(t,k)

]≺ ∩ I(u)
)

.

We then see that the rational-valued function f is computable and (14) holds, as desired.
Next, we construct a computable family {σn}n∈N+ of encoding functions such that

F ((σ1, . . . , σm)) <

m
∏

k=1

1

#Encfk
(19)

holds for all m ∈ N. We do this by the recursive procedure given below. First, since

⋃

τ∈Encfm+1

I((τ1, . . . , τm, τ)) = I((τ1, . . . , τm))

holds for every m ∈ N and (τ1, . . . , τm) ∈ Encfm, we note by (iv) of Proposition 8.1 that

∑

τ∈Encfm+1

F ((τ1, . . . , τm, τ)) = F ((τ1, . . . , τm)) (20)

for every m ∈ N and (τ1, . . . , τm) ∈ Encfm. Let sn = (σ1, . . . , σn) ∈ Encfn for each n ∈ N. Then the
recursive procedure is given as follows.

Initially, we set n := 0 and sn := λ. Then, obviously, the property (19) holds for m = n, which
is precisely the assumption L

(

[S]≺
)

< 1 of the theorem.
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For an arbitrary n ∈ N, assume that we have constructed sn = (σ1, . . . , σn) and (19) holds for
m = n. It follows from (20) with m = n that

F ((σ1, . . . , σn, τ0)) <

n+1
∏

k=1

1

#Encfk
(21)

for some τ0 ∈ Encfn+1. Since F is a computable real function, by computing the approximation of
F ((σ1, . . . , σn, τ)) with an arbitrary precision for each τ ∈ Encfn+1, one can find τ0 for which (21)
holds, and then set σn+1 := τ0 and sn+1 := (σ1, . . . , σn, τ0). It follows that (19) holds for m = n+1.

Thus, any given n ∈ N+, one can compute σn by the above procedure. This implies that the
family {σn}n∈N+ of encoding functions is computable.

Now, assume contrarily that {σn}n∈N+ ∈ [S]≺. Then there is n ∈ N such that (σ1, . . . , σn) ∈ S.
It follows that

F ((σ1, . . . , σn)) = L (I((σ1, . . . , σn))) =
n
∏

k=1

1

#Encfk
.

However, this contradicts (19) with m = n. Hence we have {σn}n∈N+ /∈ [S]≺, and the proof is
completed.

9 Effective hardness and secure instantiation of the generic group

In this section we introduce the notion of effective hardness for the discrete logarithm problem,
and then show that the generic group used in the problem can be instantiated by a deterministic
and computable one while keeping the computational hardness. For that purpose, we first translate
Theorem 7.1 into the form well used as a computational hardness assumption for a cryptographic
scheme in cryptography.

Consider the following experiment for a polynomial-time generic algorithm A, a parameter n,
and an encoding function σ into n bitstrings:

The discrete logarithm experiment DLogA(n, σ):

1. Generate an n-bit prime p uniformly.

2. Generate x ∈ Zp uniformly.

3. The output of the experiment is defined to be 1 if A(p;σ(1), σ(x)) = x and 0
otherwise.

In the experiment above, we consider the discrete logarithm problem in the finite cyclic group
σ(Zp) of a prime order p. The reason for choosing a prime order is to minimize the probability
of the generic algorithm A solving the discrete logarithm problem. This can be checked from the
form of Theorem 7.1.

The hardness of the discrete logarithm problem in the generic group model is then formulated
as follows.
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Definition 9.1. We say that the discrete logarithm problem is hard in the generic group model if
for all polynomial-time generic algorithms A and all d ∈ N+ there exists N ∈ N+ such that, for all
n ≥ N ,

1

#Encfn

∑

σ∈Encfn

Pr[DLogA(n, σ) = 1] ≤ 1

nd
. (22)

Note that, in the left-hand side of (22), the probability is averaged over all encoding functions
into n bitstrings. This results in a random encoding function into n bitstrings, i.e., the generic
group.

In this paper we consider a stronger notion of the hardness of the discrete logarithm problem
than that given by Definition 9.1 above. This stronger notion, called the effective hardness of the
discrete logarithm problem, is defined as follows: We first choose a particular recursive enumeration
A1,A2,A3, . . . of all polynomial-time generic algorithms. It is easy to show that such an enumer-
ation exists. In fact, the kth polynomial-time generic algorithm Ak can be chosen as a generic
algorithm obtained by executing the kth generic algorithmMk in at most nk + k steps, where n is
the length of the input of Mk. We use this specific enumeration as the standard one throughout
the rest of this paper.

Definition 9.2. We say that the discrete logarithm problem is effectively hard in the generic group
model if there exists a computable function f : N+ × N+ → N+ such that, for all i, d, n ∈ N+, if
n ≥ f(i, d) then

1

#Encfn

∑

σ∈Encfn

Pr[DLogAi
(n, σ) = 1] ≤ 1

nd
.

Theorem 9.3. The discrete logarithm problem is effectively hard in the generic group model.

In order to prove Theorem 9.3, we need the following lemma.7

Lemma 9.4. Let d ≥ 4. Then 2n ≥ nd for all n ≥ d2.

Proof. We first show that
2d ≥ d2 (23)

by induction. Obviously, 2k ≥ k2 holds for k = 4. For an arbitrary k ≥ 4, assume that 2k ≥ k2

holds. Then 2k+1 ≥ 2k2 ≥ (k + 1)2, where the second inequality follows from the inequality√
2x ≥ x+ 1 for all x ≥

√
2 + 1. Thus (23) holds.

Now, we show that
2n ≥ nd (24)

holds for all n ≥ d2 by induction. First, it follows from (23) that 2d
2 ≥ (d2)d, which implies that

(24) holds for n = d2. For an arbitrary k ≥ d2, assume that (24) holds for n = k. We note that

7In order to prove Theorem 9.3, it is suffice to use the inequality 2n ≥ nd which holds for all n ≥ ((d+1)/ ln 2)d+1

and not for all n ≥ d2 as in Lemma 9.4. The former follows immediately from the inequality ex ≥ x which holds for
all x ∈ R. However, we prefer a more “insightful” polynomial lower bound n ≥ d2 than the super-exponential lower
bound n ≥ ((d+ 1)/ ln 2)d+1. See Section 11 for further remarks.
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21/d − 1 ≥ ln 2/d > 1/(2d) > 1/d2, where the first inequality follows from the mean-value theorem.
Then, since k ≥ d2, we see that 2(k+1)/d ≥ 21/dk ≥ k + k/d2 ≥ k + 1. This implies that (24) holds
for n = k + 1. Thus, (24) holds for all n ≥ d2.

Proof of Theorem 9.3. Let k ∈ N+, and consider the kth generic algorithm Ak. Since the number
of oracle queries along any computation path of Ak is bounded to the above by nk + k, it follows
from Theorem 7.1 that there exists C ∈ N+ such that, for every n ∈ N+ and n-bit prime p,

Pr[DLogAk
(n, p) = 1] ≤ C(nk + k)2

p
≤ C(nk + k)2

2n−1
.

Therefore, for every n ≥ max{k, 2C},

1

#Encfn

∑

σ∈Encfn

Pr[DLogAk
(n, σ) = 1] ≤ n2k+1

2n
. (25)

Note by Lemma 9.4 that, for each d ∈ N+,

n2k+1

2n
≤ 1

nd
(26)

for every n ≥ (2k + d+ 1)2.
Thus we define a function f : N+ ×N+ → N+ by

f(k, d) = max{(2k + d+ 1)2, 2C}.

Then f is computable, and it follows from (25) and (26) that, for all k, d, n ∈ N+, if n ≥ f(k, d)
then

1

#Encfn

∑

σ∈Encfn

Pr[DLogAk
(n, σ) = 1] ≤ 1

nd
.

This completes the proof.

The hardness of the discrete logarithm problem in the generic group model given by Defini-
tion 9.1 follows immediately from Theorem 9.3.

Corollary 9.5. The discrete logarithm problem is hard in the generic group model.

We are interested in the instantiation of the generic group in the discrete logarithm problem.
Thus, it is convenient to define the hardness of the discrete logarithm problem relative to a specific
family of encoding functions.

Definition 9.6. Let {σn}n∈N+ be a family of encoding functions. We say that the discrete loga-
rithm problem is hard relative to {σn}n∈N+ if for all polynomial-time generic algorithms A and all
d ∈ N+ there exists N ∈ N+ such that, for all n ≥ N ,

Pr[DLogA(n, σ) = 1] ≤ 1

nd
.
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The corresponding effective hardness notion is defined as follows.

Definition 9.7. Let {σn}n∈N+ be a family of encoding functions. We say that the discrete
logarithm problem is effectively hard relative to {σn}n∈N+ if there exists a computable function
f : N+ × N+ → N+ such that, for all i, d, n ∈ N+, if n ≥ f(i, d) then

Pr[DLogAi
(n, σ) = 1] ≤ 1

nd
.

In a similar manner to the proof of Theorem 5.3, we can prove the following theorem.

Theorem 9.8 (Main result III). There exists a computable family of encoding functions relative
to which the discrete logarithm problem is effectively hard.

Proof. First, by Theorem 9.3 there exists a computable function f : N+ ×N+ → N+ such that, for
all i, d, n ∈ N+, if n ≥ f(i, d) then

1

#Encfn

∑

σ∈Encfn

Pr[DLogAi
(n, σ) = 1] ≤ 1

nd
.

It follows from Lemma 4.4 that, for all i, d, n ∈ N+, if n ≥ f(i, 2d) then

#

{

σ ∈ Encfn

∣

∣

∣

∣

Pr[DLogAi
(n, σ) = 1] >

1

nd

}

<
#Encfn

nd
. (27)

In order to apply the method of algorithmic randomness, i.e., Theorem 8.2, for each i, d, n ∈ N+

we define a subset [Ci,d,n]
≺ of Encf∞ as the set of all families {σn}n∈N+ of encoding functions such

that

Pr[DLogAi
(n, σn) = 1] >

1

nd
. (28)

Namely, we define a subset Ci,d,n of Encf∗ as the set of all finite families (σ1, . . . , σn) of encoding
functions where only σn is required to satisfy the inequality (28). Since Ci,d,n is a prefix-free set
for every i, d, n ∈ N+, it follows from (i) of Proposition 8.1 and (27) that, for each i, d, n ∈ N+, if
n ≥ f(i, 2d) then

L
(

[Ci,d,n]
≺) =

∑

s∈Ci,d,n

|I(s)| < 1

nd
. (29)

We choose a particular computable bijection

ϕ : N+ → { (i, d) | i ∈ N+ & d ≥ 2 },

and define (ϕ1(m), ϕ2(m)) = ϕ(m). We then define a computable function g : N+ → N+ by
g(m) = {f(ϕ1(m), 2ϕ2(m)) + 1}m+1. For each m ∈ N+, we define a subset Cm of {0, 1}∗ by

Cm =
∞
⋃

n=g(m)

Cϕ1(m),ϕ2(m),n. (30)
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It follows from (iii) of Proposition 8.1, (29), and Lemma 4.5 that, for each m ∈ N+,

L
(

[Cm]≺
)

≤
∞
∑

n=g(m)

L
(

[

Cϕ1(m),ϕ2(m),n

]≺
)

<

∞
∑

n=g(m)

1

nϕ2(m)
≤ 2

g(m)
≤ 1

2m
. (31)

We then define C by

C =
∞
⋃

m=1

Cm. (32)

Therefore, using (iii) of Proposition 8.1,

L
(

[C]≺
)

≤
∞
∑

m=1

L
(

[Cm]≺
)

<

∞
∑

m=1

1

2m
= 1. (33)

Next we show that C is an r.e. subset of Encf∗. It is easy to see that, given i, d, and n,
one can decide the finite subset Ci,d,n of Encf∗, since the dyadic rational Pr[DLogAi

(n, σ) = 1] is
computable, given i, n, and an encoding function σ into n bitstrings. Thus, since ϕ and g are
computable functions, it follows from (30) and (32) that C is an r.e. subset of Encf∗.

We then show that L
(

[C]≺
)

is a computable real. For each k ∈ N, we define a finite subset Dk

of C by

Dk =

k
⋃

m=1

g(m)2k−1
⋃

n=g(m)

Cϕ1(m),ϕ2(m),n.

Given k ∈ N, one can decides the finite set Dk, since ϕ and g are computable functions and moreover
one can decide the finite set Ci,d,n, given i, d, and n. Therefore, given k ∈ N, one can calculate the
dyadic rational L

(

[Dk]
≺) based on (i) of Proposition 8.1. On the other hand, note that

C \Dk ⊂





k
⋃

m=1

∞
⋃

n=g(m)2k

Cϕ1(m),ϕ2(m),n



 ∪
∞
⋃

m=k+1

Cm.

Thus, using (ii) and (iii) of Proposition 8.1, (29), Lemma 4.5, and (31) we see that, for each k ∈ N,

L
(

[C \Dk]
≺) ≤

k
∑

m=1

∞
∑

n=g(m)2k

L
(

[

Cϕ1(m),ϕ2(m),n

]≺
)

+
∞
∑

m=k+1

L
(

[Cm]≺
)

<

k
∑

m=1

2

g(m)2k
+

∞
∑

m=k+1

1

2m
≤

k
∑

m=1

1

2m+k
+

1

2k
<

1

2k−1
.

Therefore, since [C]≺ = [Dk+1]
≺ ∪ [C \Dk+1]

≺, using (ii) and (iii) of Proposition 8.1 we have
∣

∣L
(

[C]≺
)

− L
(

[Dk+1]
≺)

∣

∣ ≤ L
(

[C \Dk+1]
≺) ≤ 2−k for each k ∈ N. Hence, L

(

[C]≺
)

is a com-
putable real.

Now, it follows from Theorem 8.2 that there exists a computable family {σn}n∈N+ of encoding
functions which is not in [C]≺. Let i, d, n ∈ N+ with n ≥ g(ϕ−1(i, d + 1)). We then define
m = ϕ−1(i, d + 1), i.e., ϕ(m) = (i, d + 1). Since {σn}n∈N+ /∈ [C]≺ and n ≥ g(m), it follows from
(32) and (30) that {σn}n∈N+ /∈

[

Cϕ1(m),ϕ2(m),n

]≺
= [Ci,d+1,n]

≺. Therefore, we see that the family
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{σn}n∈N+ of encoding functions satisfies that Pr[DLogAi
(n, σn) = 1] ≤ 1/nd+1 < 1/nd for each

n ∈ N+. Thus, since the mapping N+ × N+ ∋ (i, d) 7→ g(ϕ−1(i, d + 1)) is a computable function,
it follows from Definition 9.7 that the discrete logarithm problem is effectively hard relative to
{σn}n∈N+ .

Corollary 9.9. There exists a computable family of encoding functions relative to which the discrete
logarithm problem is hard.

Proof. The result follows immediately from Theorem 9.8.

10 The Diffie-Hellman problem

In this section we consider the hardness of the computational Diffie-Hellman (CDH) problem in
the generic group model. For the CDH problem we can show the analogues of all the results about
the discrete logarithm problem shown in the preceding sections. In this section, in particular we
present the analogue of Theorem 9.8 for the CDH problem without proof.

We first recall the analogue of Theorem 7.1 for the CDH problem. We thus consider the
following experiment for a polynomial-time generic algorithm A, a parameter n, and a positive
integer N ≤ 2n:

The computational Diffie-Hellman experiment CDHA(n,N):

1. Generate an encoding function σ into n bitstrings uniformly.

2. Generate x ∈ ZN uniformly.

3. Generate y ∈ ZN uniformly.

4. The output of the experiment is defined to be 1 if A(N ;σ(1), σ(x), σ(y)) = σ(xy)
and 0 otherwise.

Shoup [27] showed the following lower bound for the complexity of the CDH problem in the
generic group model, which is the analog of Theorem 7.1.

Theorem 10.1 (Shoup [27]). There exists C ∈ N+ such that, for every generic algorithm A,
n ∈ N+, and N with 2 ≤ N ≤ 2n − 1,

Pr[CDHA(n,N) = 1] ≤ Cm2

p
,

where p is the largest prime divisor of N and m is the maximum number of the oracle queries
among all the computation paths of A.

Now, consider the following experiment for a polynomial-time generic algorithm A, a parameter
n, and an encoding function σ into n bitstrings:

The computational Diffie-Hellman experiment CDHA(n, σ):

1. Generate an n-bit prime p uniformly.

2. Generate x ∈ Zp uniformly.
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3. Generate y ∈ Zp uniformly.

4. The output of the experiment is defined to be 1 if A(p;σ(1), σ(x), σ(y)) = σ(xy)
and 0 otherwise.

Then the effective hardness of the CDH problem relative to a specific family of encoding func-
tions is defined as follows.

Definition 10.2. Let {σn}n∈N+ be a family of encoding functions. We say that the CDH problem
is effectively hard relative to {σn}n∈N+ if there exists a computable function f : N+ × N+ → N+

such that, for all i, d, n ∈ N+, if n ≥ f(i, d) then

Pr[CDHAi
(n, σ) = 1] ≤ 1

nd
.

Based on Theorem 10.1, we can show the following analogue of Theorem 9.8 in the same manner
as the proof of Theorem 9.8.

Theorem 10.3 (Main result IV). There exists a computable family of encoding functions relative
to which the CDH problem is effectively hard.

11 Polynomial-time effective hardness

In Section 6 we have demonstrated the importance of the effective security notions in modern
cryptography. The replacement of the conventional security notions of cryptographic schemes by
the corresponding effective security notions results in the replacement of the conventional hardness
notions of computational problems, which are used as computational assumptions to prove the
security of the cryptographic schemes, by the corresponding effective hardness notions, as we have
seen in Section 6 where the RSA assumption in Theorem 6.1 is replaced by the effective RSA
assumption in Theorem 6.2. In addition, we have been able to prove the main results given in the
previous two section, Theorems 9.8 and 10.3, by converting Shoup’s original results about the lower
bounds of the complexity, Theorems 7.1 and 10.1, into the form of effective hardness. Thus, the
effective hardness notions introduced in the previous two sections are useful and considered to be
a natural alternative to the conventional hardness notions of computational problems in modern
cryptography.

Ultimately, it would seem more natural to require that the functions f : N+ × N+ → N+ in
Definitions 9.2, 9.7, and 10.2 are polynomial-time computable rather than simply computable. We
call this type of effective hardness polynomial-time effective hardness. In Theorem 9.3 we have
shown that the discrete logarithm problem is effectively hard in the generic group model. In the
proof of Theorem 9.3, the function f has the form f(i, d) = max{(2i + d + 1)2, 2C}. This is a
polynomial-time computable function. Thus, the proof of Theorem 9.3 actually shows that the
discrete logarithm problem is polynomial-time effectively hard in the generic group model.

Conjecture 3 below is a polynomial-time effective version of Theorem 9.8, which states that
the discrete logarithm problem is effectively hard in the standard model for some finite cyclic
group such that the group operations are polynomial-time computable. In the future, it would
be challenging to determine whether Conjecture 3 (or its appropriate modification) holds for some
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computational assumption COMP which seems weaker than the hardness of the discrete logarithm
problem itself.

Conjecture 4. Under the assumption COMP, there exists a polynomial-time computable family
of encoding functions (or a polynomial-time computable family of families of encoding functions)
relative to which the discrete logarithm problem is polynomial-time effectively hard.
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