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Abstract

We here study previous results due to Hopcroft and Almeida et
al. to propose an incremental split-based deterministic automata mini-
mization algorithm whose average running-time does not depend on the
size of the alphabet. The experimentation carried out shows that our
proposal outperforms the algorithms studied whenever the automata
have more than a (quite small) number of states and symbols.
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1 Introduction

The algorithms that explicitly compute the Nerode’s equivalence to mini-
mize deterministic finite automata (DFA) can be classified into two main
categories. The first one takes into account every pair of states in the au-
tomaton and search for a string to distinguish both states. Algorithms that
follow this approach are due to Huffmann-Moore [1], Watson and Daciuk [2],
Almeida et al. [3] among others. The second approach considers an initial
partition of the automaton set of states into final and non-final states. This
partition is subsequently refined in order to obtain the partition induced
by the Nerode’s equivalence relation. The algorithms by Hopcroft [4] and
Moore [5] follow this strategy. See [6] for a review of these methods.

It is well known that the most time-efficient method is the one by
Hopcroft. This method has a worst-case running-time O(knlogn) where n
denotes the number of states of the automaton and k the number of symbols
in the alphabet. It has also been stablished that the average time-complexity
of Moore’s and Hopcroft’s algorithms is O(kn loglogn) [7].



Recently, Almeida et al. propose an incremental algorithm with time
complexity of O(kn?a(n)), where a(n) is a function related to the inverse of
Ackermann’s function, that grows so slowly that can be taken as constant.
The experiments carried out by the authors using a corpus of uniformly
random-generated automata show that, despite the algorithm is linear with
respect the size of the alphabet, the average running-time of the algorithm
does not depend on the size of the alphabet. This is due to the fact that,
taking into account automata from a uniform distribution, once the number
of states and symbols in the alphabet is over a (quite small) bound, almost
every generated automaton is already minimal [8].

The experimental behavior of the incremental algorithm proposed by
Almeida et al. is interesting in some circumstances where the number of
symbols is comparable to the number of states because, in those cases, this
algorithm theoretically outperforms Hopcroft’s method.

In this paper we propose an incremental split-based minimization al-
gorithm whose averaged running-time does not depend on the size of the
alphabet. We used the automata dataset used in [3] in an experimentation
that confirms that, in certain circumstances (automata with big enough al-
phabet), our proposal outperforms the algorithms by Hopcroft and Almeida
et al.

2 Preliminaries

2.1 Notation and definitions

We recall in this section the essential definitions for the results presented.
We refer the interested reader to the book by Hopcroft and Ullman [1].

Let 3 be a finite alphabet and let X* (the set of all possible words using
symbols in ) be the free monoid generated by ¥ with concatenation as the
internal operation and the empty string A as neutral element. A language
L over ¥ is defined as any subset of ¥*.

A deterministic finite automaton (DFA) is a 5-tuple A = (Q, %, 9, qo, F),
where () is a finite set of states, X is an alphabet, ¢y € Q) is the initial state,
F C Q is the set of final states and § : Q x ¥ — @ is the transition function.
When the transition function is a total function then the automaton is said
to be complete. The transition function can also be seen as 6 C (Q X X x @),
and can be extended in a natural way to >*. We say the DFA A is accessible
if, for each ¢ € @, there exists a string x such that §(go,z) = ¢. In the
following we will assume that DFAs are complete and accessible.

The right language of a state ¢ of a DFA A is defined as R;;‘ ={z €
¥* @ 6(q,z) € F}. Two states p and ¢ of an automaton A are said to be
equivalent when R]‘;‘ = R;;‘. A DFA is minimal when it has no two equivalent
states. The minimal DFA for a given language is unique up to isomorphism,



and any process to obtain this DFA for a language is equivalent to the
computation of the Nerode’s equivalence for the language [1].

A partition 7 of a set Q is a set {P, Py,..., P;} of pairwise disjoint
non-empty subsets of @) such that the union of all the P; equals ). We will
refer to the subsets of a partition as blocks, and we will denote the block of
7 which contains p with [p],. A partition 7 is refined by my (7 is coarser
than 79) if each class in 7y is contained in some class in mp. Let 7 and
w9 be two partitions of a set ), we will denote with m; A 7wy the coarsest
partition which refines both 7 and . The classes of this partition are the
non empty sets in P N P,, where P} € 71 and P, € mo.

Given a DFA A = (Q,%,0,q0, F), let PR C Q and a € X. Let us refer
to (P,a) as a splitter and also denote by (P,a)|R the split of the set R into
the sets R = 6 '(P,a) N R and R” = R — R’ when they are non-empty.

2.2 DFA minimization algorithms

Hopcroft’s algorithm has the best theoretical time-complexity bound to
minimize automata [4]. Many papers are devoted to describe this method
[9, 10, 11, 12, 6] and it is outlined in Algorithm 2.1. Briefly speaking, the
algorithm maintains a list of splitters (a pair containing a symbol and a sub-
set of the set of states) that allow to successively refine the initial partition
of the set of states into final and non-final states. A careful implementation
of this algorithm leads to a worst-case time-complexity O(knlogn).

Despite its worse theoretical time-complexity bound, an algorithm that
in some circumstances performs better than Hopcroft’s is due to Almeida et
al. [3]. This algorithm is presented as an evolution of a previous algorithm
by Watson and Daciuk [2] and follows a similar approach to the one by Huff-
mann and Moore described in [1]. Instead of refining an initial partition of
the set of states, this incremental algorithm considers the sets of final and
non-final states to establish the first pairs of non-equivalent states. Then,
using the transition function of the automaton and for each pair (p,q) of
states whose relationship has not yet been stablished, the algorithm car-
ries out a recursive depth-first search for equivalence (or non-equivalence)
evidence. In order to avoid extra computation, for any pair of states, a
normalization function orders the states in the pair and outputs the result.
When this traversal concludes that the states are equivalent, each pair of
explored states is also annotated as equivalent. When the traversal finds a
pair (p’,¢') of non-equivalent states, then each pair in the path from (p,q)
to (p/,¢') is annotated as non-equivalent. Algorithms 2.2 and 2.3 describe
the method in a similar way the authors do in their paper. We here do
not intend to fully describe the algorithm by Almeida et al. and refer the
interested reader to [3]| for further information (including implementation
details).

As mentioned in the introduction, this incremental algorithm has a the-



Algorithm 2.1 Hopcroft’s DFA minimization algorithm.
Input: A DFA A
Output: The minimal DFA equivalent to A

1: Method
20 M= {F, Q- F}
3: S = the smallest of the sets F and Q — F
4: ¥ = {}
5. for a € ¥ do £ = Append(Z, (S,a))
end for
6: while £ # {} do
7. Extract (S,a) in &
8:  Delete (S,a) from £
9:  for B € 7 such that B is refined by (5,a) do
10: (B’, B")=(S,a)|B
11: Substitute in 7 the block B for B’ and B”
12: C = the smallest of the sets B’ and B”
13: for all b € ¥ do
14: if (B,b) € £ then
15: Update .Z by substituting (B, b) for (B’,b) and (B”,b)
16: else
17: L = Append(Z, (C,b))
18: end if
19: end for

20: end for

21: end while

22: Return (A/7)
23: End Method.

oretical worst time-complexity of O(kn?) for practical values of n. Nev-
ertheless, the experimentation reported by Almeida et al. certainly shows
that the time complexity of their incremental algorithm (when minimizing
deterministic automata from an uniform distribution) does not depend on k.
As mentioned above, this fact would make the algorithm competitive with
respect to Hopcroft in some cases. The reason of this behavior is due to the
depth-first traversal of the transition function and it makes the algorithm
interesting in some practical circumstances, i.e. whenever the size of the
alphabet is, at least, comparable to the number of states of the automaton
[13]. Example 1 depicts the behavior of the algorithm.

Example 1 Let us consider the automaton in Figure 1.

The incremental algorithm initially stores the inequivalence of every pair
in (Q — F) x F. For this example, see Table 1. Then, the algorithm an-
alyzes the equivalence of each pair of states for which it has not yet been



Algorithm 2.2 Incremental DFA minimization algorithm by Almeida et al.
Input: A DFA A= (Q,%,0,q0, F)
Output: The minimal DFA equivalent to A

1: Method

2: Let M be a matrix indexed by @ x @ and initialize it to undefined

3: for (p,q) € (Q — F) x F do

4:  (p,q) = Normalize(p,q) // normalization of the pair of states
5. M]lp, q] = inequivalent
6: end for
7. for p € Q do M|p, p] = equivalent
end for
8 Let qo,q1,...,qy, be an enumeration of ()

9: forallg; € Q (0<i<n-—1) do
10: forallg;cQ (i+1<j<n) do

11: (4;,q;) = Normalize(q;, q;)
12: if Mlq;, q}] # undefined then Continue
end if

13: Initialize FQUIV and PATH to the empty list

14: if EquivP(q;,q;, EQUIV, PATH) then

15: for (p,q) in EQUIV do M|p,q| = equivalent
end for

16: else

17: for (p,q) in PATH do M]|p,q| = inequivalent
end for

18: end if

19:  end for

20: end for

21: Return A,,;, according the equivalences and inequivalences found.
22: End Method.

stablished. For each one of these pairs of states the algorithm recursively
calls the equivalence test using as input the pairs of states reached with each
one of the symbols in the alphabet.

Then, the algorithm considers the pair (1,5) which leads to the analysis
of pair (2,7) (note that 6(1,a) = 2 and that §(5,a) = 7). The sequence of
pairs traversed is shown in Figure 2. Taking into account that the pairs in
the form (p,p) are equivalent, the sequence of pairs of states traversed can
be summarized as shown below:

(1,5) % (2,7) > (5,9) 2 (3,10)

The fact that states 3 and 10 are inequivalent, implies that all the pairs in
the path from (1,5) to (3,10) are also inequivalent, and the algorithm marks
them as such.



Algorithm 2.3 FquivP function
Input: A pair of states (p,q)
Input: A list PAT H with already visited pairs of states
Input: A list FQUIV with pairs of states detected as equivalent
Output: True if both states are equivalent
(EQUIV would contain the list of new equivalent states)
Output: False if both states are not equivalent
(PATH would contain the list of new inequivalent states)
1: Method
2: if M|p,q] = inequivalent then return False

end if
3: if (p,q) € PATH then return True
end if
4: Append the pair (p,q) to PATH
5: for all a € ¥ do
6:  (p',q) = Normalize(d(p,a),d(q,a))
7. if M[p',q'| = undefined and (p',q') ¢ EQUIV then
8: Append the pair (p/,¢') to EQUIV
9: if not EquivP(p',q', EQUIV, PATH) then
10: return False
11: else
12: Remove the pair (p/,¢') from PATH
13: end if
14:  end if
15: end for

16: Append the pair (p,q) to EQUIV
17: return True
18: End Method.

The algorithm considers then the pair (1,8) which is found to be inequiv-
alent because the pair (2,8) is already marked as such. The same happens
with pairs (1,9) and (1,10). Table 2 depicts the current stage of the mini-
mization.

When the algorithm ends, the minimal DFA for the language is output,
that corresponds to the following partition of states:

{13 {2}, 3}, {4}, {5}, {6}, {7}, {8,10}, {9}}

Note that the algorithm also stores the equivalences found. This allows
to partially minimize the input automaton without the need to finish the
minimization process.



Figure 1: Automaton example.

|1l2]3[4]5]6[7[8]9]10

1| v XXX X | X

2 v X XX | X
3 v X XX | X
4 v | X X |1 X | X
) vV I XX

6 v X1 X | X
7 VXXX
8 v

9 v

10 v

Table 1: Initial distinguishable (inequivalent) and equivalent pairs of states.

3 A hybrid algorithm

We present a new DFA minimization method that intends to improve the
behavior of the algorithm by Almeida et al. summarized above. The min-
imization method shares features from both Hopcroft’s and Almeida algo-
rithm. It is described in Algorithm 3.1.

In the same way the incremental algorithm by Almeida et al. does,
the algorithm analyzes each pair of states whose equivalence has not been
stablished. The main difference with respect Almeida’s algorithm is the
following: whenever a pair of inequivalent states is found, instead of marking
the pairs of states in the recursion stack (note that they are the pairs stored
in PATH) as inequivalent, our algorithm successively refines the current
partition 7 using a splitter (in the same way Hopcroft’s algorithm does).

In order to store the evidence of the equivalences and inequivalences
found, the algorithm keeps updated two partitions. Partition 7 is initialized
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Figure 2: Pairs of states traversed in the automaton from pair (1,5). Small
numbers show the order in which they are considered.

|112|3[4]5]6[7[8]9]10
1T [VIX[X[X[X[X[X[X]X]X
2 v X X[ X[X[X
3 v X X|[X[X
4 VX X [X[X
5 VXX X
6 v X [X[X
7 VXXX
8 v

9 v
10 v

Table 2: Relationships found after the analysis of the pairs (1,5), (1,8),
(1,9) and (1,10).

using an initial division of the states of the automaton into final and non-final
states. Partition p contains the states which there is equivalence evidence
for, and therefore it is initializes with as many singletons as states in the
input DFA. These two partitions and a traversal of one of the two halves
of the pairs of states matrix, make unnecessary the lists used by Almeida’s
et al. in their algorithm. Note that the normalization of the pairs of states
are also unnecessary and that a plain ordering is enough to avoid extra
computation (line 7 in Algorithm 3.2).

Thus, for each pair of states p and ¢ whose equivalence has not been
decided (states such that [p|r = [¢]r and [p], # [q],), the algorithm calls
Algorithm 3.2 to carry out a depth-first analysis of the descendants of pair
the pair (p,q). If a non-equivalence is found, then the algorithm returns
a pair of non-equivalent states. The algorithm returns True if no such
evidence is found.

Let us note that this algorithm uses a list STATFES to store the pairs
of states reached while the analysis is in progress. The algorithm also stores



Algorithm 3.1 Hybrid algorithm

Input: A DFA A= (Q,%,4,q,F)
Output: The minimal DFA equivalent to A

1: Method

22 m={Q — F,F} // Non-equivalent states
3: p={{p} : PR} // Equivalent states
i for all (p,q) € QX @ : [ple == [qlu A [pl, # [d], do

5. Initialize STATES and TODOLIST to empty lists

6:  Initialize A to an empty hashed list

7. out = AreEquivalent(p, q)

8 if out # True then

9: Append out to TODOLIST

10: while TODOLIST # EMPTY LIST do

11: Extract (p/,q’), the first element in TODOLIST

12: Delete (p/,¢') from STATES

13: for all (p”,q",a) € Ay 4 do

14: if (p7,q") € STATES then

15: if [p”]x == [¢"]~ then

16: Let P = the smallest of the sets [p'], and [¢],
17: T=mA(P,a)|lQ

18: end if

19: Append (p”,¢") to TODOLIST
20: end if
21: end for
22: end while
23:  end if
24:  for all (p',¢') € STATES do
25: if [p'], # 4], then
26: Update p by merging the classes [p'], and [¢'],
27: end if
28:  end for
29: end for

30: Obtain A,,;, according the equivalences and inequivalences found.
31: Return (Auin)
32: End Method.




Algorithm 3.2 AreEquivalent function

Input: A pair of states (p,q)
Output: A pair (p/,q’) of non-equivalent states
Output: True when no evidence found of both states to be non-equivalent

10:
11:
12:

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

Method

Append (p,q) to STATES

Initialize EX PL to an empty stack
for a € ¥ do Push(EXPL,(p,q,a))
end for

while EXPL # EMPTYSTACK do

(¢',q',a) = Pop(EXPL)
Set (p”,q”) to Order(6(p,a),0(q',a))
if [p"]x == [¢"]» then
if [57], # [¢'], then
if (p°,q") & STATES then
Append (p”,q”) to STATES
for b € ¥ do Push(EXPL,(p”,q",b))
end for
end if
if There is no element (p',¢’,b) in Ay, ) (where b € ¥) then
Add (p',¢';a) to Ay g
end if
end if
else
Append (p”,q”) to STATES
if There is no element (p’,q',b) in Ay o7y (where b € ) then
Add (p, ¢, a) to Agy o)
end if
return (p”,q")
end if

25: end while
26: return True
27: End Method.

10



the ascendants of every visited pair (using a hashed list A). In this way, if
A(q,,q2) contains the tuple (p1, p2, a) then it means that from the pair (p1, p2)
it is possible to reach the pair (g1, ¢2) using the symbol a (in other words,
Order(0(p1,a),d(p2, a)) = (q1,¢2))-

Essentially, the purpose of these data structures is to partially build a di-
rected and acyclic graph which allows to maintain efficiently the information
to, later, update the partitions m and p.

If Algorithm 3.2 concludes that the pair of input states is not equivalent
it returns a pair (p, ¢) of non-equivalent states. Then, Algorithm 3.1 carries
out a sequence of split operations that begins with the consideration of the
pairs of states that reach (p,q). We note that this information is stored in
A(p,q) (Algorithm 3.2, line 10). Note that every split operation carried out
may trigger new split operations. To avoid unnecessary splits to be carried
out, the algorithm checks whether the operation is necessary or not (lines
14 and 15).

Once no more splits are possible, all the remaining pairs in the list
STATES denote two equivalent states. Algorithm 3.1 uses this informa-
tion to accordingly update the partition p (line 24). Note that this implies
the proposed algorithm to be incremental in the same way the incremental
algorithm by Almeida et al. is.

Proposition 2 proves the correctness of the method and Example 3 de-
picts the behavior of the method. Proposition 4 proves the quadratic time
complexity of the algorithm.

Proposition 2 For any given DFA A, Algorithm 3.1 outputs the minimal
DFA that accepts L(A).

Proof. In order to prove the correctness of the method, first we take
wnto account that the main loop considers only those states which no evi-
dence has been found for (Algorithm 3.1, line 4). For each of those pairs,
the subsequent call to the equivalence function decides its equivalence (or in-
equivalence). In any case, the algorithm ends when the equivalence is decided
for the input pair of states.

In order to avoid unnecessary loops, Algorithm 3.2 stores all visited pairs
of states in the list STATES. First, whenever Algorithm 3.2 finds a pair
of inequivalent states (p,q), the method has a splitter available to refine
the partition m (there is a tuple (p',q,a) in Ay, 4 where both ([plx,a) and
([q)x,a) are valid splitters able to distinguish the states p' and q'). Note that
any splitting process may trigger new splits. Algorithm 3.1 updates the list
TODOLIST to maintain that information.

Second, in the same way it is proved in [3], when Algorithm 3.2 returns
True, note that all the explored pairs of states are also equivalent, and there-
fore, partition p can be conveniently updated. Let us also note that, once a
sequence of refinements of partition m has ended, all the remaining pairs in
the STATES list are equivalent, and therefore, the partition p can be also

11



updated.

Note also that this refinement/update process is repeatedly carried out
taking into account every reached pair of states, and conclude when both
partitions are equal. U

Example 3 Let consider the automaton in Figure 3. Algorithm 3.1 uses
partition p to store the evidence of equivalent states. Partition 7 is initialized
with the trivially inequivalent states. The initial values of both partitions are:

Figure 3: Example of automaton.

r={{1,2,3,4,5,6,9},{7,8,10}}
p={{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}}

As we stated above, we note that the pairs of states (p',q’) such that
W = [d']x and [p'], # [d'], are those for which there is no evidence and
have to be analyzed.

Algorithm 3.1 ﬁrst analyzes the pair (1,2) and searches for a pair of
inequivalent states'. Figure 4 summarizes the sequence of pairs analyzed by
the function AreEquivalent.

Let us note that the method stores the information depicted in Figure 4
using the list STATES and the hashed structure A, whose values in this
case are the following:

STATES ={(1,2),(2,6),(3,6), (4,6), (5,6), (3,4), (2,5), (6,8)}

A 2)=0 A6=1(4,6,a)}
Ape={(1,2,a),(3,6,a)} Apa={(5,6,b)}
Ai6)=1{(2,6,0),(3,6,0)} Aps={(3,4,a)}
A(476):{(1’2’b)’( ’5’b)} A(6,8) {(3’4’ b)}

Note that the states in the pair (6,8) are not equivalent. The algorithm
considers the tuples in Agg)y to construct the splitter. Thus, the smallest

We note that, in order to obtain an easier-to-follow example of run, in line 12 of
Algorithm 3.2 we stack the symbols of the alphabet in reverse order.

12



6 (12)
(1,2) —2+ (4,6)
a a
\(1) (7)/ (3,4) \(1%)‘
@ (5.6) © |& (25
b (4) N } . A
(5) b (21\ N | (8) (67 8) Vs
C\ (3) @ Ny X - -
(3,6) 6,6) ~———— a

Figure 4: Pairs of states traversed in the automaton from pair (1,2). Small
parenthesized numbers note the order in which the analysis is carried out.
Nodes reached by dashed edges are equivalent and are not considered. Bold
pair (also marked with X) shows the first inequivalence found.

of the blocks 6], = {1,2,3,4,5,6,9} and [8] = {7,8,10} together with the
symbol b are used to split the current  partition. Using the splitter ([8]:,b),
and taking into account that =1 ({7,8,10},b) = {4,7,9,10} the result of the
refinement of the partition is:

7= {{1,2,3,5,6},{4,9}, {7, 10}, {8} 1.

This process distinguish the states 3 and 4. To keep triggering the re-
finement of the partition, the pair (3,4) is stored in TODOLIST.

The method now consider the pair (3,4) and uses the tuple (5,6,b) to
obtain the splitter ({4,9},b) because the block [4], = {4,9} is smaller than
the block (3], = {1,2,3,5,6}. Thus, given that 6~1({4,9},b) = {1,5,8}, the
partition obtained is the following:

7= {{1,5},12,3,6}, {4,9}, {7, 10}, {8} }.

The states 5 and 6 are distinguished and the pair (5,6) is now stored in
TODOLIST.

The process continues considering the tuples in A5 6) = {(4,6,a)}. Note
that the states 4 and 6 have been already distinguished, therefore no split is
necessary. The method detects it (Algorithm 3.1, line 15) and carries out
no refinement. Nevertheless, the pair (4,6) is stored in TODOLIST to
continue the minimization process.

Now the method analyzes the tuples in Ay = {(1,2,0),(2,5,0)}. Note
that both the pairs (1,2) and (2,5) contain already distinguished pairs, There-
fore, mo split operation is carried out. Both pairs are stored in TODOLIST.

The list A oy is empty, therefore, the next pair of states considered is
(2,5) and the tuple (3,4,a) € A5). Please note that the pair (3,4) has

13



already been considered by the method. This fact is detected (Algorithm 3.1,
line 14) and the splitting sequence of this iteration ends.

The pairs that remain in the list STATES contain equivalent states and
the algorithm modifies the partition p accordingly. The partitions at the end
of this iteration are shown.

™= {{17 5}7 {27 3, 6}7 {47 9}7 {77 10}7 {8}}
p={{1},{2,3,6}, {4}, {5}, {7}, {8}, {9}, {10}}

The method now considers the pair (1,5). The analysis of this pair
reaches the pair (2,6) of equivalent states and the pair (4,4). Therefore
Algorithm 3.2 returns True and the blocks [1], and [5], are merged. Now,
the partitions are the following.

™= {{17 5}7 {27 3, 6}7 {47 9}7 {77 10}7 {8}}
p={{1,5},{2,3,6},{4}, {7}, {8}, {9}, {10}}

Please note that the next pair to be analyzed is (4,9). The pairs (5,5)
and (8,10) are reached. Note that the second pair contains two inequivalent
states. Therefore, the smaller of the blocks [8]r = {8} and [10], = {7,10}
and the symbol b are considered to split the partition. Since 6~ 1({8},b) =
{4}, the current partitions are:

7= {{1,5},{2,3,6},{4},{7,10},{8},{9}}
p={{1,5},{2,3,6}, {4}, {7}, {8}, {9}, {10}}

The last pair to be analyzed is (7,10). The process leads to detect that
both states are equivalent, thus, the partition p is updated and the minimiza-
tion of the automaton ends.

Proposition 4 Algorithm 3.1 has O(kn?) time complexity, where n and k
denote the number of states and symbols of the automaton respectively.

Proof. In order to prove the complexity bound, please mote that parti-
tions m and p guide the calls to Algorithm 3.2 in the main loop of Algorithm
3.1 (line 7). In this way, Algorithm 3.2 will be called while these partitions
were different.

Let us stress that whenever, either the partition p or w (this by a split
operation) are updated, it implies that, in the worst case, either partition
m number of classes is increased by one, or partition p number of classes
1s decreased by one. Therefore, in the worst case, n of such operations are
needed in order the partitions to be equal.

Let us now recall Proposition 5.3 in the paper by Berstel et al. [6], where
the authors study Hopcroft’s algorithm time-complexity. That proposition
proves that, taking into account some data structures, the class to which
a state belongs can be accessed in constant time, the enumeration of the
elements of a class can be carried out in time proportional to the size of the
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class, and also that the addition and deletion of an element in a class is done
in constant time. Using these structures, the time complexity of splitting a
partition is linearly-bounded with respect to the splitting set size. Other works
also study the data structures to assure this (for instance [12, 14]).

Let us mention that, using hash tables, both the insertion and search
operations in the list STATES can be carried out with constant time com-
plexity. The implementation of A can consider double hashed tables in or-
der to achieve constant access time. The remaining data structures can be
implemented using stacks, also achieving constant time complexity of the
operations.

We note that, for any given pair of states, Algorithm 3.2 explores the
pairs of states accesibles with each symbol. Once a pair of states is visited,
the relationship between the states in the pair will be taken into account in
the partitions. Therefore, a pair of states will not be considered twice, and,
no matter the number of calls, the total number of iterations of the loop in
Algorithm 3.2 is bounded by O(kn?).

Once a call to Algorithm 3.2 has ended, the pairs are used to either refine
partition ™ or merge two blocks of partition p. We note that the method does
not carry out unnecessary operations on partitions. We recall that, in order
to minimize the input automaton, in the worst case, n of such operations
are needed and that both operations have O(n) time complexity.

The number of refinement/merging operations carried out for each call
to Algorithm 3.2 depends on the input automaton and cannot be apriori sta-
blished. In the worst case, the equivalence function will have quadratic time
complexity, but in that case, all the pairs of states are traversed, and only
n of such pairs (in the worst case) are considered to modify the partitions.
Therefore, the final complezity of the algorithm is O(kn?).

O

4 Experimental results

In order to test the behavior of the proposed algorithm, we used the same
dataset 2 of uniformly distributed automata used in [3]. The dataset includes
automata with 5, 10, 50 and 100 states and alphabet sizes of 2, 10, 25 and
50 symbols. For each configuration, 20.000 automata were considered. In
[3], the authors state that this corpus ensures the results obtained to be
statistically significant with a 99% confidence level within a 1% error margin.

All three algorithms were implemented in C++ (compiler MSVC 2013
Update 2 —Release x64 with LTCG on—). The experiments were car-
ried out in an AMD Phenom X4 965 3.2 GHz with 4GB of RAM (DDR2

2 According previous personal communication with the authors, the dataset was slightly
modified in order to provide to each automaton in the corpus a uniformly-chosen set of
final states.
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800MHz), running a Windows 8.1 64bit operative system.

Table 3 shows the performance of the three algorithms studied: Hop-
croft’s; the incremental algorithm by Almeida et al. and our hybrid proposal.
The performance is measured in terms of number of automata minimized

per second.

[ n=>5 I
I | k=2 [ k=10 [ k=25 | k=50 ||
Hopcroft 338045 | 239171 | 158640 | 102432
Incremental || 340501 | 338123 | 334446 | 329833
Hybrid 216983 | 207066 | 204630 | 199310
[ n=10 I
I T k=2 [ k=10 | k=25 | k=50 |
Hopcroft 223237 | 139188 84125 50975
Incremental || 209701 | 207680 | 202206 | 201479
Hybrid 123843 | 122177 | 119744 | 120365
[ n =50 I
I | k=2 | k=10 [ k=25 | k=50 ||
Hopcroft 52657 30127 17000 9826
Incremental 13238 12813 12789 12666
Hybrid 29786 30239 29777 29809
|| n = 100 ||
I | k=2 [ k=10 | k=25 | k=50 |
Hopcroft 25018 13797 7689 4194
Incremental 1884 1798 1800 1793
Hybrid 14345 14948 15239 14982

Table 3: Experimental results (number of minimized DFAs per second).

We stress here the difference of the experimental results we show in this
paper and the results reported in [3]. In the paper by Almeida et al. the
incremental algorithm outperforms Hopcroft’s algorithm regardless of the
number of states or the size of the alphabet of the automata. This does
not accord with the theoretical behavior of the algorithms. The higher
the number of states of the automata the more obvious the divergence.
The most feasible reasons for these discrepancies could be due to an unfair
implementation of Hopcroft’s algorithm.

Figure 5 summarizes the behavior of our implementation of the algo-
rithms. The experimentation carried out with the dataset used in [3] shows
that the performance of both the incremental and the hybrid algorithms
does not depend on the size of the alphabet.
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We would also like to stress that Hopcroft’s algorithm always obtains
the best results when the size of the alphabet is significantly smaller than
the size of the automata. Figure 6 shows that, despite the initially worse
performance of our proposal and the Hopcroft’s algorithm, both methods
improve the behavior of the algorithm by Almeida et al. from a given size of
the automata on. This behavior is consistent with the theoretical asymptotic
complexity of the algorithms. Furthermore, when the biggest alphabets
of this dataset are taken into account, our hybrid proposal outperforms
the method by Hopcroft, no matter the number of states of the automata
(Figures 5 and 6).

Figure 7 shows that, regardless the size of the alphabet, the compared
performance tendency between our proposal and the incremental algorithm
increases, and therefore, it is expected that our algorithm to behave better
for even bigger automata. Note also that the curves show both algorithms
have the same dependence with respect to the size of the alphabet.

Let us recall that the main target of this study was the design of a split-
minimization algorithm whose behavior would not be influenced by the size
of the alphabet (as the algorithm by Almeida et al. is). This was the main
reason to use the dataset in [3] to test the method.

For a given k value, it was expected that the hybrid algorithm would be-
have better than Hopcroft’s method for automata with a number of states
comparable to k. Nevertheless, for automata with a number of states sig-
nificantly bigger than k, Hopcroft’s algorithm would show better efficiency
than our proposal.

Figure 8 represents the performance ratio between Hopcroft’s and our
algorithm. This figure shows that the number of states of the automata
must be significantly bigger than the size of the alphabet in order Hopcroft’s
algorithm to be more efficient than our hybrid approach.

Let us here mention the interest of considering in an experimentation a
set of uniformly distributed data (in our case automata). Nevertheless, in
this case, it means that almost all the automata are already minimal, and
it may cause some kind of bias in the experimentation.

5 Conclusions

In this work we present a new incremental algorithm to minimize determin-
istic finite automata that considers previous algorithms by Hopcroft and
Almeida et al. Its design allows to take profit from intermediate results in
order to reduce partially the input automaton, that could be interesting in
some contexts.

The experimentation carried out in this paper took into account a set
of automata selected using a uniform distribution of probability. When
the method we propose is compared with the method by Almeida et al.,
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the methods show that their running-time do not depend on the size of
the alphabet. When bigger automata (in number of states) are considered,
the experimentation shows that our method outperforms the approach by
Almeida et al.

When our method is compared with Hopcroft’s, and taking into account

the ratio that relates the size of the alphabet with respect the number of
states of the automata, the experimentation showed that the bigger the ratio
the better compared behavior of the proposed algorithm.
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