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Abstract We investigate schema languages for unordered XML having no rela-
tive order among siblings. First, we propose unordered regular expressions (UREs),
essentially regular expressions with unordered concatenation instead of standard
concatenation, that define languages of unordered words to model the allowed
content of a node (i.e., collections of the labels of children). However, unrestricted
UREs are computationally too expensive as we show the intractability of two fun-
damental decision problems for UREs: membership of an unordered word to the
language of a URE and containment of two UREs. Consequently, we propose a
practical and tractable restriction of UREs, disjunctive interval multiplicity expres-

sions (DIMEs).

Next, we employ DIMEs to define languages of unordered trees and propose two
schema languages: disjunctive interval multiplicity schema (DIMS), and its restric-
tion, disjunction-free interval multiplicity schema (IMS). We study the complexity of
the following static analysis problems: schema satisfiability, membership of a tree
to the language of a schema, schema containment, as well as twig query satisfiabil-
ity, implication, and containment in the presence of schema. Finally, we study the
expressive power of the proposed schema languages and compare them with yard-
stick languages of unordered trees (FO, MSO, and Presburger constraints) and
DTDs under commutative closure. Our results show that the proposed schema
languages are capable of expressing many practical languages of unordered trees
and enjoy desirable computational properties.

Keywords Schemas for XML, Unordered XML, Regular expressions, Twig
queries, Semi-structured data.
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1 Introduction

When XML is used for document-centric applications, the relative order among the
elements is typically important e.g., the relative order of paragraphs and chapters
in a book. On the other hand, in case of data-centric XML applications, the order
among the elements may be unimportant [1]. In this paper we focus on the latter
use case. As an example, take a trivialized fragment of an XML document con-
taining the DBLP repository in Figure 1. While the order of the elements title,
author, and year may differ from one publication to another, it has no impact on
the semantics of the data stored in this semi-structured database.

dblp

book

year title author publisher

“1994”

“Computational

complexity”

“C .Papadimitriou”

“Addison-Wesley”

article

author year title

“L.Valiant”

“1984”
“A theory

of the learnable”

Fig. 1 A trivialized DBLP repository.

Typically, a schema for XML defines for every node its content model i.e., the
children nodes it must, may, and cannot contain. For instance, in the DBLP ex-
ample, one would require every article to have exactly one title, one year, and one
or more authors. A book may additionally contain one publisher and may also
have one or more editors instead of authors. A schema has numerous important
uses. For instance, it allows to validate a document against a schema and iden-
tify potential errors. A schema also serves as a reference for a user who does not
know yet the structure of the XML document and attempts to query or modify
its content.

The Document Type Definition (DTD), the most widespread XML schema for-
malism for (ordered) XML [8,23], is essentially a set of rules associating with each
label a regular expression that defines the admissible sequences of children. The
DTDs are best fitted for ordered content because they use regular expressions,
a formalism that defines sequences of labels. However, when unordered content
model needs to be defined, there is a tendency to use over-permissive regular ex-
pressions. For instance, the DTD below corresponds to the one used in practice
for the DBLP repository1:

dblpÑ particle | bookq˚

articleÑ ptitle | year | authorq˚

bookÑ ptitle | year | author | editor | publisherq˚

This DTD allows an article to contain any number of titles, years, and authors. A
book may also have any number of titles, years, authors, editors, and publishers.

1 http://dblp.uni-trier.de/xml/dblp.dtd

http://dblp.uni-trier.de/xml/dblp.dtd
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These regular expressions are clearly over-permissive because they allow XML
documents that do not follow the intuitive guidelines set out earlier e.g., an XML
document containing an article with two titles and no author should not be valid.

While it is possible to capture unordered content models with regular expres-
sions, a simple pumping argument shows that their size may need to be exponential
in the number of possible labels of the children. In case of the DBLP repository,
this number reaches values up to 12, which basically precludes any practical use
of such regular expressions. This suggests that over-permissive regular expressions
may be employed for the reasons of conciseness and readability, a consideration of
great practical importance.

The use of over-permissive regular expressions, apart from allowing documents
that do not follow the guidelines, has other negative consequences e.g., in static
analysis tasks that involve the schema. Take for example the following two twig
queries [3,47]:

{dblp{bookrauthor “ “C .Papadimitriou”s

{dblp{bookrauthor “ “C .Papadimitriou”srtitles

The first query selects the elements labeled book, children of dblp and having
an author containing the text “C. Papadimitriou.” The second query additionally
requires that book has a title. Naturally, these two queries should be equivalent
because every book should have a title. However, the DTD above does not capture
properly this requirement, and consequently the two queries are not equivalent
w.r.t. this DTD.

In this paper, we investigate schema languages for unordered XML. First, we
study languages of unordered words, where an unordered word can be seen as a
multiset of symbols. We consider unordered regular expressions (UREs), which are
essentially regular expressions with unordered concatenation “||” instead of standard
concatenation. The unordered concatenation can be seen as union of multisets,
and consequently, the star “˚” can be seen as the Kleene closure of unordered
languages. Similarly to a DTD which associates to each label a regular expression
to define its (ordered) content model, an unordered schema uses UREs to define
for each label its unordered content model. For instance, take the following schema
(satisfied by the tree in Figure 1):

dblpÑ article
˚ || book˚

articleÑ title || year || author`

bookÑ title || year || publisher? || pauthor` | editor`q

The above schema uses UREs and captures the intuitive requirements for the
DBLP repository. In particular, an article must have exactly one title, exactly one
year, and at least one author. A book may additionally have a publisher and may
have one or more editors instead of authors. Note that, unlike the DTD defined
earlier, this schema does not allow documents having an article with several titles
or without any author.

Using UREs is equivalent to using DTDs with regular expressions interpreted
under the commutative closure [4,34]: essentially, a word matches the commuta-
tive closure of a regular expression if there exists a permutation of the word that
matches the regular expression in the standard way. Deciding this problem is
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Problem of interest DTD DIMS disj.-free DTD IMS

Schema satisfiability PTIME [14,40] PTIME (Pr. 1) PTIME [14,40] PTIME (Pr. 1)
Membership PTIME [14,40] PTIME (Pr. 2) PTIME [14,40] PTIME (Pr. 2)

Schema containment PSPACE-c:[40]
PTIME [14]

PTIME (Pr. 1) coNP-h:[30]
PTIME [14]

PTIME (Pr. 1)

Query satisfiability; NP-c [5] NP-c (Pr. 3) PTIME [5] PTIME (Th. 5)

Query implication; EXPTIME-c [35] EXPTIME-c (Pr. 4) PTIME (Th. 7) PTIME (Th. 5)

Query containment; EXPTIME-c [35] EXPTIME-c (Pr. 4) coNP-c (Th. 7) coNP-c (Th. 6)
: when non-deterministic regular expressions are used. ; for twig queries.

Table 1 Summary of complexity results.

known to be NP-complete [26] for arbitrary regular expressions. We show that
the problem of testing the membership of an unordered word to the language of a
URE is NP-complete even for a restricted subclass of UREs that allows unordered
concatenation and the option operator “?” only. Not surprisingly, testing the con-
tainment of two UREs is also intractable. These results are of particular interest
because they are novel and do not follow from complexity results for regular ex-
pressions, where the order plays typically an essential role [46,31]. Consequently,
we focus on finding restrictions rendering UREs tractable and capable of capturing
practical languages in a simple and concise manner.

The first restriction is to disallow repetitions of a symbol in a URE, thus
banning expressions of the form a || a? because the symbol a is used twice. Instead
we add general interval multiplicities ar1,2s which offer a way to specify a range
of occurrences of a symbol in an unordered word without repeating a symbol in
the URE. While the complexity of the membership of an unordered word to the
language of a URE with interval multiplicities and without symbol repetitions has
recently been shown to be in PTIME [11], testing containment of two such UREs
remains intractable.We, therefore, add limitations on the nesting of the disjunction
and the unordered concatenation operators and the use of intervals, which yields
the proposed class of disjunctive interval multiplicity expressions (DIMEs). DIMEs
enjoy good computational properties: both the membership and the containment
problems become tractable. Also, we believe that despite the imposed restriction
DIMEs remain a practical class of UREs. For instance, all UREs used in the schema
for the DBLP repository above are DIMEs.

Next, we employ DIMEs to define languages of unordered trees and propose
two schema languages: disjunctive interval multiplicity schema (DIMS), and its re-
striction, disjunction-free interval multiplicity schema (IMS). Naturally, the above
schema for the DBLP repository is a DIMS. We study the complexity of sev-
eral basic decision problems: schema satisfiability, membership of a tree to the
language of a schema, containment of two schemas, twig query satisfiability, im-
plication, and containment in the presence of schema. We present in Table 1 a
summary of the complexity results and we observe that DIMSs and IMSs enjoy
the same computational properties as general DTDs and disjunction-free DTDs,
respectively.

The lower bounds for the decision problems for DIMSs and IMSs are gener-
ally obtained with easy adaptations of their counterparts for general DTDs and
disjunction-free DTDs. To obtain the upper bounds we develop several new tools.
We propose to represent DIMEs with characterizing tuples that can be efficiently
computed and allow deciding in polynomial time the membership of a tree to the
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language of a DIMS and the containment of two DIMSs. Also, we develop de-

pendency graphs for IMSs and a generalized definition of an embedding of a query.
These two tools help us to reason about query satisfiability, query implication,
and query containment in the presence of IMSs. Our constructions and results
for IMSs allow also to characterize the complexity of query implication and query
containment in the presence of disjunction-free DTDs, which, to the best of our
knowledge, have not been previously studied.

Finally, we compare the expressive power of the proposed schema languages
with yardstick languages of unordered trees (FO, MSO, and Presburger con-
straints) and DTDs under commutative closure.We show that the proposed schema
languages are capable of expressing many practical languages of unordered trees.

It is important to mention that this paper is a substantially extended version
of a preliminary work presented in [10]. More precisely, in this paper we show
novel intractability results for some subclasses of unordered regular expressions
and we extend the expressibility of the tractable subclasses. While in [10] we have
considered only simple multiplicities (˚,`, ?), in this paper we deal with arbitrary
interval multiplicities of the form rn,ms.

Organization. In Section 2 we introduce some preliminary notions. In Sec-
tion 3 we study the reasons of intractability of unordered regular expressions while
in Section 4 we present the tractable subclass of disjunctive interval multiplicity ex-

pressions (DIMEs). In Section 5 we define two schema languages: the disjunctive

interval multiplicity schemas (DIMSs) and its restriction, the disjunction-free inter-

val multiplicity schemas (IMSs), and the related problems of interest. In Section 6
and Section 7 we analyze the complexity of the problems of interest for DIMSs
and IMSs, respectively. In Section 8 we discuss the expressiveness of the proposed
formalisms. In Section 9 we present related work. In Section 10 we summarize our
results and outline further directions.

2 Preliminaries

Throughout this paper we assume an alphabet Σ that is a finite set of symbols.
We also assume that Σ has a total order ăΣ that can be tested in constant time.

Trees. We model XML documents with unordered labeled trees. Formally, a
tree t is a tuple pNt, root t, labt, childtq, where Nt is a finite set of nodes, root t P Nt is
a distinguished root node, labt : Nt Ñ Σ is a labeling function, and child t Ď NtˆNt
is the parent-child relation.We assume that the relation child t is acyclic and require
every non-root node to have exactly one predecessor in this relation. By Tree we
denote the set of all trees.

r

a b

a

c

b

a

b

(a) Tree t0.

r

‹

a‹

(b) Twig query q0.

Fig. 2 A tree and a twig query.
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Queries. We work with the class of twig queries, which are essentially un-
ordered trees whose nodes may be additionally labeled with a distinguished wild-
card symbol ‹ R Σ and that use two types of edges, child ({) and descendant ({{),
corresponding to the standard XPath axes. Note that the semantics of the {{-edge
is that of a proper descendant (and not that of descendant-or-self). Formally, a
twig query q is a tuple pNq, rootq , labq, childq , descqq, where Nq is a finite set of
nodes, rootq P Nq is the root node, labq : Nq Ñ Σ Y t‹u is a labeling function,
childq Ď NqˆNq is a set of child edges, and descq Ď Nq ˆNq is a set of descendant
edges. We assume that childq X descq “ H and that the relation childq Y descq is
acyclic and we require every non-root node to have exactly one predecessor in this
relation. By Twig we denote the set of all twig queries. Twig queries are often pre-
sented using the abbreviated XPath syntax [47] e.g., the query q0 in Figure 2(b)
can be written as r{‹r‹s{{a.

Embeddings. We define the semantics of twig queries using the notion of
embedding which is essentially a mapping of nodes of a query to the nodes of a
tree that respects the semantics of the edges of the query. Formally, for a query
q P Twig and a tree t P Tree, an embedding of q in t is a function λ : Nq Ñ Nt such
that:

1. λprootqq “ root t,
2. for every pn, n1q P childq, pλpnq, λpn1qq P childt,
3. for every pn, n1q P descq, pλpnq, λpn1qq P pchildtq` (the transitive closure of

childt),
4. for every n P Nq, labqpnq “ ‹ or labqpnq “ labtpλpnqq.

We write t ď q if there exists an embedding of q in t. Later on, in Section 7.2 we
generalize this definition of embedding as a tool that permits us characterizing the
problems of interest.

As already mentioned, we use the notion of embedding to define the semantics
of twig queries. In particular, we say that t satisfies q if there exists an embedding
of q in t and we write t |ù q. By Lpqq we denote the set of all trees satisfying q.

Note that we do not require the embedding to be injective i.e., two nodes of
the query may be mapped to the same node of the tree. Figure 3 presents all
embeddings of the query q0 in the tree t0 from Figure 2.

r

a b

a

c

b

a

b

r

‹

a‹

r

‹

a‹

Fig. 3 Embeddings of q0 in t0.

Unordered words. An unordered word is essentially a multiset of symbols i.e.,
a function w : Σ Ñ N0 mapping symbols from the alphabet to natural numbers.
We call wpaq the number of occurrences of the symbol a in w. We also write
a P w as a shorthand for wpaq ‰ 0. An empty word ε is an unordered word that
has 0 occurrences of every symbol i.e., εpaq “ 0 for every a P Σ. We often use a
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simple representation of unordered words, writing each symbol in the alphabet the
number of times it occurs in the unordered word. For example, when the alphabet
is Σ “ ta, b, cu, w0 “ aaacc stands for the function w0paq “ 3, w0pbq “ 0, and
w0pcq “ 2. Additionally, we may write w0 “ a3c2 instead of w0 “ aaacc.

We use unordered words to model collections of children of XML nodes. As it
is usually done in the context of XML validation [42,41], we assume that the XML
document is encoded in unary i.e., every node takes the same amount of memory.
Thus, we use a unary representation of unordered words, where each occurrence of
a symbol occupies the same amount of space. However, we point out that none of
the results presented in this paper changes with a binary representation. In partic-
ular, the intractability of the membership of an unordered word to the language of
a URE (Theorem 1) also holds with a binary representation of unordered words.

Consequently, the size of an unordered word w, denoted |w|, is the sum of the
numbers of occurrences in w of all symbols in the alphabet. For instance, the size
of w0 “ aaacc is |w0| “ 5.

The (unordered) concatenation of two unordered words w1 and w2 is defined as
the multiset union w1Zw2 i.e., the function defined as pw1Zw2qpaq “ w1paq`w2paq
for every a P Σ. For instance, aaaccZ abbc “ aaaabbccc. Note that ε is the identity
element of the unordered concatenation ε Z w “ w Z ε “ w for every unordered
word w. Also, given an unordered word w, by wi we denote the concatenation
w Z . . .Zw (i times).

A language is a set of unordered words. The unordered concatenation of two
languages L1 and L2 is a language L1 Z L2 “ tw1 Z w2 | w1 P L1, w2 P L2u. For
instance, if L1 “ ta, aacu and L2 “ tac, b, εu, then L1ZL2 “ ta, ab, aac, aabc, aaaccu.

Unordered regular expressions. Analogously to regular expressions, which
are used to define languages of ordered words, we propose unordered regular ex-
pressions to define languages of unordered words. Essentially, an unordered regular

expression (URE) defines unordered words by using Kleene star “˚”, disjunction
“|”, and unordered concatenation “||”. Formally, we have the following grammar:

E ::“ ǫ | a | E˚ | pE“|”Eq | pE“||”Eq,

where a P Σ. The semantics of UREs is defined as follows:

Lpǫq “ tεu,

Lpaq “ tau,

LpE1 | E2q “ LpE1q Y LpE2q,

LpE1 || E2q “ LpE1q Z LpE2q,

LpE˚q “ tw1 Z . . .Z wi | w1, . . . , wi P LpEq ^ i ě 0u.

For instance, the URE pa||pb | cqq˚ accepts the unordered words having the number
of occurrences of a equal to the total number of b’s and c’s.

The grammar above uses only one multiplicity ˚ and we introduce macros for
two other standard and commonly used multiplicities:

E
` :“ E ||E˚

, E
? :“ E | ǫ.

The URE pa || b?q` || pa | cq? accepts the unordered words having at least one a, at
most one c, and a number of b’s less or equal than the number of a’s.
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Interval multiplicities. While the multiplicities ˚, `, and ? allow to specify
unordered words with multiple occurrences of a symbol, we additionally introduce
interval multiplicities to allow to specify a range of allowed occurrences of a symbol
in an unordered word. More precisely, we extend the grammar of UREs by allowing

expressions of the form Ern,ms and Ern,ms? , where n P N0 and m P N0Yt8u. Their
semantics is defined as follows:

LpErn,msq “ tw1 Z . . .Z wi | w1, . . . , wi P LpEq ^ n ď i ď mu,

LpErn,ms?q “ LpErn,msq Y tεu.

In the rest of the paper, we write simply interval instead of interval multiplicity.
Furthermore, we view the following standard multiplicities as macros for intervals:

˚ :“ r0,8s, ` :“ r1,8s, ? :“ r0, 1s.

Additionally, we introduce the single occurrence multiplicity 1 as a macro for the
interval r1, 1s.

Note that the intervals do not add expressibility to general UREs, but they
become useful if we impose some restrictions. For example, if we disallow repeti-
tions of a symbol in a URE and ban expressions of the form a ||a?, we can however
write ar1,2s to specify a range of occurrences of a symbol in an unordered word
without repeating a symbol in the URE.

3 Intractability of unordered regular expressions

In this section, we study the reasons of the intractability of UREs w.r.t. the follow-
ing two fundamental decision problems:membership and containment. In Section 3.1
we show that membership is NP-complete even under significant restrictions on
the UREs while in Section 3.2 we show that the containment is ΠP

2 -hard (and in
3-EXPTIME). We notice that the proofs of both results rely on UREs allowing
repetitions of the same symbol. Consequently, we disallow such repetitions and we
show that this restriction does not avoid intractability of the containment (Sec-
tion 3.3). We observe that the proof of this result employs UREs with arbitrary
use of disjunction and intervals, and therefore, in Section 4 we impose further re-
strictions and define the disjunctive interval multiplicity expressions (DIMEs), a
subclass for which we show that the two problems of interest become tractable.

3.1 Membership

In this section, we study the problem of deciding the membership of an unordered
word to the language of a URE. First of all, note that this problem can be easily
reduced to testing the membership of a vector to the Parikh image of a regular
language, known to be NP-complete [26], and vice versa. We show that deciding the
membership of an unordered word to the language a URE remains NP-complete
even under significant restrictions on the class of UREs, a result which does not
follow from [26].
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Theorem 1 Given an unordered word w and an expression E of the grammar E ::“
a | E? | pE“||”Eq, deciding whether w P LpEq is NP-complete.

Proof To show that this problem is in NP, we point out that a nondeterministic
Turing machine guesses a permutation of w and checks whether it is accepted
by the NFA corresponding to E with the unordered concatenation replaced by
standard concatenation. We recall that w has unary representation.

Next, we prove the NP-hardness by reduction from SAT1-in-3 i.e., given a 3CNF
formula, determine whether there exists a valuation such that each clause has
exactly one true literal (and exactly two false literals). The SAT1-in-3 problem is
known to be NP-complete [38]. The reduction works as follows. We take a 3CNF
formula ϕ “ c1 ^ . . . ^ ck over the variables tx1, . . . , xnu. We take the alphabet
td1, . . . , dk, v1, . . . , vnu. Each di corresponds to a clause ci (for 1 ď i ď k) and each
vj corresponds to a variable xj (for 1 ď j ď n). We construct the unordered word
wϕ “ d1 . . . dkv1 . . . vn and the expression Eϕ “ X1 || . . . ||Xn, where for 1 ď j ď n:

Xj “ pvj || dt1 || . . . || dtlq
? || pvj || df1 || . . . || dfmq

?
,

and dt1 , . . . , dtl (with 1 ď t1, . . . , tl ď k) correspond to the clauses that use the
literal xj , and df1 , . . . dfm (with 1 ď f1, . . . , fm ď k) correspond to the clauses that
use the literal  xj. For example, for the formula ϕ0 “ px1 _  x2 _ x3q ^ p x1 _
x3 _ x4q, we construct wϕ0

“ d1d2v1v2v3v4 and

Eϕ0
“ pv1 || d1q

? || pv1 || d2q
? || v?2 || pv2 || d1q

? || pv3 || d1 || d2q
? || v?3 || v

?
4 || pv4 || d2q

?
.

We claim that ϕ P SAT1-in-3 iff wϕ P LpEϕq. For the only if case, let V : tx1, . . . , xnu Ñ
ttrue , falseu be the SAT1-in-3 valuation of ϕ. We use V to construct the derivation
of wϕ in LpEϕq: for 1 ď j ď n, we take pvj || dt1 || . . . || dtlq from Xj if V pxjq “ true,
and pvj || df1 || . . . || dfmq from Xj otherwise. Since V is a SAT1-in-3 valuation of ϕ,
each di (with 1 ď i ď k) occurs exactly once, hence wϕ P LpEϕq. For the if case,
we assume that wϕ P LpEϕq. Since wϕpvjq “ 1, we infer that wϕ uses exactly one
of the expressions of the form pvj || . . .q

?. Moreover, since wϕpdiq “ 1, we infer that
the valuation encoded in the derivation of wϕ in LpEϕq validates exactly one literal
of each clause in ϕ, and therefore, ϕ P SAT1-in-3. Clearly, the described reduction
works in polynomial time. ˝

3.2 Containment

In this section, we study the problem of deciding the containment of two UREs. It
is well known that regular expression containment is a PSPACE-complete prob-
lem [46], but we cannot adapt this result to characterize the complexity of the
containment of UREs because the order plays an essential role in the reduction.
In this section, we prove that deciding the containment of UREs is ΠP

2 -hard and
we show an upper bound which follows from the complexity of deciding the satis-
fiability of Presburger logic formulas [36,44].

Theorem 2 Given two UREs E1 and E2, deciding LpE1q Ď LpE2q is 1) ΠP
2 -hard

and 2) in 3-EXPTIME.
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Proof 1) We prove the ΠP
2 -hardness by reduction from the problem of checking

the satisfiability of @˚D˚QBF formulas, a classical ΠP
2 -complete problem. We take

a @˚D˚QBF formula
ψ “ @x1, . . . , xn. Dy1, . . . , ym. ϕ,

where ϕ “ c1 ^ . . . ^ ck is a quantifier-free CNF formula. We call the variables
x1, . . . , xn universal and the variables y1, . . . , ym existential.

We take the alphabet td1, . . . , dk, t1, f1, . . . , tn, fnu and we construct two ex-
pressions, Eψ and E1

ψ. First, Eψ “ d1 || . . . || dk ||X1 || . . . ||Xn, where for 1 ď i ď n

Xi “ ppti ||da1
|| . . . ||dalq | pfi ||db1 || . . . ||dbsqq, and da1

, . . . dal (with 1 ď a1, . . . , al ď k)
correspond to the clauses which use the literal xi, and db1 , . . . , dbs (with 1 ď
b1, . . . , bs ď k) correspond to the clauses which use the literal  xi. For example,
for the formula

ψ0 “ @x1, x2. Dy1, y2. px1 _ x2 _ y1q ^ p x1 _ y1 _ y2q ^ px2 _ y1q,

we construct:

Eψ0
“ d1 || d2 || d3 || ppt1 || d1q | pf1 || d2qq || ppt2 || d3q | pf2 || d1qq.

Note that there is an one-to-one correspondence between the unordered words
in LpEψq and the valuations of the universal variables. For example, given the
formula ψ0, the unordered word d31d2d3t1f2 corresponds to the valuation V such
that V px1q “ true and V px2q “ false.

Next, we construct E1
ψ “ X1 || . . . ||Xn || Y1 || . . . || Ym, where:

– Xi “ ppti ||d
˚
a1
|| . . .||d˚

alq | pfi ||d
˚
b1
||. . .||d˚

bs
qq, and da1

, . . . dal (with 1 ď a1, . . . , al ď
k) correspond to the clauses which use the literal xi, and db1 , . . . , dbs (with
1 ď b1, . . . , bs ď k) correspond to the clauses which use the literal  xi (for
1 ď i ď n),

– Yj “ ppd˚
a1
|| . . . || d˚

alq | pd
˚
b1
|| . . . || d˚

bs
qq, and da1

, . . . dal (with 1 ď a1, . . . , al ď
k) correspond to the clauses which use the literal yj , and db1 , . . . , dbs (with
1 ď b1, . . . , bs ď k) correspond to the clauses which use the literal  yj (for
1 ď j ď m).

For example, for ψ0 above we construct:

E
1
ψ0
“ ppt1 || d

˚
1 q | pf1 || d

˚
2 qq || ppt2 || d

˚
3 q | pf2 || d

˚
1 qq || ppd

˚
1 || d

˚
2 q | d

˚
3 q || pǫ | d

˚
2 q.

We claim that |ù ψ iff Eψ Ď E1
ψ. For the only if case, for each valuation of the uni-

versal variables, we take the corresponding unordered word w P LpEψq. Since there
exists a valuation of the existential variables which satisfies ϕ, we use this valuation
to construct a derivation of w in LpE1

ψq. For the if case, for every unordered word

from LpEψq, we take its derivation in LpE1
ψq and we use it to construct a valuation

of the existential variables which satisfies ϕ. Clearly, the described reduction works
in polynomial time.

2) The membership of the problem to 3-EXPTIME follows from the com-
plexity of deciding the satisfiability of Presburger logic formulas, which is in 3-
EXPTIME [36]. Given two UREs E1 and E2, we compute in linear time [44] two
existential Presburger formulas for their Parikh images: ϕE1

and ϕE2
, respectively.

Next, we test the satisfiability of the following closed Presburger logic formula:
@x. ϕE1

pxq ñ ϕE2
pxq. ˝
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While the complexity gap for the containment of UREs (as in Theorem 2) is
currently quite important, we believe that this gap may be reduced by working
on quantifier elimination for the Presburger formula obtained by translating the
containment of UREs (as shown in the second part of the proof of Theorem 2). Al-
though we believe that this problem is ΠP

2 -complete, its exact complexity remains
an open question.

3.3 Disallowing repetitions

The proofs of Theorem 1 and Theorem 2 rely on UREs allowing repetitions of
the same symbol, which might be one of the causes of the intractability. Conse-
quently, from now on we disallow repetitions of the same symbol in a URE. Similar
restrictions are commonly used for the regular expressions to maintain practical
aspects: single occurrence regular expressions (SOREs) [7], conflict-free types [17,18,
22], and duplicate-free DTDs [33]. While the complexity of the membership of an
unordered word to the language of a URE without symbol repetitions has recently
been shown to be in PTIME [11], testing containment of two such UREs continues
to be intractable.

Theorem 3 Given two UREs E1 and E2 not allowing repetitions of symbols, deciding

LpE1q Ď LpE2q is coNP-hard.

Proof We show the coNP-hardness by reduction from the complement of 3SAT.
Take a 3CNF formula ϕ “ c1 ^ . . .^ ck over the variables tx1, . . . , xnu. We assume
w.l.o.g. that each variable occurs at most once in a clause. Take the alphabet
taij | 1 ď i ď k, 1 ď j ď n, ci uses xj or  xju. We construct the expression
Eϕ “ X1 || . . . ||Xn, where Xj “ ppat1j || . . . || atljq | paf1j || . . . || afmjq (for 1 ď j ď n),
and ct1 , . . . , ctl (with 1 ď t1, . . . , tl ď k) are the clauses which use the literal xj, and
cf1 , . . . , cfm (with 1 ď f1, . . . , fm ď k) are the clauses which use the literal  xj.

Next, we construct E1
ϕ “ pC1 | . . . | Ckq

r0,k´1s, where Ci “ paij1 | . . . | aijpq
` (for

1 ď i ď k), and xj1 , . . . , xjp (with 1 ď j1, . . . , jp ď n) are the variables used by the
clause ci. For example, for

ϕ0 “ px1 _ x2 _ x3q ^ p x1 _ x3 _ x4q ^ px2 _ x3 _ x4q,

we obtain:

Eϕ0
“pa11 | a21q || pa32 | a12q || ppa13 || a23q | a33q || pǫ | pa24 || a34qq,

E
1
ϕ0
“ppa11 | a12 | a13q

` | pa21 | a23 | a24q
` | pa32 | a33 | a34q

`qr0,2s
.

Note that there is an one-to-one correspondence between the unordered words
wV in LpEϕq and the valuations V of the variables x1, . . . , xn (*). For example, for
above ϕ0 and the valuation V such that V px1q “ V px2q “ V px3q “ true and V px4q “
false, the unordered word wV “ a11a32a13a23a24a34 is in LpEϕ0

q. Moreover, given
an wV P LpEϕq, one can easily obtain the valuation.

We observe that the interval r0, k´1s is used above a disjunction of k expressions
of the form Ci and there is no repetition of symbols among the expressions of the
form Ci. This allows us to state an instrumental property (**): w P LpE1

ϕq iff there
exists an i P t1, . . . , ku such that none of the symbols used in Ci occurs in w. From



12 Iovka Boneva, Radu Ciucanu, S lawek Staworko

(*) and (**), we infer that given a valuation V , V |ù ϕ iff wV P LpEϕq zLpE1
ϕq,

that yields ϕ P 3SAT iff LpEϕq ­Ď LpE1
ϕq. Clearly, the described reduction works in

polynomial time. ˝

Theorem 3 shows that disallowing repetitions of symbols in a URE does not avoid
the intractability of the containment. Additionally, we observe that the proof of
Theorem 3 employs UREs with arbitrary use of disjunction and intervals. Con-
sequently, in the next section we impose further restrictions that yield a class of
UREs with desirable computational properties.

4 Disjunctive interval multiplicity expressions (DIMEs)

In this section, we present the DIMEs, a subclass of UREs for which membership
and containment become tractable. First, we present an intuitive representation of
DIMEs with characterizing tuples (Section 4.1). Next, we formally define DIMEs
and show that they are precisely captured by their characterizing tuples (Sec-
tion 4.2). Finally, we use a compact representation of the characterizing tuples to
show the tractability of DIMEs (Section 4.3).

4.1 Characterizing tuples

In this section, we introduce the notion of characterizing tuple that is an alternative,
more intuitive representation of DIMEs, the subclass of UREs that we formally
define in Section 4.2. Recall that by a P w we denote wpaq ‰ 0. Given a DIME E,
the characterizing tuple ∆E “ pCE , NE , PE ,KEq is as follows.

– The conflicting pairs of siblings CE consisting of all pairs of symbols in Σ such
that E defines no word using both symbols simultaneously:

CE “ tpa, bq P Σ ˆΣ |­ Dw P LpEq. a P w ^ b P wu.

– The extended cardinality map NE capturing for each symbol in the alphabet the
possible numbers of its occurrences in the unordered words defined by E:

NE “ tpa,wpaqq P Σ ˆ N0 | w P LpEqu.

– The collections of required symbols PE capturing symbols that must be present
in every word; essentially, a set of symbols X belongs to PE if every word
defined by E contains at least one element from X:

PE “ tX Ď Σ | @w P LpEq. Da P X. a P wu.

– The counting dependencies KE consisting of pairs of symbols pa, bq such that in
every word defined by E, the number of bs is at most the number of as. Note
that if both pa, bq and pb, aq belong to KE , then all unordered words defined by
E should have the same number of a’s and b’s.

KE “ tpa, bq P Σ ˆΣ | @w P LpEq. wpaq ě wpbqu.
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As an example we take E0 “ a` || ppb || c?q` | dr5,8sq and we illustrate its charac-
terizing tuple ∆E0

. Because PE is closed under supersets, we list only its minimal
elements:

CE0
“ tpb, dq, pc, dq, pd, bq, pd, cqu,

NE0
“ tpa, iq | i ě 1u Y tpb, iq | i ě 0u Y tpc, iq | i ě 0u Y tpd, iq | i “ 0_ i ě 5u,

PE0
“ ttau, tb, du, . . .u,

KE0
“ tpb, cqu.

We point out that NE may be infinite and PE exponential in the size of E. Later
on we discuss how to represent both sets in a compact manner while allowing
efficient manipulation.

Then, an unordered word w satisfies a characterizing tuple ∆E corresponding
to a DIME E, denoted w |ù ∆E , if the following conditions are satisfied:

1. w |ù CE i.e., @pa, bq P CE . pa P wñ b R wq ^ pb P wñ a R wq,
2. w |ù NE i.e., @a P Σ. pa,wpaqq P NE ,
3. w |ù PE i.e., @X P PE . Da P X. a P w,
4. w |ù KE i.e., @pa, bq P KE . wpaq ě wpbq.

For instance, the unordered word aabbc satisfies the characterizing tuple ∆E0
cor-

responding to the aforementioned DIME E0 “ a` || ppb || c?q` | dr5,8sq since it
satisfies all the four conditions imposed by ∆E0

. On the other hand, note that the
following unordered words do not satisfy ∆E0

:

– abddddd because it contains at the same time b and d, and pb, dq P CE0
,

– add because it has two d’s and pd, 2q R NE0
,

– aa because it does not contain any b or d and tb, du P PE0
,

– abbccc because it has more c’s than b’s and pb, cq P KE0
.

In the next section, we define the DIMEs and show that they are precisely captured
by characterizing tuples.

4.2 Grammar of DIMEs

An atom is paI1
1
|| . . . || aIk

k
q, where all Ii’s are ? or 1. For example, pa || b? || cq is an

atom, but par3,4s || bq is not an atom. A clause is pAI1
1
| . . . | AIk

k
q, where all Ai’s are

atoms and all Ii’s are intervals. A clause is simple if all Ii’s are ? or 1. For example,
par2,3s | pb? || cq˚q is a clause (which is not simple), ppa? || bq | c?q is a simple clause
while ppa? || b`q | cq is not a clause.

A disjunctive interval multiplicity expression (DIME) is pDI1
1
|| . . . ||DIk

k
q, where

for 1 ď i ď k either 1) Di is a simple clause and Ii P t`, ˚u, or 2) Di is a clause and
Ii P t1, ?u. Moreover, a symbol can occur at most once in a DIME. For example,
pa | pb || c?q`q || pdr3,4s | e˚q is a DIME while pa || b?q` || pa | cq is not a DIME because
it uses the symbol a twice. A disjunction-free interval multiplicity expression (IME)
is a DIME which does not use the disjunction operator. An example of IME is
a || pb || c?q` || dr3,4s. For more practical examples of DIMEs see Examples 3 and 4
from Section 5.

We have tailored DIMEs to be able to capture them with characterizing tu-
ples that permit deciding membership and containment in polynomial time (cf.
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Section 4.3). As we have already pointed out Section 3.3, a slightly more relaxed
restriction on the nesting of disjunction and intervals leads to intractability of
the containment (Theorem 3). Even though DIMEs may look very complex, the
imposed restrictions are necessary to obtain lower complexity while considering
fragments with practical relevance (cf. Section 8).

Next, we show that each DIME can be rewritten as an equivalent reduced DIME.
Reduced DIMEs may also seem complex, but they are a building block for (i) prov-
ing that the language of a DIME is precisely captured by its characterizing tuple
(Lemma 1), and (ii) computing the compact representation of the characterizing
tuples that yield the tractability of DIMEs (cf. Section 4.3).

Before defining the reduced DIMEs, we need to introduce some additional
notations. Given an atom A (resp. a clause D), we denote by ΣA (resp. ΣD) the
set of symbols occurring in A (resp. D). Given a DIME E, by IaE (resp. IAE or IDE )
we denote the interval associated in E to the symbol a (resp. atom A or clause
D). Because we consider only expressions without repetitions, this interval is well-
defined. Moreover, if E is clear from the context, we write simply Ia (resp. IA or
ID) instead of IaE (resp. IAE or IDE ). Furthermore, given an interval I which can
be either rn,ms or rn,ms?, by I? we understand the interval rn,ms?. In a reduced
DIME E, each clause with interval DI has one of the following three types:

1. DI “ pA1 | . . . | Akq
`, where k ě 2 and, for every i P t1, . . . , ku, Ai is an atom

such that there exists a P ΣAi
such that Ia “ 1.

For example, ppa || b?q | cq` has type 1, but a` and ppa? || b?q | cq` do not.
2. pAI1

1
| . . . | AIk

k
q, where for every i P t1, . . . , ku 1) Ai is an atom such that there

exists a P ΣAi
such that Ia “ 1 and 2) 0 does not belong to the set represented

by the interval Ii.
For example, pa | pb? || cqr5,8sq and a` have type 2, but pa | pb? || c?qr5,8sq and
pa˚ | pb? || cqr5,8sq do not.

3. pAI1
1
| . . . | AIk

k
q, where for every i P t1, . . . , ku Ai is an atom and Ii is an interval

such that 0 belongs to the set represented by the interval Ii.

For example, pa˚ | pb || cqr3,4s?q and pa? || b?q˚ have type 3, but pa? || b?qr3,4s does
not.

The reduced DIMEs easily yield the construction of their characterizing tuples.
Take a clause with interval DI from a DIME E and observe that the symbols from
ΣD are present in the characterizing tuple ∆E as follows.

– If DI is of type 1, then there is no symbol in ΣD that occurs in a conflict in CE .
Otherwise, all pairs of distinct symbols pa, bq from ΣD that appear in different
atoms from DI belong to CE .

– IfDI is of type 1, then we have pa, nq P NE for every pa, nq P ΣDˆN0. Otherwise,
the possible number of occurrences of every symbol a from ΣD can be obtained
directly from the two intervals above it: the interval of D and the interval of
the atom containing a. We explain in Section 4.3 how to precisely construct a
compact representation of the potentially infinite set NE .

– If DI is of type 1 or 2, then every unordered word defined by E contains at
least one of the symbols a from ΣD having interval Ia “ 1. More precisely,
every set of symbols X Ď Σ containing at least one symbol a with Ia “ 1 for
every atom of D belongs to PE . For example, for ppa || b || c?q | pd || eqq`, the sets
ta, du, ta, eu, tb, du, tb, eu and all their supersets belong to PE . Otherwise, if DI

is of type 3, then there is no set in PE containing only symbols from ΣD.
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– Regardless of the type of DI , the counting dependencies KE consists of all pairs
of symbols pa, bq such that they appear in the same atom in D and Ia “ 1.

To obtain reduced DIMEs, we use the following rules:

– Take a simple clause pAI1
1
| . . . | AIk

k
q.

– pAI1
1
| . . . | AIk

k
q˚ goes to A˚

1 || . . . || A
˚
k (k clauses of type 3). Essentially,

we distribute the ˚ of a disjunction of atoms with intervals to each of the
atoms. For example, pa | pb || c?qq˚ goes to a˚ || pb || c?q˚.

– pAI1
1
| . . . | AIk

k
q` goes to A˚

1 || . . . || A
˚
k (k clauses of type 3) if there exists

an atom with interval AIii (i P t1, . . . , ku) that defines the empty word i.e.,
Ii “? or Ia “? for every symbol a P ΣAi

. If the empty word is defined, then
we can basically transform the ` into ˚ and then distribute the ˚ as for the
previous case. For example, ppa || b?q | pc || dq?q` goes to pa || b?q˚ || pc || dq˚.

– Take a clause pAI1
1
| . . . | AIk

k
q.

– pAI1
1
| . . . | AIk

k
q? goes to pAI

?

1

1
| . . . | AI

?

k

k
q (type 3). We essentially distribute

the ? of a disjunction of atoms with intervals to each of the atoms. For

example, par2,3s | b`q? goes to par2,3s? | b˚q.

– pAI1
1
| . . . | AIk

k
q goes to pAI

?

1

1
| . . . | AI

?

k

k
q (type 3) if there exists an atom with

interval AIii (i P t1, . . . , ku) that defines the empty word i.e., 0 belongs to
the set represented by Ii or I

a “? for every symbol a P ΣAi
. If the empty

word is defined by one of the atoms, then we can basically distribute ? to
all of them. For example, pa | pb || cqr0,5sq goes to pa? | pb || cqr0,5sq.

– Take an atom pa?1 || . . . || a
?

kq and an interval I. Then, pa?1 || . . . || a
?

kq
I goes to

pa?1 || . . . || a
?

kq
r0,maxpIqs, where by maxpIq we denote the maximum value from

the set represented by the interval I. This step may be combined with one
of the previous ones to rewrite a clause with interval as one of type 3. For
example, ppa? || b?qr3,6s | cq goes to ppa? || b?qr0,6s | c?q.

– Remove symbols a (resp. atoms A or clauses D) such that Ia (resp. IA or ID)
is r0, 0s.

Note that each of the rewriting steps gives an equivalent reduced expression.
Next, we assume that we work with reduced DIMEs only and show that the

language defined by a DIME E comprises of all unordered words satisfying the
characterizing tuple ∆E .

Lemma 1 Given an unordered word w and a DIME E, w P LpEq iff w |ù ∆E .

Proof The only if part follows from the definition of the satisfiability of ∆E . For
the if part, we take the tuple ∆E corresponding to a DIME E “ DI1

1
|| . . . ||DIk

k
and

an unordered word w such that w |ù ∆E . Let w “ w1 Z . . .Z wk Z w1, where each
wi contains all occurrences in w of the symbols from ΣDi

(for 1 ď i ď k). Since
w |ù NE , we infer that there is no symbol a P ΣzpΣD1

Y . . .YΣDk
q such that a P w,

which implies w1 “ ε. Thus, proving w |ù E reduces to proving that wi |ù DIii (for
1 ď i ď k). Since E is a reduced DIME, each derivation can be constructed by
reasoning on the three possible types of the DIii (for 1 ď i ď k).

Case 1. Take DIii “ pA1 | . . . | Akq
` of type 1. From the semantics of the UREs,

we observe that proving wi |ù DIii is equivalent to proving that (i) wi is non-empty
and (ii) wi can be split as wi “ w1

1 Z . . .Z w
1
p, where every w1

j (1 ď j ď p) satisfies



16 Iovka Boneva, Radu Ciucanu, S lawek Staworko

an atom Al (1 ď l ď k). First, we point out that since w satisfies the collections of
required symbols PE , we infer that wi is non-empty, which implies (i). Then, since
w satisfies the extended cardinality map NE and the counting dependencies KE ,
we infer that (ii) is also satisfied.

Case 2. Take DIii “ pA
I1
1
| . . . | AIk

k
q of type 2. From the semantics of UREs, we

observe that proving wi |ù DIii is equivalent to proving that (i) wi is non-empty

and (ii) there exists as atom with interval A
Ij
j (1 ď j ď k) such that wi |ù A

Ij
j .

Since w |ù PE , we infer that wi is non-empty hence (i) is satisfied. Then, since
w |ù CE , we infer that only the symbols from one atom Aj of Di are present in wi.
Moreover, since w |ù NE and w |ù KE , we infer that the number of occurrences

of each symbol from ΣAj
are such that wi |ù A

Ij
j . Hence, the condition (ii) is also

satisfied.
Case 3. Take DIii “ pAI1

1
| . . . | AIk

k
q of type 3. The only difference w.r.t. the

previous case is that wi may be also empty, hence proving wi |ù DIii is equivalent

to proving only that there exists as atom with interval A
Ij
j (1 ď j ď k) such that

wi |ù A
Ij
j , which follows similarly to the previous case. ˝

Moreover, we define the subsumption of two characterizing tuples, which captures
the containment of DIMEs. Given two DIMEs E and E1, we write ∆E1 ď ∆E if
CE Ď CE1 , NE1 Ď NE , PE Ď PE1 , and KE Ď KE1 . Then, we obtain the following.

Lemma 2 Given two DIMEs E and E1, LpE1q Ď LpEq iff ∆E1 ď ∆E .

Proof First, we claim that given two DIMEs E and E1: ∆E1 ď ∆E iff w |ù ∆E1

implies w |ù ∆E for every w (*). The only if part of (*) follows directly from the
definitions while the if part can be easily shown by contraposition. From Lemma 1
and (*) we infer the correctness of Lemma 2. ˝

Example 1 For the following DIMEs, it holds that LpE1q Ĺ LpEq and LpEq ­Ď LpE1q:

– Take E “ a˚ || b˚ and E1 “ pa || b?q˚. Note that KE “ H and KE1 “ tpa, bqu. For
instance, the unordered word b belongs to LpEq, but does not belong to LpE1q.

– Take E “ ar3,6s? | b˚ and E1 “ ar3,6s | b`. Note that PE “ H, and PE1 “ tta, buu.
For instance, the unordered word ε belongs to LpEq, but does not belong to
LpE1q.

– Take E “ pa || b?q˚ and E1 “ pa || b?qr0,5s. Note that pa, 6q belongs to NE , but
not to NE1 . For instance, the unordered word a6 belongs to LpEq, but does not
belong to LpE1q.

– Take E “ pa | bq` and E1 “ a` | b`. Note that CE “ H, and CE1 “
tpa, bq, pb, aqu. For instance, the unordered word ab belongs to LpEq, but does
not belong to LpE1q. ˝

Lemma 2 shows that two equivalent DIMEs yield the same characterizing tuple,
and hence, the tuple ∆E can be viewed as a “canonical form” for the language
defined by a DIME E. Formally, we obtain the following.

Corollary 1 Given two DIMEs E and E1, LpEq “ LpE1q iff ∆E “ ∆E1 .

In the next section, we show that the characterizing tuple has a compact repre-
sentation that permits us to decide the problems of membership and containment
in polynomial time.
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4.3 Tractability of DIMEs

We now show that the characterizing tuple admits a compact representation that
yields the tractability of deciding membership and containment of DIMEs.

Given a reduced DIME E, note that CE and KE are quadratic in |Σ| and can
be easily constructed. The set CE consists of all pairs of distinct symbols pa, bq such
that they appear in different atoms in the same clause of type 2 or 3. Moreover,
KE consists of all pairs of distinct symbols pa, bq such that they appear in the same
atom and Ia “ 1.

While NE may be infinite, it can be easily represented in a compact manner
using intervals: for every symbol a, the set ti P N0 | pa, iq P NEu is representable by
an interval. Given a symbol a P Σ, by N̂Epaq we denote the interval representing
the set ti P N0 | pa, iq P NEu that can be easily obtained from E:

– N̂Epaq “ r0, 0s if a appears in no clause in E,
– N̂Epaq “ r0,8s (or simply ˚) if a appears in a clause of type 1 in E,
– N̂Epaq “ IA if Ia “ 1, A is the atom containing a, and A is the unique atom of

a clause of type 2 or 3,

– N̂Epaq “ IA
?

if Ia “ 1, A is the atom containing a, and A appears in a clause
of type 2 or 3 containing at least two atoms,

– N̂Epaq “ r0,maxpIAqs if Ia “?, A is the atom containing a, and A appears in a
clause of type 2 or 3.

For example, for E0 “ a` || ppb || c?q` | dr5,8sq, we obtain the following N̂E0
:

N̂E0
paq “ `, N̂E0

pbq “ ˚, N̂E0
pcq “ ˚, N̂E0

pdq “ r5,8s?.

Naturally, testing NE1 Ď NE reduces to a simple test on N̂E1 and N̂E .
Representing PE in a compact manner is more tricky. A natural idea would be

to store only its Ď-minimal elements since PE is closed under supersets. Unfortu-
nately, there exist DIMEs having an exponential number of Ď-minimal elements.
For instance, for the DIME E1 “ ppa || bq | pc ||dqq` || ppe ||fqr2,5s | gr1,3sq || ph˚ || ir0,9sq,
the set PE1

has 6 Ď-minimal elements ta, cu, ta, du, tb, cu, tb, du, te, gu, and tf, gu.
The example easily generalizes to arbitrary numbers of atoms used in the clauses.

However, we observe that the exponentially-many Ď-minimal elements may
contain redundant information that is already captured by other elements of the
characterizing tuple. For instance, for the above DIME E1, if we know that ta, cu
belongs to PE , we can easily see that other Ď-minimal elements also belong to PE .
More precisely, we observe that for every unordered word w defined by E it holds
that wpaq “ wpbq, wpcq “ wpdq and wpeq “ wpfq, which is captured by the counting
dependencies KE “ tpa, bq, pb, aq, pc, dq, pd, cq, pe, fq, pf, equ. Hence, for the unordered
words defined by E, the presence of an a implies the presence of a b, the presence
of a c implies the presence of a d, etc. Consequently, if ta, cu belongs to PE , then
tb, cu, ta, du, and tb, du also belong to PE . Similarly, if te, gu belongs to PE , then
tf, gu also belongs to PE .

Next, we use the aforementioned observation to define a compact representation
of PE . For this purpose, we introduce the auxiliary notion of symbols implied by a

DIME E in the presence of a set of symbols X, denoted implEpXq:

implEpXq “ X Y ta P Σ | Db P X. pa, bq P KE and pb, aq P KEu.
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For example, for the above E1, we have implEpta, cuq “ ta, b, c, du.
Moreover, given a DIME E, by PĎmin

E we denote the set of all Ď-minimal
elements of PE . Given a subset P Ď PĎmin

E , we say that P is:

– non-redundant if @X P P. EY P P. X Ď implEpY q,
– covering if @X P PĎmin

E
. DY P P. X Ď implEpY q.

For example, take the above E1 “ ppa ||bq | pc ||dqq` || ppe ||fqr2,5s | gr1,3sq || ph˚ || ir0,9sq
and recall that PĎmin

E1
“ tta, cu,ta, du,tb, cu,tb, du,te, gu,tf, guu. Then, we have the

following:

– ttb, cu, tf, guu is non-redundant and covering,
– ttb, cuu is non-redundant and it is not covering,
– tta, cu, tb, cu, tf, guu is redundant and covering,
– tta, cu, tb, cuu is redundant and not covering.

Given a DIME E, the compact representation of the collections of required symbols

PE is naturally a non-redundant and covering subset of PĎmin

E . Since there may
exist many non-redundant and covering subsets of PĎmin

E
, we use the total order

ăΣ on the alphabet Σ to propose a deterministic construction of the compact
representation P̂E . For this purpose, we define first some additional notations.

Given an atom A, by ΦpAq we denote the smallest label from Σ w.r.t. ăΣ that
is present in A and has interval 1:

ΦpAq “ min
ăΣ

ta P ΣA | I
a “ 1u.

For example, Φpa || bq “ a. Then, given a clause with interval DI , by ΦpDIq we
denote the set of all symbols ΦpAq for every atom A in D:

ΦpDI q “ tΦpAq | A is an atom in Du.

For example, Φpppa ||bq | pc ||dqq`q “ ta, cu and Φpppe ||fqr2,5s | gr1,3sqq “ te, gu. Then,
P̂ pEq consists of all such sets for the clauses with intervals of type 1 or 2:

P̂E “ tΦpD
Iq | DI is a clause with interval of type 1 or 2 in Eu.

For example, P̂E1
“ tta, cu, te, guu. Notice that the set ta, cu is due to the clause

with interval ppa || bq | pc || dqq` of type 1 and the set te, gu is due to the clause
with interval ppe ||fqr2,5s | gr1,3sq of type 2. Also notice that the clause with interval
ph˚ || ir0,9sq is of type 3, none of its symbols is required, and consequently, no set
in P̂E contains symbols from it.

We have introduced all elements to be able to define the compact representation
of a characterizing tuple. Given a DIME E, we say that ∆̂ “ pCE , N̂E , P̂E ,KEq
is the compact representation of its characterizing tuple ∆E . Then, an unordered
word w satisfies ∆̂E , denoted w |ù ∆̂E , if

– w |ù CE and w |ù KE as previously defined when we have introduced w |ù ∆E ,
– w |ù N̂E i.e., @a P Σ. wpaq P N̂Epaq,
– w |ù P̂E i.e., @X P P̂E . Da P X. a P w. Notice that we use exactly the same

definition as for w |ù PE and recall that P̂E is in fact a non-redundant and
covering subset of PĎmin

E .
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Next, we show that given a DIME E, its compact characterizing tuple ∆̂E defines
precisely the same set of unordered words as its characterizing tuple ∆E .

Lemma 3 Given an unordered word w and a DIME E, w |ù ∆E iff w |ù ∆̂E .

Proof The only if part follows directly from the definitions. For the if part, proving
w |ù ∆E reduces to proving that w |ù PE , which moreover, reduces to proving that
for every X from PĎmin

E there is a symbol a in X that occurs in w (*). Since P̂E
is a covering subset of PĎmin

E , we know that for every X P PĎmin

E there exists a set

Y P P̂E such that X Ď implEpY q. Since w |ù P̂E and w |ù KE , we infer that (*) is
satisfied. ˝

Additionally, we define the subsumption of the compact representations of two
characterizing tuples. Given two DIMEs E and E1, we write ∆̂E1 ď ∆̂E if

– CE Ď CE1 and KE Ď KE1 (as for the subsumption of characterizing tuples),
– @a P Σ. N̂E1 paq Ď N̂Epaq,
– @X P P̂E . DY P P̂E1 . Y Ď implE1pXq.

Next, we show that the subsumption of compact representations of characterizing
tuples captures the subsumption of characterizing tuples.

Lemma 4 Given two DIMEs E and E1, ∆E1 ď ∆E iff ∆̂E1 ď ∆̂E .

Proof First, since PE is closed under supersets, we observe that

PE Ď PE1 iff @X P PĎmin

E . DY P PĎmin

E 1 . Y Ď X.

Moreover, the conditions CE Ď CE1 and KE Ď KE1 are part of both ∆E1 ď ∆E
and ∆̂E1 ď ∆̂E . Consequently, proving ∆E1 ď ∆E iff ∆̂E1 ď ∆̂E reduces to proving
that, if CE Ď CE1 and KE Ď KE1 , then

@X P PĎmin

E . DY P PĎmin

E 1 . Y Ď X iff @X P P̂E . DY P P̂E1 . Y Ď implE1pXq.

For the only if part, take a set X from P̂E . Since X also belongs to PĎmin

E , we know
by hypothesis that there exists a set Y in PĎmin

E 1 such that Y Ď X. Then, construct
a set Y 1 from Y by replacing each symbol b from Y with the smallest a w.r.t. ăΣ
such that pa, bq and pb, aq belong to KE1 . Moreover, since KE Ď KE1 , we infer that
Y 1 Ď implE1pXq. For the if part, take an take an X from P̂E and an Y from P̂E1

s.t. Y Ď implE1 pXq. To construct the corresponding X 1 in PĎmin

E
and Y 1 in PĎmin

E 1

such that Y 1 Ď X 1, we replace symbols a from X and a1 from Y with symbols b
in X 1 and b1 in Y 1 such that pa, bq and pb, aq belong to KE , and pa

1, b1q and pb1, a1q
belong to KE1 . Since KE Ď KE1 , we know that such X 1 and Y 1 do exist. ˝

Example 2 Take E “ a˚ || pb | cq` || d˚ and E1 “ pa || bq` | pc || dq`. Notice that
LpE1q Ď LpEq, ∆E1 ď ∆E , and ∆̂E1 ď ∆̂E . In particular, we have the following.

– CE “ H is included in CE1 “ tpa, cq, pa, dq, pb, cq, pb, dq, pc, aq, pc, bq, pd, aq, pd, bqu,
– N̂Epaq “ N̂E1paq “ ˚, . . . , N̂Epdq “ N̂E1 pdq “ ˚,
– KE “ H is included in KE1 “ tpa, bq, pb, aq, pc, dq, pd, cqu,
– P̂E “ ttb, cuu and P̂E1 “ tta, cuu that compactly represent PE “ ttb, cu, . . .u

and PE1 “ tta, cu, ta, du, tb, cu, tb, du, . . .u, respectively (we have listed only the
Ď-minimal sets). Then, take X “ tb, cu from P̂E and notice that there exists
Y “ ta, cu in P̂E1 such that Y Ď implE1pXq because implE1ptb, cuq “ ta, b, c, du. ˝
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Next, we show that the compact representation is of polynomial size.

Lemma 5 Given a DIME E, the compact representation ∆̂E “ pCE , N̂E , P̂E ,KEq of
its characterizing tuple ∆E is of size polynomial in the size of the alphabet Σ.

Proof By construction, the sizes of CE and KE are quadratic in |Σ| while the sizes
of P̂E and N̂E are linear in |Σ|. ˝

The use of compact representation of characterizing tuples allows us to state the
main result of this section.

Theorem 4 Given an unordered word w and two DIMEs E and E1:

1. deciding whether w P LpEq is in PTIME,

2. deciding whether LpE1q Ď LpEq is in PTIME.

Proof The first part follows from Lemma 1, Lemma 3, and Lemma 5. The second
part follows from Lemma 2, Lemma 4, and Lemma 5. ˝

5 Interval multiplicity schemas

In this section, we employ DIMEs to define schema languages and we present the
related problems of interest.

Definition 1 A disjunctive interval multiplicity schema (DIMS) is a tuple S “ prootS , RSq,
where rootS P Σ is a designated root label and RS maps symbols in Σ to DIMEs.
By DIMS we denote the set of all disjunctive interval multiplicity schemas. A
disjunction-free interval multiplicity schema (IMS) S “ prootS , RSq is a restricted
DIMS, where RS maps symbols in Σ to IMEs. By IMS we denote the set of all
disjunction-free interval multiplicity schemas.

We define the language captured by a DIMS S in the following way. Given a
tree t, we first define the unordered word chnt of children of a node n P Nt of t
i.e., chnt paq “ |tm P Nt | pn,mq P childt ^ labtpmq “ au|. Now, a tree t satisfies

S, in symbols t |ù S, if labtproot tq “ rootS and for every node n P Nt, chnt P
LpRSplabtpnqqq. By LpSq Ď Tree we denote the set of all trees satisfying S.

In the sequel, we present a schema S “ prootS , RSq as a set of rules of the form
a Ñ RSpaq, for every a P Σ. If LpRSpaqq “ ε, then we write a Ñ ǫ or we simply
omit writing such a rule.

Example 3 Take the content model of a semi-structured database storing infor-
mation about a peer-to-peer file sharing system, having the following rules: 1) a
peer is allowed to download at most the same number of files that it uploads, and
2) peers are split into two groups: a peer is a vip if it uploads at least 100 files,
otherwise it is a simple user :

peers Ñ user˚ || vip˚
,

user Ñ pupload || download?qr0,99s
,

vip Ñ pupload || download?qr100,8s
. ˝
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Example 4 Take the content model of a semi-structured database storing informa-
tion about two types of cultural events: plays and movies. Every event has a date
when it takes place. If the event is a play, then it takes place in a theater while a
movie takes place in a cinema.

events Ñ event˚
,

event Ñ date || ppplay || theaterq | pmovie || cinemaqq. ˝

Problems of interest. We define next the problems of interest and we formally
state the corresponding decision problems parameterized by the class of schema S

and, when appropriate, by a class of queries Q.

– Schema satisfiability – checking if there exists a tree satisfying the given schema:

SATS “ tS P S | Dt P Tree. t |ù Su.

– Membership – checking if the given tree satisfies the given schema:

MEMBS “ tpS, tq P S ˆTree | t |ù Su.

– Schema containment – checking if every tree satisfying one given schema satisfies
another given schema:

CNTS “ tpS1, S2q P S ˆ S | LpS1q Ď LpS2qu.

– Query satisfiability by schema – checking if there exists a tree that satisfies the
given schema and the given query:

SATS,Q “ tpS, qq P S ˆQ | Dt P LpSq. t |ù qu.

– Query implication by schema – checking if every tree satisfying the given schema
satisfies also the given query:

IMPLS,Q “ tpS, qq P S ˆQ | @t P LpSq. t |ù qu.

– Query containment in the presence of schema – checking if every tree satisfying
the given schema and one given query also satisfies another given query:

CNTS,Q “ tpp, q, Sq P QˆQˆ S | @t P LpSq. t |ù pñ t |ù qu.

We study these problems for DIMSs and IMSs in Sections 6 and 7 of the paper.

6 Complexity of disjunctive interval multiplicity schemas (DIMSs)

In this section, we present the complexity results for DIMSs. First, we show the
tractability of schema satisfiability and containment. Then, we provide an algo-
rithm for deciding membership in streaming i.e., that processes an XML document
in a single pass and using memory depending on the height of the tree and not on
its size. Finally, we point out that the complexity of query satisfiability, implica-
tion, and containment in the presence of the schema follow from existing results.

First, we show the tractability of schema satisfiability and schema containment.
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Proposition 1 SATDIMS and CNTDIMS are in PTIME.

Proof A simple algorithm based on dynamic programming can decide the satis-
fiability of a DIMS. More precisely, given a schema S “ prootS , RSq, one has to
determine for every symbol a of the alphabet Σ whether there exists a (finite) tree
t that satisfies S1 “ pa,RSq. Then, the schema S is satisfiable if there exist such a
tree for the root label rootS .

Moreover, testing the containment of two DIMSs reduces to testing, for each
symbol in the alphabet, the containment of the associated DIMEs, which is in
PTIME (Theorem 4). ˝

Next, we provide an algorithm for deciding membership in streaming i.e., that
processes an XML document in a single pass and uses memory depending on the
height of the tree and not on its size. Our notion of streaming has been employed
in [42] as a relaxation of the constant-memory XML validation against DTDs,
which can be performed only for some DTDs [42,41]. In general, validation against
DIMSs cannot be performed with constant memory due to the same observations
as in [42,41] w.r.t. the use of recursion in the schema. Hence, we have chosen our
notion of streaming to be able to have an algorithm that works for the entire class
of DIMSs. We assume that the input tree is given in XML format, with arbitrary
ordering of sibling nodes. Moreover, the proposed algorithm has earliest rejection

i.e., if the given tree does not satisfy the given schema, the algorithm outputs
the result as early as possible. For a tree t, heightptq is the height of t defined in
the usual way. We employ the standard RAM model and assume that subsequent
natural numbers are used as labels in Σ.

Proposition 2 MEMBDIMS is in PTIME. There exists an earliest streaming algo-

rithm that checks membership of a tree t in a DIMS S in time Op|t| ˆ |Σ|2q and using

space Opheightptq ˆ |Σ|2q.

Proof We propose Algorithm 1 for deciding the membership of a tree t to the lan-
guage of a DIMS S. The input tree t is given in XML format, with some arbitrary
ordering of sibling nodes. We assume a well-formed stream rt Ă topen , closeu ˆ Σ

representing a tree t and a procedure readprtq that returns the next pair pθ, bq in the
stream, where θ P topen , closeu and b P Σ. The algorithm works for every arbitrary
ordering of sibling nodes. To validate a tree t against a DIMS S “ prootS , RSq, one
has to run Algorithm 1 after reading the opening tag of the root.

For a given node, the algorithm constructs the compact representation of
the characterizing tuple of its label (line 1), which requires space Op|Σ|2q (cf.
Lemma 5). The algorithm also stores for a given node the number of occurrences
of each label in Σ among its children. This is done using the array count , which
requires space OpΣq. Initially, all values in the array count are set at 0 (lines 2-3)
and they are updated after reading the open tag of the children (lines 4-6). During
the execution, the algorithm maintains a stack whose height is the depth of the
currently visited node. Naturally, the bound on space required is Opheightptqˆ|Σ|2q.

The algorithm has earliest rejection since it rejects a tree as early as possible.
More precisely, this can be done after reading the opening tag for nodes that vi-
olate the maximum value for the allowed cardinality for their label (lines 7-8) or
violate some conflicting pair of siblings (lines 9-10). If it is not the case, the algo-
rithm recursively validates the corresponding subtree (lines 11-12). After reading
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all children of the current node, the algorithm checks whether the components of
the characterizing tuple are satisfied: the extended cardinality map (lines 14-15),
the collections of required symbols (lines 16-17), and the counting dependencies
(lines 18-19). Notice that since we have checked the conflicting pairs of siblings
after reading each opening tag, we do not need to check them again after reading
all children. However, we still need to check the extended cardinality map at this
moment to see whether the number of occurrences of each label is in the allowed
interval. When we have read the opening tag, we were able to reject only if the
maximum value for the allowed number of occurrences has been already violated.
As for the collections of required symbols and the counting dependencies, we are
able to establish whether they are satisfied or not after reading all children. If none
of the constraints imposed by the characterizing tuple is violated, the algorithm
returns true (line 20). As we have already shown with Lemma 1 and Lemma 3, the
compact representation of the characterizing tuple captures precisely the language
of a given DIME. Consequently, the algorithm returns true after reading the root
node iff the given tree satisfies the given schema. ˝

Algorithm 1 Streaming algorithm for testing membership.

algorithm validatepaq

Parameters: DIMS S, stream rt
Input: the label a P Σ of the current node
Output: true if the subtree rooted at the current node is valid w.r.t. S, false otherwise
1: let pC, N̂, P̂ , Kq be the compact representation of the characterizing tuple of RSpaq
2: for b P Σ do

3: let count rbs “ 0

4: pθ, bq “ readprtq
5: while θ “ open do

6: count rbs :“ count rbs ` 1

7: if countrbs ą maxpN̂pbqq then

8: return false

9: if Dc P Σ. pb, cq P C ^ count rcs ‰ 0 then

10: return false

11: if validatepbq “ false then

12: return false

13: pθ, bq “ readprtq
14: if Db P Σ. count rbs R N̂pbq then

15: return false
16: if DX P P̂ . @b P X. count rbs “ 0 then

17: return false

18: if Dpb, cq P K. count rbs ă count rcs then

19: return false

20: return true

We continue with complexity results that follow from known facts. Query satisfi-
ability for DTDs is NP-complete [5] and we adapt the result for DIMSs.

Proposition 3 SATDIMS ,Twig is NP-complete.

Proof Proposition 4.2.1 from [5] implies that satisfiability of twig queries in the
presence of DTDs is NP-hard. We adapt the proof and we obtain the following
reduction from SAT to SATDIMS ,Twig : we take a CNF formula ϕ “

Źn
i“1

Ci over
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the variables x1, . . . , xm, where each Ci is a disjunction of literals. We take Σ “
tr, t1, f1, . . . , tm, fm, c1, . . . , cnu and we construct:

– The DIMS S having the root label r and the rules:
– r Ñ pt1 | f1q || . . . || ptm | fmq,
– tj Ñ cj1 || . . . || cjk , where cj1 , . . . , cjk correspond to the clauses using xj (for

1 ď j ď m),
– fi Ñ cj1 || . . . || cjk , where cj1 , . . . , cjk correspond to the clauses using  xj

(for 1 ď j ď m).
– The twig query q “ rr{{c1s . . . r{{cns.

For example, for the formula ϕ0 “ px1 _ x2 _ x3q ^ p x1 _ x3 _ x4q we obtain
the DIMS S containing the rules:

r Ñ pt1 | f1q || pt2 | f2q || pt3 | f3q || pt4 | f4q,

t1 Ñ c1, f1 Ñ c2, t2 Ñ ǫ, f2 Ñ c1,

t3 Ñ c1 || c2, f3 Ñ ǫ, t4 Ñ ǫ, f4 Ñ c2.

and the query q “ {rr{{c1sr{{c2s. The formula ϕ is satisfiable iff pS, qq P SATDIMS ,Twig .
The described reduction works in polynomial time in the size of the input formula.

For the NP upper bound, we reduce SATDIMS ,Twig to SATDTD,Twig (i.e., the
problem of satisfiability of twig queries in the presence of DTDs), known to be in
NP (Theorem 4.4 from [5]). Given a DIMS S, we construct a DTD D having the
same root label as S and whose rules are obtained from the rules of S by replacing
the unordered concatenation with standard (ordered) concatenation. Then, take a
twig query q. We claim that there exists an (unordered) tree satisfying q and S iff
there exists an (ordered) tree satisfying q and D. For the if part, take an ordered
tree t satisfying q and D, remove the order to obtain an unordered tree t1, and
observe that t1 satisfies S. For the only if part, take an unordered tree t satisfying
q and S. From the construction of D, we infer that there exists an ordered tree t1

(obtained via some ordering of the sibling nodes of t) satisfying both q and D. We
recall that the twig queries disregard the relative order among the siblings. ˝

The complexity results for query implication and query containment in the pres-
ence of DIMSs follow from the EXPTIME-completeness proof from [35] for twig
query containment in the presence of DTDs.

Proposition 4 IMPLDIMS ,Twig and CNTDIMS ,Twig are EXPTIME-complete.

Proof The EXPTIME-hardness proof of twig containment in the presence of DTDs
(Theorem 4.5 from [35]) has been done using a reduction from the Two-player

corridor tiling problem and a technique introduced in [32]. In the proof from [35],
when testing the containment p ĎS q, p is chosen such that it satisfies every tree
in S, hence IMPLDTD,Twig is also EXPTIME-complete. Furthermore, Lemma 3
in [32] can be adapted to twig queries and DIMS: for every S P DIMS and twig
queries q0, q1, . . . , qm there exists S1 P DIMS and twig queries q and q1 such that
q0 ĎS q1 Y . . . Y qm iff q ĎS1 q1. Moreover, the DTD in [35] can be captured with
a DIMS constructible in polynomial time: take the same reduction as in [35] and
then replace the standard concatenation with unordered concatenation. Hence, we
infer that CNTDIMS ,Twig and IMPLDIMS ,Twig are also EXPTIME-hard.
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For the EXPTIME upper bound, we reduce CNTDIMS ,Twig to CNTDTD,Twig

(i.e., the problem of twig query containment in the presence of DTDs), known to
be in EXPTIME (Theorem 4.4 from [35]). Given a DIMS S, we construct a DTD
D having the same root label as S and whose rules are obtained from the rules of S
by replacing the unordered concatenation with standard (ordered) concatenation.
Then, take two twig queries p and q. We claim that p ĎS q iff p ĎD q and show the
two parts by contraposition. For the if part, assume p ĘS q, hence there exists an
unordered tree t that satisfies q and S, but not p. From the construction of D, we
infer that there exists an ordered tree t1 (obtained via some ordering of the sibling
nodes of t) that satisfies q and D, but not p. For the only if part, assume p ĘD q,
hence there exists an ordered tree t that satisfies q and D, but not p. By removing
the order of t, we obtain an unordered tree t1 that satisfies q and S, but not p. We
recall that the twig queries disregard the relative order among the siblings. The
membership of CNTDIMS ,Twig to EXPTIME yields that IMPLDIMS ,Twig is also
in EXPTIME (it suffices to take as p the universal query). ˝

7 Complexity of disjunction-free interval multiplicity schemas (IMSs)

Although query satisfiability and query implication in the presence of schema are
intractable for DIMSs, we prove that they become tractable for IMSs (Section 7.4).
We also show a considerably lower complexity for query containment in the presence
of schema: coNP-completeness for IMSs instead of EXPTIME-completeness for
DIMSs (Section 7.4). Additionally, we point out that our results for IMSs allow also
to characterize the complexity of query implication and query containment in the
presence of disjunction-free DTDs (i.e., restricted DTDs using regular expressions
without disjunction operator), which, to the best of our knowledge, have not been
previously studied (Section 7.5). To prove our results, we develop a set of tools that
we present next: dependency graphs (Section 7.1), generalized definition of embedding

(Section 7.2), family of characteristic graphs (Section 7.3).

7.1 Dependency graphs

Recall that IMSs use IMEs, which are essentially expressions of the form AI1
1
|| . . . ||

A
Ik
k
, where A1, . . . , Ak are atoms, and I1, . . . , Ik are intervals. Given an IME E,

let symbols@pEq be the set of symbols present in all unordered words in LpEq, and
symbolsDpEq the set of symbols present in at least one unordered word in LpEq:

symbols@pEq “ ta P Σ | @w P LpEq. a P wu,

symbolsDpEq “ ta P Σ | Dw P LpEq. a P wu.

Given an IME E, notice that symbols@pEq Ď symbolsDpEq, and moreover, the sets
symbols@pEq and symbolsDpEq can be easily constructed from E. For example, given
E0 “ pa || b?qr5,6s || c`, we have symbols@pE0q “ ta, cu and symbolsDpE0q “ ta, b, cu.

Definition 2 Given an IMS S “ prootS , RSq, the existential dependency graph of
S is the directed rooted graph GD

S “ pΣ, rootS , E
D
Sq with the node set Σ, the

distinguished root node rootS , and the set of edges ED
S such that pa, bq P ED

S if b P
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symbolsDpRSpaqq. Furthermore, the universal dependency graph of S is the directed
rooted graph G@

S “ pΣ, rootS , E
@
Sq such that pa, bq P E@

S if b P symbols@pRSpaqq.

Example 5 Take the IMS S containing the rules:

r Ñ pa? || bqr1,10s || c, aÑ d
?
, bÑ a

r2,3s || c˚ || d`
.

In Figure 4 we present the existential dependency graph of S and the universal
dependency graph of S. ˝

r

a b c

d

r

a b c

d

Fig. 4 Existential dependency graph GD

S and universal dependency graph G@

S for Example 5.

Given an IMS S and a symbol a, we say that a is reachable (or useful) in S if
there exists a tree in LpSq which has a node labeled by a. Moreover, we say that
an IMS is trimmed if it contains rules only for the reachable symbols. For every
satisfiable IMS S, there exists an equivalent trimmed version which can be obtained
by removing the rules for the symbols involved in unreachable components in G@

S

(in the spirit of [2]). Notice that the unreachable components of G@
S correspond

in fact to cycles in G@
S . In the sequel, we assume w.l.o.g. that all IMSs that we

manipulate are satisfiable and trimmed.

7.2 Generalizing the embedding

We generalize the notion of embedding previously defined in Section 2. Note that
in the rest of the section we use the term dependency graphs when we refer to both
existential and universal dependency graphs. First, an embedding of a query q in a
dependency graph G “ pΣ, root , Eq is a function λ : Nq Ñ Σ such that:

1. λprootqq “ root ,
2. for every pn, n1q P childq, pλpnq, λpn1qq P E,
3. for every pn, n1q P descq, pλpnq, λpn1qq P E` (the transitive closure of E),
4. for every n P Nq, labqpnq “ ‹ or labqpnq “ λpnq.

If there exists an embedding of q in G, we write G ď q. Next, a simulation of a
dependency graph G “ pΣ, root , Eq in a tree t is a relation R Ď Σ ˆNt such that:

1. proot , root tq P R,
2. for every pa, nq P R, pa, a1q P E, there exists n1 P Nt such that pn, n1q P child t

and pa1, n1q P R,
3. for every pa, nq P R. labtpnq “ a.
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Note that R is a total relation for the nodes of the graph reachable from the root
i.e., for every a P Σ reachable from root in G, there exists a node n P Nt such that
pa, nq P R. If there exists a simulation from G to t, we write t ď G. Additionally,
note that given a graph containing cycles reachable from the root, there does not
exist any (finite) tree where it can be simulated. However, we point out that in the
remainder we use the notion of simulation only for universal dependency graphs
that are supposed to come from trimmed IMSs, hence they do not have such cycles.

Given two dependency graphs G1 “ pΣ, root , E1q and G2 “ pΣ, root , E2q, G1 is
a subgraph of G2 if E1 Ď E2. For a dependency graph G “ pΣ, root , Eq, we define
the partial order ďG on the subgraphs of G: given G1 and G2 two subgraphs of
G, G1 ďG G2 if G1 is a subgraph of G2. Note that the relation ďG is reflexive,
antisymmetric, and transitive, thus being an ordering relation. Moreover, it is well-
founded and it has a minimal element G0 “ pΣ, root ,Hq. The following result can
be easily shown by a structural induction using the order ďG.

Lemma 6 For every IMS S, its universal dependency graph can be simulated in every

tree t which belongs to the language of S.

A path in a dependency graph G “ pΣ, root , Eq is a non-empty sequence of vertices
starting at root such that for every two consecutive vertices in the sequence, there
is a directed edge between them in G. By PathspGq Ď Σ` we denote the set of all
paths in G. The set of paths is finite only for graphs without cycles reachable from
the root. For instance, the paths of the graph G1 in Figure 5(b) are PathspG1q “
tr, ra, rb, rc, rbd, rcd, rbde, rcdeu.
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(a) Tree t1.
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(b) Graph G1 and its unfolding.
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(c) Graph G2 and its unfolding.

Fig. 5 A tree and two graphs with their corresponding unfoldings.

Similarly, a path in a tree t is a non-empty sequence of nodes starting at root t such
that every two consecutive nodes in the sequence are in the relation childt. By
Pathsptq Ď N`

t we denote the set of all paths in t. Then, we define LabPathsptq Ď Σ`

as the set of sequences of labels of nodes from all paths in t. For instance, for
the tree t1 from Figure 5(a) we have Pathspt1q “ tn0, n0n1, n0n1n2, n0n3, n0n3n4u
and LabPathspt1q “ tr, ra, rabu. Note that |LabPathsptq| ď |Pathsptq|. The un-

folding of a dependency graph G “ pΣ, root , Eq, denoted uG, is a tree uG “
pNuG , rootuG , labuG , childuGq such that:

– NuG “ PathspGq,
– rootuG P NuG is the root of uG,
– pp, p ¨ aq P childuG , for every path p, p ¨ a P PathspGq (note that “¨” stands for

standard ordered concatenation),
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– labuGprootuGq “ root , and labuGpp ¨ aq “ a, for every path p ¨ a P PathspGq.

The unfolding of a graph is finite only when the graph has no cycle reachable
from the root, because otherwise PathspGq is infinite, hence uG is infinite. In the
remainder, we use the unfolding only for graphs having no cycle reachable from the
root (in order to have finite unfoldings). In such a case, the unfolding can be seen as
the smallest tree uG (w.r.t. the number of nodes) having LabPathspuGq “ PathspGq.
The idea of the unfolding is to transform the dependency graphG into a tree having
the child relation instead of directed edges. There are nodes duplicated in order
to avoid nodes with more than one incoming edge. For instance, in Figure 5(b) we
take the graph G1 and construct its unfolding uG1

. Moreover, notice that the size
of the unfolding may be exponential in the size of the graph, for example for the
graph G2 from Figure 5(c).

We also extend the definition of embedding and propose the embedding from
a tree to another tree i.e., given two trees t and t1, we say that t1 can be embedded
in t (denoted t ď t1) if the query pNt1 , root t1 , labt1 , childt1 ,Hq can be embedded in t.
Similarly, we can define the embedding from a tree to a dependency graph. Note
that two embeddings can be composed, for example:

– @t, t1 P Tree . @q P Twig. pt ď t1 ^ t1 ď q ñ t ď qq,

– @S P IMS . @t P Tree . @q P Twig . pG@{D
S

ď t^ t ď q ñ G
@{D
S

ď qq.

We state next two auxiliary lemmas that can be easily proven by structural in-
duction on the dependency graphs (using the order ďG):

Lemma 7 A dependency graph G can be simulated in a tree t iff its unfolding uG can

be embedded in t.

Lemma 8 A query q can be embedded in a dependency graph G iff q can be embedded

in the unfolding tree of G.

In Figure 6 we present the operations fuse and add. Given two trees t and t1, we
say that t ⊳0 t

1 if t1 is obtained from t by applying one of the operations from
Figure 6. The fuse operation takes two siblings with the same label and creates
only one node having below it the subtrees corresponding to each of the siblings.
The add operation consists simply in adding a subtree at some place in the tree.
By E we denote the transitive and reflexive closure of ⊳0.

.

a b b c

t1 t2 t3 t4

fuse
ÝÝÑ

.

a b c

t1 t2 t3 t4

.

a b c

t1 t2 t3

addÝÝÑ
.

a b c d

t1 t2 t3 t4

Fig. 6 Operations fuse and add.

Note that the fuse and add operations preserve the embedding i.e., given a twig
query q and two trees t and t1, if t ď q and t E t1, then t1 ď q. Furthermore, if
we can embed a query q in a tree t which can be embedded in the existential
dependency graph of an IMS S, we can perform a sequence of operations such
that t is transformed into another tree t1 satisfying S and q at the same time.
Formally, we have the following.
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Lemma 9 Given an IMS S, a query q and a tree t, if GD
S ď t and t ď q, then there

exists a tree t1 P LpSqXLpqq. The tree t1 can be constructed after a sequence of fuse and

add operations (consistently with the schema S) from the tree t and we denote tES t
1.

7.3 Family of characteristic graphs

Given a schema S and a query q, we can capture all trees satisfying both S and q
with the characteristic graphs that we introduce next.

More formally, a characteristic graph G is a tuple pVG, rootG, labG, EGq, where
VG is a finite set of vertices, rootG P VG is the root of the graph, labG : VG Ñ Σ

is a labeling function (with labGprootGq “ rootS), and EG Ď VG ˆ VG is the set
of edges. Let us assume that GD

S ď q and take such an embedding λ : Nq Ñ Σ.
By Λpq, S, λq we denote the set of all characteristic graphs for q and S w.r.t. λ. To
construct such a graph, let us start with G “ pVG, rootG, labG, EGq where VG and
EG are empty, and perform the four steps described below.

1. For every n in Nq , add a node n1 to VG such that labGpn
1q “ λpnq. Let rootG

be the node such that labGprootGq “ rootS .
2. For every pn1, n2q in childq, add pn1

1, n
1
2q to EG, where n

1
1 and n1

2 are the nodes
corresponding to n1 and n2, respectively, as constructed at step 1.

3. For every pn1, n2q in descq, choose an acyclic path a0, . . . , ak in GD
S where λpn1q “

a0 and λpn2q “ ak. Notice that, since n1 and n2 belong to Nq, we have already
added in VG two nodes n1

1 and n1
2, respectively, corresponding to them at step

1. Then, for every ai (with 1 ď i ď k ´ 1), we add in VG a node n2
i such that

labGpn
2
i q “ ai. Also, add in EG the edges pn1

1, n
2
1q, pn

2
1, n

2
2q, . . . , pn

2
k´1

, n1
2q.

4. For every n in VG, take from G@
S the subgraph pV 1, labGpnq, E

1q rooted at
labGpnq. Then, for every a ‰ labGpnq in V 1 add a node n1 in V 1 such that
labGpn

1q “ a. Also, for every pa1, a2q P E1, add in EG an edge pn1, n2q where n1
and n2 are the nodes corresponding to a1 and a2, respectively.

The following example illustrates the construction of such a graph.

Example 6 Take in Figure 7(a) an existential dependency graph GD
S , a twig query

q, and an embedding λ : Nq Ñ GD
S . Notice that in GD

S we have drawn the universal
edges with a full line and those that are existential without being universal with
a dotted line. Then, in Figure 7(b) we present an example of a graph G from
Λpq, S, λq. Notice that in G we have represented in boxes the nodes corresponding
to the images λpnq for the nodes of the query n P Nq. ˝

Next, we define the set of all characteristic graphs for q and S w.r.t. the all em-
beddings λ of q in GD

S :

Gpq, Sq “ tG P Λpq, S, λq | λ is an embedding of q in GD
Su.

Note that G ď q and the size of G is polynomially bounded by |q| ˆ |Σ|2 for every
G in Gpq, Sq. Indeed, after step 1 of the construction, a characteristic graph G has
|q| nodes. Then, after steps 2 and 3, since at step 3 we allow only acyclic paths of
GD
S , we add at most |Σ| nodes for each already existing node, hence G has at most

|q| ˆ |Σ| nodes. Finally, after 4, since we add at most |Σ| nodes for each already
existing node, G has at most |q| ˆ |Σ|2 nodes.
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(a) Embedding λ : Nq Ñ GD
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(b) Graph G P Λpq, S, λq.

Fig. 7 An embedding from a query q to an existential dependency graph GD

S and a graph

G P Gpq, Sq. In GD

S , the universal edges are drawn with a full line and those that are existential
without being universal with a dotted line.

Furthermore, let Λ˚pq, S, λq and G˚pq, Sq be sets of characteristic graphs con-
structed similarly to Λpq, S, λq and Gpq, Sq, respectively, the only difference being
that we allow cyclic paths at step 3 of the aforementioned construction. While
the size of the graphs in Gpq, Sq is polynomial , notice that the size of the graphs
in G˚pq, Sq is not necessary polynomial since the possible cyclic paths chosen at
step 3 can be arbitrarily long. Additionally, note that |Gpq, Sq| is finite and may
be exponential while |G˚pq, Sq| may be infinite if the existential dependency graph
GD
S contains cycles reachable from the root.

Next, we extend the previous definition of the unfolding to the characteristic
graphs. Given an IME E and a symbol a, by min nbpE,aq we denote the minimum
number of occurrences of the symbol a in every unordered word defined by E.
Next, we define the unfolding of a characteristic graph. Given a query q, an IMS S,
and a characteristic graph G P G

˚pq, Sq, we construct its unfolding as follows:

– Let uG be the unfolding of G obtained as defined in Section 7.2.
– Update uG such that for every n P NuG , for every a P Σ, let ta the subtree

having as root the child of n labeled by a. Next, add copies of ta as children of
n until n has min nbpRSplabuGpnqq, aq children labeled by a.

Notice that every graph G in G
˚pq, Sq is acyclic. Indeed, when constructing such

a graph G, after steps 1, 2 and 3, G is basically shaped as a tree. Then, the
subgraphs that we fuse at step 4 are all acyclic since they are subgraphs of the
universal dependency graph G@

S that we assume trimmed (cf. Section 7.1). Since
every graph G in G

˚pq, Sq is acyclic, it has a finite unfolding, which naturally
belongs to the language of S.
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7.4 Complexity results

In this section, we use the above defined tools to show the complexity results
for IMSs. First, the dependency graphs and embeddings capture satisfiability and
implication of queries by IMSs.

Lemma 10 Given a twig query q and an IMS S:

1. q is satisfiable by S iff GD
S ď q,

2. q is implied by S iff G@
S ď q.

Proof 1) For the if part, we know that GD
S ď q, thus the family of graphs Gpq, Sq is

not empty. The unfolding of every graph from Gpq, Sq satisfies S and q at the same
time, hence q is satisfiable by S. For the only if part, we know that there exists a
tree t P LpSq X Lpqq, and we assume w.l.o.g. that it is the unfolding of a graph G

from G˚pq, Sq. Since t ď q, we obtain uG ď q, hence G ď q (by Lemma 8), which,
from the construction of G, implies that GD

S ď q.
2) For the if part, we know that G@

S ď q, which implies by Lemma 8 that
uG@

S
ď q. On the other hand, take a tree t P LpSq. By Lemma 6 we have t ď G@

S ,

which implies by Lemma 7 that t ď uG@
S
. From the last embedding and uG@

S
ď q

we infer that t ď q. Since t can be every tree in the language of S, we conclude
that q is implied by S. For the only if part, we know that for every t P LpSq,
t ď q. Consider the tree t obtained as follows: we take uG@

S
and we duplicate some

subtrees in order to have, for each node n P Nt, min nbpRSplabtpnqq, aq children
labeled by a. Naturally, t is in the language of S, hence t ď q from the hypothesis.
From the definition of the unfolding, we infer that G@

S ď t, which implies that
G@
S ď q. ˝

For instance, the twig query q “ rras{b{{d can be embedded in the existential
dependency graph of the IMS S from Example 5, thus q is satisfiable by S. In
Figure 8 we present embeddings of q in GD

S and in a tree t satisfying both S and
q. Additionally, notice that the twig query q “ rras{b{{d cannot be embedded in
G@
S from Example 5, and therefore, q is not implied by S. On the other hand, the

twig query q1 “ r{b{{d can be embedded in G@
S , thus q

1 is implied by S.
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Fig. 8 Embeddings of q in GD

S
and in a tree t which satisfies S and q at the same time.

Moreover, we point out that testing the embedding of a query in a dependency
graph can be done in polynomial time with a simple bottom-up algorithm. From
this observation and Lemma 10 we obtain the following.

Theorem 5 SATIMS ,Twig and IMPLIMS ,Twig are in PTIME.
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Next, we present the complexity of query containment in the presence of IMSs.
The coNP-completeness of the containment of twig queries [32] implies the coNP-
hardness of the containment of twig queries in the presence of IMSs. Proving the
membership of the problem to coNP is, however, not trivial. Given an instance
pp, q, Sq, the set of all trees satisfying p and S can be characterized with a set
Gpp, Sq containing an exponential number of polynomially-sized graphs and p is
contained in q in the presence of S iff the query q can be embedded into all graphs
in Gpp, Sq. This condition is easily checked by a non-deterministic Turing machine.

Theorem 6 CNTIMS ,Twig is coNP-complete.

Proof The coNP-completeness of the containment of twig queries (Theorem 4
in [32]) implies that CNTIMS ,Twig is coNP-hard. Next, we prove the member-
ship of the problem to coNP. Given an instance pp, q, Sq, a witness is a function
λ : Np Ñ Σ. Testing whether λ is an embedding from p to GD

S requires polynomial
time. If λ is an embedding, a non-deterministic polynomial algorithm chooses a
graph G from Λpp, S, λq and checks whether q can be embedded in G. We claim
that p ­ĎS q iff there exists a graph G in Gpp, Sq such that G ę q.

For the if case, we assume that there exists a graph G P Gpp, Sq such that
G ę q. We know that G ď p, thus uG ď p (by Lemma 8), hence there exists a tree
t P LpSq such that t ď p and uG ES t (by Lemma 9). If we assume by absurd that
t ď q, we have uG ď q, thus G ď q, which is a contradiction. We infer thus that
there exists a tree t P LpSq X Lppq, such that t R Lpqq, and consequently, p ­ĎS q.

For the only if case, we assume that p ­ĎS q, hence there exists a tree t P
LpSq X Lppq such that t R Lpqq. Because t P LpSq X Lppq, we know that there exists
a graph G P G

˚pp, Sq, such that uG ES t. We know that t ę q, thus uG ę q (by
Lemma 8), that yields G ­ď q. Furthermore, by using a simple pumping argument,
we have @q P Twig. @G P G

˚pq, Sq. pG ę q ñ DG1 P Gpq, Sq. G1 ę qq, which implies
that there exists a graph G1 P Gpp, Sq such that G1 ę q. ˝

7.5 Extending the complexity results to disjunction-free DTDs

We also point out that the complexity results for implication and containment of
twig queries in the presence of IMSs can be adapted to disjunction-free DTDs. This
allows us to state results which, to the best of our knowledge, are novel. Similarly
to the IMSs, we represent a disjunction-free DTD as a tuple S “ prootS , RSq, where
rootS is a designated root label and RS maps symbols to regular expressions using
no disjunction, basically regular expressions of the grammar:

E ::“ ǫ | a | E˚ | E? | E` | pE ¨Eq,

where a P Σ and “¨” stands for the standard concatenation operator. Given such
an expression E, let symbols@pEq be the set of symbols present in all words from
LpEq, and symbolsDpEq the set of symbols present in at least one word from LpEq:

symbols@pEq “ ta P Σ | @w P LpEq. Dw1, w2. w “ w1 ¨ a ¨ w2u,

symbolsDpEq “ ta P Σ | Dw P LpEq. Dw1, w2. w “ w1 ¨ a ¨ w2u.

As pointed out for the IMEs, note that the sets symbols@pEq and symbolsDpEq can
be easily constructed from E. Next, we adapt the notions of dependency graph and
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universal dependency graph for disjunction-free DTDs. The existential dependency

graph of a disjunction-free DTD S is a directed rooted graph GD
S “ pΣ, rootS , E

D
Sq,

where

E
D
S “ tpa, a

1q | a1 P symbolsDpRSpaqqu.

Similarly, the universal dependency graph of a disjunction-free DTD S is a directed
rooted graph G@

S “ pΣ, rootS , E
@
Sq, where

E
@
S “ tpa, a

1q | a1 P symbols@pRSpaqqu.

Analogously to the IMSs, we assume w.l.o.g. that we manipulate only disjunction-
free DTDs having no cycle reachable from the root in the universal dependency
graph. Otherwise, if there is a cycle in the universal dependency graph, this means
that there is no tree consistent with the schema and containing at least one of the
symbols implied in that cycle. Moreover, similarly to IMSs, for a symbol a P Σ and
a disjunction-free regular expression E, by min nbpE, aq we denote the minimum
number of occurrences of the symbol a in every word defined by E.

Next, we state our complexity results for disjunction-free DTDs.

Theorem 7 IMPLdisj -free-DTD,Twig is in PTIME and CNTdisj -free-DTD,Twig is coNP-

complete.

Proof We claim that a query q is implied by a disjunction-free DTD S iff G@
S ď q

and since the embedding of a query in a graph can be computed in polynomial
time, this implies that IMPLdisj -free-DTD,Twig is in PTIME. The proof follows
from the proof of Lemma 10.2. The coNP-completeness of the containment of
twig queries (Theorem 4 in [32]) implies that CNTdisj -free-DTD,Twig is coNP-hard.
Theorem 6 states the coNP-completeness of the query containment in the presence
of IMSs and an easy adaptation of its proof technique yields the membership of
CNTdisj -free-DTD,Twig to coNP. The mentioned proofs can be adapted because
given a disjunction-free regular expression E and a word u P LpEq, u can in fact be
obtained as an ordering of the unordered word w “

Ţ
aPΣ a

min nbpE,aq. Moreover,
the order imposed by the DTD on the siblings is not important because the twig
queries are order-oblivious. ˝

8 Expressiveness of DIMS

First, we compare the expressive power of DIMSs with yardstick languages of
unordered trees. We begin with FO logic that uses only the binary child predicate
and the unary label predicates Pa with a P Σ. It is easy to show that DIMSs are
not comparable with FO. With a simple rule a Ñ pb || cq˚ a DIMS can express
the language of trees where every node labeled by a has as children only nodes
labeled by b and c such that the number of b’s is equal to the number of c’s. Such
language cannot be captured with FO for reasons similar to those for which it
cannot be expressed in FO whether the cardinality of the universe is even. There
are languages of unordered trees expressible by FO, but not expressible by DIMSs
e.g., the language of trees that contain exactly two nodes labeled b. Such languages
are not expressible by DIMSs for reasons similar to those for which they cannot
be expressed by DTDs, more precisely they are not closed under substitution of
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subtrees with the same root type [37]. By using exactly the same examples, note
that DIMSs and MSO are also incomparable. MSO with Presburger constraints [43,
44,12,13] is essentially an extension of MSO that additionally allows elements of
arithmetic (numerical variables and value comparisons) and unary functions #a
that return the number of children of a node having a given label a P Σ. This
extension is very powerful and can express Parikh images of arbitrary regular
languages. DIMSs are strictly less expressive than Presburger MSO as they use a
strict restriction of unordered regular expressions.

Next, we compare the expressive power of DIMSs and DTDs. For this purpose,
we introduce a simple tool for comparing regular expressions with DIMEs. Given
a regular expression R, the language LpRq of unordered words is obtained by
removing the relative order of symbols from every ordered word defined by R.
A DIME E captures R if LpEq “ LpRq. This tool is equivalent to considering
DTDs under commutative closure [4,34]. We believe that this simple comparison
is adequate because if a DTD is to be used in a data-centric application, then
supposedly the order between siblings is not important. Therefore, a DIME that
captures a regular expression defines basically the same admissible content model
of a node, without imposing an order among the children.

Naturally, by using the above notion to compare the expressive powers of DTDs
and DIMSs, DTDs are strictly more expressive than DIMSs. For example, the
commutative closure of the regular expression pa ¨ pb | cqq˚ cannot be expressed by
a DIME. Various classes of regular expressions have been reported in widespread
use in real-world schemas and have been studied in the literature: simple regular

expressions [8,29], single occurrence regular expressions (SOREs) [7], chain regular

expressions (CHAREs) [7]. DIMEs are strictly more expressive than CHAREs and
incomparable to the other mentioned classes of regular expressions.

Finally, we investigate how many real-life DTDs can be captured with DIMSs
and use the comparison on the XMark benchmark [39] and the University of Ams-
terdam XML Web Collection [23]. All 77 regular expressions of the XMark bench-
mark are captured by DIMEs, and among them 76 by IMEs. As for the DTDs
from the University of Amsterdam XML Web Collection, 92% of regular expres-
sions are captured by DIMEs and among them 78% by IMEs. We also point out
that CHAREs, captured by DIMEs, are reported to represent up to 90% of regu-
lar expressions used in real-life DTDs [7]. These numbers give a generally positive
coverage, but should be interpreted with caution, as we do not know which of the
considered DTDs were indeed intended for data-centric applications.

9 Related work

Languages of unordered trees can be expressed by logic formalisms or by tree au-

tomata. Boneva et al. [12,13] make a survey on such formalisms and compare their
expressiveness. The fundamental difference resides in the kind of constraints that
can be expressed for the allowed collections of children for some node. We men-
tion here only formalisms introduced in the context of XML. Presburger automata

[43], sheaves automata [20], and the TQL logic [15] allow to express Presburger con-

straints on the numbers of occurrences of the different symbols among the children
of some node. Suitable restrictions allow to obtain the same expressiveness as
the Presburger MSO logic on unordered trees [12,13], strictly more expressive than
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DIMSs. Additionally, we believe that DIMSs are more appropriate to be used as
schema languages, as they were designed as such, in particular regarding the more
user-friendly DTD-like syntax.

Languages of unordered trees can be also expressed by considering DTDs under
commutative closure [4,34]. We assume DTDs using arbitrary regular expressions,
not necessarily one-unambiguous [14] as required by the W3C. We also point out
that it has been recently shown that it is PSPACE-complete to decide whether
a given regular expression can be rewritten as an equivalent one-unambiguous
one [19]. Given a DTD using arbitrary regular expressions under commutative
closure, we say that an (ordered) tree matches such a DTD iff every tree obtained
by reordering of sibling nodes also matches the DTD. However, it is PSPACE-
complete to test whether a DTD defines a commutatively-closed set of trees [34]
and, moreover, such a DTD may be of exponential size w.r.t. the size of the
alphabet, which makes such DTDs unfeasible. Another consequence of the high
expressive power of DTDs under commutative closure is that the membership
problem is NP-complete [26]. Therefore, these formalisms were not extensively
used in practice. From a different point of view, Martens et al. [27,28] investigate
DTDs equipped with formulas from the SL logic that specifies unordered languages
and obtain complexity improvements for typechecking XML transformations.

The unordered concatenation operator “||” should not be confused with the
shuffle (interleaving) operator “&” used in a restricted form in XML Schema and
RELAX NG to define order-oblivious, yet still ordered, content. On the one hand,
a˚&b defines all ordered words with an arbitrary number of a’s and exactly one
occurrence of b, and analogously, a˚ || b defines all unordered words with exactly
the same characteristic. On the other hand, pa&bq˚ defines ordered words of the
form w1 ¨ . . . ¨ wn, where the factors w1, . . . , wn are either ab or ba, while pa || bq˚

defines unordered words having the same number of a’s and b’s. For instance,
pa&bq˚ does not accept the ordered word aabb while it has the same number of a’s
and b’s. Adding the shuffle and interval multiplicities to the regular expressions
increases the computational complexity of fundamental decision problems such
as: membership [6,25], inclusion, equivalence, and intersection [21]. Colazzo et
al. [17,18,22] propose efficient algorithms for membership and inclusion of conflict-
free types, a class of regular expressions with shuffle and numerical constraints
using intervals. Their approach is based on capturing a language with a set of
constraints, similar to our characterizing tuples for DIMEs. While conflict-free
types and DIMEs both forbid repetitions of symbols, they differ on the restrictions
imposed on the use of the operators and the interval multiplicities. Consequently,
they are incomparable.

We finally point out that the static analysis problems involving twig queries i.e.,
twig query satisfiability [5], implication [24,9], and containment [35] in the presence
of schema have been extensively studied in the context of DTDs. However, to the
best of our knowledge, these problems have not been previously studied neither for
the mentioned unordered schema languages, nor for DTDs using classes of regular
expressions extended with counting and interleaving.
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10 Conclusions and future work

We have studied schema languages for unordered XML. First, we have investi-
gated languages of unordered words and we have proposed disjunctive interval
multiplicity expressions (DIMEs), a subclass of unordered regular expressions for
which two fundamental decision problems, membership of an unordered word to
the language of a DIME and containment of two DIMEs, are tractable. Next, we
have employed DIMEs to define languages of unordered trees and have proposed
disjunctive interval multiplicity schema (DIMS) and its restriction, disjunction-
free interval multiplicity schema (IMS). DIMSs and IMSs can be seen as DTDs
using restricted classes of regular expressions and interpreted under commutative
closure to define unordered content models. These restrictions allow to maintain
a relatively low computational complexity of basic static analysis problems while
allowing to capture a significant part of the expressive power of practical DTDs.

As future work, we want to study whether the restrictions imposed by the
grammar of DIMEs can be relaxed while maintaining the tractability of the prob-
lems of interest. Moreover, we would like to investigate learning algorithms for the
unordered schema languages proposed in this paper. We have already proposed
learning algorithms for restrictions of DIMSs and IMSs [16] and we want to ex-
tend them to take into account all the expressive power. We also aim to apply
the unordered schemas to query minimization [3] i.e., given a query and a schema,
find a smaller yet equivalent query in the presence of the schema. Furthermore, we
want to use unordered schemas and optimization techniques to boost the learning
algorithms for twig queries [45].
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