

Edinburgh Research Explorer

Certain Answers over Incomplete XML Documents: Extending
Tractability Boundary

Citation for published version:
Gheerbrant, A & Libkin, L 2014, 'Certain Answers over Incomplete XML Documents: Extending Tractability
Boundary', Theory of Computing Systems, vol. 57, no. 4, pp. 1-35. https://doi.org/10.1007/s00224-014-
9596-y

Digital Object Identifier (DOI):
10.1007/s00224-014-9596-y

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Theory of Computing Systems

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 01. May. 2024

https://doi.org/10.1007/s00224-014-9596-y
https://doi.org/10.1007/s00224-014-9596-y
https://doi.org/10.1007/s00224-014-9596-y
https://www.research.ed.ac.uk/en/publications/03836f95-31b5-4d30-9bcb-a6c67f63571b

Noname manuscript No.

(will be inserted by the editor)

Certain Answers over Incomplete XML Documents: Extending Tractability

Boundary

Amélie Gheerbrant · Leonid Libkin

the date of receipt and acceptance should be inserted later

Abstract Previous studies of incomplete XML documents have identified three main sources of incomplete-
ness – in structural information, data values, and labeling – and addressed data complexity of answering
analogs of unions of conjunctive queries under the open world assumption. It is known that structural in-
completeness leads to intractability, while incompleteness in data values and labeling still permits efficient
computation of certain answers.

The goal of this paper is to provide a detailed picture of the complexity of query answering over incomplete
XML documents. We look at more expressive languages, at other semantic assumptions, and at both
data and combined complexity of query answering, to see whether some well-behaving tractable classes
have been missed. To incorporate non-positive features into query languages, we look at a gentle way
of introducing negation via Boolean combinations of existential positive queries, as well as the analog of
relational calculus. We also look at the closed world assumption which, due to the hierarchical structure of
XML, has two variations. For all combinations of languages and semantics of incompleteness we determine
data and combined complexity of computing certain answers. We show that structural incompleteness leads
to intractability under all assumptions, while by dropping it we can recover efficient evaluation algorithms
for some queries that go beyond those previously studied. In the process, we also establish a new result
about relational query answering over incomplete databases, showing that for Boolean combinations of
conjunctive queries, certain answers can be found in polynomial time.

1 Introduction

The need to deal with incomplete information has increased dramatically over the past decade, due to large
amounts of data on the Web [1] (which tend to be more prone to errors than data stored in traditional
relational DBMSs) as well as the need to move data between different applications as, for example, in
data integration [21] and exchange [?] scenarios. Different types and models of incompleteness have been
studied too, such as classical instances of missing information, uncertain databases [5], and probabilistic
databases [26]. While most investigations deal with relational data, several recent papers have attempted
to model and analyze incompleteness in XML. For example, [4] showed how to handle incompleteness in
a dynamic setting when document’s structure is revealed by a sequence of queries, while [11,12] expressed
incompleteness by means of description logic theories, and [20] surveyed incorporating probabilities into
XML.

A. Gheerbrant
University of Edinburgh and Université Paris–Diderot
E-mail: amelie@liafa.univ-paris-diderot.fr

L. Libkin
University of Edinburgh
E-mail: libkin@inf.ed.ac.uk

An attempt to reconstruct the classical relational theory of incompleteness [3,19,18] (in particular, issues
such as semantics of incompleteness and the complexity of the main computational problems associated
with it) was done in [8]. That paper presented a very general model of XML documents with incomplete
information, and studied several computational problems, such as consistency of incomplete specifications,
representability of complete documents by incomplete ones, and query answering.

In the model of [8], there are three main sources of incompleteness:

– Incompleteness at the level of data values. This is the same as in the relational case: nodes in XML
trees may carry attribute values, and some of those values may not be known (i.e., nulls).

– Structural incompleteness. Some of the hierarchical structure of an XML document may not be known.
For example, we may only know that a node w is a descendant of a node w′ without knowing the precise
path between them.

– Labeling incompleteness. Labels of some nodes may not be known and replaced by wildcards.

*

Title

*

Author
(Principia) (y)

(x)

Institute

Institute

root

(Newton)

*

Fig. 1 An incomplete XML document

Figure 1 gives an instance of an incomplete XML document. In this document we have two nodes labeled
Author and Title, and we know their attribute values (“Newton” and “Principia”), as well as that the latter
is next-sibling of the former. However, we do not know what the common parent of these nodes is: it may
be the root, or another node, as the edges from the root to those nodes are labeled ∗, meaning descendant.
We also have an Institute node, with an unknown attribute value y, as well as another Institute node which
is a child of the Author node; its attribute is another unknown value x. Furthermore, there is a child of the
root, but we know neither its label (indicated by wildcard) nor its attribute value.

The semantics of such incomplete documents was given by homomorphisms into complete XML trees; this
will be illustrated shortly and properly defined in the next section. Such semantics corresponds to open

world assumption [19,23], since it leaves a complete document open to adding new nodes.

As the class of queries to study, [8] used XML analogs of unions of conjunctive queries, or UCQs. In XML,
conjunctive queries are normally modeled via tree patterns [7,9,17]. The choice of this class is not arbitrary:
in the relational world, UCQs can be answered over incomplete tables by using the standard relational
evaluation of queries; this is usually referred to as näıve evaluation [19]. In fact, under the open world
assumption this is the largest class of relational calculus queries for which such evaluation computes certain
answers to queries [19,22].

It was shown in [8] that data complexity of evaluating UCQs over XML documents is always in coNP, and
is almost invariably coNP-complete as long as structural incompleteness is present. There are no known
bounds on combined complexity; proofs in [8] only give nonelementary complexity, but we shall see that
this can be significantly improved.

When the structure is fully known, i.e., only data values and labels of documents could be missing, evaluation
of UCQs becomes tractable and can be done using näıve evaluation (such incomplete trees were called rigid;
an example is shown Figure 2).

However, the picture is rather incomplete, and several natural questions arise.

1. Can the complexity of query evaluation over arbitrary incomplete documents be lowered by using a
semantics based on closed, rather than open world assumption?

2

_

TitleAuthor
(Principia)

(x)
Institute

(Newton)

Institute
(y)

root

Fig. 2 A rigid incomplete XML document

2. Can we extend the language of unions of conjunctive queries to obtain tractable query evaluation (under
both open and closed world assumptions)?

3. What can be said about combined complexity of computing certain answers?

The main goal of the paper is to answer these questions. To do so, we need to explain what we mean by
closed world assumption in XML, and define languages extending UCQs that we want to study. We now
informally introduce these.

Closed world semantics in XML In the case of relations, closed world semantics is typically defined by
having an onto (surjective) mapping (homomorphism) from an incomplete database to a complete one. We
shall follow the same approach, but there is one issue that arises when we use transitive closures of axes,
e.g., descendant relationships. Say we have just two nodes w and w′, and we know that w′ is a descendant
of w. Any surjective mapping from such an incomplete description will produce a document with at most
two nodes. Does it mean that under the closed world assumption we are then forced to reduce descendant
relationship to child? On the one hand, this agrees with the intuition of not introducing new nodes; on the
other hand, it seems to infer new child relationship which does not correspond to closed world assumption.
So which alternative should we choose?

We believe that both in fact are reasonable, and we answer all the questions for both interpretations of
closed world assumptions. More precisely, we consider three different semantics, which are shown in Figure
3, and are informally described below.

In Figure 3, we show documents that can be denoted by the incomplete document from Figure 1 under
three different assumptions. Dashed lines show homomorphisms from the nodes of incomplete documents
to the nodes of complete ones.

– Under the open world assumption (owa), we permit any homomorphism (that preserves relationships
between nodes and their attributes) from an incomplete document into a complete one.

– Under the weak closed world assumption (wcwa), we insist that the homomorphism be surjective (onto)
except when nodes are in a relationship such as descendant: then we allow the introduction of new nodes,
but only on a path between nodes that exist in an incomplete description. In the example in the picture,
root is mapped to the root, and the Institute node with unknown value y into IAS. This lets us introduce
a path to it that has a book node with a descendant author (Einstein); note however that we cannot
introduce a node for book title (which was possible under owa) as it will not be on the path to the IAS
node.

– Under the strong closed world assumption (scwa), we insist that the homomorphism be surjective.

Boolean combinations of CQs Relational UCQs correspond to the positive fragment of relational al-
gebra. Thus, extending them means introducing some form of negation. While we can just add it in an
unrestricted way (like relational algebra does, to capture full power of first-order logic, FO), we need to look
at intermediate ways of adding negation without immediately jumping all the way up to an XML analog of
FO. In fact we want to find fragments for which data complexity would be low, and combined complexity
would be manageable. This rules out FO, and even such a standard extension as CQs with inequality [2,3,
27].

3

WCWA

(IAS)(Cambridge)

Book

TitleAuthor Author Title
(Newton) (Principia)

Institute Institute

(Einstein) (Relativity)

root

Book

Title

*

Author
(Principia) (y)

(x)

Institute

Institute

root

(Newton)

root

(Cambridge)

Book

TitleAuthor
(Newton) (Principia)

Institute

Book

Author
(Einstein)

Institute
(IAS)

(Cambridge)

TitleAuthor
(Newton) (Principia)

Institute

root

Book
(IAS)

Institute

TitleAuthor
(Principia) (y)

(x)

Institute

Institute

root

(Newton)

Title

*

Author
(Principia) (y)

(x)

Institute

Institute

root

(Newton)

*

*
*

*

OWA

SCWA

Fig. 3 Open and (weak and strong) closed world semantics of incomplete XML

Instead, we permit arbitrary Boolean combinations of previously defined queries. That is, we look at the
class BCCQ of Boolean combination of conjunctive queries, i.e., the closure of conjunctive queries under
operations q ∩ q′, q ∪ q′, and q − q′.

Curiously enough, there is no result in the relational literature that tells us the complexity of finding certain
answers for BCCQs. We shall show that it is in fact tractable, under both OWA and CWA. Note that
previous tractability results for certain-answers computation were obtained by applying naive evaluation,
but we know [22] that such strategy will not work for BCCQs. In fact we have new (and different, under
OWA and CWA) algorithms for producing certain answers for relational BCCQs.

Results After formally defining XML with incomplete information and query languages, we review what
is known for relational databases. In addition to recalling known (and sometimes folklore but not explicitly
proven) results, we show a new result (just explained above) that for BCCQs, certain answers can be
computed in polynomial time.

After that, we switch to XML. We show that for arbitrary incomplete documents that permit structural
incompleteness, under all assumptions, and for all the languages, data complexity is intractable. We also
show that the combined complexity is only marginally higher than data complexity (just one level up in
the polynomial hierarchy).

We then switch to rigid trees. For them, we show that the complexity of all the query answering tasks is the
same as for relations. While lower bounds can be inferred from the relational case, upper bounds require
work as we are dealing with more complex tree structure (we know, for instance, that they need not hold
in general with structural incompleteness).

In particular, over rigid trees, analogs of UCQs can be answered in polynomial time, by näıve evaluation,
under both open and closed world assumptions, which implies efficient evaluation of queries. For analogs
of BCCQs, we demonstrate a tractable query evaluation algorithm too, with combined complexity a bit
higher (one level in the polynomial hierarchy) than for UCQs. We then conclude by discussing practical
implications of these results.

4

Organization Incomplete XML documents are defined in Section 2; query answering over incomplete
relational and XML databases is discussed in Section 3. Pattern-based languages are described in Section
4. In Section 5 we establish results on query answering over arbitrary incomplete trees, for all the languages
considered here, and in Section 6 we do the same for rigid trees. Final remarks and conclusions are in
Section 7.

2 Incompleteness in XML

XML trees

To describe XML trees, we assume

– a countably infinite set C of possible data values (notation C stands for “constants”, as opposed to nulls),
and

– a countably infinite set L of node labels (element types). We shall normally denote labels by lowercase
Greek letters.

An XML tree over a finite alphabet Σ ⊂ L is a 2-sorted structure

T = 〈D, A, ↓,→, (Pα)α∈Σ , ρ〉, (1)

where

– D is an unranked tree domain, i.e. a prefix-closed subset of N
∗ such that w · i ∈ D implies w · j ∈ D for

j < i;
– ↓ and → are the child and next-sibling relations, for which we shall use, as is common, the infix notation:

w ↓ w · i whenever w · i ∈ D, and w · i → w · (i + 1) whenever w · (i + 1) ∈ D;
– each Pα is the set of elements of D labeled α (of course we require that these partition D);
– A ⊂ C is a finite set of data values; and
– ρ : D →

S

k≥0 Ak assigns to each node w ∈ D a k-tuple of data values for some k ≥ 0.

We refer to D as the domain of T , and denote it by dom(T), and to A as the active domain (of data values)
of T and denote it by adom(T). We always assume that A has precisely the elements of C used in T , i.e., if
v ∈ A then there is a node w such that v occurs in ρ(w).

We shall usually assume that for nodes w, w′ with the same label, the arities of ρ(w) and ρ(w′) are the same;
this is customary for abstractions of XML documents although not technically necessary for our results.

We shall denote the transitive closure of ↓ by ⇓ and the transitive closure of → by ⇒.

Incomplete XML trees

To define incomplete XML documents, we assume a countably infinite supply of null values (or variables)
V. Following [8], incompleteness can appear in documents in the following ways:

– Data-values incompleteness. This is the same as incompleteness in relational models: some data values
could be replaced by nulls.

– Labeling incompleteness: instead of a known label, some nodes can be labeled with a wildcard.
– Structural incompleteness. Some of the structure of the document may not be known (e.g., we can use

descendant edges in addition to child edges, or following-sibling edges instead of next-sibling).

This can be captured as follows. An incomplete tree over Σ is a 2-sorted structure

t = 〈N, V, ↓,⇓,→,⇒, (Pα)α∈Σ , ρ〉, (2)

where

5

– N is a set of nodes, and V is a set of values from C ∪ V;
– ↓,⇓,→,⇒ are binary relations on N ;
– Pα’s are disjoint subsets of N ; and
– ρ is a function from N to

S

k≥0 V k.

As before, dom(t) refers to N , and adom(t) to V . We now distinguish between adomc(t), which refers to
elements of C in adom(t), and adom⊥(t), which refers to elements of V in adom(t).

These represent incompleteness in XML as follows:

– elements of V are the usual null values;
– Pα’s do not necessarily cover all of N ; those nodes in N not assigned a label can be thought of as labeled

with a wildcard;
– structural incompleteness is captured by relations ↓, →, ⇓, ⇒ which could be arbitrary. For example,

we may know that w ⇓ w′ without knowing anything about the path between the two.

Semantics As is common with incomplete information, we define semantics via homomorphisms. A ho-

momorphism h : t → T from an incomplete tree t = 〈N, V, ↓, ⇓,→, ⇒, (Pα)α∈Σ , ρ〉 to a complete XML
tree T = 〈D, A, ↓, →, (Pα)α∈Σ′ , ρ〉, where Σ ⊆ Σ′, is a pair of maps h = (h1, h2) where h1 : N → D and
h2 : V → A such that:

– if wRw′ in t, then h1(w)Rh1(w
′) in T , when R is one of ↓,→,⇓,⇒ (recall that ⇓ and ⇒ are interpreted

as descendant and following-sibling in complete XML trees);
– if w ∈ Pα in t, then h1(w) ∈ Pα in T , for each α ∈ Σ;
– h2(c) = c whenever c ∈ C; and
– h2(ρ(w)) = ρ(h1(w)) for each w ∈ N .

The semantics of an incomplete tree t is the set of all complete trees T that it has a homomorphism into:

JtKowa = {T | exists a homomorphism t → T}.

The superscript owa means that this is the semantics under the open world assumption; this will be
explained in detail shortly. A homomorphism shows how missing features of t are interpreted in a complete
document T .

Remark An incomplete tree may be inconsistent in the sense that JtKowa = ∅. This however will not affect
any results we prove about query answering: as we shall see, over incomplete trees with structural incom-
pleteness, query answering will be in coNP (or higher), and [9] showed that checking inconsistency can be
done in coNP. Thus we can always assume that the input is first checked for being inconsistent (in which
case certain answers are vacuously true).

Rigid trees

As we already mentioned, [8] showed that query answering becomes tractable and can be achieved by näıve
evaluation of rigid trees. These are trees in which no structural information is missing; that is, the only
types of missing information are nulls and wildcards. A rigid tree is defined just as an XML tree (1), i.e.
t = 〈D, A, ↓,→, (Pα)α∈Σ , ρ〉, with only two differences:

– A is a subset of C ∪ V rather than just C (i.e., nulls are permitted), and
– the union of Pα’s need not be the entire D (some nodes may be labeled with wildcards).

Note that the problem of inconsistency, mentioned above, does not arise with rigid trees.

Open and closed world assumptions

Open world assumption (owa) states that a database, or a document, is open to adding new facts (e.g.,
tuples, nodes, associations between nodes). This is the semantics adopted in [8], and defined above, for

6

XML. In the relational world it is normally expressed by having a homomorphism from an incomplete
instance into a complete instance.

On the other hand, closed world assumption (cwa) states that a database or a document is closed for
adding new facts. In the relational case, this is usually formalized by having a homomorphism from an
incomplete instance onto a complete instance. For XML, the situation is a bit more involved however, due
to the presence of transitive closures of the child and next-sibling axes, as was explained informally in the
introduction. We now define the notions of weak and strong closed world assumptions formally.

Of course we can adopt the relational notion of having an onto-homomorphism. We call this a strong closed

world assumption, or scwa. More precisely,

JtKscwa = {T | exists an onto homomorphism t → T}.

A homomorphism h = (h1, h2) is an onto homomorphism if both h1 and h2 are onto (surjective) maps.
(The reader may notice that it suffices to require that only h1 be surjective.) Equivalently, we can say that
JtKscwa = {h(T) | h is a homomorphism }.

But this assumption may be too strong if we deal with transitive closure axes. Consider, for example, an
incomplete tree with two nodes v and v′ such that v ⇓ v′. Under scwa, it can only be mapped into 2-node
trees, while the interpretation of ⇓ says that a path between v and v′ of length greater than 1 may be
allowed. We thus weaken the scwa, by allowing paths between nodes for which only ⇓ or ⇒ associations
exist.

Formally, we define the weak closed world assumption, or wcwa, as follows. A homomorphism h = (h1, h2) :
t → T is called an wcwa-homomorphism if, for every node w of T that is not in the image of h1 (i.e., not an
image of a node of t), there exist two nodes v, v′ of t such that either

– v ⇓ v′ holds in t and h(v) ⇓ w ⇓ h(v′) holds in T ; or
– v ⇒ v′ holds in t and h(v) ⇒ w ⇒ h(v′) holds in T .

That is, the homomorphism h may not be surjective, but if a node is not in the image of h, then it must
be on a horizontal or a vertical path between two nodes that are in the image of h.

We then define
JtKwcwa = {T | exists a wcwa-homomorphism t → T}.

Clearly each surjective homomorphism is a wcwa-homomorphism, and thus JtKscwa ⊆ JtKwcwa. Also in the
absence of transitive closure axes, as in rigid trees, there is no difference between the two semantics, in
which case we refer just to cwa semantics, and write JtKcwa.

3 Query answering and incompleteness: Relational queries

We now recall the basics of query answering over databases with incomplete information. Such a database,
under the näıve interpretation of nulls, is a database whose elements come from the domain of constants
C and the domain of nulls V. The semantics is defined via homomorphisms h : V → C. Such a map is a
homomorphism between two databases D and D′ of the same schema if, for every relation R of D and every
tuple ā of R, the tuple h(ā) is in the relation of R of D′. As before, we view h as a map C ∪V → C extended
by letting h(c) = c for each c ∈ C.

This leads to two standard semantics:

JDKowa = {D′ | exists a homomorphism D → D′}

and
JDKcwa = {h(D) | h is a homomorphism}.

Given a relational query Q, its result on an incomplete database is defined by means of certain answers:

certain∗(Q,D) =
\

{Q(D′) | D′ ∈ JDK∗}

7

data complexity combined complexity
cwa owa cwa owa

UCQ
Ptime

NP-complete
BCCQ Π

p

2 -complete
FO coNP-complete undecidable Pspace-complete undecidable

Fig. 4 Complexity of computing certain answers: relational case

where ∗ is either owa or cwa.

Computational problems As is common, we look at data complexity and combined complexity of computing
query answers (in this case, certain answers under various semantics). More precisely, the problems we deal
with are as follows:

– Combined complexity of a language L. The input consists of a database D, a query Q in L, and a tuple
of data values s̄ of the same arity as Q; the question is whether s̄ ∈ certain∗(Q,D).

– Data complexity of a language L. In this case we have a fixed query Q in L; the input consists of a
database D and a tuple of data values s̄ of the same arity as Q, and the question is the same: whether
s̄ ∈ certain∗(Q,D).

Here ∗ ranges over our semantic assumptions that lead to different notions of certain answers.

Convention When we say that data complexity of a query language L is complete for a complexity class
C (e.g., coNP-complete), we mean that (1) for every query Q in L, its data complexity is in C, and (2)
there is a query Q0 in L whose data complexity is C-hard.

Computing certain answers For arbitrary FO queries, the combined complexity of finding certain answers
is undecidable (finite validity). For one class of queries the problem is solvable using the standard query
evaluation. We define a näıve evaluation of a query as the standard evaluation of it followed by removing
tuples containing nulls. It was shown in [19] that for unions of conjunctive queries, näıve evaluation computes
certain answers (which are in this case the same under both owa and cwa). In fact, under owa the result is
optimal: no larger class of queries within FO has this property [22]. Beyond unions of conjunctive queries,
algorithms for finding certain answers use more complex representations, namely conditional tables [3,19,
18].

Much of the work on complexity of query answering over relational databases with nulls concentrated on
languages such as unions of conjunctive queries (UCQs), FO, and beyond (e.g., datalog). As the gap between
UCQs and FO is very large, one might look for classes between those two. Some results about such classes
are known: for example, finding certain answers to UCQs with inequalities is coNP-complete [2]. On the
XML side, we shall be dealing with analogs of the following relational languages, build up from conjunctive
queries by using Boolean operations, quantifiers, and quantification:

– UCQ unions of conjunctive queries;
– BCCQ Boolean combinations of conjunctive queries. In other words, starting with conjunctive queries

q1(x̄), . . . , qm(x̄), we can close them under operations q ∪ q′, q ∩ q′ and q − q′.
– FO, which can be viewed as closure of conjunctive queries under Boolean operations and quantification.

While some complexity bounds (both data and combined) are known for finding certain answers under both
owa and cwa, we are not aware of such results for BCCQs, and prove them for the sake of completeness.

Theorem 1 Data complexity of finding certain answers to relational BCCQs is in Ptime, while the combined

complexity is Πp
2 -complete. These bounds hold under both owa and cwa.

Proof.

Combined complexity results follow easily from [25] which showed Πp
2 -completeness of BCCQ containment.

Indeed, to check whether certainowa(q, D) is true, for a Boolean query q, we just need to check that qD ⊆ q,
where qD is the canonical query of the database D, and this is in Πp

2 if q is a BCCQ [25]. Under the CWA,

8

the straightforward algorithm for checking whether certaincwa(q, D) is false runs in Σp
2 . Indeed, we guess an

instance D′ (which is at most of the size of D under CWA), queries q1, . . . , qk in the Boolean combination
that will evaluate to true on D′ (together with the homomorphisms witnessing that), and queries q′1, . . . , q′r
in the Boolean combination that will evaluate to false. We then use the universal step to check that q′1, . . . , q′r
indeed evaluate to false, and finally run a polynomial algorithm checking that with q1, . . . , qk evaluating to
true and q′1, . . . , q′r evaluating to false, the Boolean combination evaluates to false.

As for hardness, this easily follows from [25]: analyzing the proof of hardness of containment, one can see
that it holds even for a containment of a simple conjunctive query essentially coding a database containing
two values (true and false) in another query (as they use a ∀∃3CNF coding).

So we now concentrate on proving the Ptime data complexity bound.

Let Q ∈ BCCQ be a Boolean query and let D be an incomplete relational database (assume w.l.o.g. that
the conjunctive queries q1, . . . , qk in Q share no variable in common). We first define an algorithm which
determines in polynomial time in the size of D whether ⊥ ∈ certainOWA(Q, D). We begin by listing all
possible assignments of the Boolean conjunctive queries in Q to Boolean values for which Q evaluates to
⊥ (Q being fixed, the number of such assignments does not matter and it is polynomial in the size of D).
Now for every such assignment v, we let:

αv :=
^

i∈I

qi where I = {i | qi occurs in Q and v(qi) = ⊤}

βv :=
_

j∈J

qj where J = {j | qj occurs in Q and v(qj) = ⊥}

Remark that every conjunctive query Q that does not use inequalities can also be represented as an
incomplete database Tab(Q) by converting Q into its tableau. Also, every incomplete database D can be
represented as a conjunctive query Qu(D). This can be done by replacing every distinct null in D by one
distinct variable, then forming the conjunction of all the so-obtained tuples and finally prefixing it with one
existential quantifier binding each distinct variable in the conjunction. For simplicity, we assume here that
nulls and variables can be put in one to one correspondence, so that Tab(Qu(D)) = D and Qu(Tab(Q)) = D.
Now assume the set of nulls occurring in D and Tab(αv) to be disjoint (rename nulls if needed) and let:

Dv := Tab((Qu(D)∧ αv)).

In order to check whether certainOWA(Q,D) = ⊥, we claim that it is enough to check for every such v

whether Dv 6|= βv . In each case it is known that this can be determined in polynomial time using naive
evaluation. Hence, if Dv 6|= βv for some v, then we simply stop and return ⊥, otherwise we return ⊤.

We now show that:

certainOWA(Q,D) = ⊥ if and only if there exists v such that Dv 6|= βv .

For the “if” direction, assume certainOWA(Q, D) = ⊥, i.e., there exists a complete database D′ such that
there is a homomorphism h : D → D′ and D′ 6|= Q. Then there is a valuation v of the conjunctive queries
in Q such that D′ |= αv ∧ ¬βv . It follows that there is a homomorphism h′ : Tab(αv) → D′ and that
h ∪ h′ : Dv → D′ is also a homomorphism. Now assume Dv |= βv . Conjunctive queries being preserved via
homomorphism, this entails D′ |= βv , which is a contradiction. Hence Dv 6|= βv .

For the converse direction, assume there exists v such that Dv 6|= βv . We let f be a one to one mapping
from the set of nulls occurring in Dv to a set of fresh data values occurring neither in Dv , nor in βv . We
now construct a complete database D′ from Dv by replacing every null ⊥i in Dv by f(⊥i). As f : Dv → D′

is a homomorphism, it follows that D′ |= αv and D′ ∈ JDKowa. Now assume D′ |= βv. Then there is a
homomorphism h : Tab(βv) → D′. It follows that f−1 ◦ h : Tab(βv) → Dv is also a homomorphism and
hence Dv |= βv , which is a contradiction. Hence D′ 6|= βv , so D′ 6|= Q and certainOWA(Q, D) = ⊥.

9

The closed world algorithm relies on the open world algorithm just described. The only difference is that
every time a valuation v such that Dv 6|= βv is found, instead of returning ⊥ we consider a “small” set D

v

(i.e., which size is polynomially bounded in the size of D) of new incomplete databases where for every
D′ ∈ D

v, there is a strong onto-homomorphism from D to D′ and D′ |= αv . For every D′ ∈ D
v, we then

determine in polynomial time using naive evaluation whether D′ 6|= βv . If this is the case for some D′ ∈ D
v,

we stop and return ⊥. If not, we iterate the procedure, i.e., for every v such that Dv 6|= βv, we similarly
consider every D′ ∈ D

v. Once done, if we did not find any v and D′ ∈ D
v such that Dv 6|= βv and D′ 6|= βv ,

then we return ⊤.

We now explain how to construct the set D
v. We first need a few general definitions.

Let D, D′ be two relational databases over the same schema, where adom⊥(D) ∩ adom⊥(D′) = ∅. Now let
f be a mapping from the set of D-tuples to the set of D′-tuples, such that for every relation name R in
the schema and for every tuple R(x̄) ∈ D, f(R(x̄)) = R(ȳ) for some R(ȳ) ∈ D′. Such a mapping f yields an
equivalence relation ∼f over adom(D) ∪ adom(D′) which we define inductively as follows:

– x ∼f y whenever there exists R(x1, . . . , xn) ∈ D, R(y1, . . . , yn) ∈ D′ and 1 ≤ i ≤ n, such that
f(R(x1, . . . , xn)) = R(y1, . . . , yn), x = xi and y = yi;

– ∼f is reflexive, symmetric and transitive.

We say that D is f-compatible with D′ whenever for every a, b ∈ C, if a 6= b, then a 6∼f b.

Observe that ∼f yields a set of equivalence classes over adom(D) ∪ adom(D′) as follows:

x ∈ [y]f if and only if x ∼f y

Consider the quotient set of adom(D) ∪ adom(D′) under ∼f :

adom(D) ∪ adom(D′)/ ∼f := {eq1, . . . , eqm}.

Given D, D′ and f such that D is f-compatible with D′, we now define a new incomplete database D′
f . For

every eqi ∈ adom(D) ∪ adom(D′)/ ∼f , we first define the representative rf (eqi) of eqi by letting:

– rf (eqi) = a whenever there exists a ∈ eqi such that a ∈ C,
– rf (eqi) = ⊥i otherwise,

(note that rf is a one to one mapping).

We then construct D′
f by replacing in D′ every occurrence of x ∈ adom⊥(D′) by rf ([x]f). It is immediate

that there is a strict onto-homomorphism from D to D′
f and that there is a homomorphism from D′ to D′

f :

– hf : D → D′
f is a strict onto-homomorphism, where hf (x) = rf ([x]f) for every x ∈ adom⊥(D),

– h′
f : D′ → D′

f is a homomorphism, where h′
f (x) = rf ([x]f) for every x ∈ adom⊥(D′).

Given some database Dv as described previously, we can finally let:

D
v = {Df | Tab(αv) is f-compatible with D}

Let n be the number of tuples in D, k the number of tuples in Tab(αv). Observe that there are at most
nk different mappings f such that Tab(αv) is f-compatible with D. Hence, the size of D

v is polynomially
bounded in the size of D and so the closed-world algorithm runs in polynomial time in the size of D.

In order to show the correctness of the algorithm, we now show that certainCWA(Q, D) = ⊥ if and only if
there exists a valuation v of the conjunctive queries in Q such that Dv 6|= βv and there exists Df ∈ D

v such
that Df 6|= βv .

For the “if” direction, assume certainCWA(Q, D) = ⊥, i.e., there exists a complete database D′ ∈ JDKcwa

such that there is a strict onto-homomorphism h : D → D′ and D′ 6|= Q. Then there is a falsifying valuation v

of the conjunctive queries in Q such that D′ |= αv ∧¬βv and so there is a homomorphism h′ : Tab(αv) → D′,
from which it follows that h ∪ h′ : Dv → D′ is also a homomorphism. Now assume Dv |= βv . Conjunctive

10

queries being preserved by homomorphisms, it follows that D′ |= βv , which is a contradiction. Hence
Dv 6|= βv .

Now it remains to show that there is some Df ∈ D
v such that Df 6|= βv . We define the desired f out of two

mappings fh and fh′ . As h is a homomorphism, each tuple in Tab(αv) is witnessed by some tuple in D′ and
we define a mapping fh from tuples in Tab(αv) to tuples in D′ as follows:

fh(R(x̄)) = R(h(x̄)).

We now show that for every x, y ∈ adom(Tab(αv)) ∪ adom(D′), if x ∼fh
y and x, y ∈ C, then x = y, from

which it follows that Tab(αv) is fh-compatible with D′. So let x, y ∈ adom(Tab(αv)) ∪ adom(D′) such that
x ∼fh

y. It means that there is a sequence x0, . . . , xn ∈ adom(Tab(αv)) ∪ adom(D′) such that x = x1 and
y = xn and for every xi, xi+1 with 0 ≤ i < n, the following holds:

∃R(y1, . . . , ym) ∈ Tab(αv), R(z1, . . . , zm) ∈ D′ and 1 ≤ k ≤ m

such that f(R(y1, . . . , ym)) = R(z1, . . . , zm) and,

either xi = yk and xi+1 = zk, or xi = zk and xi+1 = yk.

We show the property (i.e., if x0, xn ∈ C, then x0 = xn) by induction on the length of n. So consider a
sequence of length n as described and assume the property holds for all k < n − 1 (i.e., if x0, xk ∈ C, then
x0 = xk) . Now consider xn−1 and xn, by assumption we have:

∃R(y1, . . . , ym) ∈ Tab(αv), R(z1, . . . , zm) ∈ D′ and 1 ≤ k ≤ m

such that f(R(y1, . . . , ym)) = R(z1, . . . , zm) and,

either xn−1 = yk and xn = zk, or xn−1 = zk and xn = yk.

By definition of fh, it follows that either h(xn−1) = xn, or h(xn) = xn−1. In both cases, it follows from the
fact that h is a homomorphism that if xn−1, xn ∈ C, then xn−1 = xn. The property follows by induction
hypothesis.

We now construct fh′ . The homomorphism h′ being strict onto, every tuple in D′ witnesses at least one
tuple in D. We define a mapping fh′ from tuples in D′ to tuples in D by arbitrarily picking one such witness
for each tuple in D′:

fh′(R(x̄)) = R(ȳ) for some R(ȳ) ∈ D′, where h′(ȳ) = x̄.

It similarly follows from the fact that h′ is a homomorphism that D′ is fh′ -compatible with D.

We finally consider the mapping fh′ ◦fh from tuples in Tab(αv) to tuples in D. Again, it follows by a similar
argument that Tab(αv) is fh′ ◦ fh-compatible with D and so Dfh′◦fh

∈ D
v , where

– hfh′◦fh
: Tab(αv) → Dfh′◦fh

is a homomorphism,
– h′

fh′◦fh
: D → Dfh′◦fh

is a strict onto-homomorphism,

– h′′ : Dfh′◦fh
→ D′ is a homomorphism, given by h′′(rfh′◦fh

[x]fh′◦fh
) = h′(x).

Now assume Dfh′◦fh
|= βv . Conjunctive queries being preserved by homomorphisms, the existence of h′′

implies that D′ |= βv, which is a contradiction. Hence Dfh′◦fh
6|= βv.

The converse direction can be shown using a similar argument as the one used in the open world case, by
replacing nulls in Df by fresh data values.

✷

Figure 4 summarizes what is known about both data and combined complexity of finding certain answers
for relational queries; results are from [2,3,19] and the above theorem.

11

With respect to one of the items in the table, we note that there is a rather persistent confusion in the
literature regarding data complexity of certain answers of FO queries. The problem is undecidable, and it
is very common to attribute such undecidability to Trakhtenbrot’s theorem. The argument usually goes as
follows: take an empty database, so that every database is possible under the OWA semantics. Then let the
FO sentence say that either the complete database is not a proper encoding of a Turing machine run, or it
is, but the run is not halting. Then the certain answer problem becomes the (complement of the) halting
problem. But this commonly used argument is fine for proving a bound for combined complexity, but not
data complexity.

To clear this confusion, we present a a short and self-contained proof of undecidability of data complexity
of FO on näıve tables.

Theorem 2 There exists a query Q ∈ FO such that the problem of determining, for an input incomplete relational

database D, whether certainOWA(Q,D) = ⊤, is undecidable.

Proof. We proceed by reduction from a tiling problem which is known to be undecidable. An instance of
this problem is a triple I = (T iles,H,V), where T iles = {t1, . . . , tk} is a finite set of tiles and H,V ⊆ T iles2

are binary relations over T iles. A solution for I is given by a pair (n, f) where n > 0 is an integer and
f : {0, . . . , n} × {0, . . . , n} 7→ T iles is a function such that:

– (horizontal compatibility) for each i = 0, . . . , n − 1 and j = 0, . . . , n,

(f(i, j), f(i + 1, j)) ∈ H;

– (vertical compatibility) for each i = 0, . . . , n and j = 0, . . . , n − 1,

(f(i, j), f(i, j + 1)) ∈ V.

The integer n is called an index solution for I and the function f is called a tiling function for I. Given as
input an instance I, the problem of deciding whether I has a solution is known to be undecidable.

We show that there exists a fixed Boolean query Q ∈ FO such that for every instance I of this tiling
problem, we can construct a relational database DI such that

I has a solution if and only if certainOWA(Q, DI) = ⊥.

Given an instance I = (T iles,H, V), where T iles = {t1, . . . , tk}, we construct DI over schema

{T iles,H, V, <H , <V , SucH , SucV , MinH , MinV , MaxH , MaxV , R, <},

where T iles is unary, H,V, MinH , MinV , MaxH , MaxV , < are binary, R is ternary and <H , <V , SucH , SucV

are of arity 4. We treat elements in T iles as pairwise distinct data values t1, . . . , tk and construct DI by
interpreting each relation name in the schema by the following relations:

– T iles = {t1, . . . , tk} ;
– H,V ⊆ T iles2 where H and V are the horizontal and vertical compatibility relations in I, respectively;
– <H , <V ⊆ T iles4 where <H and <V are some arbitrarily chosen linear orderings over tuples in H and

V , respectively;
– SH , SV ⊆ T iles4 are the successor functions associated with <H and <V , respectively;
– MaxH , MaxV ⊆ T iles2 are singletons containing the unique maximal element in <H and <V , respec-

tively (note that such an element is a pair of tiles);
– MinH , MinV ⊆ T iles2 are singletons containing the unique minimal element in <H and <V , respectively;
– R and < are both empty.

Now Q is a FO sentence over the same schema given by:

Q := ¬instance ∨ ¬tiling

where for every database DI associated to some instance I of the tiling problem, the following holds:

12

– for every D′
I ∈ JDI Kowa, D′

I |= instance whenever D′
I does not contain any more H and V tuples than

D, more precisely, instance states that <H and <V are linear orders over the set of pairs of H and V

tuples, respectively, where SH , SV are the associated successor functions and MinH , MaxH , MinV ,
MaxV the associated unique minimal and maximal elements in <H and <V respectively ;

– for every D′
I ∈ JDIKowa, D′

I |= tiling whenever < is a linear order over some arbitrary set of data values
d0 < . . . < dn such that (n, f) is a solution for I, where f is given by:

f(i, j) = tm whenever D′
I |= R(di, dj , tm);

these conditions are enforced in tiling by first requiring that < is a linear order which contains at least
two elements. Additionally, the third projection of R is assumed to range over data values in T iles,
while its first and second projection range over the <-ordered di’s, where for each pair di, dj there exists
exactly one tm such that D′

I |= R(di, dj , tm). Finally, for every two tuples R(di, dj , tk), R(di+1, dj , tk′)
(respectively, R(di, dj , tk), R(di, dj+1, tk′)) in D′

I , tiling states that D′
I |= H(tk, tk′) (respectively, D′

I |=
V (tk, tk′)).

Observe that all the conditions above can be formulated in FO. We now show that I has a solution (n, f)
if and only if certain(Q,DI) = ⊥.

For the “if” direction of the equivalence, let I be an instance for which there exists a solution (n, f). We

construct Df
I
∈ JDIKowa such that Q(Df

I
) = ⊥ (which immediately entails certain(Q,DI) = ⊥). In addition

to the data values already used to encode the elements of T iles in DI , we assume a different data value for
each natural number 0 ≤ m ≤ n and form Df

I
by adding the following tuples to DI :

– for each 0 ≤ m < m′ ≤ n, we add the tuple (m,m′) to the interpretation of <

– for each 0 ≤ m, m′ ≤ n, we add the tuple (m,m′, f(m, m′)) to the interpretation of R

As instance is a query over schema

{T iles, H,V, <H , <V , SucH , SucV , MinH , MinV , MaxH , MaxV },

DI |= instance and the {T iles, H,V, <H , <V , SucH , SucV , MinH , MinV , MaxH , MaxV }-reduct of Df
I

is pre-

cisely DI , it is immediate that Df
I
|= instance. By construction of Df

I
, it is also immediate that Df

I
|= tiling.

Now for the “only if” direction assume certain(Q,DI) = ⊥. It follows that there is D′
I ∈ JDIKowa such

that Q(D′
I) = ⊥, i.e., D′

I |= instance ∧ tiling. By D′
I |= instance, D′

I does not contain any more H and
V tuple than DI . Now let n be the number of different data values in the interpretation of < in D′

I . As
D′

I |= tiling, the pair (n, f) is a solution for I, where the tiling function f is defined by f(i, j) = tm whenever
D′

I |= R(di, dj , tm). ✷

4 Pattern-based XML queries

We now define the analogs of the relational languages we considered in the XML setting. As is common in
the scenarios when one needs to compute certain answers by means of intersection [7,8], we look at queries
that can only output tuples of data values.

The queries will be essentially fragments of first-order logic over XML trees; however, to avoid the clumsiness
of a two-sorted presentation, we follow the standard approach and define them via patterns. For now, we
shall look at patterns based on the child/next-sibling axes; extensions will be discussed later.

An example of a pattern is

α(x)/[β(x) → γ(1), δ(y) ⇒ γ(x)].

When evaluated on a tree T , it collects all instantiations of variables x and y so that a tree has an α-node
whose data value is x, together with (1) a β-child with the same data value x whose next sibling is a γ-node
with data value 1; and (2) a δ-child with data value y which has a following sibling which is a γ-node with
data value x.

13

Formally, patterns are given by the grammar:

π := α(z̄)/[µ, . . . , µ]//[µ, . . . , µ]
µ := π ❀ . . . ❀ π

where each ❀ is either → or ⇒, where α ranges over Σ or wildcard , and z̄ is a tuple of variables and
constants. We write π(x̄) if x̄ is a tuple of all the variables mentioned in π. Also, to simplify notation, we
shall write α(x̄)/β(ȳ) instead of the more formal α(x̄)/[β(ȳ)].

We define the semantics with respect to an XML tree T = 〈D, A, ↓,→, (Pα)α∈Σ , ρ〉 and a valuation ν for
variables x̄ in C:

– (T,w, ν) |= α(z̄)/[µ1, . . . , µn]//[µ′
1, . . . , µ′

k] if w ∈ Pα (whenever α is a Σ-letter), ρ(w) = ν(z̄), there exist n

children w1, . . . , wn of w such that (T, wi, ν) |= µi for each i ≤ n, and there exist k descendants w′
1, . . . , w′

k

of w such that (T, w′
i, ν) |= µ′

i for each i ≤ n,.
– (T,w, ν) |= π1 ❀ . . . ❀ πm if there is a sequence w = w1, . . . , wm of nodes so that (T, wi, ν) |= πi for each

i ≤ m and wi → wi+1 whenever the ith ❀ is →, and wi ⇒ wi+1 whenever the ith ❀ is ⇒.

Note that numbers n, k, m could all be zero; for instance, just a node description α(z̄) is a pattern.

We shall write (T,w) |= π(ā) if (T, w, ν) |= π(x̄) where ν assigns values ā to variables x̄.

Classes of pattern-based XML queries We now define XML analogs of the five languages we considered
in the relational case which are based on patterns. First, we need a class of conjunctive queries (essentially
defined in [7,9,17]): these are obtained by closing patterns under conjunction and existential quantification
of variables:

q(x̄) = ∃ȳ1 . . . ȳn π1(x̄, ȳ1) ∧ . . . ∧ πn(x̄, ȳn)

The semantics is defined as follows. Given a tree T and a valuation ā for variables x̄, we have T |= q(ā) if
there exist tuples b̄1, . . . , b̄n of data values and nodes w1, . . . , wn in T so that (T, wi) |= πi(ā, b̄i) for every
i ≤ n.

Now we define the languages we deal with.

UCQxml Queries in this language are of the form q1(x̄)∪ . . .∪ qm(x̄), where each qi is a conjunctive query.

BCCQxml Queries in this language are obtained by closing conjunctive queries under operations q ∪ q′,

q ∩ q′ and q − q′.
FOxml These are obtained by closing patterns and equality atoms under the Boolean operations and both

universal and existential quantification.

Examples We start with an example of a UCQxml query:

q1(x) := ∃y, z α(x)/[β(y) → γ(z)]

∨

∃y α(x)/δ(y)

It selects data values x found in α-labeled nodes which either have two consecutive children labeled β and γ

(with some data values attached to them), or a child labeled δ (also with a data value in it). The following
is an example of a BCCQxml query:

q3(x, y) := ¬∃z
“

α(z)/
ˆ

γ(x) → β(y)
˜

”

∨

∃z
`

α(x)/γ(z)/β(y)
´

It selects tuples (x, y) of data values that are either not found in two consecutive children labeled with γ

and β of an α-node, or found on a path labeled α − γ − β, in α and β-nodes. Finally, we give an example
of an FOxml query:

∀y
“

α(x)/β(y) −→ ∃z γ(z)/δ(y)
”

14

data complexity combined complexity
scwa wcwa and owa scwa wcwa and owa

UCQxml coNP-complete Π
p

2 -complete
BCCQxml

FOxml coNP-complete undecidable Pspace-complete undecidable

Fig. 5 Complexity of computing certain answers over arbitrary incomplete trees

It selects data values x such that if they are found in α-nodes with a β-child, then the data value y of that
child must also be found in a δ-node whose parent is labeled γ.

Certain answers Since queries in languages introduced above produce sets of tuples of data values, we
can define the usual notion of certain answers for evaluating them over incomplete documents. That is, for
a query Q and an incomplete tree t, we let

certain∗(Q, t) =
\

{Q(T) | T ∈ JtK∗},

where ∗ ranges over owa, scwa, and wcwa. The problems we consider for them are the same as in the
relational case: determining data and combined complexity.

5 Query answering over arbitrary incomplete trees

We now look at query answering over arbitrary incomplete XML trees. One data complexity result was
previously known, namely coNP-completeness for UCQxml under owa [8]. We now complete the study, and
present results on both data and combined complexity for all three languages introduced in the previous
section.

Before we embark on this study, there is one natural question we need to ask: can we obtain the desired
results simply by recourse to relational query answering? After all, incomplete XML trees are relational
structures. The answer is that we cannot meaningfully adapt relational results. The main reason is that, if
we have an incomplete tree t represented as a relational database Dt, then JDtK is not the set of relational
representations of trees in JtK (except in some very limited cases). This is of course due to the fact that JtK

only contains trees, but JDtK may contain databases that are not translations of trees.

To apply relational results, we would need to impose an extra constraint that complete databases are
trees. This is very problematic as, under owa, already much simpler constraints lead to undecidability of
query answering [10,24]. Another alternative is to move from a query Q to a query ¬tree ∨ Q, where tree

expresses that a relational database is a representation of an XML tree. This needs a fixpoint mechanism.
Thus, expressing the above query (that also involves ¬ and ∨) puts us in the realm of disjunctive datalog.
While known results do give us decidability, complexity bounds we can infer “for free” will be Πp

2 for data
complexity and coNEXP

NP for combined complexity [15] for BCCQxml and its sublanguages. As we shall
see, we can obtain better tight complexity bounds working directly on XML trees.

5.1 Query answering under OWA

As mentioned earlier, data complexity of UCQxml is known to be coNP-complete [8], while precise combined
complexity was never stated. The proof of [8] only yields a nonelementary upper bound, but it turns out
that the actual bound is much lower. In the result below, for combined complexity, we assume that the
alphabet of labels is infinite.

Theorem 3 Over arbitrary incomplete trees under owa, for both of the languages UCQxml,BCCQxml, data

complexity is coNP-complete and combined complexity is Πp
2 -complete. Furthermore, FOxml is undecidable with

respect to both data and combined complexity.

15

Recall the convention regarding completeness of data complexity: stating that it is coNP-complete means
that it is always in coNP, and for some queries it is coNP-hard. Likewise, undecidability means that data
complexity of some fixed query is undecidable.

Proof. The coNP-hardness of UCQxml is known from [8] for data complexity, while undecidability for
FOxml follows from Theorem 2. So we first establish a Πp

2 combined complexity upper bound for BCCQxml,
from which a coNP upper bound for data complexity follows. We then provide a Πp

2 -hardness reduction
for UCQxml by coding QSAT with a ∀∗∃∗ quantifier prefix.

We start with the BCCQxml algorithm and assume for now that a query is Boolean, i.e. does not have free
variables. We do so for keeping the notation simple. The proof with free variables is essentially the same,
and we shall explain the minor changes that need to be made to incorporate free variables at the end.

Given an incomplete tree t and a query Q ∈ BCCQxml we provide an algorithm deciding ⊥ ∈ certainowa(Q, t)
in Σp

2 . Towards such an algorithm, assume that we are given an incomplete tree t and a query Q which
is a Boolean combination of queries Q1, . . . , Qm such that ⊥ ∈ certainowa(Q, t). So there exists a function
χ : {1, . . . , m} → {0, 1} and a tree T so that:

1. there exists a homomorphism h : t → T ,
2. T |= Qi for each i with χ(i) = 1,
3. T |= ¬Qj for each j with χ(j) = 0, and
4. setting each Qi with χ(i) = 1 to true and Qj with χ(j) = 0 to false makes the Boolean combination

evaluate to false.

The function χ will actually become a part of the existential guess in our Σp
2 algorithm, but notice for now

that nothing prevents the size of T from being not polynomial in |t| and |Q|. So we will proceed in two
stages. Borrowing from techniques developed in [7] and [8], we will first produce another complete tree T0

satisfying conditions 1 to 4 above. However, the size of T0 will still possibly be exponential in |Q|. So as a
last step we will produce a polynomial-size data structure that encodes T0 in such a way that all the steps
of the algorithm, after the existential guess, can be done in polynomial time.

First observe that any collection of conjunctive queries can be represented as an incomplete tree. So we
can reformulate conditions 1 and 2 as stating the existence of a homomorphism hχ : tQ̄,χ → T , where
tQ̄,χ extends t with some incomplete tree representation of the set of all Qis with χ(i) = 1. Towards the
construction of T0, we now define a subset sk(T) of the nodes in T , which we call the skeleton with respect to

hχ, as follows: (1) if a node s is the root of T or belongs to the image of hχ, then s belongs to sk(T); and (2)
if the nodes s1 and s2 of T belong to sk(T), then so does their largest common ancestor (“largest” in the
order by the tree, i.e., the closest to the nodes). Note that the size of sk(T) is polynomial (in fact, linear)
in the size of tQ̄,χ. Technically, we should write sk(T, hχ) but hχ will be always clear from the context.

The notion of skeleton was first used in [7], where its size was bounded to obtain complexity results for
query answering in data exchange. We now adapt the bounds in [7] to get bounds on the size of T0. Let
β1, . . . , βm enumerate all the tree-pattern formulae and subformulae that occur in Q and we set M = 2m+1.
We construct T0 in two stages as follows. We first relabel every node s /∈ Sk(T) using one new fresh label
(available due to the infinite alphabet assumption) and pairwise distinct fresh constants, so that the arity of
the new label does not match any of the arities used in Q (including arities corresponding to the wildcard).
We then remove from the so obtained tree all nodes which are neither in sk(T), nor in a vertical or horizontal
path in between two nodes in sk(T). Thus, the only nodes in the tree that are not in sk(T) are those on
vertical and horizontal path between nodes in sk(T). We finally obtain T0 by shortening every such vertical
or horizontal path to length M + 5 if a path was of greater length. Then exact same argument as given in
the proof of Lemma 5.7 in [7] shows that T0 6|= Q. (We note in passing that in that proof, the tree had to
conform to a DTD which resulted in a slightly bigger bound, namely multiplied by the size of the alphabet.
Since here we relabel the paths with a single new label, such a factor is not needed). Nevertheless, the size
of T0 is still too big to serve for our existential guess.

To overcome this problem, we now turn T0 into a polynomial-size data structure called code(T0) as follows.
Recall that the only nodes in T0 that are not in sk(T) are nodes on vertical or horizontal path to length
at most M + 5 between nodes in sk(T). We call endpoints of such paths special nodes. Let N be the set
of special nodes. Then code(T0) contains all the information about T0 except it does not keep the paths
between special nodes. Rather, it keeps the length of such a path in binary, which is bounded by log(2m+6),

16

and thus is polynomial in m. More precisely, for every two special nodes n, n′, the structure code(T0) records
the following: whether n′ is a descendant or a following-sibling of n such that there is no other special node
on the unique path between (i.e., they are consecutive special nodes, in the vertical or horizontal ordering),
and in that case, the length of the path between n and n′ (encoded in binary). Clearly, given the above
observation, the the size of the entire code(T0) now becomes polynomial in Q.

We next need to show that we can use code(T0) to verify whether T0 6|= Q, so that with this exponentially
more succinct representation the complexity of this checking is in Πp

2 . Normally one would need to check
that there is a homomorphism from tQi

to T0 and that there is no homomorphism from the incomplete
tree representations tQj

of the Qjs to T0. Instead, for t′ ∈ {tQi
, tQj

} we define a semi-homomorphism

h : t′ → code(T0) just as a homomorphism, except that each node of t′ is mapped into either:

– a node of code(T0), or
– a pair of special nodes n, n′ such that n′ is either a descendant of n or a following sibling of n with no

other special nodes between them, and a number k, represented in binary, bounded by M + 5.

Such a map h naturally gives rise to a map h′ : t′ → T0 as follows. In the second case, the node is mapped
by h′ into the kth successor of n on the unique – vertical or horizontal – path from n to n′. We then call
h a semi-homomorphism iff the map h′ is a usual homomorphism from t′ to T0. A key observation is that
for a map h : t′ → code(T0) one can check if it is a semi-homomorphism in polynomial time. Indeed, the
information on nodes and offsets is sufficient for checking all the relations ↓,→, ↓∗,→∗, and since data values
on the exponential paths have been changed, we know that any data value on such a path is different from
any other data value in the document.

To sum up, for checking whether ⊥ ∈ certainowa(Q, t) returns false, it suffices to find a counterexample
T0 which can be encoded by a polynomial-size data structure code(T0), and then for all Qjs check that
there is no semi-homomorphism from tQj

into code(T0). At the same time, we have to check that there is
a semi-homomorphism from tQi

to code(T0).

Putting this together, we have a Σp
2 algorithm for BCCQ certain answer:

1. In the existential step, we guess:
– a map χ : {1, . . . , m} → {0, 1};
– a data structure S of the form code(T0) of polynomial size;
– a semi-homomorphism hi : tqi → S.

2. In the universal step, we consider all
– semi-homomorphisms gj : tqj → S.

3. Then, in polynomial time, we check:
– that S is of the form code(T0) (that is, it is a tree structure, and an offset is associated with every

pair of consecutive special nodes in the horizontal or vertical ordering);
– that all the his and gjs are semi-homomorphisms (which we know can be done in polynomial time).

In order to show Πp
2 -hardness of combined complexity of UCQxml, we proceed by reduction from ∀∃3CNF.

An instance of this problem is given as follows by a fully quantified Boolean formula ϕ in prenex conjunctive
normal form:

ϕ := ∀p1 . . .∀pl∃q1 . . . ∃qm

^

1≤i≤n

(li1 ∨ li2 ∨ li3),

where each lij is a literal over the pi’s, qi’s (i.e., an atom or a negation of atom).

Given as input such a formula ϕ, the problem of deciding whether there exist for each truth assignment
of the pi’s, a truth assignment of the qi’s which makes the Boolean formula

V

1≤i≤n(li1 ∨ li2 ∨ li3) true, is

known to be Πp
2 -complete.

We show that for each ∀∃3CNF-instance ϕ, there exist an incomplete tree tϕ and a query qUCQ
ϕ ∈ UCQxml

such that:

ϕ is true if and only if certain(qUCQ
ϕ , tϕ) = ⊤.

17

We construct tϕ and qUCQ
ϕ over the following alphabet of node labels:

{root, V, V al, Disj, Lit, Q,P}.

We construct tϕ as follows. The root of tϕ, labeled root, has n + 1 children. The first one is labeled V

and has l + 2 children. The relative sibling order of these children is not specified (i.e., they are given as
a simple union). One of these children is labeled V al(0), another one is labeled V al(1) (where 0 and 1 are
data values) and for each 1 ≤ i ≤ l, there is a child labeled V al(⊥pi). Now the n remaining children of
the root form a sequence of siblings where the ith one is labeled Disj(di). Moreover, for each node labeled
Disj(di), we add a child labeled Lit(lij) for the jth literal occurring in the ith conjunct of ϕ (where each di

and lij is a data value occurring nowhere else in the tree). Let lij denote the jth literal of the ith conjunct,
we add descendants to each Lit(lij) labeled node in the following way.

1. Whenever the variable pi occurring in lij is universally quantified in ϕ, we do the following:
– for every 1 ≤ j ≤ m we add a child labeled Q(qj , 1) and a child labeled Q(qj , 0)
– whenever lij := pi, we add a child labeled P (⊥pi, 1) and a child labeled P (0,0)
– whenever lij := ¬pi, we add a child labeled P (⊥pi, 0) and a child labeled P (1,1)

2. Whenever the variable qi occurring in lij is existentially quantified in ϕ, we do the following:
– we add a child labeled P (1,1) and a child labeled P (0,0)
– whenever lij := qi, we add two children labeled Q(qi, 1) and for every 1 ≤ j ≤ m such that j 6= i, we

add a child labeled Q(qj , 1) and a child labeled Q(qj , 0)
– whenever lij := ¬qi, we add two children labeled Q(qi, 0) and for every 1 ≤ j ≤ m such that j 6= i,

we add a child labeled Q(qj , 1) and a child labeled Q(qj , 0)

Now recall that l is the number of universally quantified propositional variables, m the number of exis-
tentially quantified propositional variables and n the number of conjuncts in ϕ and consider the following
conjunctive query:

qϕ := ∃x1 . . .∃xm(
^

1≤i≤m

(root/V/V al(xi))

∧
^

1≤j≤n

∃y(root/Disj(dj)/Lit(y)/P (0,0)

∧

root/Disj(dj)/Lit(y)/P (1,1)

∧
^

1≤k≤l

(root/Disj(dj)/Lit(y)/Q(qk, xk)))

We define:

qUCQ
ϕ := qϕ ∨ ∃x∃y∃z(root/V [V al(x) → V al(y) → V al(z)])

and now show that given some ∀∃3CNF-instance ϕ := ∀p̄∃q̄
V

1≤i≤n(li1 ∨ li2 ∨ li3):

ϕ is true if and only if certain(qUCQ
ϕ , tϕ) = ⊤.

For the first direction assume ϕ is true. First observe that, without loss of generality, we can restrict to
checking the satisfaction of qϕ on structures in JtϕKscwa where each ⊥pi ’s has been assigned to either 0 or
1. This is so because qUCQ

ϕ is monotone and its second disjunct already holds in every structure in JtϕKowa

where a node labeled V al(⊥pi) has not been merged with either the node labeled V al(0) or the node labeled

18

V al(1). So consider now some T ∈ JtϕKscwa where each ⊥pi ’s has been assigned to either 0 or 1. Such a tree
can naturally be associated to a valuation v of the pi’s such that v(pi) = 0 whenever ⊥pi has been assigned
to 0 in T and v(pi) = 1 otherwise. As ϕ is true, the valuation v can be extended to a valuation v+ of all
the propositional variables in ϕ such that the quantifier-free part of ϕ is true whenever the pi’s and qi’s
are interpreted according to v+. We interpret each existentially quantified variable xi in qϕ by v+(qi) and
show that T satisfies qϕ with these values. Firstly, notice that the value assigned by v+ to each qi is either
0 or 1 and consequently for every 1 ≤ i ≤ m, T |= root/V/V al(v+(qi)). Hence, the first big conjunction
in qϕ holds for the values of the xi’s that we considered. Secondly, let us pick one j such that 1 ≤ j ≤ n.
Consider now the jth conjunct of ϕ. By assumption there is a literal in this conjunct which is true for
the valuation v+. Assume it is the kth literal. We will show that T satisfies the remaining conjuncts of qϕ

(where y is interpreted by ljk and each xi is interpreted in T by v+(qi)). Observe that the truth value of
these conjuncts can be evaluated by restricting to the root and to the subtree rooted at its child labeled
lit(ljk). This subtree was constructed as an encoding of the kth literal of the jth conjunct of ϕ in the way
explained earlier. By construction of tϕ, there were two cases (again, we let ljk stand for that literal):

1. the variable pr in ljk was universally quantified in ϕ:
–

V

1≤k≤l(root/Disj(dj)/Lit(ljk)/Q(qk, xk))) holds because whatever is the value v+(qi) assigned to
each xi (that is, either 0 or 1), by construction of tϕ, there is a child of the node labeled lit(ljk)
which is labeled Q(qi, v

+(qi))
– whenever ljk := pr, T |= root/Disj(dj)/Lit(ljk)/P (0,0) holds by construction of tϕ. Also T |=

root/Disj(dj)/lit(ljk)/P (1,1) because v+(⊥pi) = 1
– whenever ljk := ¬pr, T |= root/Disj(dj)/Lit(ljk)/P (1,1) holds by construction of tϕ. Also T |=

root/Disj(dj)/lit(ljk)/P (0,0) because v+(⊥pi) = 0
2. the variable qr in l was existentially quantified in ϕ:

– T |= root/Disj(dj)/Lit(ljk)/P (0,0) holds by construction of tϕ
– T |= root/Disj(dj)/Lit(ljk)/P (1,1) holds by construction of tϕ.
–

V

1≤k≤l(root/Disj(dj)/Lit(ljk)/Q(qk, xk))) holds because whatever is the value v+(qi) assigned to

each xi, by construction of tϕ, there is a child of the node labeled lit(ljk) which is labeled Q(qi, v
+(qi)).

This holds for every qi with i 6= r because for every such i there are both a node labeled Q(qi, 0) and a
node labeled Q(qi, 1). Whenever ljk := qr, this holds in the case of qr because as v+(qr) = 1, we also
assumed that xr is evaluated by 1. Finally whenever ljk := ¬qr, this holds because as v+(qr) = 0,
we also assumed that xr is evaluated by 0

Now for the converse direction assume ϕ := ∀p̄∃q̄
V

1≤i≤n(li1 ∨ li2 ∨ li3) is false, then there is a valuation

v of the pi’s such that for every extension v+ of v to the qi’s, the formula
V

1≤i≤n(li1 ∨ li2 ∨ li3) evaluates

to ⊥ whenever the pi’s, qi’s are interpreted according to v+. Let T ∈ JtϕKscwa where for every pi, ⊥pi is
assigned to 0 whenever v(pi) = 0 and to 1 otherwise. Also, the V -labeled node has only two children, so
that the second disjunct of qUCQ

ϕ does not hold on T . Now assume T |= qUCQ
ϕ , so T |= qϕ and there is a

mapping of the existentially quantified variables x1, . . . , xm to {0, 1} (which are the only two data values d

such that T |= root/V/V al(d)) such that the big conjunction with n conjuncts is true for this valuation of
the xi’s. This means that for each data value dj occurring in tϕ, there exists some k such that the remaining
of the formula holds on T whenever y is interpreted by ljk (such ljk values being the only ones to which
we can set this existentially quantified variable). Let us fix one such valuation of the xi’s and notice that
it corresponds to an extension v+ of v to the qi’s. Now as ϕ is false, it follows that there is a conjunct of
ϕ, let say the jth one, which evaluates to ⊥ under the valuation v+, that is, every literal in that conjunct
evaluates to ⊥ under v+. Now by construction of tϕ, the jth conjunct is not satisfied under the valuation
of the xi’s considered. As this holds for any extension v+ of v, it follows that T 6|= qUCQ

ϕ .

As the size of qUCQ
ϕ and tϕ is polynomial in the size of ϕ, this completes the proof of the reduction. ✷

5.2 Query answering under CWA

We now move to the closed world assumption. The results are easily obtained as corollaries of previously
established results. Recall that for arbitrary incomplete trees, there are two possible interpretations of the

19

data complexity combined complexity
cwa owa cwa owa

UCQxml Ptime
NP-complete

BCCQxml Π
p

2 -complete
FOxml coNP-complete undecidable Pspace-complete undecidable

Fig. 6 Complexity of computing certain answers over rigid incomplete trees

closed world assumption. Under the strong interpretation scwa, we insist that each node in a complete
tree correspond to a node in an incomplete tree. Under the weak interpretation wcwa, new nodes may be
inserted between nodes related by ⇒ or by ⇓. Our first result is about the weak interpretation.

Corollary 1 Under wcwa, data and combined complexity of query evaluation over arbitrary incomplete trees is

the same as under owa, i.e., as described in Theorem 3.

Indeed, owa upper bounds trivially apply, and one can examine the proofs of owa hardness results to
observe that they can be done using owa only to extend paths (rather than insert arbitrary trees), which
corresponds to wcwa.

Under the strong assumption, complexity bounds come down only for the case of FOxml, and stay as they
were for owa and wcwa for other languages. Note that for arbitrary incomplete trees, we cannot yet reduce
query evaluation under scwa to the relational case, and indeed some bounds are different (Πp

2 for trees and
NP for relations for UCQs).

Corollary 2 Over arbitrary incomplete trees under scwa, for each of the languages UCQxml,BCCQxml, data

complexity is coNP-complete and combined complexity is Πp
2 -complete. For FOxml, data complexity remains

coNP-complete, while combined complexity is Pspace-complete.

For the upper bounds, one simply guesses an onto homomorphism h so that ā 6∈ Q(h(t)). This gives a coNP

upper bound for data complexity for all languages, and coNP-hardness already follows from [8]. Since
conjunctive queries with negation can be evaluated with NP combined complexity, this also gives a Πp

2

upper bounds for languages based on conjunctive queries (with an additional guess which queries will be
true and which will be false for Boolean combinations). And since FOxml can be translated into FO over a
relational representation, we get the Pspace bound from the corresponding bound for combined complexity
of FO. The lower bound is also from the relational case, by encoding relations as XML documents.

Summary Results for arbitrary incomplete trees are summarized in Figure 5. A quick look shows the
following:

1. Data complexity is always intractable – unlike in the relational case, we lose polynomial data complexity
of UCQxml and BCCQxml. Combined complexity is elementary (in fact at most 2-exponential) despite
previous high bounds (except for FOxml of course where it is undecidable).

2. For arbitrary trees, closed world assumption – in either form – does not help bring down complexity for
conjunctive queries and their relatives.

So, as in [8], this motivates looking at the restricted case of rigid trees, for all of the languages and
assumptions. This is what we do next.

6 Query answering over rigid incomplete trees

Recall that in rigid trees we have no missing structural information. That is, they are of the form
t = 〈D, A, ↓,→, (Pα)α∈Σ , ρ〉, where D is a usual unranked tree domain, ↓ and → are child and next-sibling
relations, labeling predicates Pα’s need not cover all of D, and ρ assigns data values from C ∪ V.

In particular, in the absence of structural incompleteness, there is no difference between scwa and wcwa,
and we shall talk just about cwa. That is, JtKcwa = {h(t) | h is a homomorphism}.

20

As before, we start with the open world assumption, and then consider the closed world assumption.

6.1 Query answering under OWA

The only previously known result on the complexity of query answering over rigid trees under owa states
that data complexity of UCQxml queries is in Ptime [8]. Moreover, query answering can be done by näıve
evaluation. That is, one simply computes Q(t), and throws away tuples that contain nulls, and this guaran-
tees to produce certainowa(Q, t). By translation into relational representation, this implies NP-completeness
of combined complexity. We now complete this picture.

Theorem 4 Under owa, data complexity of BCCQxml queries over rigid trees is in Ptime, while for FOxml it

is undecidable.

Combined complexity is NP-complete for UCQxml and Πp
2 -complete for BCCQxml.

Thus, while for languages with inequalities we match the high bounds for arbitrary incomplete trees, for
one extension of UCQxml queries we can get a polynomial-time evaluation algorithm, namely for Boolean
combination of CQs. Combined complexity bounds match the relational case, which means they cannot be
improved for any reasonable class of XML documents.

Proof. Upper bounds for combined complexity follow from earlier results, while hardness results for
combined complexity are already witnessed in the relational case [25]. Likewise, undecidability for FOxml

follows from the relational case. Thus, we concentrate on proving tractability of data complexity.

A homomorphism h : t → t′ from an incomplete tree t = 〈N, V, ↓,⇓,→,⇒, (Pα)α∈Σ , ρ〉 to another incomplete
tree t′ = 〈N ′, V ′, ↓,⇓,→,⇒, (Pα)α∈Σ , ρ〉 is a pair of maps h = (h1, h2) where h1 : N → N ′ and h2 : V → V ′

such that:

– if wRw′ in t, then h1(w)Rh1(w
′) in t′, when R is one of ↓,→,⇓,⇒;

– if w ∈ Pα in t, then h1(w) ∈ Pα in t′;
– h2(c) = c whenever c ∈ C; and
– h2(ρ(w)) = ρ(h1(w)) for each w ∈ N such that, either there is α ∈ Σ with w ∈ Pα, or ρ(w) 6= ∅.

Our Ptime algorithm shares common features with the relational case, but we still need to adapt the
definitions introduced in the proof of Theorem 1, especially the notion of f-compatibility.

In the relational case, we were concerned with “merging” different tuples. Here we will not only need to
merge tuples, but also the tree nodes to which they are associated (as well as later on extending incomplete
tree structures to proper tree structures). For that purpose, we first need a few definitions.

Let t = 〈N, V, ↓,⇓,→,⇒, (Pα)α∈Σ , ρ〉 be an incomplete tree, we let:

Ht = {h | h : N → N is a root faithful node homomorphism}.

We say that a node homomorphism h is root faithful whenever every node labeled with the special label root

is mapped to one and the same image by h.

Given h ∈ Ht, we inductively define a relation ∼h over adom(t) as follows:

– x ∼h y whenever there exist w, w′ ∈ N with h(w) = h(w′) and 1 ≤ j ≤ m such that ρ(w) =
(x1, . . . , xm), ρ(w′) = (y1, . . . , ym), x = xj and y = yj ;

– ∼h is reflexive, symmetric and transitive.

We say that t is h-consistent whenever:

– for every a, b ∈ C, if a 6= b, then a 6∼h b,

21

– for every w, w′ ∈ N with h(w) = h(w′):
– for every R, R′ ∈ Σ, w ∈ PR and w′ ∈ PR′ implies R = R′,
– |ρ(w)| 6= |ρ(w′)| implies that there is wi ∈ {w, w′} such that |ρ(wi)| = ∅ and for all R ∈ Σ, wi 6∈ PR

(i.e., wi is labeled with).

As in the relational case, we observe that ∼h yields a set of equivalence classes over adom(t), as follows:

x ∈ [y]h if and only if x ∼h y

We then consider the quotient set of adom(t) under ∼h:

adom(t)/ ∼h:= {eq1, . . . , eqr}.

Now for every eqi ∈ adom(t)/ ∼h, we define the representative rh(eqi) of eqi by letting:

– rh(eqi) = a whenever there exists a ∈ eqi such that a ∈ C,
– rh(eqi) = ⊥i otherwise.

For every w ∈ N , we also define the representative rh(w) of w by letting rh(w) = rh([y1]h), . . . , rh([ym]h),
where there is some w′ ∈ N such that h(w) = h(w′), ρ(w′) = (y1, . . . , ym) and for every w′′ ∈ N such that
h(w′′) = h(w), if ρ(w′′) = (y′1, . . . , y′m′), then m ≥ m′.

Let h ∈ Ht such that t is h-consistent. We define a new incomplete tree th as follows:

th = 〈Im(h), V, ↓↾ Im(h),⇓↾ Im(h),→↾ Im(h),⇒↾ Im(h), (Ph
α)α∈Σ , ρh〉,

where

– for every Edge ∈ {↓,⇓,→,⇒}, Edge ↾ Im(h) is the restriction of the relation Edge to the nodes in Im(h);
– Ph

α ’s are disjoint subsets of N ↾ Im(h) where Ph
α = {w ∈ Im(h) | ∃w′ ∈ N such that h(w) =

h(w′) and w′ ∈ Pα}; and
– ρh : N ↾ Im(h) →

S

k≥0 V k is defined is defined by ρ(w) = rh(w).

Observe that for every h ∈ Ht such that t is h-consistent, there is a homomorphism h : t → th with
h = (h1,h2), where h1(w) = h(w) and h2(x) = rh([x]h).

Observe that nothing prevents the incomplete trees ths defined above to be not only non rigid, but also
disconnected. As we are eventually interested in generating a set of rigid trees on which we know from [8]
that näıve evaluation can be applied safely, we finally provide one further definition. Intuitively, we will use
it to “represent” every complete tree in the owa semantics of th up to a certain size (bounded by |Q|)).

Let t = 〈N, V, ↓,⇓,→,⇒, (Pα)α∈Σ , ρ〉 be an incomplete tree and let n be a natural number. We define the
set of n-rigidifications of t as follows:

t′ = 〈N+, V, ↓+,⇓+,→+,⇒+, (Pα)α∈Σ , ρ〉 ∈ Rn(t) if and only if

– 〈N+, ↓+,⇓+,→+,⇒+〉 is a tree structure ;
– there is an embedding f : N → N ′ that preserves:

– the tree structure, i.e., for all R ∈ {, ↓,⇓,→,⇒}, wRw′ implies f(w)R+f(w′),
– the function ρ, i.e., ρ(w) = ρ(f(w)),
– labeling, i.e., for all w ∈ N , Pα(w) ⇔ Pα(f(w));

– define sk(f(N)) as the closure of f(N) under largest common ancestor, then:
– w ∈ sk(f(N)) and w /∈ f(N) implies that w is labeled with wildcard and has no data value,
– for every node w ∈ N ′ − sk(f(N)), w is at the vertical or horizontal distance ≤ n from a node in

sk(f(N)), w is labeled with wildcard and has no data value.

22

We are now ready to define our owa algorithm. Let Q ∈ BCCQxml be a Boolean query and let t be a rigid
incomplete tree (assume w.l.o.g. that the conjunctive queries in Q share no variable in common). We will
define an algorithm which determines in polynomial time in the size of t whether ⊥ ∈ certainowa(Q, t). As
in the relational case, we begin by listing all possible assignments of the Boolean conjunctive queries in Q

to Boolean values for which Q evaluates to ⊥. Now for every such assignment v, we let:

αv :=
^

i∈I

qi where I = {i | qi occurs in Q and v(qi) = ⊤}

βv :=
_

j∈J

qj where J = {j | qj occurs in Q and v(qj) = ⊥}

Every Boolean conjunctive query Q := ∃x̄ π1(x̄) ∧ . . . ∧ πn(x̄) can also be represented as an incomplete
tree Tr(Q). Without loss of generality assume that the set of nodes and the set of nulls occurring in t and
Tr(αv) are disjoint. Now form a new incomplete tree tv by taking the union of these two structures and by
merging in it all nodes labeled with the special label root, or by adding one new root-labeled node if there
was no occurrence of this label.

We can now define:

T v
OWA := {(tv)h | h ∈ Htv and tv is h-consistent}.

The open world algorithm proceeds as follows. First, let β1, . . . , βm enumerate all the tree-pattern formulae
and subformulae that occur in Q and set M = 2m + 6. Now pick a falsifying valuation v of the conjunctive
queries in Q. For every (tv)h ∈ T v

OWA, consider each t′ ∈ RM ((tv)h) and determine using naive evaluation
whether t′ 6|= βv . If this is the case for some t′, then stop and return ⊥. If not, iterate the procedure for
every falsifying valuation v. Once done, if no valuation v and trees (tv)h ∈ T v

OWA, t′ ∈ Rm((tv)h) such that
t′ 6|= βv were found, then return ⊤.

Before we prove the correctness of the algorithm, let us first show that it runs in polynomial time in |t|. So
let n be the number of nodes in t and k the number of nodes in tv that did not come from t. Note that k is
bounded by the size of the query. Also observe that there are at most (n + k)k structures in T v

OWA; thus,
the number of such structures is polynomial in the size of t, and they all can be enumerated in polynomial
time, assuming the query is fixed.

As the next step in the complexity analysis, we have to show that the number of M-rigidifications of each
structure (tv)h is polynomial in t, and that they can all be constructed in polynomial time. This will give
us the desired polynomial bound.

We can assume without loss of generality that h is the identity on the nodes of t, due to rigidity. Let p be
the number of nodes in all tree representations of all patterns added in tv. We now over count the number
of rigidification by assuming one just adds p such nodes (the actual number will be smaller as there are
constraints on how these p nodes can be added, due to the structure of patterns in the query).

We construct a rigidification in p steps, having a rigid tree in each of those steps. Let the trees be T0, . . . , Tp

with T0 being t itself. In each step i we pick the ith node xi to be added and do the following:

1. Pick a node y in Ti−1 that xi will be the descendant of, so that xi is not a descendant of any other node
that is a descendant of y.

2. Choose the length of the path from y to xi; it must be at most M .
3. Consider y′, the child of y in the direction of xi. We know it could not have been in Ti−1. Decide whether

it is on the left or on the right of other children of y, and the length of the path from y′ to either the
first child of y or the last child of y; the length must be at most M .

4. Label all newly introduced nodes with wildcard.

In each such step we add at most 2M nodes to a tree, so the size of all the Tis is bounded by 2Mnp, where
n is the size of t. The number of possible trees in the i + 1st step is obtained by multiplying the number of
possible trees in the ith step by:

23

– the size of Ti;
– M to account for the length of the vertical path;
– 2 to account for the choice in item 3) above;
– M again to account for the length of the horizontal path.

Thus if τi is the number of such possible trees, then we have the condition τ0 = 1 and τi+1 ≤ τi ·2Mnp ·2M2.
Hence τp ≤ (4M3np)p which is still polynomial in the size of the tree, since M and p depend on the query
only.

The process of calculating this bound also shows how to enumerate all rigidifications in polynomial time:
the only difference is that we do addition by trees, rather than individual nodes (so the number would
actually be smaller).

In order to show the correctness of this algorithm, we finally show that certainowa(Q, t) = ⊥ if and only if
there exists a valuation v of the conjunctive queries in Q and trees (tv)h ∈ T v

OWA, t′ ∈ RM ((tv)h) such that
t′ 6|= βv .

The right to left direction easily follows from [8]: it is enough to remark that t′ |= αv , there is a homomor-
phism from t to t′ and t′ is rigid. So we focus on the left to right direction. Assume certainowa(Q, t) = ⊥,
i.e., there exists a complete tree T ∈ JtKowa such that T 6|= Q. By the proof of Theorem 3 we can assume
that there is a falsifying valuation v of the conjunctive queries in Q such that:

– T |= αv ∧ ¬βv ,
– there is a homomorphism h : tv → T , where h = (h1, h2),
– the only nodes in T that are not in sk(T) are those in between vertical and horizontal paths between

nodes in sk(T); additionally every node in T which is not in h(T) satisfies similar labeling conditions as
the tree T0 constructed in the proof of Theorem 3.

We first show that tv is h1-consistent, which entails the existence of some incomplete tree (tv)h1 . We finally
observe that there is some t′ ∈ RM ((tv)h1) such that t′ 6|= βv.

Recall that tv is h1-consistent whenever:

– for every a, b ∈ C, if a 6= b, then a 6∼h1
b,

– for every w, w′ ∈ N with h1(w) = h1(w
′):

– for every R, R′ ∈ Σ, w ∈ PR and w′ ∈ PR′ implies R = R′,
– |ρ(w)| 6= |ρ(w′)| implies that there is wi ∈ {w, w′} such that |ρ(wi)| = ∅ and for all R ∈ Σ, wi 6∈ PR

(i.e., wi is labeled with).

The second condition immediately follows from the fact that h is a homomorphism. For the first condition,
we show that for every x, y ∈ adom(tv), x ∼h1

y implies that h2(x) = h2(y), from which it follows immedi-
ately that if x, y ∈ C, then x = y (as h is a homomorphism). So let x, y ∈ adom(tv) such that x ∼h1

y. This
means that there is a sequence x0, . . . , xn ∈ adom(tv) such that x = x0, y = xn and for every xi, xi+1 with
0 ≤ i ≤ n, the following holds:

∃w, w′ ∈ dom(tv), ∃k ≤ m such that,

h1(w) = h1(w
′), ρ(w) = (y1, . . . , ym), ρ(w′) = (z1, . . . , zm), xi = yk and xi+1 = zk

We show the property (i.e., h2(x0) = h2(xn)) by induction on the length of n. So consider a sequence of
length n as described and assume h2(x0) = h2(xk) holds for all k < n − 1. Now consider xn−1 and xn, by
assumption we have:

∃w, w′ ∈ dom(tv), ∃k ≤ m such that,

h1(w) = h1(w
′), ρ(w) = (y1, . . . , ym), ρ(w′) = (z1, . . . , zm), xn−1 = yk and xn = zk

24

By h1(w) = h1(w
′) and by h being a homomorphism, it follows that h2(ρ(w)) = h2(ρ(w′)) and so h2(xn−1) =

h2(xn). By induction hypothesis, we know that h2(x0) = h2(xn−1), from which it follows that h2(x0) =
h2(xn).

As tv is h1-consistent, this entails the existence of a corresponding incomplete tree (tv)h1 . Observe that there
is a homomorphism h′ : (tv)h1 → T , where h′ = (h′

1, h′
2) is given by h′

1(w) = h1(w) and h′
2(rh1

[x]h1
) = h2(x).

Now assume (tv)h1 |= βv . Conjunctive queries being preserved by homomorphism, it follows that T |= βv ,
which is a contradiction. Hence (tv)h1 6|= βv .

We finally derive from the fact that h′ : (tv)h1 → T is a homomorphism, that we can construct out of T

a rigid incomplete tree t′m ∈ Rm((tv)h1) such that t′ 6|= βv. The construction is achieved very simply by
removing all data values and labels attached to each of the nodes which do not belong to h(T), replacing
removed labels with wildcard occurrences. ✷

6.2 Query answering under CWA

The last question is how cwa helps when we deal with rigid trees. This is the case that is very close to
relations: since the structure is fixed, every completion of a relational representation of a rigid tree would
be structurally a tree. However, we still cannot apply relational results directly, because even under scwa,
working with relational representations, we need to ensure that labeling predicates behave properly. But
this can be done, resulting in the following.

Corollary 3 Over rigid incomplete trees, data and combined complexity of all languages except FOxml are the

same under cwa and under owa.

For FOxml, data complexity is coNP-complete, and combined complexity is Pspace-complete.

The proof proceeds exactly like in the previous case; we only need to notice that due to cwa, there are
fewer trees to consider, and thus the complexity does not go up. All the lower bounds, including those for
FOxml, are already witnessed by the relational case.

For UCQxml queries, certain answers are the same under owa and under cwa (and thus both can be
computed by näıve evaluation). For the other tractable case of BCCQxml queries, they need not be the
same, and in fact the algorithms are more complex than the näıve evaluation algorithm (as was remarked
already, even in the relational case such queries cannot be evaluated näıvely to generate certain answers,
unless they are equivalent to unions of conjunctive queries [22]).

We also remark that over rigid trees, certain answers can be computed efficiently for an extension of UCQxml

that expresses tree-to-tree queries [13].

Summary Going to rigid trees, i.e., giving up structural incompleteness while allowing null values and
wildcards, lowers the complexity of query evaluation for all the languages to that of their relational coun-
terparts. There is at least one extension of the standard tractable class (namely Boolean combinations of
CQs), but getting answers in polynomial time requires changing the algorithm.

Using cwa does not help in terms of complexity classes characterization (except for the strongest language
FOxml), but the algorithm under owa appears to be more manageable.

7 Conclusions

The results of this paper, together with [8], present a rather complete picture of both data and combined
complexity of query answering over incomplete XML documents. Overall, we can infer the following from
our study.

25

1. Structural incompleteness always leads to intractability of query answering (and thus should not be
allowed in practical scenarios).

2. Playing with the semantic assumptions, such as open and closed world assumptions, does not have a
significant effect on query answering as far as complexity classes are concerned; however, even for cases
when algorithms are in polynomial time, there could be added complexities in some cases.

3. When incompleteness is reduced to labeling and data values, efficient query answering is possible in
query languages that mimic relational languages admitting efficient evaluation.
The most common such language is union of conjunctive queries, but we showed that considering
Boolean combinations works as well. This result also filled a gap in our knowledge of relational query
answering over incomplete databases.

So the bottom line seems to be that one should use label and data-value incompleteness only, as this gives
the best hope for efficient query answering for practically relevant languages.

We also remark that the proceedings version of this paper [16] made some claims about extensions to
queries with inequalities. While all the lower bounds mentioned in [16] are correct (as follows from the
results presented here), the exact complexity of finding certain answers for queries with inequalities is open
at this time and left for future work. We also remark in passing that such problems become undecidable if,
in addition to inequalities, very simple schema constraints are imposed (for instance, just a finite alphabet
of labels) [14].

Acknowledgment We are grateful to Tony Tan for extensive discussions, and for help with pictures. Work
partially supported by EPSRC grants G049165 and J015377.

References

1. S. Abiteboul, P. Buneman, D. Suciu. Data on the Web: From Relations to Semistructured Data and XML. Morgan
Kauffman, 1999.

2. S. Abiteboul, O. Duschka. Complexity of answering queries using materialized views. In PODS 1998, pages 254–263.
3. S. Abiteboul, P Kanellakis, and G. Grahne. On the representation and querying of sets of possible worlds. TCS,

78(1):158–187, 1991.
4. S. Abiteboul, L. Segoufin, and V. Vianu. Representing and querying XML with incomplete information. ACM TODS,

31(1):208–254, 2006.
5. L. Antova, T. Jansen, C. Koch, D. Olteanu. Fast and simple relational processing of uncertain data. In ICDE’08,

pages 983–992.
6. M. Arenas, P. Barceló, L. Libkin, F. Murlak. Foundations of Data Exchange. Cambridge University Press, 2014.
7. M. Arenas and L. Libkin. XML data exchange: consistency and query answering. J. ACM, 55 (2), 2008.
8. P. Barceló, L. Libkin, A. Poggi, C. Sirangelo. XML with incomplete information. J. ACM, 58:1 (2010).
9. H. Björklund, W. Martens, and T. Schwentick. Conjunctive query containment over trees. J. Comput. Syst. Sci. 77(3):

450-472 (2011).
10. A. Cal̀ı, D. Lembo, and R. Rosati. On the decidability and complexity of query answering over inconsistent and

incomplete databases. In PODS’03, pages 260–271.
11. D. Calvanese, G. De Giacomo, M. Lenzerini. Semi-structured data with constraints and incomplete information. In

Description Logics, 1998.
12. D. Calvanese, G. De Giacomo, M. Lenzerini. Representing and reasoning on XML documents: a description logic

approach. J. Log. Comput. 9 (1999), 295–318.
13. C. David, L. Libkin, F. Murlak. Certain answers for XML queries. In PODS 2010, pages 191-202.
14. C. David, A. Gheerbrant, L. Libkin, W. Martens. Containment of pattern-based queries over data trees. In ICDT

2013, pages 201–212.
15. T. Eiter, G. Gottlob, H. Mannila. Disjunctive datalog. ACM Trans. Database Syst. 22(3):364-418 (1997).
16. A. Gheerbrant, L. Libkin, T. Tan. On the complexity of query answering over incomplete XML documents. In ICDT

2012, pages 169–181.
17. G. Gottlob, C. Koch, and K. Schulz. Conjunctive queries over trees. J. ACM 53(2):238-272, 2006.
18. G. Grahne. The Problem of Incomplete Information in Relational Databases. Springer, 1991.
19. T. Imieliński and W. Lipski. Incomplete information in relational databases. J. ACM, 31(4):761–791, 1984.
20. B. Kimelfeld, Y. Sagiv. Modeling and querying probabilistic XML data. SIGMOD Record 37(4): 69-77 (2008).
21. M. Lenzerini. Data integration: a theoretical perspective. In PODS’02, pages 233–246.
22. L. Libkin. Incomplete information and certain answers in general data models. In PODS’11, pages 59–70.
23. R. Reiter. On closed world databases. In “Logic and Databases”, H. Gallaire and J. Minker eds, Plenum Press, 1978,

pages 55–76.
24. R. Rosati. On the finite controllability of conjunctive query answering in databases under open-world assumption. J.

Comput. Syst. Sci. 77(3):572-594 (2011).
25. Y. Sagiv, M. Yannakakis. Equivalences among relational expressions with the union and difference operators. J. ACM

27(4): 633-655 (1980).
26. D. Suciu, D. Olteanu, C. Re, C. Koch. Probabilistic Databases. Morgan & Claypool, 2011.
27. R. van der Meyden. The complexity of querying indefinite data about linearly ordered domains. J. Comput. Syst. Sci.

54(1): 113-135 (1997).

26

