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Abstract The study of other-regarding player behavior such as altruism and
spite in games has recently received quite some attention in the algorithmic
game theory literature. Already for very simple models, it has been shown that
altruistic behavior can actually be harmful for society in the sense that the
price of anarchy may increase as the players become more altruistic. In this
paper, we study the severity of this phenomenon for more realistic settings in
which there is a complex underlying social structure, causing the players to
direct their altruistic and spiteful behavior in a refined player-specific sense
(depending, for example, on friendships that exist among the players). Our
findings show that the increase in the price of anarchy is modest for conges-
tion games and minsum scheduling games, whereas it might be drastic for
generalized second price auctions.

1 Introduction

Many practical situations involve a group of strategic decision makers who at-
tempt to achieve their own self-interested goals. It is well known that strategic

This research was partially supported by the EU FET projects MULTIPLEX no. 317532
and SIMPOL no. 610704, the ERC StG Project PAAI 259515, the FET-Open FOC no.
255987, and the Google Research Award for Economics and Market Algorithms.

Aris Anagnostopoulos, Luca Becchetti
Sapienza University of Rome, Italy
E-mail: {aris,becchetti}@dis.uniroma1.it

Bart de Keijzer
Sapienza University of Rome, Italy, and
CWI and VU University of Amsterdam, The Netherlands
E-mail: dekeijzer@dis.uniroma1.it

Guido Schäfer
CWI and VU University Amsterdam, The Netherlands
E-mail: g.schaefer@cwi.nl



decision making may result in outcomes that are suboptimal for the society as
a whole. The need to gain an accurate understanding of the extent of subop-
timality caused by selfish behavior has led to the study of the inefficiency of
equilibria in algorithmic game theory. In this context, a common inefficiency
measure is the price of anarchy [27], which relates the worst-case cost of a
Nash equilibrium to the one of an optimal outcome.

More recently, quite some attention has been given to more general set-
tings in which the players do not necessarily behave entirely selfishly, but may
alternatively exhibit spiteful or altruistic behavior; see, for instance, [4,6,7,10,
12,14,19,22–24]. Studying such alternative behaviors in games is motivated by
the observation that altruism and spite are phenomena that frequently occur
in real life (see, e.g., [20]). Consequently, it is desirable to incorporate such
alternative behavior in game-theoretical analyses.

Previous work on the price of anarchy for spiteful and altruistic games has
focused on simple models of spite and altruism, where a spite/altruism level αi
is associated to each player i denoting the extent to which his perceived cost
is influenced by any nonspecific other player. Already for these simple models
it has been observed in a series of papers [7,10,12] that altruistic behavior
can actually be harmful in the sense that the price of anarchy may increase
as players become more altruistic. For example, Chen et al. [12] show that
for congestion games with linear latency functions and uniform players (i.e.,
αi = α ∈ [0, 1] for every i) the price of anarchy is 5+4α

2+α and this bound
is tight. In particular, the price of anarchy degrades from 2.5 in the purely
selfish setting (α = 0) to 3 in the fully altruistic setting (α = 1).

This observation served as a starting point for the investigations conducted
in this paper. The main question that we address here is: How severe can this
effect be if one considers more refined models of altruism that capture complex
social relationships between the players?

Our Contributions. In this paper, we study a more general player-specific
model of spite and altruism. Our model can be viewed as extending a given
strategic game by imposing a social-network structure on top of the players,
which specifies for each pair of players (i, j) an altruism/spite level αij signify-
ing how much player i cares about player j; these relations are not necessarily
symmetric. This allows us to model more realistic settings in which the behav-
ior of the players depends on a complex underlying social structure, expressing
friendships and animosities among the players. Our altruistic games fall into
the framework of social context games proposed by Ashlagi et al. [2].

For this general model of games with altruism and spite, we are inter-
ested in studying the price of anarchy. The smoothness framework, originally
introduced by Roughgarden [33], has become a standard method for proving
upper bounds on the price of anarchy. Basically, this framework shows that
such bounds can be derived by establishing a certain smoothness condition.
An additional strength of this approach is that the smoothness condition al-
lows to derive upper bounds on the price of anarchy (also called robust price of
anarchy in this context) for various solution concepts, ranging from pure Nash
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Game POA (selfish) POA (altruistic)

linear congestion game 5
2

[3,15] 7

load balancing game ≈ 2.06 [34,8] ≈ 4.24

related machine scheduling game 2 [25] ≈ 7.46

unrelated machine scheduling game 4 [17] ≈ 23.31

generalized second price auction ≈ 2.31 [29,28,9,11] 2(n+ 1)

Table 1 Upper bounds on the coarse correlated price of anarchy of altruistic games derived
in this paper in comparison to the purely selfish setting.

equilibria to coarse correlated equilibria; the latter being naturally related to
outcomes resulting from natural learning algorithms (e.g., see [37]). Here, we
extend the smoothness framework such that it can be used conveniently to
study games with social context.

Using this extension, we prove upper bounds on the price of anarchy for
altruistic versions of three classes of well-studied games: congestion games,
minsum scheduling games, and generalized second price auctions. We show
that for unrestricted altruism levels the price of anarchy is unbounded. In
particular, this happens if there is a player i who cares more about some friend
j than about himself, i.e., αij > αii. We, therefore, derive our upper bounds
under the mild assumption that each player cares positively about himself and
he cares about any other player at most as much as he cares about himself; we
refer to this as restricted altruistic social context. Under this assumption, we
derive the following upper bounds on the coarse correlated price of anarchy:

– A bound of 7 for altruistic linear congestion games, and a bound of ϕ3 ≈
4.24 for the special case of load balancing games, where ϕ = (1 +

√
5)/2

denotes the golden ratio.
– A bound of 4 + 2

√
3 ≈ 7.46 and 12 + 8

√
2 ≈ 23.31 for altruistic minsum

machine scheduling games for related and unrelated machines, respectively.
– A bound of 2(n+ 1) for altruistic generalized second price auctions, where
n is the number of players.

Our results therefore show that for congestion games and minsum schedul-
ing games the price of anarchy cannot increase drastically; specifically, it re-
mains constant, independently of how complex the underlying altruistic social
context is. On the other hand, for generalized second price auctions our results
seem to suggest that the price of anarchy may degrade drastically: we obtain
and upper bound of 2(n + 1), as opposed to a small constant in the purely
selfish setting [9]. We also prove that this bound is asymptotically tight if one
resorts to the smoothness approach; i.e., in order to improve on our bound
one needs to come up with more sophisticated techniques that go beyond the
standard smoothness notion. A summary of the bounds derived in this paper
is given in Table 1.
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Related Work. There are several papers that propose models of altruism and
spite [6,7,10,12,14,19,22–24]. All these models are special cases of the one
studied here. Among these articles, the inefficiency of equilibria in the presence
of altruistic/spiteful behavior was studied for various games in [7,10,12,14,
19]. After its introduction by Roughgarden [33], the smoothness framework
has been adapted in various directions [31,35,36], including an extension to a
particular model of altruism by Chen et al. [12], which constitutes a special
case of the altruistic games considered here.

Biló et al. [4] also studied social context congestion games, in the case
where the perceived cost of a player is the minimum, maximum, or sum of
the immediate cost of his neighbors. They establish, among other results, an
upper bound of 17/3 on the pure price of anarchy of linear congestion games
for a special case of the setting we study here.

Related but different from our setting, is the concept of graphical congestion
games [5,21]. Here the cost and the strategy set of a player depends only on
a subset of the players.

After publication of a preliminary conference version of the present paper
[1], follow-up work by Rahn and Schäfer appeared as [30]. In their paper, the
authors relate the study of altruistic extensions of games to a class of games,
named social contribution games, and improve some of the upper bounds we
give here. In particular, they show that the coarse correlated price of anarchy
is 17/3 for linear congestion games and 4 for unrelated machine scheduling
games; both bounds are tight.

2 Preliminaries

Altruistic Extensions of Games. We study the effect of altruistic behavior
in strategic games. To model the complex relationships between the players,
we equip the underlying game with a social context . More precisely, let Γ =
(N, {Σi}i∈N , {ci}i∈N ) be a strategic game (termed base game), where N =
{1, . . . , n} is the set of players, Σi is the strategy set of player i, and ci :
Σ → R is the direct cost function of player i that maps every strategy profile
s ∈ Σ = Σ1 × · · · × Σn to a real value. Unless stated otherwise, we assume
that Γ is a cost minimization game, i.e., every player i wants to minimize his
individual cost function ci. Further, we assume that a social context is given
by an n× n matrix α ∈ Rn×n.

Given a base game Γ and a social context α, the α-extension of Γ is defined
as the strategic game Γα = (N, {Σi}i∈N , {cαi }i∈N ), where for all i ∈ N and
s ∈ Σ, the perceived cost cαi (s) of player i is given by

cαi (s) =
n∑
j=1

αijcj(s). (1)

Thus, the perceived cost of player i in the α-extension is the αij-weighted
sum of the individual direct costs of all players in the base game. A positive
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(negative) αij value signifies that player i cares positively (negatively) about
the direct cost of player j, which can be interpreted as an altruistic (spiteful)
attitude of i towards j. Note that αii specifies how player i cares about himself;
we also call αii the self-perception level. For simplicity, we will often refer to
the resulting game Γα as the α-extension, without explicitly mentioning the
base game Γ and the social context α.

The above viewpoint has a natural interpretation in terms of social net-
works: Suppose the players in N are identified with the nodes of a complete
directed graph G = (N,A). The weight of an edge (i, j) ∈ A is equal to αij ,
specifying the extent to which player i cares about the cost of player j.

Even though the smoothness notion that we introduce below applies to
arbitrary α-extensions of games, the main focus of this paper is on altruistic
behavior. We distinguish between unrestricted and restricted altruistic social
contexts α. In the unrestricted case we assume that αij ≥ 0 for every i, j ∈ N ;
in particular, the self-perception level of a player can be zero. In this case, one
can prove trivial lower bounds for the price of anarchy, just by setting αij = 0,
for all i, j. For this reason we consider also the more interesting restricted
case. In the restricted case, every player has a positive self-perception level
and cares about himself at least as much as about any other player, namely,
αii > 0 and αii ≥ αij ≥ 0 for every i, j ∈ N , i 6= j. In the latter case, we can
normalize α without loss of generality such that αii = 1 for every player i.1

Given an altruistic social context α, we refer to the resulting α-extension also
as α-altruistic game.

Coarse Correlated Equilibria and the Price of Anarchy. We are interested in
the efficiency loss caused by altruistic behavior. Let C : Σ → R be a social
cost function that maps strategy profiles to real numbers. Most of the time in
this paper, the social cost will refer to the sum of the direct costs of all players,
namely, C(s) =

∑n
i=1 ci(s). The motivation is that we are interested in the

efficiency of the outcome resulting from altruistic behavior, which is modeled
through the altered perceived cost functions. We use s∗ to refer to an optimal
strategy profile that minimizes C, i.e., C(s∗) ≤ C(s) for every s ∈ Σ.

We focus on the inefficiency of coarse correlated equilibria, which are defined
as follows (e.g., see [37]): Let σ be a probability distribution over Σ and let
σ−i denote the projection of σ onto

Σ−i = Σ1 × · · · ×Σi−1 ×Σi+1 × · · · ×Σn.

Then σ is a coarse correlated equilibrium of the α-extension Γα if, for every
player i and every strategy s∗i ∈ Σi, it holds that

Es∼σ[cαi (s)] ≤ Es−i∼σ−i [c
α
i (s∗i , s−i)].

We use CCE(Γα) to denote the set of coarse correlated equilibria of Γα. Coarse
correlated equilibria include several other solution concepts, such as correlated

1 To see this, note that, by dividing all αij by αii > 0, the set of equilibria and the social
cost of any outcome remain the same.
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equilibria, mixed Nash equilibria, and pure Nash equilibria (e.g., see [33]), and
are thus guaranteed to exist for finite games.

We study the price of anarchy [27] of coarse correlated equilibria. For an
α-extension Γα, define

POA(Γα) = sup
s∈CCE(Γα)

C(s)

C(s∗)
,

where s∗ is a strategy profile that minimizes C. The coarse correlated price of
anarchy of a class of α-extensions G is defined as

POA(G) = sup
Γα∈G

POA(Γα).

Some material has been omitted from the main body of the paper and can be
found in the appendix.

3 Smoothness

Smoothness. Roughgarden [33] introduced a general smoothness framework to
derive bounds on the coarse correlated price of anarchy. This framework ap-
plies to strategic games with sum-bounded social cost functions. In the context
of α-extensions of games this requirement is equivalent to C(s) ≤

∑n
i=1 c

α
i (s)

for every s ∈ Σ. Note that this condition is not necessarily satisfied if we
allow arbitrary social contexts α ∈ Rn×n. Next we extend this framework to
α-extensions with arbitrary social contexts and social cost functions.

Definition 1 Let Γα be an α-extension of a cost minimization game with
α ∈ Rn×n and social cost function C. Further, let s∗ be an optimal strategy
profile with respect to C. Γα is (λ, µ)-smooth if for every strategy profile s ∈ Σ
it holds that

n∑
i=1

n∑
j=1

αij(cj(s
∗
i , s−i)− cj(s)) ≤ λC(s∗) + (µ− 1)C(s). (2)

The following theorem shows that (λ, µ)-smoothness implies a bound on
the coarse correlated price of anarchy of α-extensions.

Theorem 1 Let Γα be an α-extension of a cost minimization game with α ∈
Rn×n and social cost function C. If Γα is (λ, µ)-smooth with µ < 1, then the
coarse correlated price of anarchy of Γα is at most λ/(1− µ).

In the purely selfish setting (i.e., when αii = 1 and αij = 0 for every
i, j ∈ N , i 6= j) our smoothness definition is slightly more general than the
one in [33] where (2) is required to hold for any arbitrary strategy profile
s∗. Also, in [33] the analogue of Theorem 1 is shown under the additional
assumption that C is sum-bounded. Here, we get rid of this assumption. The
proof of Theorem 1 can be found in Appendix A.
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Efficiency of no-regret algorithms. The above smoothness definition allows us
to import some additional results from [33]. In particular, it proves useful in
the context of learning algorithms generating no-regret sequences.

Theorem 2 Let Γα be an α-extension of a cost minimization game with α ∈
Rn×n and social cost function C. Suppose that s1, . . . , sT is a sequence of
outcomes in which every player experiences vanishing average external regret,
i.e., for every player i ∈ N

1

T

T∑
t=1

cαi (st) ≤ 1

T

[
min
s′i∈Σi

T∑
t=1

cαi (s′i, s
t
−i)

]
+ o(1).

If Γα is (λ, µ)-smooth with µ < 1, then the average cost of the sequence is

1

T

T∑
t=1

C(st) ≤ λ

1− µ
C(s∗) + o(1).

The proof is similar to the one in [33] and can be found in Appendix A.

4 Congestion Games

In a congestion game Γ = (N,E, {de}e∈E , {Σi}i∈N ) we are given a set of
players N = {1, . . . , n}, a set of facilities E with a delay function de : N→ R
for every facility e ∈ E, and a strategy set Σi ⊆ 2E for every player i ∈ N .
For a strategy profile s ∈ Σ = Σ1 × · · · × Σn, define xe(s) as the number of
players using facility e ∈ E, i.e., xe(s) = |{i ∈ N : e ∈ si}|. The direct cost of
player i is defined as ci(s) =

∑
e∈si de(xe(s)) and the social cost function is

given by C(s) =
∑n
i=1 ci(s). In a linear congestion game, the delay function

of every facility e ∈ E is of the form de(x) = aex+ be, where ae, be ∈ Q≥0 are
nonnegative rational numbers.

We note that [22] studies conditions and algorithms for the existence of
Nash equilibria in linear congestion games, for a special case of our model.

4.1 General Linear Congestion Games

Theorem 3 Every α-altruistic extension of a linear congestion game with
restricted altruistic social context α is ( 7

3 ,
2
3 )-smooth. Therefore, the coarse

correlated price of anarchy is at most 7 for these games.

We need the following technical lemma for the proof of Theorem 3.

Lemma 1 ([13]) For every two integers x, y ∈ N

(x+ 1)y + xy ≤ 7

3
y2 +

2

3
x2.
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The proof follows from Lemma 4.5 in [13] (with η = 1, β = 0 and γ = 2
3 ).

Proof (Theorem 3) Let s be an arbitrary strategy profile and let s∗ be a
strategy profile that minimizes C. We can assume without loss of generality
that de(x) = x for all e ∈ E (see, e.g., [26]).

Recall that the social cost is defined as C(s) =
∑n
i=1 ci(s). The smoothness

condition (2) is thus equivalent to

n∑
i=1

ci(s∗i , s−i) +
∑
j 6=i

αij(cj(s
∗
i , s−i)− cj(s))

 ≤ λC(s∗) + µC(s). (3)

Let xe and x∗e refer to xe(s) and xe(s
∗), respectively. Fix some player i ∈ N

and let x′e = xe(s
∗
i , s−i). Note that

x′e =


xe + 1 if e ∈ s∗i \ si
xe − 1 if e ∈ si \ s∗i
xe otherwise.

Using these relations, we obtain

ci(s
∗
i , s−i) +

∑
j 6=i

αij(cj(s
∗
i , s−i)− cj(s))

=
∑
e∈s∗i

x′e +
∑
j 6=i

αij
∑
e∈sj

(x′e − xe)

=
∑
e∈s∗i

1 +
∑

j 6=i:e∈sj

1

+
∑
j 6=i

αij

 ∑
e∈s∗i∩sj

1−
∑

e∈si∩sj

1


= |s∗i |+

∑
j 6=i

((1 + αij) |s∗i ∩ sj | − αij |si ∩ sj |) .

Summing over all players i, we obtain

n∑
i=1

|s∗i |+∑
j 6=i

((1 + αij) |s∗i ∩ sj | − αij |si ∩ sj |)


=
∑
e∈E

 ∑
i:e∈s∗i

1 +
∑
i:e∈s∗i

∑
j 6=i:e∈sj

(1 + αij)−
∑
i:e∈si

∑
j 6=i:e∈sj

αij


≤
∑
e∈E

(x∗e + 2x∗exe), (4)

where the inequality holds because the altruistic social context is restricted,
i.e., 0 ≤ αij ≤ 1 for every i, j ∈ N , i 6= j. Applying Lemma 1 (with x = xe
and y = x∗e), we bound∑

e∈E
(x∗e + 2x∗exe) ≤

7

3
C(s∗) +

2

3
C(s),

which concludes the proof. ut
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Unrestricted altruistic social context. Theorem 3 considers congestion games
with restricted altruistic social context α. This assumption is required; we
now present an example showing that the price of anarchy is unbounded if the
altruistic social context is unbounded.

Example 1 Let (N,E, {de}e∈E , {Σi}i∈N} be a congestion game with N =
{1, 2} and E = {1, 2, 3, 4}. Let the delay functions be defined by d1(x) =
d3(x) = x and d2(x) = d4(x) = Kx for all x, where K is a large constant. The
strategy sets are Σ1 = {{1, 2}, {3}}, Σ2 = {{3, 4}, {1}}. Suppose furthermore
that α is given by α11 = α22 = 0 and α12 = α21 = 1.

Then observe that in the α-altruistic extension of this game, the strategy
profile ({1, 2}, {3, 4}) is a pure Nash equilibrium with social cost 2K + 2. The
optimal social cost is 2, and is attained by the strategy profile ({3}, {1}). The
price of anarchy in this game is therefore K+1, and K can be taken arbitrarily
large, so the price of anarchy is unbounded.

4.2 Load Balancing Games

We derive a better smoothness result for singleton congestion games with iden-
tical delay functions, i.e., whenΣi ⊆ E for every i ∈ N so that for each strategy
s ∈ Σi we have that |s| = 1 and de(x) = x for every facility e ∈ E. We also
refer to these games as load balancing games below.

Theorem 4 Every α-altruistic extension of a load balancing game under re-
stricted altruistic social context α is (1+ϕ, 1/ϕ2)-smooth, where ϕ = (1+

√
5)/2

is the golden ratio. Therefore, the coarse correlated price of anarchy is at most
ϕ3 ≈ 4.236 for these games.

To proof Theorem 4 we need the following lemma, which is a variation of
Lemma 1 in [16]. Its proof can be found in Appendix B.

Lemma 2 Let ϕ = 1+
√
5

2 be the golden ratio. For every two integers x, y ∈ N

2xy − ϕx+ ϕ2y ≤ ϕ2y2 +
1

ϕ2
x2.

Proof (Theorem 4) As in the proof of Theorem 3, it is sufficient to show that
(3) holds with (λ, µ) = (1 + ϕ, 1/ϕ2). Recall that ϕ is the golden ratio and
thus λ = 1 + ϕ = ϕ2.

Following the same line of arguments as in the proof of Theorem 3, we
obtain from (4) that we need to show that∑

e∈E
(x∗e + 2x∗exe) ≤ ϕ2C(s∗) +

1

ϕ2
C(s). (5)

The crucial insight here is that for load balancing games we have
∑
e∈E x

∗
e =∑

e∈E xe = n. We can thus rewrite the summation on the lefthand side above
as ∑

e∈E
(2x∗exe − (λ− 1)xe + λx∗e)=

∑
e∈E

(2x∗exe − ϕxe + ϕ2x∗e),
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by the definition of λ. Applying Lemma 2 (with x = xe and y = x∗e for each
e) shows (5). ut

5 Minsum Machine Scheduling

In a scheduling game, we deal with a set of machines [m], and a set of jobs [n]
that are to be scheduled on the machines. For each job i ∈ [n] and machine
k ∈ [m], we are given a processing time pi,k ∈ R≥0, which is the time it takes
to run job i on machine k.

There are many ways in which a machine may execute the set of jobs it
gets assigned. We restrict ourselves here to a popular policy where the jobs on
a machine are executed one-by-one, in order of increasing processing time (i.e.,
the longer jobs are executed later). Ties are broken in a deterministic way, and
we write i ≺k j if pi,k < pj,k or pi,k = pj,k and the tie breaking rule schedules
job i before job j on machine k. A schedule is a vector s = (s1, . . . , sn), where
for i ∈ [n], si is the machine on which job i is to be run. We define the value
N(i, k, s) to be the number of jobs j on machine k under strategy profile s for
which it holds that i ≺k j. Given s, the completion time of a job i under s is

pi,si +
∑

j:j≺si i,sj=si

pj,sj .

The jobs take the role of the players: the strategy set of a player is [m], so the
strategy profiles that arise are schedules. The cost cj(s) of a job j ∈ [n] under
strategy profile s is the completion time of j under s.

We define the social cost function for this game to be the sum of the
completion times of the jobs. Note that the social cost can be written as

C(s) =

m∑
k=1

∑
i:si=k

(N(i, k, s) + 1)pi,k.

If the processing times are not restricted in any way, we speak of unrelated
machine scheduling games. We speak of related machine scheduling games if
the processing times are defined as follows: For each machine k ∈ [m], there is
a speed tk ∈ R>0 and for each job j ∈ [n] there is a length pj ∈ R≥0 such that
pi,k = pj/tk for all i ∈ [n], k ∈ [m].

Cole et al. [17] show that unrelated machine scheduling games (without
altruism) are (2, 1/2)-smooth, resulting in a coarse correlated price of anarchy
of at most 4.2 Hoeksma and Uetz [25] prove that related machine scheduling
games (without altruism) are (2, 0)-smooth, leading to the conclusion that the
coarse correlated price of anarchy is at most 2.

2 More precisely, this is shown to hold for the more general case when the social cost is
an arbitrary nonnegative linear combination of the player’s cost. From a scheduling game
instance described in [18], it follows that this bound is tight, i.e., that the coarse correlated
price of anarchy is actually exactly 4.
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Next, we prove constant upper bounds on the price of anarchy for restricted
altruistic social contexts.

Theorem 5 Every α-altruistic extension of a machine scheduling game with
restricted altruistic social context α is (2+x, 1/x)-smooth for related machines
and (2 + x, 1/2 + 1/x)-smooth for unrelated machines for all x ∈ R such that
x ≥ 1 and x ≥ 2 respectively. Therefore, the coarse correlated price of anarchy
is at most 4 + 2

√
3 ≈ 7.4641 (choosing x = 1 +

√
3) and 12 + 8

√
2 ≈ 23.3137

(choosing x = 2 + 2
√

2) for these games, respectively.

Proof Recall that we assume that α is a restricted social context such that
αii = 1 for all i ∈ [n] and αij ∈ [0, 1] for all i, j ∈ [n].

In [25] it is proven that the base game for the case of related machines is
(2, 0)-smooth, and from the proof of Theorem 3.2 in [17], it follows that the
base game for the case of unrelated machines is (2, 1/2)-smooth. Thus, let s∗

be an arbitrary optimal schedule and let s be an arbitrary schedule. It suffices
to show that

n∑
i=1

∑
j∈[n]:j 6=i

αij(cj(s
∗
i , s−i)− cj(s)) ≤ xC(s∗) +

C(s)

x

for all x > 0.
Let

P1 = {(i, j) : s∗i = sj , s
∗
i 6= si, i ≺s∗i j}, and

P2 = {(i, j) : si = sj , s
∗
i 6= sj , i ≺si j}.

Informally, P1 (P2) is the set of pairs of jobs (i, j) such that i’s strategy
change from si to s∗i makes j become scheduled later (earlier), for jobs j that
are scheduled on machine s∗i under s (on machine si under s). Note that for
a pair of players (i, j) that is not in P1 ∪ P2, we have cj(s

∗
i , s−i) − cj(s) = 0,

and for (i, j) ∈ P2 it holds that αij(cj(s
∗
i , s−i)− cj(s)) ≤ 0.

Therefore:

n∑
i=1

∑
j∈[n]:j 6=i

αij(cj(s
∗
i , s−i)− cj(s)) =

∑
(i,j)∈P1∪P2

αij(cj(s
∗
i , s−i)− cj(s))

≤
∑

(i,j)∈P1

αij(cj(s
∗
i , s−i)− cj(s)) ≤

∑
(i,j)∈P1

(cj(s
∗
i , s−i)− cj(s))

=
∑

(i,j)∈P1

pi,s∗i .

We now rewrite this last expression into a summation over the machines.
We obtain:

n∑
i=1

∑
j∈[n]:j 6=i

αij(cj(s
∗
i , s−i)− cj(s))

11



≤
m∑
k=1

∑
(i,j)∈P1:s∗i=k

pi,k

=

m∑
k=1

∑
i∈[n]:s∗i=k

∑
j∈[n]:(i,j)∈P1

pi,k

=

m∑
k=1

∑
i∈[n]:s∗i=k,

si 6=k

∑
j:sj=k,i≺kj

pi,k

=

m∑
k=1

∑
i∈[n]:s∗i=k,

si 6=k

N(i, k, s)pi,k

=

m∑
k=1

∑
i∈[n]:s∗i=k,

si 6=k

(xN(i, k, s∗) + x− 1 +N(i, k, s)− xN(i, k, s∗)− x+ 1)pi,k

≤
m∑
k=1

∑
i∈[n]:s∗i=k

(x(N(i, k, s∗) + 1)− 1)pi,k

+

m∑
k=1

∑
i∈[n]:s∗i=k,

si 6=k

(N(i, k, s)− xN(i, k, s∗)− x+ 1)pi,k

≤
m∑
k=1

∑
i∈[n]:s∗i=k

(x(N(i, k, s∗) + 1)− 1)pi,k

+

m∑
k=1

∑
i∈[n]:s∗i=k,
si 6=k,

N(i,k,s)>xN(i,k,s∗)+x−1

dN(i, k, s)− xN(i, k, s∗)− x+ 1epi,k.

Consider a job i and machine k such that it holds that s∗i = k, si 6= k,
and N(i, k, s) > xN(i, k, s∗) + x − 1. Let S(i, k) be the set of dN(i, k, s) −
xN(i, k, s∗) − xe smallest jobs j �k i such that sj = k. Note that S(i, k) is
well defined in the sense that this number of jobs exists because N(i, k, s) >
xN(i, k, s∗) + x − 1 implies dN(i, k, s) − xN(i, k, s∗) − xe ≥ 0, and because
there exist N(i, k, s) ≥ |S(i, k)| jobs j �k i with sj = k. The the last expression
equals

m∑
k=1

∑
i∈[n]:s∗i=k

(x(N(i, k, s∗) + 1)− 1)pi,k

+

m∑
k=1

∑
i∈[n]:s∗i=k,
si 6=k,

N(i,k,s)>xN(i,k,s∗)+x−1

pi,k +
∑

j∈S(i,k)

pi,k

 ,

12



which is less than or equal to

xC(s∗) +

m∑
k=1

∑
i∈[n]:s∗i=k,
si 6=k,

N(i,k,s)>xN(i,k,s∗)+x−1

∑
j∈S(i,k)

pi,k,

thus, obtaining,

n∑
i=1

∑
j∈[n]:j 6=i

αij(cj(s
∗
i , s−i)− cj(s))

≤ xC(s∗)+

m∑
k=1

∑
j∈[n]

∑
i∈[n]:j∈S(i,k),

s∗i=k,
si 6=k,

N(i,k,s)>xN(i,k,s∗)+x−1

pi,k. (6)

Note that for every job j ∈ S(i, k) it holds that N(j, k, s) ≥ N(i, k, s) −
|S(i, k)| > xN(i, k, s∗) + x − 1. Therefore, the expression on the right-hand
side of (6) is equivalent to

xC(s∗)+

m∑
k=1

∑
j∈[n]

∑
i∈[n]:j∈S(i,k),

s∗i=k,
si 6=k,

N(i,k,s)>xN(i,k,s∗)+x−1
N(j,k,s)>xN(i,k,s∗)+x−1

pi,k. (7)

Note that j ∈ S(i, k) implies that sj = k and that i ≺k j. We relax some of
the constraints in the summations and so we upper bound the expression in
(7) by

xC(s∗) +

m∑
k=1

∑
j∈[n]:sj=k

∑
i∈[n]:s∗i=k,
si 6=k,
i≺kj,

N(j,k,s)>xN(i,k,s∗)+x−1

pi,k

≤ xC(s∗) +

m∑
k=1

∑
j∈[n]:sj=k

∑
i∈[n]:s∗i=k,
si 6=k,
i≺kj,

N(j,k,s)>xN(i,k,s∗)+x−1

pj,k. (8)

The next step in the derivation is made by observing that for each job j
and each machine k such that sj = k, there are at most d(N(j, k, s)−x+1)/xe
jobs i ≺k j such that s∗i = k, si 6= k and N(j, k, s) > xN(i, k, s∗)+x−1. To see
this, assume for contradiction that there are more than d(N(j, k, s)−x+1)/xe
jobs i ≺k j such that s∗i = k, si 6= k and N(j, k, s) > xN(i, k, s∗) + x − 1.
Let i be the (d(N(j, k, s)− x+ 1)/xe+ 1)-th largest job for which these three

13



properties hold. Then, there are at least d(N(j, k, s)−x+1)/xe jobs scheduled
on machine k that have these properties and that are scheduled after i on
machine k under strategy s∗. Therefore, we have that xN(i, k, s∗) + x − 1 ≥
xd(N(j, k, s)− x+ 1)/xe+ x− 1 ≥ N(j, k, s), which is a contradiction.

Using this observation together with (6), (7) and (8), we obtain

n∑
i=1

∑
j∈[n]:j 6=i

αij(cj(s
∗
i , s−i)− cj(s))

≤ xC(s∗) +

m∑
k=1

∑
j∈[n]:sj=k

⌈
N(j, k, s)− x+ 1

x

⌉
pj,k

≤ xC(s∗) +

m∑
k=1

∑
j∈[n]:sj=k

1

x
(N(j, k, s) + 1)pj,k

= xC(s∗) +
C(s)

x
,

where for the second inequality we use the basic fact that dae ≤ a + 1 for all
a ∈ R. ut

Similarly to congestion games, the assumption of the altruistic social con-
text being restricted is necessary. Next we provide an example showing that
the price of anarchy is unbounded if the altruistic social context is unrestricted.

Example 2 Fix a number M ∈ R>0 arbitrarily, and consider the scheduling
game with two machines and two jobs. The speeds are given by t1 = 1/M, t2 =
1. The job lengths are given by p1 = p2 = 1. Suppose that the altruism levels
are as follows: α11 = α22 = α21 = 0, α12 = 1. Then the schedule where job
1 is on machine 1 and job 2 is on machine 2 is a pure Nash equilibrium. The
social cost of this equilibrium is M + 1. When M ≥ 2, it is a social optimum
to schedule both jobs on machine 2, and this schedule achieves a social cost
of 3. Therefore, for M ≥ 2, the price of anarchy of this altruistic scheduling
game is (M +1)/3. Because M can be picked arbitrarily large, this shows that
the price of anarchy is arbitrarily bad for altruistic extensions of scheduling
games, when we allow arbitrary altruism levels.

6 Profit Maximization Games and Generalized Second-Price
Auctions

In this section we study generalized second-price auctions, which are profit
maximization games. We will, therefore, first extend our notions to profit max-
imization games. Then we will apply the extended framework to second-price
auctions.

14



6.1 Profit Maximization Games

The smoothness definition introduced in Section 2 can naturally be adapted
to profit maximization games.

Let Γ = (N, {Σi}i∈N , {pi}i∈N ) be a strategic game, where a player i seeks
to maximize his direct profit function pi : Σ → R. The α-altruistic extension
Γα of Γ is defined similarly as for cost minimization games.

Definition 2 Let Γα be an α-extension of a profit maximization game with
α ∈ Rn×n and social welfare function Π. Further, let s∗ be a strategy profile
that maximizes Π. Γα is (λ, µ)-smooth if for every strategy profile s ∈ Σ it
holds that

n∑
i=1

n∑
j=1

αij(pj(s
∗
i , s−i)− pj(s)) ≥ λΠ(s∗)− (µ+ 1)Π(s). (9)

The proof of the following theorem proceeds along the same lines as the
one of Theorem 1 and is omitted.

Theorem 6 Let Γα be an α-extension of a profit maximization game with
α ∈ Rn×n and social welfare function Π. If Γα is (λ, µ)-smooth with µ > −1,
then the coarse correlated price of anarchy of Γα is at most (1 + µ)/λ.

We are now ready to study generalized second-price auctions.

6.2 Generalized Second-Price Auctions

We study auctions where a set N = [n] of n bidders compete for k slots. Each
bidder i ∈ N has a valuation vi ∈ R≥0 and specifies a bid bi ∈ R≥0. Each
slot j ∈ [k] has a click-through rate γj ∈ R≥0. Without loss of generality, we
assume that the slots are sorted according to their click-through rates such
that γ1 ≥ · · · ≥ γk and that k = n.3

We consider the generalized second price auction (GSP) as the underlying
mechanism. Given a bidding profile b = (b1, . . . , bn), GSP orders the bidders
by nonincreasing bids and assigns them in this order to the slots. Each bidder
pays the next highest bid for his slot. More precisely, let b1 ≥ · · · ≥ bn be the
ordered list of bids. We assume without loss of generality that if bi = bj for
two bidders i > j then i precedes j in the order. Then bidder i is assigned to
slot i and has to pay bi+1, where we define bn+1 = 0. The utility of player i
for bidding profile b is defined as ui(b) = γi(vi − bi+1). The social welfare for
a bidding profile b is defined as Π(b) =

∑n
i=1 γivi.

A standard assumption in this setting is that bidders do not overbid their
valuations, i.e., the strategy set of bidder i is [0, vi] for all i ∈ [n]. This as-
sumption is made for reasons related to individual rationality: overbidding is

3 If k < n we can add n − k dummy slots with click-through rate 0; if k > n we can
remove the k − n last slots.
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a dominated strategy. The same reasoning still applies if players are altruistic.
Therefore, we will assume that bidders do not overbid.

We now prove an upper bound of O(n) on the coarse correlated price of
anarchy of α-altruistic extensions of generalized second price auctions if the
altruistic social context is restricted.

Theorem 7 Every α-altruistic extension of a generalized second price auction
with restricted altruistic social context α is ( 1

2 , n)-smooth. Therefore, the coarse
correlated price of anarchy is at most 2(n+ 1) for these games.

Proof Let b∗ and b be two bidding profiles. By renaming, we assume that for
all j, bidder j gets assigned to slot j under bidding profile b.

The base game is known to be (λ1, µ1) = ( 1
2 , 1)-smooth [31]. That is, for

every two bidding profiles b, b∗, it holds that
∑
i∈N ui(b

∗
i , b−i) ≥ 1

2Π(b∗)−Π(b).
It remains to bound

n∑
i=1

∑
j 6=i

αij(uj(b
∗
i , b−i)− uj(b)) ≥

n∑
i=1

∑
j 6=i

αij(−uj(b)) ≥
n∑
i=1

∑
j 6=i

αij(−γjvj)

≥
n∑
i=1

∑
j 6=i

−γjvj ≥ −(n− 1)Π(b).

Combining these inequalities proves (λ, µ) = ( 1
2 , n)-smoothness and applying

Theorem 6 gives the result. ut

The following example shows that the O(n) upper bound derived in Theo-
rem 7 is asymptotically best possible if one sticks to the smoothness framework
introduced above. As a consequence, in order to improve on our O(n) bound
one has to resort to more refined techniques.

Example 3 Let n be even and define k = n/2. We define an instance of n+ 1
bidders as follows. Let

γ1 = · · · = γk = 1, γk+1 = · · · = γn = ε and γn+1 = ε2.

Subsequently, we will make sure that ε, 0 < ε < 1, is chosen sufficiently small.
Further, define the bidder valuations as

v1 = · · · = vk−1 = ε, vk = · · · = vn = 1 and vn+1 = 0.

We assume that no bidder overbids his valuation. In particular, this implies
that bidder n+ 1 bids zero always.

Let b∗ = (b∗1, . . . , b
∗
n+1) be an optimal bidding profile maximizing social

welfare. Note that b∗i > b∗n+1 = 0 for every i ∈ {1, . . . , n} because otherwise
bidder n + 1 would be assigned to a slot with click-through rate at least ε,
which is a contradiction to the optimality of b∗. The total social welfare of b∗

is Π(b∗) = k + ε+ (k − 1)ε2.
Fix a bidding profile b = (b1, . . . , bn+1) such that b1 > · · · > bn+1 = 0

and b1 < b∗i for every i ∈ {1, . . . , n}. Note that this is always possible because
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b∗i > 0 for every i ∈ {1, . . . , n}. Also note that this implies that bi < ε for
all i because we assume that bidders do not overbid. Thus, by choosing ε
sufficiently small, we ensure that the bids in b become arbitrarily small but
induce the order as indicated above. We have

Π(b) =

n+1∑
i=1

γivi = (n− 1)ε+ 1.

If bidder i ∈ {1, . . . , n} changes his bid from bi to b∗i , then he is assigned
to slot 1 in (b∗i , b−i), thereby shifting the players 1, . . . , i − 1 one slot down
(relative to the slots they are assigned to under b). Observe that bidder k is
assigned to the last slot with click-through rate 1. As a consequence, whenever
one of the bidders i ∈ {k + 1, . . . , n} deviates to (b∗i , b−i), bidder k is shifted
from his slot k with click-through rate 1 down to slot k+ 1 with click-through
rate ε. We will exploit this below.

Consider the left-hand side of the smoothness definition

n+1∑
i=1

n+1∑
j=1

αij(uj(b
∗
i , b−i)− uj(b)).

Fix player i and consider the contribution ∆j(i) = αij(uj(b
∗
i , b−i)− uj(b)) of

player j to the sum. Clearly, ∆j(n+ 1) = 0 for every j because bidder n+ 1 is
assigned to slot n + 1 under both profiles. Let i ∈ {1, . . . , n}. We distinguish
four cases depending on the position of j with respect to i:

Case j > i: The deviation of i does not affect player j and thus ∆j(i) = 0.
Case j = i: Player i moves up to the first slot for which he pays b1. Thus

∆i(i) = αii(γ1(vi − b1)− γi(vi − bi+1)).

Case j = i−1: Player j moves down one slot for which he pays bj+2 (instead
of bj+1 under b). Thus

∆j(i) = αij(γj+1(vj − bj+2)− γj(vj − bj+1)).

Case j < i − 1: Player j moves down one slot for which he pays bj+1 (as
under b). Thus

∆j(i) = αij(γj+1(vj − bj+1)− γj(vj − bj+1) = αij(γj+1 − γj)(vj − bj+1).

Choosing ε sufficiently small we can make sure that the total contribution
of the payments b` in each ∆j(i) in each of the above four cases is negligible.

We consider the restricted social context, so without loss of generality we
assume that all αii are normalized to 1. Recall that γ1 = 1. Ignoring the effect
of the payments (which we just argued is negligible if we make ε small enough),
the total contribution to the left-hand side of the smoothness definition is thus

n∑
i=1

αii(γ1vi − γivi) +

i−1∑
j=1

αij(γj+1 − γj)vj


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=

n∑
i=1

(1− γi)vi +

n∑
i=1

i−1∑
j=1

αij(γj+1 − γj)vj

Note that γj+1 − γj = 0 for all j 6= k and γk+1 − γk = ε − 1. The above
expression thus simplifies to

n∑
i=k+1

(1− ε)vi +

n∑
i=k+1

αik(γk+1 − γk)vk = k(1− ε)− (1− ε)
n∑

i=k+1

αik

= (1− ε)

(
k −

n∑
i=k+1

αik

)
.

By setting αik = 1 for every i, the above contribution is equal to zero.
To show (λ, µ)-smoothness, we need to lower bound the latter expression

by λΠ(b∗)− (µ+ 1)Π(b). That is, λ and µ need to satisfy

(1− ε)

(
k −

n∑
i=k+1

αik

)
= 0 ≥ λ(k + ε+ (k − 1)ε2)− (µ+ 1)((n− 1)ε+ 1).

which implies (letting ε → 0) that µ + 1 ≥ λk. This provides an asymptotic
lower bound of

1 + µ

λ
≥ k

1
=
n

2
on the possible price of anarchy achievable by our smoothness framework.

7 Conclusions

We studied the coarse correlated price of anarchy of altruistic extensions of
three fundamental classes of games. The main focus of this paper was put
on deriving upper bounds that are independent of the underlying social net-
work structure. An interesting open question is whether one can derive refined
bounds by exploiting structural properties of the underlying social network.

In the present studies, we concentrated on altruistic games with nonnega-
tive altruistic social contexts α, even though our model of altruistic games and
the smoothness definition introduced in Sections 2 and 3 allow us to incorpo-
rate spiteful behavior as well. We leave it as an interesting open direction for
future research to pursue such analyses for spiteful behavior. Another open
question to investigate is whether local smoothness conditions can be formu-
lated such that they can be used for analysis of various altruistic games, in
the spirit of [32].
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A Proofs of Theorem 1 and Theorem 2

Proof (Theorem 1) Let σ be a coarse correlated equilibrium for Γα and let s be a random
variable with distribution σ. Further, let s∗ ∈ Σ be an optimal strategy profile. The coarse
correlated equilibrium condition implies that for every player i ∈ N :

n∑
j=1

αijE[cj(s
∗
i , s−i)]−

n∑
j=1

αijE[cj(s)] ≥ 0.

By summing over all players and using linearity of expectation, we obtain

E[C(s)] ≤ E[C(s)] + E

 n∑
i=1

n∑
j=1

αij(cj(s
∗
i , s−i)− cj(s))

 .
Now we use the smoothness property (2) and obtain

E[C(s)] ≤ E[C(s)] + E[λC(s∗) + (µ− 1)C(s)] = λC(s∗) + µE[C(s)].

Since µ < 1, this implies that the coarse correlated price of anarchy is at most λ/(1−µ). ut

Proof (Theorem 2) Consider a sequence s1, . . . , sT of outcomes of Γα that satisfies the
vanishing average external regret property, i.e., for every player i ∈ N

1

T

T∑
t=1

cαi (st) ≤
1

T

[
min
s′i∈Σi

T∑
t=1

cαi (s′i, s
t
−i)

]
+ o(1). (10)

Let s∗ be an optimal outcome that minimizes the social cost function C. Define

δαi (st) = cαi (st)− cαi (s∗i , s
t
−i)

for every i ∈ N and t ∈ {1, . . . , T}. Exploiting (10), we obtain that for every player i ∈ N

1

T

T∑
t=1

δαi (st) ≤
1

T

(
T∑
t=1

cαi (st)− min
s′i∈Σi

T∑
t=1

cαi (s′i, s
t
−i)

)
= o(1). (11)

Let ∆α(st) =
∑n
i=1 δ

α
i (st). We have

∆α(st) =
n∑
i=1

(
cαi (st)− cαi (s∗i , s

t
−i)
)

=
n∑
i=1

n∑
j=1

αij(cj(s
t)− cj(s∗i , st−i)).

Exploiting that Γα is (λ, µ)-smooth, we obtain

C(st) ≤
λ

1− µ
C(s∗) +

∆α(st)

1− µ
. (12)

By summing (12) over all t and using (11), we obtain that the average cost of the sequence
of T outcomes is

1

T

T∑
t=1

C(st) ≤
λ

1− µ
C(s∗) +

1

1− µ

n∑
i=1

(
1

T

T∑
t=1

δαi (st)

)
T→∞−→

λ

1− µ
C(s∗).

ut
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B Proof of Lemma 2

Proof (Lemma 2) It is easy to check that the claim holds if x = 0 or y = 0. Let x ≥ 1 and
y ≥ 1. Recall that 1 + ϕ = ϕ2. We have

ϕ2y2 − 2xy +
1

ϕ2
x2 + ϕx− ϕ2y =

(
ϕy −

1

ϕ
x

)2

+ ϕx− (1 + ϕ)y

≥ 2ϕy −
2

ϕ
x− 1 + ϕx− (1 + ϕ)y = (ϕ− 1)y +

(
ϕ−

2

ϕ

)
x− 1

=
1

ϕ
y +

(
1−

1

ϕ

)
x− 1 ≥ 0,

where the first inequality follows because z2 ≥ 2z− 1 for every z ∈ R and the last one holds
because x ≥ 1 and y ≥ 1. ut
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