
TRIVIAL MEASURES ARE NOT SO TRIVIAL

CHRISTOPHER P. PORTER

Abstract. Although algorithmic randomness with respect to various non-uniform com-
putable measures is well-studied, little attention has been paid to algorithmic randomness
with respect to computable trivial measures, where a measure µ on 2ω is trivial if the sup-
port of µ consists of a countable collection of sequences. In this article, it is shown that there
is much more structure to trivial computable measures than has been previously suspected.

1. Introduction

Algorithmic randomness with respect to non-uniform computable measures is a well-
studied subject. Although one can find definitions of biased random sequences is the work
of von Mises, Ville, and Church, the first generally accepted definition of biased algorithmic
randomness can be found in the final section of Martin-Löf’s groundbreaking 1966 paper,
“The Definition of Random Sequences” [ML66], in which Martin-Löf considers definitions
of algorithmic randomness for various Bernoulli measures. This study of definitions of bi-
ased randomness was continued in the 1970s by Levin and Zvonkin [ZL70] and Schnorr
[Sch71],[Sch77]. In particular, Levin, Zvonkin, and Schnorr studied measures that are atomic,
i.e., measures µ for which there is some A ∈ 2ω such that µ({A}) > 0, where A is called an
atom of µ, denoted A ∈ Atomsµ.

Schnorr further studied what he called discrete measures, where µ is discrete if µ(Atomsµ) =
1, or equivalently, if the support of µ is a countable collection of sequences. In [Sch77],
Schnorr claimed the following:

Claim. MLRµ = SRµ if and only if µ is discrete.

Here MLRµ denotes the collection of µ-Martin-Löf random sequences and SRµ denotes the
collection of µ-Schnorr random sequences.

Discrete measures were later referred to in Kautz’s dissertation [Kau91] as trivial, the
implication being that such measures have no interesting structural properties; once we’ve
assigned all measure to some countable collection of points, there appears to be nothing left
to say about the resulting measure.

The main goal of this paper is to show that this is not the case; there is much more
structure to trivial measures than has been previously suspected. Not only do we show that
the above claim of Schnorr’s is false, but we also construct a number of trivial measures that
allow us to separate various notions of randomness. That is, we prove several theorems of
the following form: given two randomness notions R1 and R2 such that R1

µ ⊆ R2
µ for every

computable measure µ, there is a trivial computable measure µ such that (i) R1
µ = Atomsµ

and (ii) R2
µ\R1

µ 6= ∅. In particular, we construct a trivial measure µ such that MLRµ = Atomsµ
and SRµ 6= Atomsµ. As further evidence of the non-triviality of trivial measures, we study
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a degree structure associated with a given trivial µ called the LR(µ)-degrees and show that
for each finite distributive lattice (L,≤), there is a computable trivial measure µ so that the
collection of LR(µ)-degrees is isomorphic to (L,≤).

The outline of this paper is as follows. In Section 2, we provide the relevant technical
background for the rest of the paper. Next, in Section 3, we discuss the main technique for
constructing trivial measures that we employ throughout this paper, defining these measures
in terms of what we call tally functionals. In Section 4, we separate various notions of
randomness via trivial measures, including the separation of Martin-Löf randomness and
Schnorr randomness that provides a counterexample to Schnorr’s claim. Lastly, in Section
5, we discuss how to produce a trivial measure µ with an associated LR(µ)-degree structure
that is isomorphic to a given finite distributive lattice.

We assume that the reader is familiar with the basics of computability theory: computable
functions, partial computable functions, computably enumerable sets, Turing functionals,
Turing degrees, the Turing jump, and so on (see, for instance, [Soa87]), as well as the basics
of effective randomness (otherwise, we refer the reader to [DH10] or [Nie09]). 2ω is the set of
infinite binary sequences, also known as Cantor space. 2<ω is the set of finite binary strings.
Q2 is the set of dyadic rationals, i.e., multiples of a negative power of 2. Given X ∈ 2ω and
an integer n, X�n is the string that consists of the first n bits of X, and X(n) is the (n+1)st
of X (so that X(0) is the first bit of X). If σ, τ ∈ 2<ω, then σ � τ means that σ is an initial
segment of τ ; moreover, given X ∈ 2ω, σ ≺ X means that σ is an initial segment of X.
Given a string σ, the basic open set determined by σ is defined to be JσK = {X : σ ≺ X}.
For X, Y ∈ 2ω, we define X ⊕ Y = {2n : n ∈ X} ∪ {2n + 1 : n ∈ Y }. Given a collection
{Bi}i∈ω ⊆ 2ω, we define

⊕
i∈ω Bi = {〈n, i〉 : n ∈ Bi}, where 〈·, ·〉 is some computable pairing

function. For A ∈ 2ω, A[i] = {n : 〈n, i〉 ∈ A}, so that A =
⊕

i∈ω A
[i].

2. Computable Measures and Randomness

In this section, we review the relevant material on computability probability measures on
2ω and the various notions of algorithmic randomness given in terms of these measures.

2.1. Computable measures on 2ω. A probability measure on 2ω assigns to each Borel
subset of 2ω a real in [0, 1]. It suffices to consider the restriction of probability measures to
basic open subsets of 2ω, for Caratheodory’s theorem from classical measure theory ensures
that a function µ defined on basic open sets that satisfies µ(JσK) = µ(Jσ0K) + µ(Jσ1K) for
all σ ∈ 2<ω can be uniquely extended to a probability measure on 2ω. We can therefore
represent measures as functions from strings to reals, where for all σ ∈ 2<ω, µ(σ) will denote
the µ-measure of JσK. This concise representation also allows us to talk about computable
probability measures.

Definition 2.1. A probability measure µ on 2ω is computable if σ 7→ µ(σ) is computable as
a real-valued function, i.e., there is a computable function µ̂ : 2<ω × ω → Q2 such that

|µ(σ)− µ̂(σ, i)| ≤ 2−i

for every σ ∈ 2<ω and i ∈ ω.

In what follows λ will refer exclusively to the Lebesgue measure on 2ω, i.e., λ(σ) = 2−|σ|

for each σ ∈ 2<ω. Moreover, Mc denotes the collection of computable measures on 2ω.
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An important technique for defining a computable measure on 2ω is to induce the measure
by means of some Turing functional Φ. To do so, it must be the case that Φ is almost
total, i.e., λ(dom(Φ)) = 1. For our purposes, however, it suffices to restrict to truth-table
functionals.

Definition 2.2. A Turing functional Φ :⊆ 2ω → 2ω is a truth-table functional (or tt-
functional) if Φ is total.

Definition 2.3. Given a tt-functional Φ : 2ω → 2ω, the measure induced by Φ, denoted λΦ,
is defined to be

λΦ(X ) = λ(Φ−1(X ))

for every measurable X ⊆ 2ω.

It is not hard to show that λΦ ∈Mc for each tt-functional Φ.
Apart from the Lebesgue measure, the computable measures that we will consider here

are all atomic, and even trivial.

Definition 2.4. Let µ ∈Mc.

(i) µ is atomic if there is some sequence A ∈ 2ω such that µ({A}) > 0.
(ii) A ∈ 2ω an atom of µ, denoted A ∈ Atomsµ, if µ({A}) > 0.

(iii) µ is atomless if Atomsµ = ∅.
(iv) µ is trivial if µ(Atomsµ) = 1.

We will also refer to the atoms of µ as µ-atoms.

2.2. Notions of algorithmic randomness. In this section we introduce Martin-Löf ran-
domness (and relativizations thereof), Schnorr randomness, and weak 2-randomness.

Definition 2.5. Let µ ∈Mc.

(i) A µ-Martin-Löf test is a uniformly computable sequence (Ui)i∈ω of effectively open
classes in 2ω such that µ(Ui) ≤ 2−i for every i ∈ ω.

(ii) X ∈ 2ω is µ-Martin-Löf random if for every µ-Martin-Löf test (Ui)i∈ω, we have
X /∈

⋂
i∈ω Ui.

The collection of µ-Martin-Löf random sequences will be written as MLRµ (we will simply
write MLR when considering the Lebesgue measure). The following fact, the existence of a
universal Martin-Löf test, is well-known and will prove to be useful here.

Proposition 2.6. For every µ ∈Mc, there is a Martin-Löf test (Ûi)i∈ω such that x ∈ MLRµ
if and only if x /∈

⋂
i∈ω Ûi.

We will make heavy use of the following lemma in Section 5:

Lemma 2.7. Given µ, ν ∈Mc, if we set ρ = µ+ν
2

,then

MLRρ = MLRµ ∪MLRν .
1

1In general, we can consider any convex sum αµ+(1−α)ν
2 of µ and ν, as long as α ∈ [0, 1] is computable.
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Proof. If X /∈ MLRρ, then X ∈
⋂
i∈ω Ui, where (Ui)i∈ω is the universal ρ-Martin-Löf test.

But since ρ(Ui) ≤ 2−i for each i ∈ ω, it follows that µ(Ui+1) ≤ 2−i and ν(Ui+1) ≤ 2−i, and
hence it follows that X /∈ MLRµ ∪MLRν .

Conversely, if X /∈ MLRµ ∪ MLRν , then X ∈
⋂
i∈ω Ui and X ∈

⋂
i∈ω Vi, where (Ui)i∈ω is

the universal µ-Martin-Löf test and (Vi)i∈ω is the universal ν-Martin-Löf test. Then since
Ui ∩ Vi ⊆ Ui and Ui ∩ Vi ⊆ Vi, it follows that (Ui ∩ Vi)i∈ω is a ρ-Martin-Löf test, and hence
X /∈ MLRρ. �

We will also draw heavily on the fact that there are ∆0
2 Martin-Löf random sequences.

Recall that a sequence A ∈ 2ω is ∆0
2 if there is a uniformly computable sequence of finite

sets (As)s∈ω (called a ∆0
2 approximation of A) such that

lim
n→∞

As(n) = A(n)

for every n ∈ ω. For example, Chaitin’s Ω, defined by

Ω :=
∑
U(σ)↓

2−|σ|,

where U is a universal prefix-free Turing machine, is a ∆0
2 Martin-Löf random sequence. In

fact, Ω ≡T ∅′.
The following results concerning µ-atoms and their relationship to µ-Martin-Löf random-

ness will be particularly useful.

Proposition 2.8. Let µ ∈Mc and X ∈ 2ω.

(i) If X ∈ Atomsµ, then X is computable.
(ii) If X ∈ Atomsµ, then X ∈ MLRµ.

(iii) If X is computable and µ({X}) = 0, then X /∈ MLRµ.

Part (ii) of the above proposition actually holds for all notions of randomness that we
consider here, since for each such definition, the non-random sequences are captured in some
set of µ-measure zero.

We will also consider relativized versions of Martin-Löf randomness. For A ∈ 2ω, a µ-
Martin-Löf test relative to A is simply a uniformly A-computable sequence (UAi )i∈ω of Σ0,A

1

classes in 2ω such that µ(UAi ) ≤ 2−i for every i ∈ ω. Moreover, X ∈ 2ω is µ-Martin-
Löf random relative to A, denoted X ∈ MLRAµ , if X /∈

⋂
i∈ω UAi for any µ-Martin-Löf test

relative to A (UAi )i∈ω.
If we relativize Martin-Löf randomness to the halting set ∅′, then this gives rise to 2-

randomness. We set 2MLR := MLR∅
′
. It is immediate that X ∈ 2MLR if and only if

X ∈ MLRA for some A ≡T ∅′. It is not hard to show that 2MLR ⊆ W2R.
One of the central results concerning relative randomness is known as “van Lambalgen’s

theorem.”

Theorem 2.9 ([vL90]). For every A,B ∈ 2ω,

A⊕B ∈ MLR if and only if A ∈ MLRB & B ∈ MLR.

A related result is the following.

Theorem 2.10 ([Kau91]). Given A ∈ MLR, then for each i ∈ ω, A[i] ∈ MLR
⊕

j 6=i A
[j]

.

Moreover, for any finite J ⊆ ω, A[i] ∈ MLR
⊕

j∈J A
[j]

for every i /∈ J .
4



Next we turn to Schnorr randomness, the definition of which is a slight variant of the
definition of Martin-Löf randomness.

Definition 2.11. Let µ ∈Mc.

(i) A µ-Schnorr test is a uniformly computable sequence (Ui)i∈ω of effectively open classes
in 2ω such that µ(Ui) = 2−i for every i ∈ ω.

(ii) X ∈ 2ω is µ-Schnorr random if for every µ-Schnorr test (Ui)i∈ω, we have X /∈
⋂
i∈ω Ui.

Let SRµ be the class of µ-Schnorr random sequences. One can readily observe that MLRµ ⊆
SRµ for each µ ∈Mc. In order to separate Martin-Löf randomness and Schnorr randomness
with respect to a trivial computable measure µ, we need the following result.

Proposition 2.12 (Nies, Stephan, Terwijn [NST05]). Given µ ∈Mc, every X ∈ SRµ\MLRµ
is high, i.e. X computes a function that dominates all computable functions.

We will review the proof of this proposition, as the details will be useful when we provide
a counterexample to Schnorr’s claim in Section 4.

Proof. Let X ∈ SRµ\MLRµ, and let (Ui)i∈ω be a universal µ-Martin-Löf test. Then we define
f ≤T X as follows:

f(n) = the least s such that (∃k)JX�kK ⊆ Un,s.
We claim that f dominates all computable functions. Suppose, for the sake of contradiction,
that there is some computable function g such that f(n) ≤ g(n) for infinitely many n. Then
(Un,g(n))n∈ω is in fact a Schnorr test, and moreover, there are infinitely many n such that
X ∈ Un,g(n), which is, in fact, sufficient to show that X is not Schnorr random (for instance,
see [DH10, Theorem 7.1.10]). Thus, X computes a function that dominates all computable
functions, and hence X is high. �

Another definition of randomness that we consider here is weak 2-randomness, first intro-
duced by Kurtz in his dissertation [Kur81].

Definition 2.13. Let µ ∈Mc.

(i) A generalized µ-Martin-Löf test is a uniformly computable sequence (Ui)i∈ω of effec-
tively open classes in 2ω such that limi→∞ µ(Ui) = 0.

(ii) X ∈ 2ω is µ-weakly 2-random if for every generalized µ-Martin-Löf test (Ui)i∈ω, we
have X /∈

⋂
i∈ω Ui.

Let W2Rµ denote the collection of µ-weakly 2-random sequences. Note that every gen-
eralized µ-Martin-Löf test (Ui)i∈ω yields a Π0

2 class of µ-measure zero, namely
⋂
i Ui, and

conversely, every Π0
2 class of µ-measure zero can be obtained in this way by a generalized

µ-Martin-Löf test. It is immediate that W2Rµ ⊆ MLRµ, since the collection of sequences
captured by a µ-Martin-Löf defines a Π0

2 class of µ-measure zero. We now consider the key
result concerning the relationship between W2Rµ and MLRµ.

Definition 2.14. X, Y ∈ 2ω form a minimal pair in the Turing degrees if A <T X and
A <T Y implies that A ≡T ∅.

Theorem 2.15 (Downey, Nies, Weber, Yu [DNWY06]; Hirschfeldt, Miller (unpublished)).
For µ ∈Mc, if X is not computable, then X ∈ W2Rµ if and only if X ∈ MLRµ and X and
∅′ form a minimal pair.
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The proof of this result as found in the literature is only for the case of the Lebesgue
measure, but it is straightforward to extend it to any µ ∈Mc. We follow the original proof,
with several modifications.

Theorem 2.16 (Downey, Nies, Weber, and Yu [DNWY06]). For µ ∈ Mc, if X ∈ W2Rµ
and X is not computable, then X and ∅′ form a minimal pair.

Sketch. We modify the proof given by Downey, Nies, Weber, and Yu for the case that µ = λ.
If A ∈ 2ω is ∆0

2, Z ∈ W2Rµ, and ΦZ = A for some Turing functional A, then we argue that
A is computable. Towards this end, we define

S = {X : ∀n∀s∃t > s(ΦX(n)[t]↓ = At(n)},

which is Π0
2 and contains Z. Since Z ∈ W2Rµ, it follows that µ(S) > 0. Now the only

difference between the original proof and the situation here is that µ may be atomic, so that
there is some µ-atom Y ∈ S. But in this case we are done: since µ is computable, it follows
that Y is computable. Then ΦY = A, and hence A is computable.

In the case that S contains no atoms, the proof proceeds exactly as in the case of the
Lebesgue measure: by a “majority vote” argument, which shows that that one can compute
values of A using the majority of sequences in a set of positive measure, one shows that A
is computable. See, for instance, the proof of Theorem 7.2.8. in [DH10] for details. �

Theorem 2.17. [Hirschfeldt, Miller (unpublished)] Let µ ∈ Mc. For any Σ0
3 class S ⊆ 2ω

such that µ(S) = 0, there is a noncomputable c.e. set A such that A ≤T X for every non-
computable X ∈ MLRµ ∩ S.

The proof of this result proceeds exactly in the same way as the case of the Lebesgue
measure, since X ∈ MLRµ ∩ S implies that µ({X}) = 0 and hence X is not a µ-atom. See
the proof of Theorem 7.2.11 of [DH10].

Proof of Theorem 2.15. (⇒) This is simply Theorem 2.16.
(⇐) Suppose that X ∈ MLRµ \W2Rµ. Then there is a Π0

2 µ-null set S such that X ∈ S, and
so by Theorem 2.17, there is some non-computable c.e. set A such that A ≤T X. Therefore,
X and ∅′ do not form a minimal pair. �

2.3. Randomness and Turing functionals. Many of the results in the sequel depend
crucially on the following preservation of randomness theorem, originally due to Levin and
Zvonkin [ZL70].

Theorem 2.18 (Preservation of Martin-Löf Randomness). If Φ is a tt-functional, then
X ∈ MLR implies Φ(X) ∈ MLRλΦ

.

We will also use the following variant established by Bienvenu and Porter [BP12].

Theorem 2.19 (Preservation of Schnorr Randomness). If Φ is an tt-functional, then X ∈ SR
implies Φ(X) ∈ SRλΦ

.

The basic idea behind these two proofs is straightforward. Given a Martin-Löf test (Ui)i∈ω
(resp. Schnorr test) with respect to the measure λΦ induced by Φ, one shows that the pre-
image of (Ui)i∈ω under Φ is a Martin-Löf test (resp. Schnorr test) with respect to the Lebesgue
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measure. Thus, if Φ(X) is captured by the test (Ui)i∈ω, X is covered by the pre-image of
this test under Φ. For more details, see, for instance, [BP12, Theorem 3.2 and Theorem 4.1].

We will also make use of a relative version of the preservation of Martin-Löf randomness:
For any A ∈ 2ω, if Φ is a tt-functional and X ∈ MLRA, then Φ(X) ∈ MLRAλΦ

.
A partial converse to the preservation of Martin-Löf randomness due to Shen (unpublished)

is the following.

Theorem 2.20. For Φ an almost total functional and Y ∈ 2ω, if Y ∈ MLRλΦ
, then there is

some X ∈ MLR such that Φ(X) = Y .

A proof of this result can be found in [BP12, Theorem 3.5]. A relativized version of Theo-
rem 2.20 also holds, and combining this result with the relativized version of the preservation
of Martin-Löf randomness, one can prove the following:

Theorem 2.21. Given X,A ∈ 2ω and a tt-functional Φ, if Φ(X) is not computable and
Φ−1(Φ(X)) = {X}, then X ∈ MLRA if and only if Φ(X) ∈ MLRAλΦ

.

3. Tally Functionals

The main tool used in the construction of various trivial measures are what we refer to
here as tally functionals. Given a ∆0

1 formula Θ(X, y, z) with free first-order variables y and
z and free second-order variable X, we define an auxiliary function θ(A, n) : 2ω × ω → ω by

θ(A, n) =

{
the least s such that Θ(A, n, s) if s exists

+∞ otherwise
.

Then the tally functional ΦΘ determined by the formula Θ is defined to be

ΦΘ(A) = 1θ(A,0) 0 1θ(A,1) 0 1θ(A,2) 0 . . . ,

where

ΦΘ(A) = 1θ(A,0) 0 1θ(A,1) 0 . . . 1θ(A,k) 0 1ω

if θ(A, k + 1) = +∞ (and k + 1 is the least n such that θ(A, n) = +∞).
A useful example that we will use repeatedly in Section 5 is a tally functional defined

in terms of the approximation of a non-computable ∆0
2 sequence A. Let (As)s∈ω be a ∆0

2

approximation of A. Without loss of generality, we can assume that As 6= As+1 for every s.
If we define the formula Θ(A, n, s) so that

Θ(A, n, s) holds if and only if A�n = As�n,

then θ(A, n) is the first stage s such that A�n = As�n. Let ΦA be the resulting tally
functional.

Lemma 3.1. Suppose that A ∈ ∆0
2 is non-computable, and let ΦA be the tally functional

defined above.

(i) If X = As for some s, then there is some m such that for every n ≥ m, θ(X,n) =
θ(X,m), i.e., the function f(x) = θ(X, x) is eventually constant.

(ii) If X 6= A and X 6= As for each s, then θ(X,n) = +∞ for some n.
(iii) The function g(x) = θ(A, n) is not computable, nor is it dominated by any computable

function.
7



Proof. (i) Let s be least such that X = As. If s = 0, then since for all n, X�n = A0�n, it
follows that θ(X,n) = 0 for all n. Now suppose that s > 0. Then there is some m such
that X�m 6= As−1�m. It thus follows that X�n = As�n for all n ≥ m, which implies that
θ(X,n) = s for all n ≥ m.

(ii) First we establish the following claim: There is some k such that for every s, X�k 6= As�k.
Suppose not, so that for every k, there is some s such that X�k = As�k. But this implies
that for every k, there exist infinitely many s such that X�k = As�k, since (a) X 6= As for
every s and (b) X�k = As�k implies that X�j = As�j for every j < k. From this it follows
that the As’s (viewed as rational numbers) converge to X (viewed as a real number). But
the As’s also converge to A, and thus it follows that X = A, contradicting our hypothesis.
Now let k be least such X�k 6= As�k for every s. Then it follows that θ(X, k) = +∞.

(iii) Suppose that g(n) = θ(A, n) is computable. Then since

Ag(n)�n = Aθ(A,n)�n = A�n,

this implies that A is computable, contradicting our assumption that A is non-computable.
The proof that g is not dominated by any computable function is just given by the stan-
dard proof used to show that every non-computable ∆0

2 sequence is hyperimmune. See, for
example, [Nie09, Theorem 1.5.12].

�

Theorem 3.2. (i) The measure µ induced by ΦA is trivial.
(ii) If A ∈ MLR, then MLRµ \ Atomsµ = {ΦA(A)}.

Proof. (i) Given input X, there are three cases to consider to determine the output ΦA(X):

Case 1: X = As for some s. In this case, by Lemma 3.1(i), the function f(x) = θ(X, x) is
eventually constant, and thus ΦA(X) = σ1k01k01k0 . . . for some σ ∈ 2<ω, which is clearly
computable.

Case 2: X 6= A and X 6= As for every s. Then by Lemma 3.1(ii), there is some n such that
θ(X,n) = +∞, and hence ΦA(X) = σ1ω for some σ ∈ 2<ω, which is computable.

Case 3: X = A. By Lemma 3.1(iii), since the function g(n) = θ(A, n) is not computable, it
follows that

ΦA(X) = ΦA(A) = 1θ(A,0) 0 1θ(A,1) 0 1θ(A,2) 0 . . .

is not a computable sequence.
For every B ∈ MLR such that B 6= A, we must be in Case 2, as B 6= As for every s. Thus

ΦΘ(B) = σ1ω for some σ ∈ 2<ω. Setting

S = {Y : (∃σ ∈ 2<ω)[Y = σ1ω]},
we have

MLR \ {A} ⊆ Φ−1
Θ (S),

from which it follows that

1 = λ(MLR \ {A}) ≤ λ(Φ−1
Θ (S)).

Since µ = λΦΘ
assigns measure one to the countable collection S, it follows that µ is trivial.

8



(ii) First, ΦA(A) ∈ MLRµ by the preservation of Martin-Löf randomness. In addition,
ΦA(A) /∈ Atomsµ, for otherwise ΦA(A) would be computable by Proposition 2.8(i), and
hence the function g(n) = θ(A, n) would be computable, contradicting Lemma 3.1(iii).

Next, if X ∈ MLRµ \ Atomsµ, then by Theorem 2.20, X ∈ MLRµ implies that X = ΦA(Y )
for some Y ∈ MLR. But since X /∈ Atomsµ, X is not computable. In particular, X does not
have the form σ1ω for any σ ∈ 2<ω. It follows that Y cannot fall under Case 2, and since no
Y ∈ MLR falls under Case 1, it must be that Y = A. Thus, X = ΦA(A).

�

We will revisit this result in Section 5, when we consider the LR-degree structures associ-
ated to different trivial measures. For other applications of tally functionals, see [BP12].

4. Separating Randomness Notions via Trivial Measures

In this section, we prove three results of the following form: Let R1 and R2 be two notions
of randomness such that R1

µ ⊆ R2
µ for every µ ∈Mc. Then there is a measure µ ∈Mc such

that (i) R1
µ = Atomsµ and (ii) R2

µ \ R1
µ 6= ∅. Moreover, we will be able to conclude that µ is

trivial, since by condition (i), µ(Atomsµ) = 1.

4.1. Separating Martin-Löf randomness and 2-randomness. In order to separate
MLR and 2MLR via a trivial measure, we prove a more general result by modifying the
construction of a trivial measure in the previous section, and then we apply van Lambal-
gen’s Theorem.

Theorem 4.1. Let A ∈ MLR ∩∆0
2. Then there is a trivial measure µ ∈Mc such that

(i) MLRAµ = Atomsµ, and

(ii) MLRµ \MLRAµ 6= ∅.

Proof. We define a new functional Ψ that on input X ⊕ Y behaves much like the tally
functional ΦA defined in Section 3. However, instead having our functional output a sequence
of blocks of 1s separated by individual 0s, Ψ will output blocks consisting the bits of Y .
Specifically, suppose that

ΦA(X) = 1t001t101t20 . . . 1ti0 . . . .

Then we have

Ψ(X ⊕ Y ) = yt00 yt11 yt22 . . . ytii . . .

where yi = Y (i) for every i. Note that Ψ is total, since ΦA is total. Let µ be the induced
measure λΨ. Given input X ⊕ Y , there are three relevant cases to consider, corresponding
to the three cases we considered in the proof of Theorem 3.2.

Case 1: X = As for some s. Then for any Y ∈ 2ω, there is some k such that

Ψ(As ⊕ Y ) = yt00 yt11 yt22 . . . yki y
k
i+1 y

k
i+2 . . . .

That is, the lengths of the blocks of the yi’s eventually stabilize (just as the function θ(As, n)
in Case 1 of the proof of Theorem 3.2 eventually stabilizes).

9



Case 2: X 6= A and X 6= As for every s. Then there is some σ ∈ 2<ω and i ∈ ω such that
after some stage, Ψ will output the same bit yi forever, i.e.,

Ψ(X ⊕ Y ) = σ(yi)
ω.

Case 3: X = A. Then using the same function g(n) = θ(A, n) from Lemma 3.1(iii), we have

Ψ(X ⊕ Y ) = Ψ(A⊕ Y ) = y
θ(A,0)
1 y

θ(A,1)
2 y

θ(A,2)
3 . . . .

Note further that if Y has only finitely many 0s or finitely many 1s, then Ψ(A ⊕ Y ) will
eventually stabilize. In the case that Y has infinitely 0s and 1s, there is some function
f : ω → ω such that

Ψ(A⊕ Y ) = b
f(0)
0 b

f(1)
1 b

f(2)
2 . . . y

f(i)
i . . .

where bi 6= bi+1 for each i ∈ ω. It is not hard to see that θ(A, n) ≤ f(n) for every n ∈ ω,
from which it follows that f is not computable by Lemma 3.1(iii), and thus Ψ(A⊕Y ) is not
computable.

Now we verify (i) and (ii). For (i), it is clear that Atomsµ ⊆ MLRAµ . Given Z ∈ MLRAµ ,
by Theorem 2.20 relativized to A, there must be some A-random sequence X ⊕ Y such that
Ψ(X ⊕ Y ) = Z. If Z is not computable, it must be the case that either X = A or X = As
for some s ∈ ω, for otherwise we would be in Case 2, so that Ψ(X ⊕ Y ) = Z would be
computable. But A⊕Y is not Martin-Löf random relative to A, nor is As⊕Y for any s ∈ ω.
Thus, Z must be computable, and so by Proposition 2.8(iii), Z ∈ Atomsµ.

For (ii), let B ∈ MLRA. Then A⊕B ∈ MLR by van Lambalgen’s Theorem (Theorem 2.9).
It follows from the preservation of Martin-Löf randomness that Ψ(A⊕B) ∈ MLRµ. Since B
has infinitely many 0s and 1s, by the discussion in Case 3, Ψ(A⊕B) is not computable. By
Proposition 2.8(i), Ψ(A⊕B) /∈ Atomsµ, and so by part (i), Ψ(A⊕B) /∈ MLRAµ . �

We now have the following corollary:

Corollary 4.2. There is a trivial measure µ such that

(i) 2MLRµ = Atomsµ, and
(ii) MLRµ \ 2MLRµ 6= ∅.

Proof. Choose any A ∈ ∆0
2 ∩ MLR such that A ≡T ∅′ (for instance, let A = Ω) and apply

Theorem 4.1. �

4.2. Separating Martin-Löf randomness and weak 2-randomness. We can improve
Corollary 4.2 by replacing 2MLR with W2R. However, we need to use a different technique
to do so: we will use the characterization provided by Theorem 2.15, that for each non-
computable X, X ∈ W2Rµ if and only X ∈ MLRµ and X forms a minimal pair with ∅′.

Theorem 4.3. There is a trivial measure µ ∈Mc such that

(i) W2Rµ = Atomsµ, and
(ii) MLRµ \W2Rµ 6= ∅.

Proof. Let A ∈ MLR \W2R. Then by Theorem 2.15 there is some Turing functional Γ and
a non-computable ∆0

2 sequence B such that Γ(A) = B. Let Θ(X,n, s) be such that

Θ(X,n, s) holds if and only if (∀k < n)Γs(X)(k)↓ = Bs(k),
10



where (Bs)s∈ω is some fixed ∆0
2 approximation of B. Without loss of generality, Bs 6= Bs+1

for every s ∈ ω. Then it follows that θ is defined to be

θ(X,n) =

{
the least s such that (∀k < n)Γs(X)(k)↓ = Bs(k) if s exists
+∞ otherwise

.

Given X ∈ 2ω, to compute ΦΘ(X), we have four cases to consider, each depending on the
behavior of Γ on input X.

Case 1: Γ(X)↑. Then there is some least n such that Γ(X)(n)↑, and so θ(X, k) = +∞ for
some k ≤ n+ 1 (there may be some k < n+ 1 such that Γ(X)(k)↓ but Γ(X)(k) 6= Bs(k) for
every s ∈ ω). Consequently,

(1) ΦΘ(X) = σ1ω

for some σ ∈ 2<ω.

Case 2: Γ(X)↓ = Bt for some t ∈ ω. Since Bs 6= Bs+1 for every s ∈ ω, there is some least n
such that for all sufficiently large s ≥ n,

(∀k < n)[Γs(k)↓ = Bt(k)]

but

(∃j < n)[Bs(j) 6= Bt(j)].

That is, the functional ΦΘ on input X waits to see Γs(X) agree with Bs, but for suffi-
ciently large stages s, Γs(X) only agrees with Bt. Hence for the n given above, we have
θ(X,n) = +∞, and thus (1) holds.

Case 3: Γ(X)↓ but Γ(X) 6= B and Γ(X) 6= Bs for every s ∈ ω. In this case we have

(2) (∃n)(∀s)(∃k < n)[Γs(X)(k) 6= Bs(k)].

The argument to establish this claim is the same as the one we gave in the proof of Lemma
3.1(ii). Let n be the least number satisfying (2). Then we have θ(X,n) = +∞, and thus (1)
holds.

Case 4: Γ(X)↓ = B. Setting h(n) := θ(X,n), we have

ΦΘ(X) = 1h(0)01h(1)0 . . . ,

so that ΦΘ(X) ≥T h. But for every n ∈ ω,

Bh(n)�n = Γh(n)(X)�n = Γ(X)�n = B�n,

so it follows that ΦΘ(X) ≥T B.

To establish (i), Atomsµ ⊆ W2Rµ is immediate. For the other direction, consider Y ∈
W2Rµ, which by Theorem 2.15 forms a minimal pair with ∅′. Since Y ∈ MLRµ, by Theorem
2.20 there is some X ∈ MLR such that ΦΘ(X) = Y .

Applying the functional Γ to X yields one of two general outcomes: either one of Case 1,
2, or 3 occurs, in which case

Y = ΦΘ(X) = σ1ω

11



and hence Y ∈ Atomsµ by Proposition 2.8(ii), or we are in Case 4. But in this case,
Y = ΦΘ(X) ≥T B, contradicting the fact that Y forms a minimal pair with ∅′. So we must
have Y ∈ Atomsµ.

For part (ii), if we take the original A ∈ MLR \W2R such that Γ(A) = B that we started
with, by the preservation of Martin-Löf randomness, ΦΘ(A) ∈ MLRµ. In addition, by Case 4
above, ΦΘ(A) ≥T B, so ΦΘ(A) does not form a minimal pair with ∅′. Hence ΦΘ(A) /∈ W2Rµ.

�

4.3. Separating Martin-Löf randomness and Schnorr randomness. We end this sec-
tion by using a tally functional to show that Schnorr’s claim, namely that MLRµ = SRµ for
a computable measure µ if and only if µ is trivial, is false. Here we will use yet another
technique for constructing the requisite tally functional.

Theorem 4.4. There is a trivial measure µ ∈Mc such that

(i) MLRµ = Atomsµ, and
(ii) SRµ \MLRµ 6= ∅.

Proof. To construct the desired measure µ, we define a tally functional in terms of a universal
µ-Martin-Löf test (Ui)i∈ω. Let Θ(A, n, s) be such that

Θ(A, n, s) if and only if (∃k < s)JA�kK ⊆ Un,s.
As above, θ(A, n) is the least such s such that Θ(A, n, s) holds, or is +∞ if Θ(A, n, s) fails
to hold for every s.

There are two cases of interest to us (the case that X 6∈ SR has no bearing on the result
here).

Case 1: X ∈ MLR. In this case, there is some least n such that X /∈ Un, and hence
θ(X,n) = +∞, so that

ΦΘ(X) = σ1ω

for some σ ∈ 2<ω.

Case 2: X ∈ SR \MLR. Then X ∈
⋂
i∈ω Ui, and moreover, by the proof of Theorem 2.12,

the function f ≤T X such that

f(n) = the least s such that (∃k)JX�kK ⊆ Un,s.
dominates all computable functions. It follows that θ(X,n) = f(n), so that

ΦΘ(X) = 1f(0) 0 1f(1) 0 . . .

is not computable.

To verify (i), as above Atomsµ ⊆ MLRµ is immediate. Now given Z ∈ MLRµ, by Theorem
2.20, there is some X ∈ MLR such that ΦΘ(X) = Z. But we are in Case 1, so Z = σ1ω for
some σ ∈ 2<ω. By Proposition 2.8(iii), Z ∈ Atomsµ.

For (ii), given any X ∈ SR \MLR, by the preservation of Schnorr randomness, we have
ΦΘ(X) ∈ SRµ. Since we are in Case 2, ΦΘ(X) is not computable, and thus by Proposition
2.8(i) ΦΘ(X) /∈ Atomsµ. Thus by part (i), ΦΘ(X) /∈ MLRµ.

�
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We have shown that one direction of Schnorr’s claim is false, namely that µ being trivial
does not imply that MLRµ = SRµ. However, the status of the other direction of Schnorr’s
claim is also unclear.

Question 4.5. For µ ∈Mc, does MLRµ = SRµ imply that µ is trivial?

5. Trivial Measures and Finite Distributive Lattices

As further evidence of the non-triviality of trivial measures, we show that each trivial
measure gives rise to a certain degree structure. Specifically, if one considers the LR-degrees
(or “low-for-random” degrees) associated with MLRµ for a trivial measure µ, one finds that
different trivial measures can give rise to non-isomorphic LR-degree structures.

Nies [Nie05] gave the following definition in the context of Martin-Löf randomness with
respect to the Lebesgue measure. We say that A is LR-reducible to B, denoted A ≤LR B if

MLRB ⊆ MLRA.

The intuitive idea is that B is more powerful than A as an oracle, as B de-randomizes
more sequences than A does. We say that A is LR-equivalent to B, denoted A ≡LR B if
and only if A ≤LR B and B ≤LR A. The LR-equivalence classes are called LR-degrees ;
the collection of LR-degrees is denoted DLR. Like the Turing degrees DT , the LR-degrees
form an uncountable upper semilattice. However, unlike the structure of the Turing degrees
(DT ,≤T ), the structure of (DLR,≤LR) is not well-understood.

We can extend the definition of ≤LR to Martin-Löf randomness with respect to any µ ∈Mc

as follows. For µ ∈ Mc and A,B ∈ 2ω, we say that A is LR(µ)-reducible to B, denoted
A ≤LR(µ) B if

MLRBµ ⊆ MLRAµ .

Similarly, we can define the LR(µ)-degrees, denoted DLR(µ), just as we defined the LR-
degrees above. Interestingly, for certain choices of µ ∈Mc, the structure (DLR,≤LR) is very
simple. Let us consider some examples.

Example 1. Let µ ∈ Mc be such that Atomsµ = MLRµ and hence µ(Atomsµ) = 1. Then
DLR(µ) consists of a single equivalence class, consisting of all of 2ω. The reason is that if

µ({X}) > 0, then X ∈ MLRAµ for every A ∈ 2ω.

Example 2. If µ is the measure induced by the tally functional ΦA for
A ∈ ∆0

2 ∩ MLR (as in the example from Section 3), then DLR(µ) consists of exactly two
elements. If we set A∗ := ΦA(A), then by Theorem 3.2(ii),

MLRµ = {A∗} ∪ Atomsµ

where A∗ is not computable. Since Φ−1
A (A∗) = {A}, by Theorem 2.21,

A ∈ MLRB ⇔ A∗ ∈ MLRBµ

for every B ∈ 2ω. Then there are exactly two LR(µ)-degrees:

0 = {B : A ∈ MLRB},
1 = {B : A /∈ MLRB}.
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Example 3. Let A ⊕ B ∈ MLR ∩∆0
2, and let ΦA and ΦB be the tally functionals defined in

terms of ∆0
2 approximations of A and B, respectively. Next, let µ0 and µ1 be the measures

induced by ΦA and ΦB, respectively. By Theorem 3.2(ii),

MLRµ0 = {ΦA(A)} ∪ Atomsµ0 and MLRµ1 = {ΦB(B)} ∪ Atomsµ1 .

If we set ν :=
µ0 + µ1

2
, by Lemma 2.7 we have

MLRν = MLRµ0 ∪MLRµ1 = {ΦA(A),ΦB(B)} ∪ Atomsµ0 ∪ Atomsµ1 .

Clearly, ν is trivial. There are exactly four LR(ν)-degrees; namely 0, a,b, and 1, where
(using Theorem 2.21 and van Lambalgen’s theorem)

0 = {X : A ∈ MLRX & B ∈ MLRX},
a = {X : A ∈ MLRX & B /∈ MLRX},
b = {X : A /∈ MLRX & B ∈ MLRX},
1 = {X : A /∈ MLRX & B /∈ MLRX}.

In particular, we have 0 < a < 1 and 0 < b < 1, but a and b are incomparable. Thus,
DLR(ν) is isomorphic to the finite Boolean algebra on two atoms, pictured in Figure 1.

Figure 1. The finite Boolean algebra on two atoms

In the previous three examples we have defined trivial measures µ such that the associated
LR(µ)-degrees are isomorphic to the finite Boolean algebra of one, two, and four elements,
respectively. Thus, it is natural to consider whether there is such a measure for every finite
Boolean algebra.

Theorem 5.1. For every finite Boolean algebra B = (B,≤), there is a trivial measure
µ ∈Mc such that

(DLR(µ),≤LR(µ)) ∼= (B,≤).

Proof. First, we fix some notation. Let degLR(µ)(X) = {Y : X ≡LR(µ) Y }, and set

degLR(µ)(X) ≤ degLR(µ)(Y )

if and only X ≤LR(µ) Y . Now, we proceed in four steps:

Step 1: If n is the number of atoms of B, choose A1, A2, . . . , An ∈ MLR ∩∆0
2 such that for

each J ⊆ {1, . . . , n}, if

XJ =
⊕
j∈J

Aj

14



then
Ai ∈ MLRXJ

for every i /∈ J . (This can be accomplished using Theorem 2.10.)

Step 2: For each Ai, let ΦAi
be the tally functional defined in terms of a fixed ∆0

2 approx-
imation of Ai, and define µi to be the measure induced by the tally functional ΦAi

. Let
A∗i = ΦAi

(Ai).

Step 3: Define µ := 1
n

∑n
i=1 µi. It follows from Lemma 2.7 that

MLRµ =
n⋃
i=1

MLRµi = {A∗1, A∗2, . . . , A∗n} ∪
n⋃
i=1

Atomsµi .

Step 4: We verify that for J,K ⊆ {1, . . . , n}, degLR(µ)(XJ) ≤ degLR(µ)(XK) if and only if
J ⊆ K. First, note that

MLRXJ
µ = {A∗i : i 6∈ J} and MLRXK

µ = {A∗i : i 6∈ K}.
Then

degLR(µ)(XJ) ≤ degLR(µ)(XK)⇔ MLRXK
µ ⊆ MLRXJ

µ

⇔ {A∗i : i 6∈ K} ⊆ {A∗i : i 6∈ J}
⇔ J ⊆ K.

Thus, DLR(µ) = {degLR(µ)(XJ) : J ⊆ {1, . . . , n}} is isomorphic to the powerset of {1, . . . , n},
which is isomorphic to B. �

Theorem 5.1 can be improved further:

Theorem 5.2. For every finite distributive lattice (L,≤), there is a trivial measure µ ∈Mc

such that
(DLR(µ),≤LR(µ)) ∼= (L,≤).

The following terminology will be useful in the proof of Theorem 5.2. Let L be a finite
distributive lattice of n elements. We will consider L in terms of levels, where Level 1 consists
of the top element 1L, Level 2 consists of the immediate predecessors of 1L, Level 3 consists
of the immediate predecessors of elements of Level 2, and so on. Since L has size n, there
are only finitely many levels (in fact, at most n levels), and since it is a lattice, the lowest
level consists solely of the bottom element 0L.

Remark 5.1. That every element of L lies on a unique level follows from the fact that every
finite distributive lattice has a unique rank function that assigns to each a ∈ L its height in
L; see, for instance, [Sta12, pp. 103-104].

Recall that for a, b ∈ L, the meet of a and b, denoted a ∧ b, is the greatest element in L
such that a ≥ a ∧ b and b ≥ a ∧ b. The element c ∈ L is meet-reducible if there are a, b > c
such that a ∧ b = c, and it is meet-irreducible if it is not meet-reducible.

To prove Theorem 5.2, the idea is (i) construct a lattice of sets isomorphic to L, (ii) use
these sets to define a collection of tally functionals, and (iii) define a measure in terms of
these tally functionals, which will give rise to an LR-structure that is isomorphic to (L,≤).
Let us first consider an example.

15



Let (L,≤) be the finite distributive lattice given below in Figure 2.

Figure 2. The finite distributive lattice (L,≤)

Now let A ∈ MLR ∩∆0
2, and let {Ai}i∈ω be such that

A =
⊕
i∈ω

Ai,

so that each Ai ∈ MLR ∩ ∆0
2. Hereafter, the sequences A0, A1, . . . will be referred to as

basic sequences. An important feature of these basic sequences is that each Ai is Martin-Löf
random relative to a finite join of any basic sequences that differ from Ai (see Theorem 2.10).

We proceed by associating to each element at each level of L a set consisting of some of
the Ai’s or joins of the Ai’s, yielding a finite distributive lattice of sets that is isomorphic to
L, as in Figure 3.

Figure 3. A finite distributive lattice of sets isomorphic to L

Level 1: We associate to the top element 1L the empty set.

Level 2: There are two elements in Level 2, and so we associate to one the set {A0} and to
the other {A1}.

Level 3: There are two elements in Level 3, one of which is meet-reducible and the other
meet-irreducible. To the meet-reducible element, we associate the set {A0, A1}, and to the
meet-irreducible element (which is below the element associated to the set {A0}), we asso-
ciate the set {A0, A0⊕A2}, where A2 is the first basic sequence in {Ai}i∈ω (in the order given
by the indices) that has not appeared in the construction thus far. Note that any sequence
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that derandomizes A0 also derandomizes A0⊕A2, but not every element that derandomizes
A0 ⊕ A2 also derandomizes A0 (such as A2 itself).

Level 4: The only element at Level 4 is 0L, the meet of the two Level 3 elements, and thus
we associate to this element the set {A0, A1, A0 ⊕ A2}.

Next, for each element in the set associated with 0L, namely A0, A1, and A0⊕A2, let µA0 ,
µA1 , and µA0⊕A2 be the measures induced by the tally functionals ΦA0 , ΦA1 , and ΦA0⊕A2

defined in terms of fixed ∆0
2 approximations of A0, A1, and A0 ⊕ A2. We define

µ :=
1

3
(µA0 + µA1 + µA0⊕A2),

Let

ΦA0(A0) = A∗0,ΦA1(A1) = A∗1, and ΦA0⊕A2(A0 ⊕ A2) = (A0 ⊕ A2)∗.

Then for any X ∈ 2ω,

MLRXµ = Atomsµ ∪ S,
where S is equal to one of the following:

∅, {A∗0}, {A∗1}, {A∗0, A∗1}, {A∗0, (A0 ⊕ A2)∗}, or {A∗0, A∗1, (A0 ⊕ A2)∗}.

Thus we have a one-to-one correspondence (that preserves ⊆) between the above sets and
those sets associated to the elements of L, and thus

(DLR(µ),≤LR(µ)) ∼= (L,≤).

Now we proceed in full generality.

Proof of Theorem 5.2. Let L be a finite distributive lattice. We proceed as in the example.
We first associate basic sequences and joins of basic sequences to elements of the various
levels of L.

Level 1: We associate to the top element 1L the empty set.

Level 2: To each of the j ≤ k elements in Level 2, we associate a singleton consisting of a
basic sequence A1, A2, . . . , Ak.

Level n + 1: The set we associate to a Level n+ 1 element depends on whether it is meet-
reducible or meet-irreducible.

◦ The meet-reducible case: Let a = b ∧ c, where b and c are Level n elements. If Sb
is the set of sequences associated to b and Sc is the set of sequences associated to
c, then we associate the set Sb ∪ Sc to a. (Note: We will have to verify that this is
well-defined, for it may be the case that there are Level n elements b′ and c′ that
differ from b and c but also satisfy b′ ∧ c′ = a.)
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◦ The meet-irreducible case: If a is meet-irreducible, then there is only one Level n
element such that a ≤ b. If Sb is the set associated to b, then we proceed as follows.
First, let {Ai1 , Ai2 , . . . , Ai`} be the collection of basic sequences appearing in Sb. That
is, these are either elements of Sb or are contained in joins in Sb (so that, for instance,
the basic sequences appearing in {A0, A1 ⊕ A2} are A0, A1, and A2). Let N ∈ ω be
the least such that the basic sequence AN has not appeared in any set associated to
an element of L. Then to a we associate the set{⊕̀

j=1

Aij ⊕ AN
}
∪ Sb.

To verify that SL = ({Sa : a ∈ L},≤) is a finite distributive lattice isomorphic to (L,≤)
(where Sa ≤ Sb if and only if Sa ⊇ Sb), we first show that meets in SL are well-defined.
First, suppose that a, b, c, d ∈ L are distinct elements such a = b ∧ c = c ∧ d, as in Figure 4.

Figure 4. The case in which a = b ∧ c = c ∧ d

We claim that b∨ c 6= c∨d. For otherwise, the lattice M3 (pictured in Figure 5 below) would
be embeddable into L, contradicting the fact that L is distributive.

Figure 5. The lattice M3

Thus, we are in the situation as depicted by Figure 6.

We must also have b ∨ d 6= b ∨ c and b ∨ d 6= c ∨ d, for otherwise M3 would be embeddable
into L (for instance, Figure 7 shows the case that b ∨ d = c ∨ d).

If e = b ∨ c, f = c ∨ d, and g = b ∨ d, then b = e ∧ g, c = e ∧ f , and d = f ∧ g, and thus
none of b, c, or d is meet-irreducible.
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Figure 6. b ∨ c 6= c ∨ d

Figure 7. The case that b ∨ d = c ∨ d

Now, suppose that

(3) Sb ∪ Sc 6= Sc ∪ Sd
Since b = e ∧ g, c = e ∧ f , and d = f ∧ g, the following hold:

Sb = Se ∪ Sg
Sc = Se ∪ Sf
Sd = Sf ∪ Sg.

By (3), we have
Se ∪ Sf ∪ Sg = Sb ∪ Sc 6= Sc ∪ Sd = Se ∪ Sf ∪ Sg,

which is impossible.
In the case in which a is a Level n + 1 element (so that there is maximal chain a < b1 <

. . . < bn = 1L of exactly n elements above a) and there are distinct Level n elements b, c, b′, c′

strictly above a such that a = b ∧ c = b′ ∧ c′, we claim that a = b ∧ c′. Suppose not. Then
a < (b ∧ c′) < b so a also has a maximal chain a < c1 < . . . < cj = 1L of j ≥ n+ 1 elements
above it (since b is a Level n element). Hence a is also a Level j + 1 element. Since j 6= n,
this contradicts the fact stated in Remark 5.1 that every member of L lies in a unique level.
Thus we have a = b ∧ c′.
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Now, since a = b∧ c = b∧ c′ = b′ ∧ c′, we are in the previous case. Applying the argument
given above to b, c, c′ and then to b, b′, c′, we conclude that

Sb ∪ Sc = Sb ∪ Sc′ = Sb′ ∪ Sc′ .
Thus, meets are well-defined.

Next we show that the isomorphism between SL = ({Sa : a ∈ L},≤) and (L,≤) holds
level by level. In particular, we show that meets and joins are preserved level by level. First,
it is clear that the top two levels of SL and L are isomorphic. Now suppose that SL and L
are isomorphic from Level 1 to Level n. Having associated to Level n elements a and b the
sets Sa and Sb, we associate the set Sa ∪ Sb to a ∧ b.

Suppose Level n + 1 elements a and b are associated with Sa and Sb. To show that Sa∨b,
the set associated to a ∨ b, is Sa ∩ Sb, we consider three cases.

Case 1: First, if both a and b are meet-irreducible, then either (i) there is some Level n
element c such that a, b ≤ c, or (ii) there are distinct Level n elements c and d such that
a ≤ c and b ≤ d.

Subcase 1(i): By the procedure given above,

Sa = Sc ∪ {B ⊕ A`}
and

Sb = Sc ∪ {B ⊕ A`′},
where B is the join of the basic sequences appearing in Sc and A`, A`′ are distinct basic
sequences not contained in any set associated to elements of Levels k ≤ n. Thus Sa∨b =
Sc = Sa ∩ Sb.
Subcase 1(ii). In this subcase,

Sa = Sc ∪ {B0 ⊕ A`},
and

Sb = Sd ∪ {B1 ⊕ A`′},
where B0 and B1 are the joins of the basic sequences appearing in Sc and Sd, respectively,
and A`, A`′ are distinct basic sequences not contained in any set associated to elements of
Level k for any k ≤ n. By induction, there is some e ∈ L such that e = c∨d and Se = Sc∩Sd.
Then we have e = a ∨ b and

Sa ∩ Sb = (Sc ∪ {B0 ⊕ A`}) ∩ (Sd ∪ {B1 ⊕ A`′}) = Sc ∩ Sd = Se = Sa∨b.

Case 2: If a is meet-irreducible but b is meet-reducible, then again there are two subcases
to consider: Either (i) there is some Level n element c such that a, b ≤ c, or (ii) there are
distinct Level n elements c, d, e such that a ≤ c and b = d ∧ e.
Subcase 2(i): We have

Sa = Sc ∪ {B ⊕ A`},
where B is the join of the basic sequences appearing in Sc and A` is a basic sequence not
contained in any set associated to any element of Level k for any k ≤ n, and

Sb = Sc ∪ Sd
for some Level n element d 6= c. Again it follows that

Sa ∩ Sb = (Sc ∪ {B ⊕ A`}) ∩ (Sc ∪ Sd) = Sc = Sa∨b.
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Subcase 2(ii): In this subcase, c ∨ (d ∧ e) = a ∨ b. As above,

Sa = Sc ∪ {B ⊕ A`}
and

Sb = Sd ∪ Se.
By the inductive hypothesis, we have Sc ∩ (Sd ∪ Se) = Sc∨(d∧e), and thus

Sa ∩ Sb = (Sc ∪ {B ⊕ A`}) ∩ (Sd ∪ Se) = Sc ∩ (Sd ∪ Se) = Sc∨(d∧e) = Sa∨b.

Case 3: Lastly, in the case that a and b are both meet-reducible, either (i) there are distinct
Level n elements c, d, e such a = c∧d, and b = d∧e or (ii) there are distinct Level n elements
c, d, e, f such that a = c ∧ d and b = e ∧ f .

Subcase 3(i): Since a, b ≤ d, it follows that Sa = Sc ∪Sd, Sb = Sd ∪Se, Sc ∩Se = ∅, and thus

Sa ∩ Sb = (Sc ∪ Sd) ∩ (Sd ∪ Se) = Sd = Sa∨b.

Subcase 3(ii): Note that a ∨ b = (c ∧ d) ∨ (e ∧ f). Since Sa = Sc ∪ Sd and Sb = Se ∪ Sf , by
the inductive hypothesis, it follows that

Sa ∩ Sb = (Sc ∪ Sd) ∩ (Se ∪ Sf ) = S(c∨d)∧(e∨f) = Sa∨b.
Having verified that SL is a finite distributive lattice, we now turn to defining the trivial

measure µ. Let
{B1, . . . , Bk}

be the set in SL associated to 0L. By our construction, each Bi is either a basic sequence or
the join of some basic sequences. Furthermore, since the basic sequences are all in MLR∩∆0

2

and each is Martin-Löf random relative to the finite join of any number of basic sequences
that differ from it, it follows from van Lambalgen’s Theorem that each Bi ∈ MLR ∩∆0

2.
Let Φi be the tally functional defined in terms of the ∆0

2 approximation of Bi, and let
B∗i = Φi(Bi), so that MLRµi = {B∗i } ∪ Atomsµi . Given S, one of the sets of sequences that
is associated to some element of L, we define S∗ such that

B ∈ S if and only if B∗ ∈ S∗.
Setting

µ :=
1

k

k∑
i=1

µi,

we claim that (DLR(µ),≤LR(µ)) ∼= (SL,≤). First we show that for each S∗a , there is some
X ∈ 2ω such that

S∗a ∪ Atomsµ = MLRXµ .

If we let RScope(B) = {X ∈ 2ω : B ∈ MLRX} be the randomness scope of B, note that by
Theorem 2.21,

Bi ∈ MLRX ⇔ B∗i ∈ MLRXµ ,

and hence X ∈ RScope(Bi) if and only if B∗i ∈ MLRXµ . Observe that λ(RScope(B)) = 1 for

every B ∈ MLR, since by van Lambalgen’s Theorem, MLRB ⊆ RScope(B) and λ(MLRB) = 1.
If

S∗a = {B∗i1 , . . . , B
∗
ij
},
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then

X =
k⋂
j=1

RScope(Bij) 6= ∅,

since the finite intersection of measure one sets has measure one. Thus for any X ∈ X , we
have MLRXµ = S∗a ∪ Atomsµ.

We claim that for each X ∈ 2ω, there is some a ∈ L such that MLRXµ = S∗a ∪ Atomsµ.
Let {A1, . . . , Ak} be the collection of basic sequences appearing in the elements of SL. For
each i ≤ k, let ai ∈ L be the element such that the basic sequence Ai first appears in Sai .
Furthermore, for j ≤ k, let {A1, . . . , Aj} be the basic sequences that make up the singletons
assigned to Level 2 elements of L (which we’ll call the Level Two basic sequences), and let
{Aj+1, . . . , Ak} be the basic sequences that added when we assign sets to meet-irreducible
elements of L (which we’ll call the meet-irreducible basic sequences). For each X ∈ 2ω, there
is some J ⊆ {1, . . . , j} such that

X ∈
⋂
i∈J

RScope(Ai) & X /∈
⋂

i∈{1,...,j}\J

RScope(Ai).

That is, J picks out the indices of the Level Two basic sequences that X fails to derandomize.
Now if J = ∅, then as every Bi ∈ SL is either a Level Two basic sequence or is the join of
a Level Two basic sequence with some other sequence, it follows that MLRXµ = Atomsµ. If
J 6= ∅, then it follows from the construction that

{A∗i : i ∈ J} ∪ Atomsµ = (S∧
i∈J ai

)∗ ∪ Atomsµ ⊆ MLRXµ .

Turning to the meet-irreducible basic sequences, there is some K ⊆ {j + 1, . . . , k} such that

X ∈
⋂
i∈K

RScope(Ai) & X /∈
⋂

i∈{j+1,...,k}\K

RScope(Ai).

Now it may be that in the course of the construction, some Ai with i ∈ K is joined to some
A` with ` /∈ J (or joined to some sequence with A` as a subsequence). This occurs when
we associate a collection of sequences to a meet-irreducible element of L that is below the
element of L to which we associated the Level Two basic sequence A`. Let

K̂ = K \ {i ∈ K : Sai ⊇ Sa` for some ` /∈ J}.

Then if K̂ = ∅, then MLRXµ = (S∧
i∈J ai

)∗ ∪ Atomsµ. Otherwise, setting

a =
∧
i∈J

ai ∧
∧
i∈K̂

ai,

it follows from the construction that MLRXµ = S∗a ∪ Atomsµ.

Thus, every S∗a is the collection of non-atoms in MLRXµ for some X ∈ 2ω, and for every

X ∈ 2ω, there is some S∗a such that MLRXµ = S∗a ∪ Atomsµ. Since X ≤LR(µ) Y if and only if

MLRYµ ⊆ MLRXµ , it follows that

(DLR(µ),≤LR(µ)) ∼= (SL,≤).

�

We conclude with two questions.
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Question 5.3. If (L,≤) is an infinite, computable, distributive lattice, is there a trivial
measure µ ∈Mc such that

(DLR(µ),≤LR(µ)) ∼= (L,≤)?

Question 5.4. Is there an example of a finite non-distributive lattice (L,≤) and a trivial
measure µ ∈Mc such that

(DLR(µ),≤LR(µ)) ∼= (L,≤)?
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