Network Bargaining: Using Approximate Blocking Sets to Stabilize Unstable Instances

Jochen Könemann ${ }^{1}$, Kate Larson ${ }^{2}$, and David Steiner ${ }^{2}$
${ }^{1}$ Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada jochen@uwaterloo.ca
${ }^{2}$ Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

\{klarson, dasteine\}@uwaterloo.ca

Abstract

We study a network extension to the Nash bargaining game, as introduced by Kleinberg and Tardos [8], where the set of players corresponds to vertices in a graph $G=(V, E)$ and each edge $i j \in E$ represents a possible deal between players i and j. We reformulate the problem as a cooperative game and study the following question: Given a game with an empty core (i.e. an unstable game) is it possible, through minimal changes in the underlying network, to stabilize the game? We show that by removing edges in the network that belong to a blocking set we can find a stable solution in polynomial time. This motivates the problem of finding small blocking sets. While it has been previously shown that finding the smallest blocking set is NP-hard [3], we show that it is possible to efficiently find approximate blocking sets in sparse graphs.

1 Introduction

In the classical Nash bargaining game [10], two players seek a mutually acceptable agreement on how to split a dollar. If no such agreement can be found, each player i receives her alternative α_{i}. Nash's solution postulates, that in an equilibrium, each player i receives her alternative α_{i} plus half of the surplus $1-\alpha_{1}-\alpha_{2}$ (if $\alpha_{1}+\alpha_{2}>1$ then no mutually acceptable agreement can be reached, and both players settle for their alternatives).

In this paper, we consider a natural network extension of this game that was recently introduced by Kleinberg and Tardos [8]. Here, the set of players corresponds to the vertices of an undirected graph $G=(V, E)$; each edge $i j \in E$ represents a potential deal between players i and j of unit value. In Kleinberg and Tardos' model, players are restricted to bargain with at most one of their neighbours. Outcomes of the network bargaining game (NB) are therefore given by a matching $M \subseteq E$, and an allocation $x \in \mathbb{R}_{+}^{V}$ such that $x_{i}+x_{j}=1$ for all $i j \in M$, and $x_{i}=0$ if i is M-exposed; i.e., if it is not incident to an edge of M.

Unlike in the non-network bargaining game, the alternative α_{i} of player is not a given parameter but rather implicitly determined by the network neighbourhood of i. Specifically, in an outcome (M, x), player i 's alternative is defined as

$$
\begin{equation*}
\alpha_{i}=\max \left\{1-x_{j}: i j \in \delta(i) \backslash M\right\}, \tag{1}
\end{equation*}
$$

where $\delta(i)$ is the set of edges incident to i. Intuitively, a neighbour j of i receives x_{j} in her current deal, and i may coerce her into a joint deal, yielding i a payoff of $1-x_{j}$.

An outcome (M, x) of NB is called stable if $x_{i}+x_{j} \geq 1$ for all edges $i j \in E$, and it is balanced if in addition, the value of the edges in M is split according to Nash's bargaining solution; i.e., for a matching edge $i j, x_{i}-\alpha_{i}=x_{j}-\alpha_{j}$.

Kleinberg and Tardos gave an efficient algorithm to compute balanced outcomes in a graph (if these exist). Moreover, the authors characterize the class of graphs that admit such outcomes. In the following main theorem of [8], a vertex $i \in V$ is called inessential if there is a maximum matching in G that exposes i.

Theorem 1 ([8]). An instance of NB has a balanced outcome iff it has a stable one. Moreover, it has a stable outcome iff no two inessential vertices are connected by an edge.

The theory of cooperative games offers another useful angle for NB. In a cooperative game (with transferable utility) we are given a player set N, and a valuation function $v: 2^{N} \rightarrow \mathbb{R}_{+} ; v(S)$ can be thought of as the value that the players in S can jointly create. The matching game [6|13] is a specific cooperative game that will be of interest for us. Here, the set of players is the set of vertices V of a given undirected graph. The matching game has valuation function ν where $\nu(S)$ is the size of a maximum matching in the graph $G[S]$ induced by the vertices in S.

One goal in a cooperative game is to allocate the value $v(N)$ of the so called grand coalition fairly among the players. The core is in some sense the gold-standard among the solution concepts that prescribe such a fair allocation: a vector $x \in \mathbb{R}_{+}^{N}$ is in the core if (a) $x(N)=v(N)$, and (b) $x(S) \geq v(S)$ for all $S \subseteq N$, where we use $x(S)$ as a short-hand for $\sum_{i \in S} x_{i}$. In the special case of the matching game, this is seen to be equivalent to the following:

$$
\begin{equation*}
\mathcal{C}(G)=\left\{x \in \mathbb{R}_{+}^{V}: x(V)=\nu(V) \text { and } x_{u}+x_{v} \geq 1, \forall u v \in E\right\} . \tag{2}
\end{equation*}
$$

Thus, the core of the matching game consists precisely of the set of stable outcomes of the corresponding NB game. This was recently also observed by Bateni et al. [2] who remarked that the set of balanced outcomes of an instance of NB corresponds to the elements in the intersection of core and prekernel (the precise definition is not important at this point, and thus deferred to Section 3), of the associated matching game instance.

1.1 Dealing with unstable instances

Using the language of cooperative game theory and the work of Bateni et al. [2], we can rephrase the main results of [8] as follows: Given an instance of NB, if the core of the underlying matching game is non-empty then there is an efficient algorithm to compute a point in the intersection of core and prekernel. Such an algorithm had previously been given by Faigle et al. in [7]. It is not hard to see that the core of an instance of the matching game is non-empty if and only if the fractional matching LP for this instance has an integral optimum solution. We state this LP and its dual below; we let $\delta(i)$ denote the set of edges incident to vertex i in the underlying graph, and use $y(\delta(i))$ as a shorthand for the sum of y_{e} over all $e \in \delta(i)$.

$$
\begin{align*}
\max & \sum_{e \in E} y_{e} \tag{D}\\
\text { s.t. } & y(\delta(i)) \leq 1 \quad \forall i \in V \tag{3}\\
& y \geq \mathbb{0}
\end{align*}
$$

$$
\begin{array}{ll}
\min & \sum_{i \in V} x_{i} \tag{P}\\
\text { s.t. } & x_{i}+x_{j} \geq 1 \quad \forall i j \in E \\
& x \geq 0,
\end{array}
$$

LP (P) does of course typically have a fractional optimal solution, and in this case the core of the corresponding matching game instances is empty. Core assignments are highly desirable for their properties, but may simply not be available for many instances. For this reason, a number of more forgiving alternative solution concepts like bargaining sets, kernel, nucleolus, etc. have been proposed in the cooperative game theory literature (e.g., see [511).

This paper addresses network bargaining instances that are unstable; i.e., for which the associated matching game has an empty core. From the above discussion, we know that there is no solution x to (D) that also satisfies $\mathbb{1}^{T} x \leq \nu(V)$. We therefore propose to find an allocation x of $\nu(V)$ that violates the stability condition in the smallest number of places. Formally, we call a set B of edges a blocking set if there is $x \in \mathbb{R}_{+}^{V}$ such that $\mathbb{1}^{T} x \leq \nu(V)$, and $x_{i}+x_{j} \geq 1$ for all $i j \in E \backslash B$.

Blocking sets were previously discussed by Biró et al. 3. The authors showed that finding a smallest such set is NP-hard (via a reduction from maximum independent set). In this paper, we complement this result by showing that approximate blocking sets can be computed in sparse graphs. A graph $G=(V, E)$ is ω-sparse for some $\omega \geq 1$ if for all $S \subseteq V$, the number of edges in the induced graph $G[S]$ is bounded by $\omega|S|$. For example, if G is planar, then we may choose $\omega=3$ by Euler's formula.

Theorem 2. Given an ω-sparse graph $G=(V, E)$, there is an efficient algorithm for computing blocking sets of size at most $8 \omega+2$ times the optimum.

The main idea in our algorithm is a natural one: formulate the blocking set problem as a linear program, and extract a blocking set from one of its optimal fractional solutions via an application of the powerful technique of iterative rounding (e.g., see [9]). We first show that the proposed LP has an unbounded integrality gap in general graphs, and is therefore not useful for the design of approximation algorithms for such instances. We turn to the class of sparse graphs, and observe that, even here, extreme points of the LP can be highly fractional, ruling out the direct use of standard techniques. We carefully characterize problem extreme-points, and develop a direct rounding method for them. Our approach exploits problem-specific structure as well as the sparsity of the underlying graph.

Given a blocking set B, let $E^{\prime}=E \backslash B$ be the non-blocking set edges, and let $G^{\prime}=\left(V, E^{\prime}\right)$ be the induced graph. Notice that the matching game induced by G^{\prime} may still have an empty core, and that the maximum matching in G^{\prime} may even be smaller than that in G. We are however able to show that we can find a balanced allocation of $\nu(V)$ as follows: let M^{\prime} be a maximum matching in G^{\prime}, and define the alternative of player i as

$$
\alpha_{i}^{\prime}=\max \left\{1-x_{i}: i j \in \delta_{G^{\prime}}(i) \backslash M^{\prime}\right\}
$$

for all $i \in V$. Call an assignment x is balanced if it satisfies the stability condition (3) for all edges $i j \in M^{\prime}$, and

$$
x_{i}-\alpha_{i}^{\prime}=x_{j}-\alpha_{j}^{\prime}
$$

for all $i j \in M^{\prime}$. A straight-forward application of an algorithm of Faigle et al. [7] yields a polynomialtime method to compute such an allocation. We describe this algorithm in Section 3 for completeness.

2 Finding small blocking sets in sparse graphs

We attack the problem of finding a small blocking set via iterative linear programming rounding. In order to do this, it is convenient to introduce a slight generalization of the blocking set problem. In an instance of the generalized blocking set problem (GBS), we are given a graph $G=(V, E)$, a partition $E_{1} \cup E_{2}$ of E, and a parameter $\nu \geq 0$. The goal is to find a blocking set $B \subseteq E_{1}$, and an allocation $x \in \mathbb{R}_{+}^{V}$ such that $\mathbb{1}^{T} x \leq \nu$ and $x_{u}+x_{v} \geq 1$ for all $u v \in E \backslash B$, where $\mathbb{1}$ is a vector of 1s of appropriate dimension. The problem is readily formulated as an integer program. We give its relaxation below on the left.

$$
\begin{array}{llc|rll}
\min & \mathbb{1}^{T} z & \left(\mathrm{P}_{B}\right) & & & \\
\text { s.t. } & x_{u}+x_{v}+z_{u v} \geq 1 & & \text { max } & \mathbb{1}^{T} a+\mathbb{1}^{T} b-\gamma \nu & \\
& & \forall u v \in E_{1} & (4) & \text { s.t. } & a\left(\delta_{E_{1}}(u)\right)+ \\
& x_{u}+x_{v} \geq 1 & & & \\
& \forall u v \in E_{2} & (5) & & a \leq \mathbb{1} & \\
& \mathbb{1}^{T} x \leq \nu & (6) & & a, b \geq 0 & \\
& x, z \geq 0 & & &
\end{array}
$$

The LP on the right is the dual of $\left(\overline{\mathrm{P}_{B}}\right)$. It has a variable a_{e} for all $e \in E_{1}$, a variable b_{e} for all $e \in E_{2}$, and variable γ corresponds to the primal constraint limiting $\mathbb{1}^{T} x$. We first show that $\mathrm{LP}\left(\overline{\mathrm{P}_{B}}\right)$ is not useful for finding approximate blocking sets in general graphs. To see this, we will consider bipartite instances of the following form:

Our graphs will have a set $V=X \cup Y \cup O$, where X has n, Y has m, and O has $4 m$ vertices, respectively. The edges connecting sets X and Y belong to E_{2} and induce the complete bipartite graph $K_{n, m}$. The edges between Y and O belong to the set E_{1}. In our gap instance, we assume $m=2 n$, and let $\nu=2 n-1$. In order to obtain a fractional solution to $\left(\widehat{\mathrm{P}_{B}}\right)$, we let $x_{v}=1-\alpha$ if $v \in X, x_{v}=\alpha$ if $v \in Y$, and $x_{v}=0$ otherwise, for any $v \in V$, where $\alpha=(n-1) / n$. We also let $z_{u v}=1 / n$ for all $u \in Y$, and $v \in O$. The solution is clearly feasible as $\mathbb{1}^{T} x=2 n-1$, all E_{2} edges are covered, and z is sufficiently large to ensure that E_{1} constraints are satisfied. The value of this solution is $8 n(1-\alpha)=8$. We now show that any solution (x, z) to $\left(\overline{\mathrm{P}_{B}}\right)$ for which z is binary must have value at least $4 n$. We do this by induction on n.

For $n=1$, let v_{1} be the only X vertex. Since we have $\nu=1$, the only feasible solution to (P_{B}) is given by $x_{v_{1}}=1$, and $x_{u}=0$ otherwise. This forces $z_{u v}=1$ for all $u \in Y, v \in O$, and thus the value of this solution is 8 . Now consider the case where $n>1$. Let $u_{1} \in Y$ be a vertex with $x_{u_{1}}=1$. If no such vertex exists, then we are done as then the blocking set has size at least $2 n \cdot 4=8 n$. Let $u_{2} \in Y$ be a vertex with $x_{u_{2}}<1$; such a vertex must also exist as the total x-value on the vertices is bounded by $2 n-1$. Now consider any vertex $v_{1} \in X$, and note that

$$
x_{v_{1}}+x_{u_{1}}+x_{u_{2}} \geq 2
$$

by the feasibility of (x, z). Consider the graph G^{\prime} induced by $X^{\prime}=X \backslash\left\{v_{1}\right\}, Y^{\prime}=Y \backslash\left\{u_{1}, u_{2}\right\}$, and the neighbours $O^{\prime} \subseteq O$ of vertices in Y^{\prime}, and let $\nu^{\prime}=2(n-1)-1$. By induction, we know that a feasible integral solution $\left(x^{\prime}, z^{\prime}\right)$ for this instance must have value at least $4(n-1)$. As

$$
x\left(X^{\prime} \cup Y^{\prime} \cup O^{\prime}\right) \leq 2 n-1-\left(x_{v_{1}}+x_{u_{1}}+x_{u_{2}}\right) \leq 2(n-1)-1,
$$

there are at least $4(n-1)$ edges in G^{\prime} that are not covered by x. Finally, x does not cover the 4 edges incident to u_{2}, and hence (x, y) has value at least $4 n$.

Lemma 1. The integrality gap of $\left(\overline{\mathrm{P}_{B}}\right)$ is $\Omega(n)$, where n is the number of vertices in the given instance of the blocking set problem.

Given this negative result, we will focus on sparse instances (G, ν) and prove Theorem 2. We first characterize the extreme points of $\left(\overline{\mathrm{P}_{B}}\right)$.

2.1 Extreme points of $\left(\overline{P_{B}}\right)$

In the following, we assume that the underlying graph G is bipartite; this assumption will greatly simplify our presentation, and will turn out to be w.l.o.g. Let (x, z) be a feasible solution of LP $\left(\overline{\mathrm{P}_{B}}\right)$, and let $A^{=}(x, z)^{T}=b^{=}$be the set of tight constraints of the LP. It is well known (e.g., see [12] and also [9]) that (x, z) is an extreme point of the feasible region if $A^{=}$has full columnrank. In particular, (x, z) is uniquely determined by any full-rank sub-system $A^{\prime}(x, z)^{T}=b^{\prime}$ of $A^{=}(x, z)^{T}=b^{=}$. If constraint (6) is not part of this system of equations, then

$$
A^{\prime}=\left[A^{\prime \prime}, I\right],
$$

where $A^{\prime \prime}$ is a submatrix of the edge-vertex incidence matrix of a bipartite graph, and I is an identity matrix of appropriate dimension. Such matrices A^{\prime} are well-known to be totally unimodular (e.g., see [12]), and (x, z) is therefore integral in this case. From now on, we therefore assume that constraint (6) is tight, and that (x, z) is the unique solution to

$$
\left[\begin{array}{cc}
A^{\prime \prime} & I \tag{8}\\
\mathbb{1}^{T} & 0^{T}
\end{array}\right]\binom{\bar{x}}{\bar{z}}=\binom{\mathbb{1}}{\nu}
$$

where $A^{\prime \prime}$ is a submatrix of the edge, vertex incidence matrix of bipartite graph G, I is an identity matrix, and $\mathbb{1}^{T}$ and $\mathbb{0}^{T}$ are row vectors of 1 's and 0 's, respectively. We obtain the following useful lemma.

Lemma 2. Let (x, z) be a non-integral extreme point solution to ($\overline{\mathrm{P}_{B}}$) satisfying (8). Then there is an $\alpha \in(0,1)$ such that $x_{u}, z_{u v} \in\{0, \alpha, 1-\alpha, 1\}$ for all $u \in V$, and $u v \in E_{1}$.

Proof. Standard linear algebra implies that the solution space to the the system $\left[A^{\prime \prime} I\right](\bar{x}, \bar{z})^{T}$ is a line; i.e., it has dimension 1 . Hence, there are two extreme points $\left(x^{1}, z^{1}\right)$ and $\left(x^{2}, z^{2}\right)$ of the integral polyhedron defined by constraints (4), (5), and the non-negativity constraints, and some $\alpha \in[0,1]$ such that

$$
\binom{x}{z}=\alpha\binom{x^{1}}{z^{1}}+(1-\alpha)\binom{x^{2}}{z^{2}} .
$$

In fact, α must be in $(0,1)$ as (x, z) is assumed to be fractional. This implies the lemma.
We call an extreme point good if there is a vertex u with $x_{u}=1$, or an edge $u v \in E_{1}$ with $z_{u v} \in\{0\} \cup[1 / 3,1]$. Let us call an extreme point bad otherwise. We will now characterize the structure of a bad extreme point (x, z). Let $G=\left(V, E_{1} \cup E_{2}\right)$ be the bipartite graph for a given GBS instance. Let $\mathcal{T}_{1} \subseteq E_{1}$ and $\mathcal{T}_{2} \subseteq E_{2}$ be E_{1} and E_{2} edges corresponding to tight inequalities of $\left(\overline{\mathrm{P}_{B}}\right)$ that are part of the defining system (8) for (x, z). Let α be as in Lemma 2. Since (x, z) is
bad, it must be that either α or $1-\alpha$ is larger than $2 / 3$; w.l.o.g., assume that $\alpha>2 / 3$. We define the following useful sets:

$$
\begin{aligned}
& X=\left\{u \in V: x_{u}=1-\alpha\right\} \\
& Y=\left\{u \in V: x_{u}=\alpha\right\} \\
& O=\left\{u \in V: x_{u}=0\right\} .
\end{aligned}
$$

Lemma 3. Let (x, z) be a bad extreme point. Using the notation defined above, we have
(a) $z_{u v}=(1-\alpha)$ for all $u v \in E_{1}$,
(b) $O \cup X$ is an independent set in G
(c) Each \mathcal{T}_{1} edge is incident to exactly one O and one Y vertex, and the edges of \mathcal{T}_{2} form a tree spanning $X \cup Y$. Each edge in E is incident to exactly one Y vertex.

Proof. We know from Lemma 2 that $z_{u v} \in\{0,1-\alpha, \alpha, 1\}$ for all $u v \in E_{1}$; (a) follows now directly from the fact that (x, z) is bad.

No two vertices $u, v \in O$ can be connected by an edge, as such an edge $u v$ must then have $z_{u v}=1$. Similarly, no two vertices $u, v \in X$ can be connected by an edge as otherwise $z_{u v} \geq 1-2(1-\alpha)>1 / 3$. Finally, for an edge $u v$ between O and X, we would have to have $z_{u v} \geq 1-(1-\alpha)>2 / 3$, which once again can not be the case. This shows (b).

To see (c), consider first an edge $u v$ in \mathcal{T}_{1}; we must have $x_{u}+x_{v}=\alpha$, and this is only possible if $u v$ is incident to one O and one Y vertex. Similarly, $x_{u}+x_{v}=1$ for all $u v \in \mathcal{T}_{2}$, and therefore one of u and v must be in X, and one must be in Y. It remains to show that the edges in \mathcal{T}_{2} induce a tree. Let us first show acyclicity: suppose for the sake of contradiction that $u_{1} v_{1}, \ldots, u_{p} v_{p} \in \mathcal{T}_{2}$ form a cycle (i.e., $u_{1}=v_{p}$). Then since G is bipartite, this cycle contains an even number of edges. Let $\chi_{1}, \ldots, \chi_{p}$ be the 0,1 -coefficient vector of the left-hand sides of the constraints belonging to these edges. We see that

$$
\sum_{i=1}^{p}(-1)^{i} \chi_{i}=0
$$

contradicting the fact that the system in (8) has full (row) rank. Note that the size of the support of (x, z) is

$$
\begin{equation*}
\left|\mathcal{T}_{1}\right|+|X|+|Y| \tag{9}
\end{equation*}
$$

by definition. On the other hand, the rank of the system in (8) is

$$
\left|\mathcal{T}_{1}\right|+\left|\mathcal{T}_{2}\right|+1 \leq\left|\mathcal{T}_{1}\right|+(|X|+|Y|-k)+1,
$$

where k is the number of components formed by the edges in \mathcal{T}_{2}. The rank of (8) must be at least the size of the support, and this is only the case when $k=1$; i.e., when \mathcal{T}_{2} forms a tree spanning $X \cup Y$. Since G is bipartite, X must be fully contained in one side of the bipartition of V, and Y must be fully contained in the other. Since Y is a vertex cover in G by (b), every edge in E must have exactly one endpoint in Y.

2.2 Blocking sets in sparse graphs via iterative rounding

In this section we propose an iterative rounding (IR) type algorithm to compute a blocking set in a given sparse graph $G=(V, E)$. Recall that this means that there is a fixed parameter $\omega>0$ such that the graph induced by any set S of vertices has at most $\omega|S|$ edges. Recall that we also initially assume that the underlying graph G is bipartite.

Fig. 1. The figure shows the structure of a bad extreme point. White nodes correspond to X vertices, dark ones to vertices in Y, and the squares are O-vertices. Edges in \mathcal{T}_{1} are displayed as dashed lines, and those in \mathcal{T}_{2} as solid, thick ones.

The algorithm we propose follows the standard IR paradigm (e.g., see [9]) in many ways: given some instance of the blocking set problem, we first solve LP $\left(\mathrm{P}_{B}\right)$ and obtain an extreme point solution (x, z). We now generate a smaller sub-instance of GBS such that (a) the projection of (x, z) onto the sub-instance is feasible, and (b) any integral solution to the sub-instance can cheaply be extended to a solution of the original GBS instance. In particular, the reader will see the standard steps familiar from other IR algorithms: if there is an edge $u v \in E_{1}$ with $z_{u v}=0$ then we may simply drop the edge, if $z_{u v} \geq 1 / 3$ then we include the edge into the blocking set, and if $x_{u}=1$ for some vertex, then we may install one unit of x-value at u permanently and delete u and all incident edges.

The problem is that the feasible region of $\left(\mathrm{P}_{B}\right)$ has bad extreme points, even if the underlying graph is sparse and bipartite. We will exploit the structural properties documented in Lemma 3 and show that a small number of edges can be added to our blocking set even in this case. Crucially, these edges will have to come from both E_{1} and E_{2}.

In an iteration of the algorithm, we are given a sub-instance of GBS. We first solve (P_{B}) for this instance, and obtain an optimal basic solution (x, z). Inductively we maintain the following: The algorithm computes a set $\hat{B} \subseteq E$ of edges, and vector $\hat{x} \in \mathbb{R}^{V}$ such that
[I1] $\hat{x}_{u}+\hat{x}_{v} \geq 1$ for all $u v \in E \backslash \hat{B}$,
[I2] $\mathbb{1}^{T} \hat{x} \leq \nu$, and
$[\mathrm{I} 3]|\hat{B}| \leq(2 \omega+1) \cdot \mathbb{1}^{T} z$,
where ω is the sparsity parameter introduced above. Let us first assume that the extreme point solution (x, z) is good. In this case we proceed according to one of the following cases:

Case 1. ($\exists u \in V$ with $x_{u}=1$) In this case, all edges incident to u are covered. We obtain a subinstance of GBS by removing u and all incident edges from G, and by reducing ν by 1 .
Case 2. ($\exists u v \in E$ with $\left.z_{u v}=0\right)$ In this case, obtain a new instance of GBS by removing $u v$ from E_{1}, and adding it to E_{2}.
Case 3. ($\exists u v \in E_{1}$ with $\left.z_{u v} \geq 1 / 3\right)$ In this case add $u v$ to the approximate blocking set B, and remove $u v$ from E_{1}.

In each of these three cases, we inductively solve the generated sub-instance of GBS. If this subinstance is the empty graph, then we can clearly return the empty set.

Let us now consider the case where (x, z) is a bad extreme point. This case will constitute a leaf of the recursion tree, and we will show that we can directly find a small blocking set. In the following lemma, we define the sets $X, Y, O \subseteq V$ as in Lemma 3 .

Lemma 4. Let (x, z) be a bad extreme point, and let ν be the current bound on $\mathbb{1}^{T} x$. Then $(|X|+$ $|Y|) / 2<\nu<|Y|$.

Proof. Lemma 3 (b) shows that Y is a vertex cover in the current graph G. Hence, if $\nu \geq|Y|$ then we could simply let $\hat{x}_{u}=1$ for all $u \in Y$ and choose B to be the empty blocking set. This also implies that $|Y|>|X|$ as otherwise

$$
\mathbb{1}^{T} x=(1-\alpha)|X|+\alpha|Y| \geq|Y|>\nu
$$

contradicting feasibility. To see the lower-bound, recall that (6) is tight by assumption, and thus

$$
\nu=(1-\alpha)|X|+\alpha|Y|>\frac{2|Y|+|X|}{3}>\frac{|X|+|Y|}{2},
$$

where the first inequality uses the fact that $\alpha>2 / 3$ from Lemma 3 , and the last inequality follows as $|Y|>|X|$.

We can use this bound on ν to prove that we can find small blocking sets given a bad extreme point for $\left(\overline{P_{B}}\right)$.
Lemma 5. Given a bad extreme point (x, z) to $\overline{\mathrm{P}_{B}}$, we can find a blocking set $\hat{B} \subseteq E$, and corresponding \hat{x} such that $\mathbb{1}^{T} \hat{x} \leq \nu$, and $|\hat{B}| \leq(2 \omega+1) \cdot \mathbb{1}^{T} z$.
Proof. We will construct a blocking set \hat{B} as follows: let $\hat{x}_{u}=1$ for a carefully chosen set \hat{Y} of ν vertices from the set Y, and let $\hat{x}_{u}=0$ for all other vertices in V. Recall once more from Lemma 3 (b) that Y is a vertex cover in G, and hence it suffices to choose

$$
\begin{equation*}
\hat{B}=\bigcup_{u \in Y \backslash \hat{Y}} \delta(u)=\bigcup_{u \in Y \backslash \hat{Y}}\left(\delta_{E_{1}}(u)+\delta_{E_{2}}(u)\right) \tag{10}
\end{equation*}
$$

as our blocking set, where $\delta_{E_{i}}(u)$ denotes the set of E_{i} edges incident to vertex u. Let (a, b, γ) be the optimal dual solution of $\left(\overline{\mathrm{D}_{B}}\right)$ corresponding to extreme point (x, z). Then note that complementary slackness together with the fact that $z_{u v}>0$ for all $u v \in E_{1}$ implies that $a_{u v}=1$ for these edges as well. Thus γ is an upper bound on the number E_{1}-edges incident to a vertex u by dual feasibility. With (10) we therefore obtain

$$
\begin{equation*}
|\hat{B}| \leq \sum_{u \in Y \backslash \hat{Y}}\left(\gamma+\left|\delta_{E_{2}}(u)\right|\right) \leq(|Y|-\nu) \gamma+\sum_{u \in Y \backslash \hat{Y}}\left|\delta_{E_{2}}(u)\right| . \tag{11}
\end{equation*}
$$

Lemma 3 (c) shows that each E_{2} edge is incident to one X, and one Y vertex. As the subgraph induced by X and Y is sparse, there therefore must be a vertex $u_{1} \in Y$ of degree at most $\omega(|X|+$ $|Y|) /|Y|$. Removing this vertex from G leaves a sparse graph, and we can therefore find a vertex u_{2} of degree at most $\omega(|X|+|Y|-1) /(|Y|-1)$. Repeating this $|Y|-\nu$ times we pick a set $u_{1}, \ldots, u_{|Y|-\nu}$ of vertices such that

$$
\begin{equation*}
\sum_{i=1}^{|Y|-\nu}\left|\delta_{E_{2}}\left(u_{i}\right)\right| \leq \sum_{i=1}^{|Y|-\nu} \frac{\omega(|X|+|Y|-i)}{|Y|-i} \leq(|Y|-\nu) \cdot \frac{\omega(|X|+|Y|)}{\nu} \leq 2 \omega(|Y|-\nu) \tag{12}
\end{equation*}
$$

where the last inequality follows from Lemma 4 . We now let $\hat{Y}=Y \backslash\left\{u_{1}, \ldots, u_{|Y|-\nu}\right\}$, and hence let $\hat{x}_{u}=1$ for $u \in \hat{Y}$, and $\hat{x}_{u}=0$ for all other vertices $u \in V$; (11) and (12) together imply that

$$
|\hat{B}| \leq(|Y|-\nu)(\gamma+2 \omega) \leq(2 \omega+1) \gamma(Y-\nu),
$$

where the last inequality follows from the fact that $\gamma \geq 1$. Lemma 3(c) shows that each edge $e \in E$ has exactly one endpoint in Y. Applying complementary slackness together with the fact that $x_{u}>0$ for all $u \in Y$, we can therefore rewrite the objective function of $\left(\overline{\mathrm{D}_{B}}\right)$ as

$$
\mathbb{1}^{T} a+\mathbb{1}^{T} b-\gamma \nu=\gamma(|Y|-\nu) .
$$

The lemma follows.
We can now put things together.
Lemma 6. Given an instance of $G B S$, the above procedure terminates with a set $\hat{B} \subseteq E$, and $\hat{x} \in \mathbb{R}^{V}$ such that $\mathbb{1}^{T} \hat{x} \leq \nu$, and $\hat{x}_{u}+\hat{x}_{v} \geq 1$ for all uv $\in E \backslash \hat{B}$. The set \hat{B} has size at most $(2 \omega+1) \mathbb{1}^{T} z$, where (x, z) is an optimal solution to ($\overline{\mathrm{P}_{B}}$) for the given GBS instance.

Proof. The proof uses the usual induction on the recursion depth. Let us first consider the case where the current instance is a leaf of the recursion tree. The lemma follows vacuously if the graph in the given GBS instance is empty. Otherwise it follows immediately from Lemma 5 .

Any internal node of recursion tree corresponds to an instance of GBS where (x, z) is a good extreme point. We claim that, no matter which one of the above cases we are in, we have that (a) a suitable projection of (x, z) yields a feasible solution for the created GBS sub-instance, and (b) we can augment an approximate blocking set for this sub-instance to obtain a good blocking set for the instance given in this iteration. We proceed by looking at the three cases discussed above.
Case 1. Let $\left(x^{\prime}, z^{\prime}\right)$ be the natural projection of (x, z) onto the GBS sub-instance; i.e., x_{v}^{\prime} is set to x_{v} for all vertices in $V-u$, and $z_{v w}^{\prime}=z_{v w}$ for the remaining edges $v w \in E_{1} \backslash \delta(u)$. This solution is easily verified to be feasible. Inductively, we therefore know that we obtain a blocking set \bar{B} and corresponding vector \bar{x} such that \bar{B} has no more than $(2 \omega+1) \mathbb{1}^{T} \bar{z} \leq(2 \omega+1) \mathbb{1}^{T} z$ elements, and $\mathbb{1}^{T} \bar{x} \leq \nu-1$. Thus, letting $\hat{x}_{v}=\bar{x}_{v}$ for all $v \in V-u$, and $\hat{x}_{u}=1$ together with $\hat{B}=\bar{B}$ gives a feasible solution for the original GBS instance.
Case 2. The argument for this case is virtually identical to that of Case 1, and we omit the details. Case 3. Once again we project the current solution (x, z) onto the GBS subinstance; i.e., let $x^{\prime}=x$, and $z_{q r}^{\prime}=z_{q r}$ for all $q r \in E_{1}-u v$. Clearly $\left(x^{\prime}, z^{\prime}\right)$ is feasible for the GBS subinstance, and inductively we therefore obtain a vector \bar{x} and corresponding feasible blocking set \bar{B} of size at most $(2 \omega+1) \cdot \mathbb{1}^{T} z^{\prime}$. Adding $u v$ to \bar{B} yields a feasible blocking set \hat{B} for the original instance together with $\hat{x}=\bar{x}$. Its size is at $\operatorname{most}(2 \omega+1) \mathbb{1}^{T} z^{\prime}+1 \leq(2 \omega+1) 1^{T} z$ as $\omega \geq 1$.

Suppose now that we are given a non-bipartite, sparse instance of the blocking set problem: $G=(V, E)$ is a general sparse graph, and $\nu>0$ is a parameter. We create a bipartite graph H in the usual way: for each vertex $u \in V$ create two copies u_{1} and u_{2} and add them to H. For each edge $u v \in E$, add two edges $u_{1} v_{2}$ and $u_{2} v_{1}$ to H. The new blocking set instance is given by (H, ν^{\prime}) where $\nu^{\prime}=2 \nu$.

Given a feasible solution (x, z) to $\left(\mathrm{P}_{B}\right)$ for the instance (G, ν), we let $x_{u_{i}}^{\prime}=x_{u}$ for all $u \in V$ and $i \in\{1,2\}$, and $z_{u_{i} v_{j}}^{\prime}=z_{u v}$ for all edges $u_{i} v_{j}$. For any edge $u_{i} v_{j}$ in H, we now have

$$
x_{u_{i}}^{\prime}+x_{v_{j}}^{\prime}+z_{u_{i} v_{j}}=x_{u}+x_{v}+z_{u v} \geq 1,
$$

and $\mathbb{1}^{T} x^{\prime} \leq 2 \mathbb{1}^{T} x \leq 2 \nu$. Thus, $\left(x^{\prime}, z^{\prime}\right)$ is feasible to P_{B}) for instance (H, ν^{\prime}), and its value is at most twice that of $\mathbb{1}^{T} z$. Let \hat{x}, \hat{B} be a feasible solution to the instance on graph H. Then let

$$
B=\left\{u v \in E: u_{1} v_{2} \text { or } u_{2} v_{1} \text { are in } \hat{B}\right\}
$$

and note that B has size at most that of \hat{B}. Also let $x_{u}=\left(\hat{x}_{u_{1}}+\hat{x}_{u_{2}}\right) / 2$ for all $u \in V$. Clearly, $\mathbb{1}^{T} x \leq \nu$, and for any edge $u v \in E$, we have

$$
x_{u}+x_{v} \geq \frac{\hat{x}_{u_{1}}+\hat{x}_{u_{2}}+\hat{x}_{v_{1}}+\hat{x}_{v_{2}}}{2}
$$

and the right-hand side is at least 1 if none of the two edges $u_{1} v_{2}, u_{2} v_{1}$ is in \hat{B}. This shows feasibility of the pair x, B. In order to prove Theorem 2 it now remains to show that graph H is sparse. Pick any set S of vertices in H, and let

$$
S^{\prime}=\left\{v \in V: \text { at least one of } v_{1} \text { and } v_{2} \text { are in } S\right\}
$$

Then $\left|S^{\prime}\right| \leq|S|$, and the number of edges of $H[S]$ is at most twice the number of edges in $G\left[S^{\prime}\right]$, and hence bounded by $2 \omega|S|$; we let $\omega^{\prime}=2 \omega$ be the sparsity parameter of H. Let (x, z) and (x^{\prime}, z^{\prime}) be optimal basic solutions to $\left(\mathrm{P}_{B}\right)$ for instances (G, ν), and (H, ν^{\prime}), respectively. The blocking set B for G has size no more than

$$
\left(2 \omega^{\prime}+1\right) \mathbb{1}^{T} z^{\prime} \leq 2(4 \omega+1) \mathbb{1}^{T} z
$$

Thus, we have proven Theorem 2 ,

3 From blocking set to balanced allocation

Let $G=(V, E)$ be an instance of the matching game, $B \subseteq E$ a blocking set, and $x \in \mathbb{R}_{+}^{V}$ s.t.

$$
\begin{align*}
\mathbb{1}^{T} x & \leq \nu(V) \tag{S1}\\
x_{i}+x_{j} & \geq 1 \quad \forall i j \in E \backslash B . \tag{S2}
\end{align*}
$$

In this section we will show that, for any maximum matching M^{\prime} in $G^{\prime}=G[E \backslash B]$, we can efficiently find a vector \bar{x} that satisfies (S1), (S22), as well as the balancedness condition

$$
\begin{equation*}
\bar{x}_{i}-\alpha_{i}=\bar{x}_{j}-\alpha_{j} \quad \forall i j \in M^{\prime} \tag{S3}
\end{equation*}
$$

thus resulting in a stable outcome.
Following the work of Bateni et al. [2] this task reduces to finding a point in the intersection of core and prekernel of the matching game. We describe an elegant algorithm due to Faigle et al. [7] (in the matching game special case); building on a local-search algorithm due to Maschler, and Stearns [14], the authors presented an algorithm that efficiently computes prekernel elements of general TU games (under mild conditions).

3.1 From prekernel to balancedness

We define the prekernel of the matching game first. For a pair of vertices $i, j \in V$, define the surplus of i over j as

$$
s_{i j}(x)=\max \left\{1-x_{k}-x_{i}: i k \in E^{\prime}, k \neq j\right\}
$$

where $E^{\prime}=E \backslash B$ is the set of non-blocking set edges in G^{3}. We will omit the argument x if it is clear from the context. For convenience, we will let $e_{i j}$ and $e_{j i}$ be fixed edges incident to vertices i and j that define the respective surpluses; i.e. $s_{i j}(x)=1-x\left(e_{i j}\right)$ and $s_{j i}(x)=1-x\left(e_{j i}\right)$, where $x(u v)$ is the value of edge $u v$ and is a short-hand for the sum $x_{u}+x_{v}$ of the values of the incident vertices. The prekernel of the matching game is the set of all non-negative vectors x with $\mathbb{1}^{T} x=\nu(V)$, and $s_{i j}(x)=s_{j i}(x)$ for all $i, j \in V$.

Consider some matching $M^{\prime} \in G\left[E^{\prime}\right]$ and let α_{u} be the alternative of u in graph G^{\prime} with respect to this matching (see (11). Then one sees that $\bar{x}_{i}-\alpha_{i}=\bar{x}_{j}-\alpha_{j}$ if and only if $s_{i j}(\bar{x})=s_{j i}(\bar{x})$. Hence, we will now describe an algorithm that finds a vector \bar{x} satisfying (S1), (S2), and the following reformulation of (S3):

$$
\begin{equation*}
s_{i j}=s_{j i} \quad \forall i j \in E^{\prime} \tag{S3’}
\end{equation*}
$$

From now on, we will assume that $s_{i j} \geq s_{j i}$ for all $i j \in E^{\prime}$. Suppose that x satisfies (S1) and (S2), but not (S3), and let

$$
s_{i_{1} j_{1}} \geq s_{i_{2} j_{2}} \geq \ldots \geq s_{i_{m} j_{m}}
$$

be a list of the surpluses of edges in E^{\prime}. Let $1 \leq p \leq m$ be smallest such that $s_{i_{p} j_{p}}>s_{j_{p} i_{p}}$, and define $s(x)=s_{i_{p} j_{p}}$ as the largest surplus of any violated pair. Let $S(x)$ and $I(x)$ be the sets of all pairs whose surplus is larger than or equal to $s(x)$, respectively; i.e.,

$$
\begin{aligned}
S(x) & =\left\{i j: s_{i j}(x)>s(x)\right\} \\
I(x) & =\left\{i j: s_{i j}(x)=s(x)\right\} .
\end{aligned}
$$

Let $\mu>0$ such that $s_{i_{p} j_{p}}-2 \mu=s_{j_{p} i_{p}}$ for some $1 \leq p \leq m$. We then consider the following natural local shift proposed by Maschler:

$$
x_{u}^{\prime}= \begin{cases}x_{u}+\mu & u=i_{p} \\ x_{u}-\mu & u=j_{p} \\ x_{u} & \text { otherwise }\end{cases}
$$

for all $u \in V$. We collect a few useful observations in the following lemma.
Lemma 7 ([7]).
(i) $s_{i_{p} j_{p}}\left(x^{\prime}\right)=s_{j_{p} i_{p}}\left(x^{\prime}\right)=s(x)-\mu$
(ii) $s\left(x^{\prime}\right) \leq s(x)$, and if $s\left(x^{\prime}\right)=s(x)$ then $\left|I\left(x^{\prime}\right)\right|<|I(x)|$
(iii) For $i j \in S(x)$, none of $e_{i j}$ and $e_{j i}$ change value, and if some edge $e \neq i j$ incident to i or j decreases in value, then its new value is larger than that of $e_{i j}$ and $e_{j i}$. Hence, $s_{i j}\left(x^{\prime}\right)=s_{i j}(x)$ for all $i j \in S(x)$.
(iv) x^{\prime} satisfies (S1) and (S2) if x does.

Proof. Note that $x^{\prime}(e)=x(e)+\mu$ for all $e \in \delta\left(i_{p}\right) \backslash\left\{i_{p} j_{p}\right\}$, and hence $s_{i_{p} j_{p}}\left(x^{\prime}\right)=s_{i_{p} j_{p}}(x)-\mu$. Similarly, all edges $e \neq i_{p} j_{p}$ incident to j_{p} have $x^{\prime}(e)=x(e)-\mu$, and hence $s_{j_{p} i_{p}}\left(x^{\prime}\right)=s_{j_{p} i_{p}}(x)+\mu$. This implies (i).

[^0]Note that $x^{\prime}(e)<x(e)$ only if e is incident to j_{p}. Furthermore, for such edges e, we must have

$$
\begin{equation*}
x\left(e_{i_{p} j_{p}}\right)+2 \mu=x\left(e_{j_{p} i_{p}}\right) \leq x(e), \tag{13}
\end{equation*}
$$

and hence $x^{\prime}(e) \geq x\left(e_{i_{p} j_{p}}\right)+\mu$. Similarly, if $x^{\prime}(e)>x(e)$ then e
 must be incident to i_{p}, and thus $x^{\prime}(e) \geq x\left(e_{i_{p} j_{p}}\right)+\mu$.

This has several immediate consequences. For a pair $i j \in S(x)$, the x-values of $e_{i j} e_{j i}$ remain the same, and they will remain surplus-defining edges for $s_{i j}\left(x^{\prime}\right)$ and $s_{j i}\left(x^{\prime}\right)$, respectively. In particular, we have $s_{i j}\left(x^{\prime}\right)=s_{j i}\left(x^{\prime}\right)$, proving (iii).

First consider some pair $i j \in I(x)$; by the above reasoning, $s_{i j}(x)$ can not increase, but may decrease. If it decreases, then it decreases by μ. Similarly, $s_{j i}(x)$ may increase, but in this case, $s_{j i}\left(x^{\prime}\right) \leq s_{i_{p} j_{p}}(x)-\mu$. By (iii), no pair $i j \in S(x)$ changes its surpluses, and hence $s\left(x^{\prime}\right) \leq s(x)$. Furthermore, if $s\left(x^{\prime}\right)=s(x)$ then $I\left(x^{\prime}\right) \subsetneq I(x)$ as the pair $i_{p} j_{p}$ certainly decreases its surplus. This implies (ii).

Finally assume that x satisfies (S1) and (S2). It is clear that the local shift preserves (S1). Consider some edge $e \in E^{\prime}$; since S2) holds for x, we have $x(e) \geq 1$. Suppose that $x^{\prime}(e)<x(e)$. Then e must be incident to j_{p}, and clearly $x\left(e_{i_{p} j_{p}}\right)+2 \mu \leq x\left(e_{j_{p} i_{p}}\right) \leq x(e)$, for some $\mu>0$. Note that $x\left(e_{i_{p} j_{p}}\right) \geq 1$ as x satisfies (S2), and hence $x(e) \geq 1+2 \mu$. This proves (iv) as $x(e)$ decreases by no more than μ.

From (ii) we obtain the following immediate corollary.
Corollary 1. $s(x)$ strictly decreases after at most $\left|E^{\prime}\right|$ local shifts.
One could now suspect that a sequence of local shifts would converge to a prekernel element, but this is in fact not known. Stearns [14] showed, however, that if one picks a maximal violated pair $i_{p} j_{p}$ then the method can indeed be shown to converge, but no polynomial bound on the number of shifts is known. Faigle et al. [7] propose the following elegant fix. Consider the following linear program with variables $y \in \mathbb{R}_{+}^{E^{\prime}}$ and $\delta \in \mathbb{R}$. We let $\Delta(x)$ be the smallest surplus of any pair in $S(x)$, and let $\Delta(x)=0$ if $S(x)$ is empty.

$$
\begin{array}{cll}
\max & \delta & \\
\text { s.t. } & y(V)=\mathbb{1}^{T} x & \\
& y\left(e_{i j}\right)=x\left(e_{i j}\right) & \forall i j \in S(x) \\
& 1-y\left(e_{i j}\right) \geq 1-y(e) & \forall i j \in S(x), \forall e \in \delta(i) \backslash\{i j\} \\
& 1-y(e) \leq \Delta(x)-\delta & \forall i j \notin S(x), \forall e \in \delta(i) \backslash\{i j\} \\
& y(e) \geq 1 & \forall e \in E^{\prime} \tag{18}\\
& y, \delta \geq 0 &
\end{array}
$$

Let $x \in \mathbb{R}_{+}^{E^{\prime}}$ satisfy (S1) and (S2). Then $y:=x$ and $\delta=\Delta(x)-s(x)$ is a feasible solution to $(\mathrm{P}(x))$. Faigle et al. show a stronger statement. Consider a sequence

$$
x=x^{1}, x^{2}, \ldots, x^{p}
$$

of edge vectors such that for all $2 \leq i \leq p, x^{i}$ arises from x^{i-1} through a local shift operation. Note that Lemma 7 implies that $S\left(x^{1}\right) \subseteq S\left(x^{2}\right) \subseteq \ldots \subseteq S\left(x^{p}\right)$.

Lemma 8 ([7]). Suppose that $S\left(x^{p}\right)=S\left(x^{1}\right)$. For $1 \leq i \leq p$, define $y^{i}=x^{i}$ and let $\delta^{i}=\Delta\left(x^{i}\right)-$ $s\left(x^{i}\right)$. Then $\left(y^{i}, \delta^{i}\right)$ is feasible for $\mathrm{P}(x)$, and $\delta^{1} \leq \delta^{2} \leq \ldots \leq \delta^{p}$.

Proof. We prove the lemma by induction of i. For $i=1$, we have already shown that $\left(y^{1}, \delta^{1}\right)$ is feasible for $\mathrm{P}(x)$. Now assume that the induction hypothesis is true for $i \geq 1$. We show that $\left(y^{i+1}, \delta^{i+1}\right)$ is feasible. It is easy to see that the local shift preserves constraints (14) and (15). Lemma 7.(iii) implies that (16) continues to hold. The left-hand side of (17) is at most $s\left(x^{i+1}\right)$, and hence at most $\Delta\left(x^{i+1}\right)-\delta^{i+1}$. Lemma 7. (ii) together with the fact that $\Delta\left(x^{i}\right)=\Delta\left(x^{i+1}\right)$ implies that $\delta^{i} \leq \delta^{i+1}$. Finally, the core condition (18) holds because of Lemma 7 (iv).

The idea of Faigle et al. is now as follows: let x be an edge-vector that satisfies (S1) and (S2). Solve $\mathrm{P}(x)$, and let (y, δ) be the optimal solution. We have that $s(y) \leq s(x)$,

$$
s_{i j}(y)=s_{j i}(y)
$$

for all $i j \in S(x)$, and therefore $S(x) \subseteq S(y)$. If this inclusion is strict, then we have made progress by solving the LP. Assume that $S(x)=S(y)$. In this case, we observe that the maximum value of $1-y(e)$ over all left-hand sides of 17) is exactly $s(y)$, and we therefore have

$$
\delta=\Delta(x)-s(y)
$$

Apply local moves to y until $s(y)$ decreases. We know from Corollary 1 that this takes at most $\left|E^{\prime}\right|$ steps. Let y^{\prime} be the resulting vector. Clearly, $S\left(y^{\prime}\right) \subseteq S(y)$, and we claim that this inclusion must be strict. In fact, if not then Lemma 8 implies that $\left(y^{\prime}, \delta^{\prime}\right)$ is feasible for $\overline{\mathrm{P}(x)}$ for

$$
\delta^{\prime}=\Delta(x)-s\left(y^{\prime}\right)>\Delta(x)-s(y)=\delta,
$$

where the inequality follows from that fact that $s\left(y^{\prime}\right)<s(y)$. This contradicts the optimality of (y, δ) for $\mathrm{P}(x)$.

Theorem 3 ([7]). Given a point $x \in \mathbb{R}_{+}^{E^{\prime}}$ that satisfies (S1) and (S2) we can compute a point in the prekernel using $\left|E^{\prime}\right|^{2}$ local shifts, and solving $\left|E^{\prime}\right|$ LPs of the type $(\overline{\mathrm{P}(x)})$.

4 Discussion

In this paper we studied network bargaining games, and took a particular interest in unstable games. We showed that when the underlying network, $G=(V, E)$, is sparse, we are able to identify an approximation of the smallest blocking set, B, and we explained how it is possible to efficiently find a balanced (and thus stable) outcome in the network game induced by the graph, $G^{\prime}=(V, E \backslash B)$. There are several interesting directions in which this work could be taken. For example, one could allow for more complex utility functions [4] or allow agents to make more complex deals.

We make the observation that in games defined by G and G^{\prime} we are always working with maximum matchings, M and M^{\prime} on the respective networks. Note that the matching M^{\prime} is no larger, and may in fact be smaller than matching M. Therefore, we achieve balancedness by subsidizing the game to an extent of $|M|-\left|M^{\prime}\right|$. This difference is clearly at most $|B|$, and hence it makes sense to use as small a blocking set as we can find. Bachrach et al looked at stabilizing coalitions (in non-network settings) by using external payments, and introduced the cost of stability as the minimal external payment needed to stabilize a game [1]. An interesting future direction might be to explore relationships and possible tradeoffs between the cost of stability and the size of the blocking set.

References

1. Bachrach, Y., Elkind, E., Meir, R., Pasechnik, D., Zuckerman, M., Rothe, J., Rosenschein, J.: The cost of stability in coalitional games. In: Symposium on Algorithmic Game Theory. pp. 122-134 (2009)
2. Bateni, M., Hajiaghayi, M., Immorlica, N., Mahini, H.: The cooperative game theory foundations of network bargaining games. In: Proceedings of International Colloquium on Automata, Languages and Processing. pp. 67-78 (2010)
3. Biró, P., Kern, W., Paulusma, D.: On solution concepts for matching games. In: TAMC. pp. 117-127 (2010)
4. Chakraborty, T., Kearns, M.: Bargaining solutions in social network. In: Fourth International Workshop on Internet and Network Economics (WINE). pp. 548-555 (2008)
5. Chalkiadakis, G., Elkind, E., Wooldridge, M.: Computational Aspects of Cooperative Game Theory. Synthesis Lectures on Artificial Intelligence and Machine Learning, Morgan \& Claypool Publishers (2011)
6. Deng, X., Ibaraki, T., Nagamochi, H.: Algorithmic aspects of the core of combinatorial optimization games. Math. Oper. Res. 24(3), 751-766 (1999)
7. Faigle, U., Kern, W., Kuipers, J.: An efficient algorithm for nucleolus and prekernel computation in some classes of tu-games. Tech. Rep. 1464, U. of Twente (1998)
8. Kleinberg, J.M., Tardos, É.: Balanced outcomes in social exchange networks. In: Proceedings of ACM Symposium on Theory of Computing. pp. 295-304 (2008)
9. Lau, L.C., Ravi, R., Singh, M.: Iterative Methods in Combinatorial Optimization. Cambridge University Press (2011)
10. Nash, J.: The bargaining problem. Econometrica 18, 155-162 (1950)
11. Peleg, B., Sudhölter, P.: Introduction to the Theory of Cooperative Games. Springer (2003)
12. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1986)
13. Shapley, L.S., Shubik, M.: The assignment game : the core. International Journal of Game Theory 1(1), 111-130 (1971), http://dx.doi.org/10.1007/BF01753437
14. Stearns, R.: Convergent transfer schemes for n-person games. Trans. Amer. Math. Soc. 134, 449-459 (1968)

[^0]: ${ }^{3}$ We abuse notation slightly in this definition of $s_{i j}$, and let $s_{i j}(x)=-x_{i}$ if i has no neighbour other than j.

