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Abstract. Weighted automata are non-deterministic automata wheréraimsi-
tions are equipped with weights. They can model quantéaipects of systems
like costs or energy consumption. The value of a run can bepated, for ex-
ample, as the maximum, limit average, or discounted sumaokttion weights.
In multi-weighted automata, transitions carry severalghies and can model, for
example, the ratio between rewards and costs, or the efficiehuse of a pri-
mary resource under some upper bound constraint on a segaedaurce. Here,
we introduce a general model for multi-weighted automatavels as a multi-
weighted MSO logic. In our main results, we show that thistrueighted MSO
logic and multi-weighted automata are expressively edgitaboth for finite and
infinite words. The translation process is effective, lagdo decidability results
for our multi-weighted MSO logic.
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series

1 Introduction

Recently, multi-priced timed automatd [5, 6] L7] 20] haveeised much attention for
real-time systems. These automata extend priced timeanataoby featuring several
price parameters. This permits to compute objectives likedptimal ratio between
rewards and costs|[5] 6], or the optimal consumption of sgvesources where more
than one resource must be restricted [20]. Arising from tlogleh of timed automata,
the multi-weighted setting has also attracted much noticelassical non-deterministic
automatal[l, 3, 16, 18].

The goal of the present paper is to develop a multi-weightedadic second order
(MSO) logic and to show that it is expressively equivalenintalti-weighted automata.

Buchi’s and Elgot's fundamental theorernsl[[7} 15] estélgiisthe expressive equiv-
alence of finite automata and MSO logic. Weighted MSO logithwieights taken
from an arbitrary semiring was introduced in [10] 11] andatsvghown that a fragment
of this weighted logic and semiring-weighted automata oitefiand infinite words
have the same expressive powerl[11]. Chatterjee, DoyenHandinger[[8[ 9] inves-
tigated weighted automata modeling the average and long-iehavior of systems.
The behavior of such automata cannot be described by seavirtighted automata. In
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[13,[14], valuation monoids were presented to model the tifaine behaviors of these
automata. Their logical characterization was given in [14}his paper, we establish,
both for finite and infinite words, the Biichi-type result foulti-weighted automata;
these do not fit into the framework of other weighted autorfikéasemiring automata
[2,[12,19]22], or even valuation monoid automatd [13, 14].

First, we develop a general model for multi-weighted autiamehich incorporates
several multi-weighted settings from the literature. Newe define a multi-weighted
MSO logic by extending the classical MSO logic with conssamhich could be tuples
of weights. The semantics of formulas should be single wsi¢iot tuples of weights).
Different from weighted MSO logics over semirings or valaatmonoids, this makes
it impossible to define the semantics inductively on thecstme of an MSO formula.
Instead, for finite words, we introduce an intermediate sgiosiwhich maps each word
to a finite multiset containing tuples of weights. The serizandf a formula is then
defined by applying to the multiset semantics an operatochvhvaluates a multiset
to a single value. Our Biichi-type result for multi-weigthutomata on finite words is
established by reducing it to the corresponding result 4f f@r the product valuation
monoid of finite multisets.

In the case of infinite words, it is usually not possible tdet all the information
about weights of paths in finite multisets. Therefore, wencardirectly reduce the
desired result to the proof given in [14] for infinite wordsutBve can use the result of
[14] to translate each multi-weighted formula of our logita an automaton over the
productw-valuation monoid of multisets, and we show that the weigitsansitions
in this automaton satisfy certain properties which allowtaigranslate it into a multi-
weighted automaton.

All our automata constructions are effective. Thus, deaigiroblems for multi-
weighted logic can be reduced to decision problems of mgighted automata. Some
of these problems for automata can be solved whereas faisdtfeedetails still have to
be explored.

2 Multi-weighted Automata on Finite Words

The model ofmulti-weightedor multi-priced automata is an extension of the model
of weighted automata over semiringsl[2] 12,[19, 22] and vananonoids[[13, 14] by
featuring several price parameters. In the literaturéediht situations of the behaviors
of multi-weighted automata were considered (cf/[1,/3,/5L&[17 18| 20]) to model
the consumption of several resources. For instance, theelneddnulti-priced timed
automata introduced inJ[5] permits to describe the optiratibrbetween accumulated
rewards and accumulated costs of transitions. In this@gctve introduce a general
model to describe the behaviors of multi-weighted autoroatéinite words.

Consider an automaton in which every transition carriesaare and a cost. For
paths of transitions, we are interested in the ratio betvaeeomulated rewards and ac-
cumulated costs. The automaton should assign to each wemakimal reward-cost
ratio of accepting paths om. The idea is to model the weights by elements of the set
M =R x R>o. We use a valuation functioral : M+ — M to associate to each se-
quence of such weights a single weightlih Since our automata are nondeterministic



and a word may have several accepting paths, we obtain asetulfi weights of these
paths, hence a multiset of elements frath We use an evaluator functiah which
associates to each multisetf a single value. The mappirgcan be considered as a
general summation operator. Now we turn to formal defingion

To cover also the later case of infinite words, weNet N U {co}. Let M be a set.
A multisetover M is a mapping : M — N. For eachn € M, r(m) is the number of
copies ofm in r. We letsupp(r) = {m € M | r(m) # 0}, thesupportof r. We say
that a multiset- is finite if supp(r) is finite andoo ¢ r(M). We denote the collection
of all multisets byN({(A/)) and the collection of all finite multisets by(M ).

Definition 1. Let K be a set. AK-valuation structuré)M, val, &) consists of a set/, a
valuation functiorval : M+ — M with val(m) = m for all m € M, and anevaluator
function® : N(M) — K.

A nondeterministic automatoover an alphabel is a tupleA = (Q, I, T, F') where
Q is a set ofstates I, F' C () are sets ofnitial resp.final statesand7 C Q x ¥ x @

is atransition relation Finite pathsm = (¢;)o<i<n Of A are defined as usual as fi-
nite sequences of matching transitions, say (¢, a;, ¢;+1). Then we call the word
w = apay...a, € X7 thelabel of the pathr andr a path onw. A path isacceptingf

it starts in and ends in". We denote the set of all accepting pathsbobnw ¢ X+
by Acca(w).

Definition 2. Let X' be an alphabetK a set andM = (M, val, $) a K-valuation
structure. Amulti-weighted automatoaver ¥ and M is a tuple(Q, I, T, F,~) where
(Q,I1,T,F)is anondeterministic automaton and 7' — M.

Let A be a multi-weighted automaton ovér and M, w € X andw = tg...t,
a path onw. The weightof 7 is defined byWeight ,(w) = val(v(:))o<i<n. Let
|A|(w) € N(M) be the finite multiset containing the weights of all acceptpaths
in Acca(w). Formally, | Aj(w)(m) = |[{m € Acca(w) | Weight 4(w) = m}| for
all m € M. Thebehavior||4|| : ¥* — K of A is defined for allw € X+ by
A (w) = @(|Al(w)).

Note that every weighted automaton over a valuation mordifl +, val, 0)
(cf. [13, [14]) can be considered as a multi-weighted automatver the K-
valuation structure(M,val,¢) with K = M and® : N(M) — M defined
by &(r) =3 (m | m € supp(r) andl < i < r(m)) (as usual,>. ) = 0). More-
over, multi-weighted automata extend the model of weigltemata over valuation
monoids in two directions. First, whereas the weights afgiions in multi-weighted
automata are taken frodt, the behavior is a mapping with the codomainvhere K
and M do not necessarily coincide. Second, we resolve the nomdigism in multi-
weighted automata using an evaluator functiodefined on finite multisets.

Next, we consider several examples how to describe the m@tatmulti-weighted
automata known from the literature using valuation strreguln each of the three ex-
amples below, lef’ be an alphabetM = (M, val, ) a K-valuation structure, and
a multi-weighted automaton ovér and M.

Example3.Let R = R U {-o0,c}. Let M = R x Rsg, K = R,
val((z1,91), .oy (T, Yx)) = (Zle xi,Zleyi) be the componentwise sum, agd



defined byd(r) = ( )Inax ( )% where we pu = oo andmax()) = —oo. For in-
x,y)esupp(r) °

stance, for every transition weight, y) € M, = might mean the reward andthe cost

of the transition. Thefj.A||(w) is the maximal ratio between accumulated rewards and

costs of accepting paths an The ratio setting was considered first for multi-priced

timed automate [5.,/6] and also for nondeterministic autan@:18].

Example 4.Let M = R x R, K = RU {oc} andp € R. Letval be as in the previous
example and?(r) = min{z | (z,y) € supp(r) andy < p}, forr € N(M), with
min(()) = oo. Lett be a transition ang(¢) = (z,y). We callz the primary and; the
secondary cost. Thelfd||(w) is the cheapest primary cost of reaching witrsome
final state under the given upper bound constraim R on the secondary cost. The
optimal conditional reachability problem for multi-pri¢éimed automata was studied
in [20].

Example 5.Let M = R™ for somen > 1, K = R, andval be the component-
wise sum of vectors. We define : N(M) — R as follows. Letr € N(M) and

S = supp(r). Thend(r) = 0if S = PandP(r) = % otherwise. Here, for
veE

v = (v1,...,0n), |[V]]| = \/v? + ... + v2 is the length ofs. Suppose thatl controls the
movement of some object IR* and each transitioncarries the coordinates of the dis-
placement vector of this object. Thehd4||(w) is the value of the average displacement
of the object after executing.

3 Multi-weighted MSO Logic on Finite Words

In this section, we wish to develop a multi-weighted MSO toghere the weight con-
stants are elements of a get. Again, if weight constants angairs of a reward and a
cost, the semantics of formulas must reflect the maximal néwast ratio setting, so
the weights of formulas should lsengle weightsThen, there arises a problem to define
the semantics function inductively on the structure of afigla as in[[11, 14]. We solve
this problem in the following way. We associate to each wontLétiset of elements of
M. Here, for disjunction and existential quantification, vee the multiset union. For
conjunction, we extend a product operation given on thél$éb the Cauchy product
of multisets. Similarly, for universal quantification, wetend the valuation function on
M toN(M)™*. Then, we use an evaluator functiérnwhich associates to each multiset
of elements a single value (e.g. the maximal reward-cogt cdtpairs contained in a
multiset).

As in the case of weighted MSO logics over product valuatiamaids [14], we
extend a valuation structure (cf. Definitidh 1) with a unérlent and a binary operation
in order to define the semantics of atomic formulas and of timgurction.

Definition 6. Let K be a set. Aproduct K-valuation structure K -pv-structure)
(M,val, o, 1,®) consists of ak -valuation structure(M, val, $), a constantl € M
with val(m1...1) = m for m € M, and a multiplicationo : M x M — M such that
mol=1om=mforallme M.



For the rest of this section, we fix an alphab& and a K-pv-structure

M = (M,val,o,1,P). Let V be a countable set of first and second order variables.
Lower-case letters like, y denote first order variables whereas capital lettersXik®

etc. denote second order variables. The syntamudfi-weighted MSO logiover X’ and

M is defined as in [4] by the grammar:

Bu=P(x)|z<ylzeX|-B|BAB|VzB|VXS
pu=m|BleVeleAe|Tep| Vo | IXe

wherea € ¥, m € M, z,y, X € V. The formulas3 are calledbooleanformulas and
the formulasy multi-weighted MS&ormulas. Note that negation and universal second
order quantification are allowed in boolean formulas onlgtéNalso that the boolean
formulas have the same expressive power as (unweighted) IBEEO

The class oalmost booleafiormulas over” and M is the smallest class containing
all constantsn € M and all boolean formulas and which is closed undemdv. A
multi-weighted MSO formulg is syntactically restrictedf whenever it contains a sub-
formulavzy, theny is almost boolean, and if for every subformulan - of ¢ either
bothy, andy, are almost boolean, gr; or ¢ is boolean.

The setFree(p) of free variables iny is defined as usual. Far € YT, let
dom(w) = {0, ..., |Jw|-1}. Let V be a finite set of variables withree(¢) C V. A
(V,w)-assignments a mappingr : V — dom(w) U 29°™(®) where every first or-
der variable is mapped to an elementoin(w) and every second order variable to a
subset oflom(w). The updater[x/i] for i € dom(w) is defined asv[z/i](z) = ¢ and
olz/illw{zy = olv\{z}- The update for second order variables can be defined simi-
larly. Each paifw, o) of a word and ), w)-assignment can be encoded as a word over
the extended alphabe, = X x {0,1}. Note that a wordw, 0) € X\; represents
an assignment if and only if, for every first order variablé/inthe corresponding row
in the extended word contains exactly one 1; theno) is calledvalid. The set of alll
valid words inE{j is denoted byVy,. We also denote by, the alphabelp,cq(y)-

Consider again the collectidi(M) of all finite multisets oved/. Here, we con-
sider the set of natural numbers as the semirfiNg+,-,0,1) where+ and - are
usual addition and multiplication. Thenion (r; @© r2) € N(M) of finite multisets
r1,72 € N(M) is defined by(r1 @ r2)(m) = r1(m) +r2(m) forallm € M. We define
theCauchy productr; - r2) € N(M) of two finite multisets-y, r, € N(M) by

(r1-ra)(m) = Z (ri(mq) - ro(ma) | m1,ma € M,mq oma =m).

Note that in the equation above there are finitely many noo-gemmands, because
the multisets, andr;, are finite. Letn > 1 andry, ..., 7, € N(M). We also define the
valuationval(ry, ..., 7,) € N(M) by

val(ry, ..., mn)(m) = Z (H;l ri(mg) | mi,...,m, € M,val(mq,...,m,) = m) )

Note that the right side of the equation above also contaihg finitely many non-
zero summands. Thempty multiset is the finite multiset whose support is empty. A
simple multisebver M is a finite multiset- € N(M) such thasupp(r) = {m,} and



(m)y(w,0)=[m
(p1Vep2)v(w,0)={p1)v(w,0)B(p2)v(w,0)

v ,,)_{11 0o =0 o Ay (w,0) = 1)y (w,0)- {2)v (w,0)
3z w,o)= Ufzy(w, oz /i
1], if o(z) < o(y), Bee)v( )iegg(iﬁ)@v (3 (w, o[z /i])
(e<yv(w,o)= otherwise
(3Xe)v(w,0)= P (P)vurxy(w, olX/1])
(xeX)y(w, o'),{ Ift‘;(m) 6 a(X), ICdom (w) ‘
e (Vi) v (w,0) =val () v oy (0. 12/1) s g ooy
A, ")‘{[e 1A,y =e,  (9XB)y (o) =val (B)vop(woTX/ D) caomn

Table 1. The auxiliary multiset semantics of multi-weighted MSOnfarlas over a pv-structure

r(m,) =1, sor(m) = 0 for all m # m,. We denote such a simple multiseby [m,].
The collection of all simple multisets ovéf is denoted byMon(M).

As opposed to the case of pv-monoidsl|[14], the pv-structdreloes not contain
a commutative and associative sum operation to define tharg@s of the disjunc-
tion and the existential quantification. For this, we emgloy sum of multisets. Lep
be a multi-weighted formula oveX’ and M, andV D Free(y). We define the auxil-
iary multiset semantics functiofy)y : qu — N(M) relying on the ideas of [11] (cf.
also [14]) as follows: for allw, o) ¢ Ny, (p)v(w,o) = e and, for all(w, o) € Ny,
{p)y(w, o) is defined inductively as shown in Talile 1. Heiey, X € V,a € X,
m € M, 3 is a boolean formula angd, ¢, 2 are multi-weighted formulas. In Tatlé 1,
for the semantics 6f X ¢ the subset$ C dom(w) are enumerated in some fixed order,
e.g. lexicographically. For a formula, we put(p) = (©)rree(,)- Then, we define the
semanticg(y)) : X¥F — K as the compositiof{y)) = @ o ().

Example 7.Let A be an object on the plane whose displacement is managed by two
types of commands: and{. After receiving the commane: the object moves one
step to the left or to the right; after receiviggone step up or down. Consider tRe
valuation structuréR?, val, @) from Examplelb. We define as the componentwise
sum of vectors and put = (0,0). Then,M = (R?,val, ¢, 1, ®) is anR-pv-structure.
Consider the following multi-weighted MSO sentence over éfphabet” = {«+,1}

and theR-pv-structureM:

p = Va((Pe (z) = ((=1,0) v (1,0))) A (Py(z) = ((0,=1) V (0,1))))

where, for a boolean formulaand a multi-weighted formulg, 8 — ¢ is an abbrevi-
ation for(3 A+) vV —3. For every sequence of commands X+, the multiset(y) (w)
contains all possible displacement vectors of the objestekample, letv =«»<». The
object has 4 possibilities to move: 1) two steps to the rightne step to the right and
then to the home position; 3) one step to the left and thengdtime position; 4) two
steps to the left. Thefy)(w) = [(2,0), (0,0),(0,0), (—2,0)]. The average displace-
ment of the object is given by¢)) for each sequence of commandsFor example,

{Ph(ee) =1 (eh(¢7) = V2.



Note that the multi-weighted MSO logic ovéf-pv-structures contains the case of
weighted MSO logic over semirings (cf.[10,]/11]). Hence, engral, multi-weighted
MSO logic is expressively more powerful than multi-weightaitomata.

Our main result for finite words is the following theorem.

Theorem 8. Let X be an alphabetK a set,M = (M, val, o, 1,®) a K-pv-structure
ands: ¥ *— K. Thens = ||.A|| for some multi-weighted automatgrover X and M

iff s = ((¢)) for a syntactically restricted multi-weighted MSO sentepover X' and
M.

The proof is similar to the proof of the corresponding TheolEd for infinite words.
For lack of space, we skip it.
We consider examples of decision problems for multi-wesgh¥1SO logic.

Example 9.Let & be an alphabet and = (Q x Q>g, val, ¢, (0,0),®) the R-pv-
structure where is the componentwise sum, angl and® are defined as in Example
[3. Lety be a multi-weighted MSO sentence oveand M, andr € Q athreshold. The
> v-emptiness probleris whether there exists a word € X+ such that(y)) (w) > v.

If ¢ is syntactically restricted, then, using our Theofdm 8, ae effectively translate
 into a multi-weighted automaton ov&rand.M. Then>v-emptiness for these multi-
weighted automata can be decided in the following way. Fivstuse a shortest path
algorithm to decide whether there exists a path with 6pse. || A||(w) = 0o > v for
someuw. If this is not the case (i.e. the costs of all accepting pathé are strictly pos-
itive), we use the same technique as for the-emptiness problem for ratio automata
with strictly positive costs (cf[[18], Theorem 3). We regdathe weigh{r, ¢) of every
transition by the single value— vc and obtain a weighted automatdh over the max-
plus semiringQ U {—oc}. Then,||A||(w) > v iff the semiring-behavior of’ onw is
not less than zero. Then, the decidability of our problerfofies from the decidability
of the >0-emptiness problem for max-plus automata.

Example 10.Let X be an alphabet antt = (Q?,val, ¢, (0,0), ¢) whereo is the com-
ponentwise sum, anchl and® are as in Examplgl 4. Again, using our Theofém 8, we
can reduce thelv-emptiness problem (defined similarly as in Exaniple 9) fartay-
tically restricted multi-weighted MSO logic over and M to the emptiness problem
for multi-weighted automata. This problem is decidablecsithe optimal conditional
reachability for multi-priced timed automata is decidd2i@].

4 Multi-weighted Automata and MSO Logic on Infinite Words

In this section, we develop a general model for both multighted automata and MSO
logic on infinite words. Recall that, for a sef, N{(M)) is the collection of all multisets
over M. Let M“ denote the set of alb-infinite words overM.

Definition 11. Let K be a set. AproductK -w-valuation structure K -w-pv structure)
is atuple(M, val”, o, 1, ) where

- Misasetl € M and® : N(M)) — K;



— val” : M¥ — M with val* (m1%¥) = m forall m € M,
—o:Mx M — Msuchthatnol =1¢om =mforall m € M.

A Muller automatonover an alphabef is a tupleA = (Q,I,T,F) where @
is a set of states] C (@ is a set of initial states]” C Q x XY x Q is a
transition relation andr C 29 is a Muller acceptance conditiomnfinite paths
m = (ti)icw Of A are defined as infinite sequences of matching transitions, sa
t; = (¢i, ai,qi+1). Then we call the wordv = (a;);e., the label of the pathr and
m a path onw. We say that a patlh = (g;, ai, ¢i+1)icw is acceptingif ¢o € I and
{g € Q | ¢ = ¢, forinfinitely manyi € w} € F. Let Acc4(w) denote the set of all
accepting paths afl onw.

For the rest of this section, we fix an alphab®t and a K-w-pv structure
M = (M,val” ¢, 1, D).

Definition 12. A multi-weighted Muller automatorover X~ and M is a tuple
A=(Q,I,T,F,v)where(Q, I,T,F)is aMullerautomatonand : T — M.

Let.4 be a multi-weighted Muller automaton ovBrand M, w € X andr = (t;)icw
an accepting path om. Theweightof 7 is defined byWeight 4(7) = val” (v(¢;))icw-
Let |A|(w) € N{M) be the multiset containing the weights of pathsAiac 4 (w).
Formally, |A|(w)(m) = [{m € Acca(w) | Weight 4,(w) = m}| where, for an infinite
setX, we put| X | = co. Thebehaviorof A is thew-serieg | A|| : X — K defined by
[ A[(w) = B(|A| (w)).

Remark 13.The multiplication ¢, the wunital elementl1 and the condition
val”(m1*) = m are irrelevant for the definition of the behaviors of mulgighted au-
tomata. However, they will be used to describe the semaationulti-weighted MSO
formulas.

We consider several examples of multi-weighted autondatever > and M, and their
behaviors.

Example 14.Consider the reward-cost ratio setting of Exanigle 3 for itdimvords.

For a sequencér;,c;)ic € (R x R>o)“ of reward-cost pairs, theupremum ra-

tio (cf. [9])) is defined bylim sup %i—“z €R where g = oco. Unfortunately, since
i=0 "~

n—oo
Sooomi and - ¢; may not exist or may be infinite, we cannot proceed as for fi-
nite words by considering pairs of accumulated rewards astsand their ratios. In-
stead, we can defing1 as follows. LetM = R x Rsg, K = Rand1 = (0,0).
Let p = (74, ¢)icw € (R X Rso)¥. If >0 r andd 2 ¢; are finite, then we put

val(p) = (Yoo T, Doiep Ci). Otherwise, we putal”(p) = <lim sup %Z:“ - 1>.
n—00 =0 "%

For sequencesr € M“ \ (R x Rx¢)“, we defineval”(p) arbitrarily keeping
val”(m1*) = m. Let alsoc be the componentwise sum whexet (-oo) is defined ar-

bitrarily. The evaluator functio® is defined byd(r) = sup  £.Then,[|A[|(w)
(z,y)€supp(r) *
is the maximal supremum ratio of accepting pathsofhe corresponding model for

timed automata was considered|[in([5, 6].



Example 15.Let Eyax = (Bl EN.y) € 2" whereE: > 0 for all i, and
M = [~Emax, Emax] € 77, i.e. M consists of all vectorgv!,...,v™) € Z™ such
that—E! < v* < Ei foreachi € {1,...,n}. Let K = B = {falsetrue}, the
boolean semiring antl = (0, ..., 0). Foru; = (u}, ...,u}) andug = (ud, ..., u%) € M,
we putu; o ug = (vl,...,v") wherev’ = max{min{u} + v}, Ei _} —FE¢ }. For
(m;)icw € M* we define the sequenée;);c., in M as follows. We put, = (0, ..., 0)
andv; 11 = v; om; foralli € w. Then, letval”((m;)icw) = (..., 2™) € M where
) = inf{v! | i € w}foralll < j < n.Letd be defined byb(r) = true iff there
exists(m!,...,m") € supp(r) with m? > 0forall 1 < j < n. This model corresponds
to the one-player energy games considered ih [16].

The syntax of thenulti-weighted MSO logiover >’ and M is defined exactly as for
finite words (cf. Section 3). To define the semantics of thygdpwe proceed similarly as
for finite words, i.e. by means of the auxiliary multiset seuizs. For this, we consider
N as the totally complete semirir{ty, +, -, 0, 1) (cf. [11]) where0 - co=00-0=0. The
sum@ and the Cauchy produefor infinite multisets fromN({(A/)) are defined as for
finite words. Thev-valuationval” (r;)c., for r; € N{M)) is defined for alln € M by

val“ ((ra)iec)m) = 3 (T ritma) | (modiew € M andval® (mo)icy = m)

Theempty multiset € N{ M) andsimple multiset$m] € N({(M)) (for m € M) are
defined in the same way as for finite words. Mn(M) = {[m] | m € M}.

Let ¢ be a multi-weighted MSO formula over' and M, and) 2 Free(p). We
define the auxiliary multiset semantigs),, : X% — N({(M)) inductively on the struc-
ture of » as in Tabld ]l where we have to replacg by val”. Forw € X%, we let
dom(w) = w. To define the semanti¢¥ X ¢), we have to extendal®” for multisets to
index sets of size continuum such that” ((r;);c;) = € whenever; = ¢ for some
i € I, andval”(([1])ier) = [1]. Thesemantic®f ¢ is defined by(p)) = @ o (p).

Example 16.Assume that a bus can operate two routes A and B which stareaed
at the same place. The route R lagtstime units and profitg money units on the
average per trip, foR € {A, B}. We may be interested in making an infinite schedule
for this bus which is represented as an infinite sequence frdniB}«. This schedule
must be fair in the sense that both routes A and B must occunitiglff often in this
timetable (even if the route A or B is unprofitable). The oglity of the schedule is
also preferred (we wish to profit per time unit as much as ptesiWe consider the
K-w-pv structureM from Exampld_ 14 and a one-element alphabet {7} which
is irrelevant here. Now we construct a weighted MSO sentenoger ' and M to
define the optimal income of the bus per time unit (supremuio tetween rewards
and time):

Y= HX(OEOx(:veX) A Oﬂox(xgéX) AVz((reX —(pa,ta)) A (x%X%(pB,tB)))

whereoﬂoxw is an abbreviation for a boolean formwg(—Vz(—(y < = A v))). Here,
the second order variabl€ corresponds to the set of positions in an infinite schedule



mwMA (X, M) <L> wMA (X, Mon(M)) <L> wMA (X, N(M))

(i) l(w) %

mwMSO"™(X, M) «<—> wMSO"™(X, Mon(M))

Fig. 1. The proof scheme of Theordml17

which can be assigned to the route A. Then,

. Iﬂ_ . Icﬂ_
|<P|(Tw)—sup{limsuppA | n| +pB - | 7|

— — | I € Nwith I, I¢ infinite
n—o00 tA' |Iﬁn|+tB-|ICﬂn|

wheren = {0, ...,n} andI® = N\ I.
Now we state our main result for infinite words.

Theorem 17. Let X be an alphabetK a set andM = (M, val”,¢,1,®) a K-w-pv
structure. Lets : ¥ — K be anw-series. Thers = ||.A|| for some multi-weighted
Muller automatonA over X and M iff s = {(¢)) for some syntactically restricted
multi-weighted MSO sentengeover X’ and M.

In the rest of this section, we give the proof idea of this teea LetmwMA (X, M)
denote the collection of all multi-weighted Muller automatver > and M. Let
A € mwMA (X, M). We can considelA| as anw-series|A| : X% — N({M)). We
call |.A| the multiset-behavioof A. Then||A|| = & o |A|]. Let mwMSO"%( X, M)
denote the set of all syntactically restricted multi-weeghMSO sentences ovérand
M. Since, for any multi-weighted formula, (¢) = & o (), it suffices to show
that mwMA (X, M) with the multiset-behavior aneahwMSO™( X, M) with the
multiset-semantics are expressively equivalent.

For this, we can show th@iN({(M ), @, val®, -, ¢, [1]) is anw-pv monoid as defined
in [14]. Let D C N{M)). We denote bywMA (X, D) the collection of weighted au-
tomata overr” and thew-pv monoidN (M) where the weights of transitions are taken
from D. LetwMSO™( X, D) denote the set of syntactically restricted sentences over
X and thew-pv monoidN{ M) with constants fronD. Let [] denote the semantics
of p € wMSO™(X, M) as defined in[14]. The proof scheme of our result is depicted
in Fig.[d. Here+> means the expressive equivalence anthe expressive inclusion.

(i) If we replace the weight: € M of every transition of a multi-weighted automaton
A by the simple multisefrn] € Mon(M), we obtain a weighted automato4f
over the pv monoidN{A/) such that the pv-monoid behavior df is equal to].4].
Conversely, we can replace the weightsg in A’ by m to obtain a multi-weighted
automaton with the same behavior.

(ii) Similarly to (i), we replace the constants occurring in MSO formulas by simple
multisets[m] and vice versa.

(i) The proof is based on the proof of Theorem 6.2 (a) of Deoand Meinecke
[14]. We proceed inductively on the structure ofe wMSO™ (X, Mon(M)).



Using the propertwal®(m1¥) = m for m € M, we show that every almost
boolean formula is equivalent to a weighted Muller automatith weights from
Mon(M) C N(M). Let p, p1 andy, be weighted MSO formulas with constants
from Mon(M) such thaf¢], [¢1] and[e2] are recognizable by weighted Muller
automata with weights fron C N({M/)). Let 3 be any boolean formula. It can
be shown thajy: V @], [ze], [3X¢] and]e A 8] = [ A ¢] are also recog-
nizable by weighted Muller automata with weights frdm|f ¢ is almost boolean,
then [¢] is anw-recognizable step function with coefficients fraw{A/). Using
the construction of Lemma 8.11 6f[11], cf. Theorem 6.2 of|[I¥e establish that
[Vz] is recognizable by a weighted automaton with weights frofi/ ).
(iv) The proof follows from Theorem 6.2 of [14] where a weigtautomaton with
weights inD C N{(M ))was translated into an MSO sentence with weight®in
(v) Let A = (Q,I,T,F,v) € wMA(X,N(M)). We construct an automaton
A =(Q,I'\T",F',v') € wMA(X, Mon(M)) with the same behavior by un-
folding each single transition ofl labeled by a finite multiset into several tran-
sitions labeled by elements of this multiset as follows.
o Q' =1U{(g,m,i):t=(p,a,q) € T,m € supp(y(t)),1 <i < ~(t)(m)}
o I'=1F ={{(qr,m1,k1), -, (@, Mn, k) } CQ'\ T | {q1,..,qn} € F}.
o T = T U Ty, whereT; consists of all transitiongp, a, (¢, m,4)) from
I x X x (Q \I) with (p,a,q) € T, T, consists of all transitions
((ql, ml,il), a, (QQ,mQ, 22)) from (Q/\I) X X X (Q/\I) with (ql, a, QQ) eT.
e Forallt = (¢, a,(q,m,i)) € T', lety'(t) = [m].

5 Conclusion

We have extended the use of weighted MSO logic to a new clagssutif-weighted
settings. We just note that, as in [14], fArpv-structures andk -w-pv structures with
additional properties there are larger fragments of mudtighted MSO logic which are
still expressively equivalent to multi-weighted automéance our translations from
formulas to automata are effective, we can reduce the deaititggroblems for multi-
weighted logics to the corresponding problems for multighted automata. Decid-
ability results of, e.g.,[15, 16, 18, 20] lead to decidabiliesults for multi-weighted
nondeterministic automata. However, for infinite wordg #uthors did not consider
Muller acceptance condition for automata. Therefore, ature work will investigate
decision problems for multi-weighted Muller automata.&\lereighted MSO logic for
weighted timed automata was investigatedin [21]. In outhfeirwork, we wish to com-
bine the ideas of[21] and the current work to obtain a Bilehotem for multi-weighted
timed automata.
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