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Abstract. Weighted automata are non-deterministic automata where the transi-
tions are equipped with weights. They can model quantitative aspects of systems
like costs or energy consumption. The value of a run can be computed, for ex-
ample, as the maximum, limit average, or discounted sum of transition weights.
In multi-weighted automata, transitions carry several weights and can model, for
example, the ratio between rewards and costs, or the efficiency of use of a pri-
mary resource under some upper bound constraint on a secondary resource. Here,
we introduce a general model for multi-weighted automata aswell as a multi-
weighted MSO logic. In our main results, we show that this multi-weighted MSO
logic and multi-weighted automata are expressively equivalent both for finite and
infinite words. The translation process is effective, leading to decidability results
for our multi-weighted MSO logic.

Keywords: Multi-priced automata, quantitative logic, average behavior, power
series

1 Introduction

Recently, multi-priced timed automata [5, 6, 17, 20] have received much attention for
real-time systems. These automata extend priced timed automata by featuring several
price parameters. This permits to compute objectives like the optimal ratio between
rewards and costs [5, 6], or the optimal consumption of several resources where more
than one resource must be restricted [20]. Arising from the model of timed automata,
the multi-weighted setting has also attracted much notice for classical non-deterministic
automata [1, 3, 16, 18].

The goal of the present paper is to develop a multi-weighted monadic second order
(MSO) logic and to show that it is expressively equivalent tomulti-weighted automata.

Büchi’s and Elgot’s fundamental theorems [7, 15] established the expressive equiv-
alence of finite automata and MSO logic. Weighted MSO logic with weights taken
from an arbitrary semiring was introduced in [10, 11] and it was shown that a fragment
of this weighted logic and semiring-weighted automata on finite and infinite words
have the same expressive power [11]. Chatterjee, Doyen, andHenzinger [8, 9] inves-
tigated weighted automata modeling the average and long-time behavior of systems.
The behavior of such automata cannot be described by semiring-weighted automata. In
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[13, 14], valuation monoids were presented to model the quantitative behaviors of these
automata. Their logical characterization was given in [14]. In this paper, we establish,
both for finite and infinite words, the Büchi-type result formulti-weighted automata;
these do not fit into the framework of other weighted automatalike semiring automata
[2, 12, 19, 22], or even valuation monoid automata [13, 14].

First, we develop a general model for multi-weighted automata which incorporates
several multi-weighted settings from the literature. Next, we define a multi-weighted
MSO logic by extending the classical MSO logic with constants which could be tuples
of weights. The semantics of formulas should be single weights (not tuples of weights).
Different from weighted MSO logics over semirings or valuation monoids, this makes
it impossible to define the semantics inductively on the structure of an MSO formula.
Instead, for finite words, we introduce an intermediate semantics which maps each word
to a finite multiset containing tuples of weights. The semantics of a formula is then
defined by applying to the multiset semantics an operator which evaluates a multiset
to a single value. Our Büchi-type result for multi-weighted automata on finite words is
established by reducing it to the corresponding result of [14] for the product valuation
monoid of finite multisets.

In the case of infinite words, it is usually not possible to collect all the information
about weights of paths in finite multisets. Therefore, we cannot directly reduce the
desired result to the proof given in [14] for infinite words. But we can use the result of
[14] to translate each multi-weighted formula of our logic into an automaton over the
productω-valuation monoid of multisets, and we show that the weightsof transitions
in this automaton satisfy certain properties which allow usto translate it into a multi-
weighted automaton.

All our automata constructions are effective. Thus, decision problems for multi-
weighted logic can be reduced to decision problems of multi-weighted automata. Some
of these problems for automata can be solved whereas for others the details still have to
be explored.

2 Multi-weighted Automata on Finite Words

The model ofmulti-weighted(or multi-priced) automata is an extension of the model
of weighted automata over semirings [2, 12, 19, 22] and valuation monoids [13, 14] by
featuring several price parameters. In the literature, different situations of the behaviors
of multi-weighted automata were considered (cf. [1, 3, 5, 6,16, 17, 18, 20]) to model
the consumption of several resources. For instance, the model of multi-priced timed
automata introduced in [5] permits to describe the optimal ratio between accumulated
rewards and accumulated costs of transitions. In this section, we introduce a general
model to describe the behaviors of multi-weighted automataon finite words.

Consider an automaton in which every transition carries a reward and a cost. For
paths of transitions, we are interested in the ratio betweenaccumulated rewards and ac-
cumulated costs. The automaton should assign to each word the maximal reward-cost
ratio of accepting paths onw. The idea is to model the weights by elements of the set
M = R × R≥0. We use a valuation functionval : M+ → M to associate to each se-
quence of such weights a single weight inM . Since our automata are nondeterministic



and a word may have several accepting paths, we obtain a multiset of weights of these
paths, hence a multiset of elements fromM . We use an evaluator functionΦ which
associates to each multiset ofM a single value. The mappingΦ can be considered as a
general summation operator. Now we turn to formal definitions.

To cover also the later case of infinite words, we letN = N∪ {∞}. LetM be a set.
A multisetoverM is a mappingr : M → N. For eachm ∈M , r(m) is the number of
copies ofm in r. We letsupp(r) = {m ∈ M | r(m) 6= 0}, thesupportof r. We say
that a multisetr is finite if supp(r) is finite and∞ /∈ r(M). We denote the collection
of all multisets byN〈〈M〉〉 and the collection of all finite multisets byN〈M〉.
Definition 1. LetK be a set. AK-valuation structure(M, val, Φ) consists of a setM , a
valuation functionval :M+ → M with val(m) = m for all m ∈M , and anevaluator
functionΦ : N〈M〉 → K.

A nondeterministic automatonover an alphabetΣ is a tupleA = (Q, I, T, F ) where
Q is a set ofstates, I, F ⊆ Q are sets ofinitial resp.final statesandT ⊆ Q×Σ ×Q
is a transition relation. Finite pathsπ = (ti)0≤i≤n of A are defined as usual as fi-
nite sequences of matching transitions, sayti = (qi, ai, qi+1). Then we call the word
w = a0a1...an ∈ Σ+ the label of the pathπ andπ a path onw. A path isacceptingif
it starts inI and ends inF . We denote the set of all accepting paths ofA onw ∈ Σ+

byAccA(w).

Definition 2. Let Σ be an alphabet,K a set andM = (M, val, Φ) a K-valuation
structure. Amulti-weighted automatonoverΣ andM is a tuple(Q, I, T, F, γ) where
(Q, I, T, F ) is a nondeterministic automaton andγ : T →M .

Let A be a multi-weighted automaton overΣ andM, w ∈ Σ+ andπ = t0...tn
a path onw. The weight of π is defined byWeightA(w) = val(γ(ti))0≤i≤n. Let
|A|(w) ∈ N〈M〉 be the finite multiset containing the weights of all accepting paths
in AccA(w). Formally, |A|(w)(m) = |{π ∈ AccA(w) | WeightA(π) = m}| for
all m ∈ M . The behavior||A|| : Σ+ → K of A is defined for allw ∈ Σ+ by
||A||(w) = Φ(|A|(w)).

Note that every weighted automaton over a valuation monoid(M,+, val, 0)
(cf. [13, 14]) can be considered as a multi-weighted automaton over theK-
valuation structure(M, val, Φ) with K = M and Φ : N〈M〉 → M defined
by Φ(r) =

∑

(m | m ∈ supp(r) and1 ≤ i ≤ r(m)) (as usual,
∑ ∅ = 0). More-

over, multi-weighted automata extend the model of weightedautomata over valuation
monoids in two directions. First, whereas the weights of transitions in multi-weighted
automata are taken fromM , the behavior is a mapping with the codomainK whereK
andM do not necessarily coincide. Second, we resolve the nondeterminism in multi-
weighted automata using an evaluator functionΦ defined on finite multisets.

Next, we consider several examples how to describe the behavior of multi-weighted
automata known from the literature using valuation structures. In each of the three ex-
amples below, letΣ be an alphabet,M = (M, val, Φ) aK-valuation structure, andA
a multi-weighted automaton overΣ andM.

Example 3.Let R = R ∪ {−∞,∞}. Let M = R × R≥0, K = R,

val((x1, y1), ..., (xk, yk)) =
(

∑k
i=1 xi,

∑k
i=1 yi

)

be the componentwise sum, andΦ



defined byΦ(r) = max
(x,y)∈supp(r)

x
y where we putx0 = ∞ andmax(∅) = −∞. For in-

stance, for every transition weight(x, y) ∈M , x might mean the reward andy the cost
of the transition. Then||A||(w) is the maximal ratio between accumulated rewards and
costs of accepting paths onw. The ratio setting was considered first for multi-priced
timed automata [5, 6] and also for nondeterministic automata [3, 18].

Example 4.LetM = R × R, K = R ∪ {∞} andp ∈ R. Let val be as in the previous
example andΦ(r) = min{x | (x, y) ∈ supp(r) andy ≤ p}, for r ∈ N〈M〉, with
min(∅) = ∞. Let t be a transition andγ(t) = (x, y). We callx the primary andy the
secondary cost. Then||A||(w) is the cheapest primary cost of reaching withw some
final state under the given upper bound constraintp ∈ R on the secondary cost. The
optimal conditional reachability problem for multi-priced timed automata was studied
in [20].

Example 5.Let M = Rn for somen ≥ 1, K = R, and val be the component-
wise sum of vectors. We defineΦ : N〈M〉 → R as follows. Letr ∈ N〈M〉 and

S = supp(r). ThenΦ(r) = 0 if S = ∅ andΦ(r) =
∑

v∈S
r(v)·||v||

∑

v∈S
r(v) otherwise. Here, for

v = (v1, ..., vn), ||v|| =
√

v21 + ...+ v2n is the length ofv. Suppose thatA controls the
movement of some object inRn and each transitiont carries the coordinates of the dis-
placement vector of this object. Then,||A||(w) is the value of the average displacement
of the object after executingw.

3 Multi-weighted MSO Logic on Finite Words

In this section, we wish to develop a multi-weighted MSO logic where the weight con-
stants are elements of a setM . Again, if weight constants arepairs of a reward and a
cost, the semantics of formulas must reflect the maximal reward-cost ratio setting, so
the weights of formulas should besingle weights. Then, there arises a problem to define
the semantics function inductively on the structure of a formula as in [11, 14]. We solve
this problem in the following way. We associate to each word amultiset of elements of
M . Here, for disjunction and existential quantification, we use the multiset union. For
conjunction, we extend a product operation given on the setM to the Cauchy product
of multisets. Similarly, for universal quantification, we extend the valuation function on
M+ to N〈M〉+. Then, we use an evaluator functionΦ which associates to each multiset
of elements a single value (e.g. the maximal reward-cost ratio of pairs contained in a
multiset).

As in the case of weighted MSO logics over product valuation monoids [14], we
extend a valuation structure (cf. Definition 1) with a unit element and a binary operation
in order to define the semantics of atomic formulas and of the conjunction.

Definition 6. Let K be a set. Aproduct K-valuation structure (K-pv-structure)
(M, val, ⋄, 1, Φ) consists of aK-valuation structure(M, val, Φ), a constant1 ∈ M
with val(m1...1) = m for m ∈ M , and a multiplication⋄ : M ×M → M such that
m ⋄ 1 = 1 ⋄m = m for all m ∈M .



For the rest of this section, we fix an alphabetΣ and a K-pv-structure
M = (M, val, ⋄, 1, Φ). Let V be a countable set of first and second order variables.
Lower-case letters likex, y denote first order variables whereas capital letters likeX,Y
etc. denote second order variables. The syntax ofmulti-weighted MSO logicoverΣ and
M is defined as in [4] by the grammar:

β ::= Pa(x) | x ≤ y | x ∈ X | ¬β | β ∧ β | ∀xβ | ∀Xβ
ϕ ::= m | β | ϕ ∨ ϕ | ϕ ∧ ϕ | ∃xϕ | ∀xϕ | ∃Xϕ

wherea ∈ Σ, m ∈ M , x, y,X ∈ V . The formulasβ are calledbooleanformulas and
the formulasϕ multi-weighted MSO-formulas. Note that negation and universal second
order quantification are allowed in boolean formulas only. Note also that the boolean
formulas have the same expressive power as (unweighted) MSOlogic.

The class ofalmost booleanformulas overΣ andM is the smallest class containing
all constantsm ∈ M and all boolean formulas and which is closed under∧ and∨. A
multi-weighted MSO formulaϕ is syntactically restrictedif whenever it contains a sub-
formula∀xψ, thenψ is almost boolean, and if for every subformulaϕ1∧ϕ2 of ϕ either
bothϕ1 andϕ2 are almost boolean, orϕ1 orϕ2 is boolean.

The setFree(ϕ) of free variables inϕ is defined as usual. Forw ∈ Σ+, let
dom(w) = {0, ..., |w|-1}. Let V be a finite set of variables withFree(ϕ) ⊆ V . A
(V , w)-assignmentis a mappingσ : V → dom(w) ∪ 2dom(w) where every first or-
der variable is mapped to an element ofdom(w) and every second order variable to a
subset ofdom(w). The updateσ[x/i] for i ∈ dom(w) is defined as:σ[x/i](x) = i and
σ[x/i]|V\{x} = σ|V\{x}. The update for second order variables can be defined simi-
larly. Each pair(w, σ) of a word and(V , w)-assignment can be encoded as a word over
the extended alphabetΣV = Σ × {0, 1}V . Note that a word(w, σ) ∈ Σ+

V represents
an assignment if and only if, for every first order variable inV , the corresponding row
in the extended word contains exactly one 1; then(w, σ) is calledvalid. The set of all
valid words inΣ+

V is denoted byNV . We also denote byΣϕ the alphabetΣFree(ϕ).
Consider again the collectionN〈M〉 of all finite multisets overM . Here, we con-

sider the set of natural numbers as the semiring(N,+, ·, 0, 1) where+ and · are
usual addition and multiplication. Theunion (r1 ⊕ r2) ∈ N〈M〉 of finite multisets
r1, r2 ∈ N〈M〉 is defined by(r1⊕r2)(m) = r1(m)+r2(m) for allm ∈M . We define
theCauchy product(r1 · r2) ∈ N〈M〉 of two finite multisetsr1, r2 ∈ N〈M〉 by

(r1 · r2)(m) =
∑

(r1(m1) · r2(m2) | m1,m2 ∈M,m1 ⋄m2 = m) .

Note that in the equation above there are finitely many non-zero summands, because
the multisetsr1 andr2 are finite. Letn ≥ 1 andr1, ..., rn ∈ N〈M〉. We also define the
valuationval(r1, ..., rn) ∈ N〈M〉 by

val(r1, ..., rn)(m) =
∑

(

∏n

i=1
ri(mi) | m1, ...,mn ∈M, val(m1, ...,mn) = m

)

.

Note that the right side of the equation above also contains only finitely many non-
zero summands. Theempty multisetε is the finite multiset whose support is empty. A
simple multisetoverM is a finite multisetr ∈ N〈M〉 such thatsupp(r) = {mr} and



〈m〉V(w,σ)=[m]

〈Pa(x)〉V(w,σ)=

{

[1], if wσ(x) =a,

ε, otherwise

〈x≤y〉V(w,σ)=

{

[1], if σ(x) ≤ σ(y),

ε, otherwise

〈x∈X〉V(w,σ)=

{

[1], if σ(x) ∈ σ(X),

ε, otherwise

〈¬β〉V(w,σ)=

{

[1], if 〈β〉V(w,σ)=ε,

ε, otherwise

〈ϕ1∨ϕ2〉V(w,σ)=〈ϕ1〉V(w,σ)⊕〈ϕ2〉V(w,σ)

〈ϕ1∧ϕ2〉V(w,σ)=〈ϕ1〉V(w,σ)·〈ϕ2〉V(w,σ)

〈∃xϕ〉V(w,σ)=
⊕

i∈dom(w)

〈ϕ〉V∪{x}(w, σ[x/i])

〈∃Xϕ〉V(w,σ)=
⊕

I⊆dom(w)

〈ϕ〉V∪{X}(w, σ[X/I])

〈∀xϕ〉V(w,σ)=val
(

〈ϕ〉V∪{x}(w,σ[x/i])
)

i∈dom(w)

〈∀Xβ〉V(w,σ)=val
(

〈β〉V∪{X}(w,σ[X/I])
)

I⊆dom(w)

Table 1.The auxiliary multiset semantics of multi-weighted MSO formulas over a pv-structure

r(mr) = 1, sor(m) = 0 for all m 6= mr. We denote such a simple multisetr by [mr].
The collection of all simple multisets overM is denoted byMon(M).

As opposed to the case of pv-monoids [14], the pv-structureM does not contain
a commutative and associative sum operation to define the semantics of the disjunc-
tion and the existential quantification. For this, we employthe sum of multisets. Letϕ
be a multi-weighted formula overΣ andM, andV ⊇ Free(ϕ). We define the auxil-
iary multiset semantics function〈ϕ〉V : Σ+

V → N〈M〉 relying on the ideas of [11] (cf.
also [14]) as follows: for all(w, σ) /∈ NV , 〈ϕ〉V (w, σ) = ε and, for all(w, σ) ∈ NV ,
〈ϕ〉V (w, σ) is defined inductively as shown in Table 1. Here,x, y,X ∈ V , a ∈ Σ,
m ∈M , β is a boolean formula andϕ, ϕ1, ϕ2 are multi-weighted formulas. In Table 1,
for the semantics of∀Xϕ the subsetsI ⊆ dom(w) are enumerated in some fixed order,
e.g. lexicographically. For a formulaϕ, we put〈ϕ〉 = 〈ϕ〉Free(ϕ). Then, we define the
semantics〈〈ϕ〉〉 : Σ+

ϕ → K as the composition〈〈ϕ〉〉 = Φ ◦ 〈ϕ〉.

Example 7.Let A be an object on the plane whose displacement is managed by two
types of commands:↔ andl. After receiving the command↔ the object moves one
step to the left or to the right; after receivingl one step up or down. Consider theR-
valuation structure(R2, val, Φ) from Example 5. We define⋄ as the componentwise
sum of vectors and put1 = (0, 0). Then,M = (R2, val, ⋄, 1, Φ) is anR-pv-structure.
Consider the following multi-weighted MSO sentence over the alphabetΣ = {↔, l}
and theR-pv-structureM:

ϕ = ∀x((P↔(x) → ((−1, 0) ∨ (1, 0))) ∧ (Pl(x) → ((0,−1) ∨ (0, 1))))

where, for a boolean formulaϕ and a multi-weighted formulaψ, β → ψ is an abbrevi-
ation for(β∧ψ)∨¬β. For every sequence of commandsw ∈ Σ+, the multiset〈ϕ〉(w)
contains all possible displacement vectors of the object. For example, letw =↔↔. The
object has 4 possibilities to move: 1) two steps to the right;2) one step to the right and
then to the home position; 3) one step to the left and then to the home position; 4) two
steps to the left. Then〈ϕ〉(w) = [(2, 0), (0, 0), (0, 0), (−2, 0)]. The average displace-
ment of the object is given by〈〈ϕ〉〉 for each sequence of commandsw. For example,
〈〈ϕ〉〉(↔↔) = 1, 〈〈ϕ〉〉(↔l) =

√
2.



Note that the multi-weighted MSO logic overK-pv-structures contains the case of
weighted MSO logic over semirings (cf. [10, 11]). Hence, in general, multi-weighted
MSO logic is expressively more powerful than multi-weighted automata.

Our main result for finite words is the following theorem.

Theorem 8. LetΣ be an alphabet,K a set,M = (M, val, ⋄, 1, Φ) a K-pv-structure
ands : Σ+→K. Thens = ||A|| for some multi-weighted automatonA overΣ andM
iff s = 〈〈ϕ〉〉 for a syntactically restricted multi-weighted MSO sentenceϕ overΣ and
M.

The proof is similar to the proof of the corresponding Theorem 17 for infinite words.
For lack of space, we skip it.

We consider examples of decision problems for multi-weighted MSO logic.

Example 9.Let Σ be an alphabet andM = (Q × Q≥0, val, ⋄, (0, 0), Φ) the R-pv-
structure where⋄ is the componentwise sum, andval andΦ are defined as in Example
3. Letϕ be a multi-weighted MSO sentence overΣ andM, andν ∈ Q a threshold. The
≥ ν-emptiness problemis whether there exists a wordw ∈ Σ+ such that〈〈ϕ〉〉(w)≥ ν.
If ϕ is syntactically restricted, then, using our Theorem 8, we can effectively translate
ϕ into a multi-weighted automaton overΣ andM. Then≥ν-emptiness for these multi-
weighted automata can be decided in the following way. First, we use a shortest path
algorithm to decide whether there exists a path with cost0, i.e. ||A||(w) =∞≥ ν for
somew. If this is not the case (i.e. the costs of all accepting pathsin A are strictly pos-
itive), we use the same technique as for the≥ν-emptiness problem for ratio automata
with strictly positive costs (cf. [18], Theorem 3). We replace the weight(r, c) of every
transition by the single valuer− νc and obtain a weighted automatonA′ over the max-
plus semiringQ ∪ {−∞}. Then,||A||(w) ≥ ν iff the semiring-behavior ofA′ onw is
not less than zero. Then, the decidability of our problem follows from the decidability
of the≥0-emptiness problem for max-plus automata.

Example 10.LetΣ be an alphabet andM = (Q2, val, ⋄, (0, 0), Φ) where⋄ is the com-
ponentwise sum, andval andΦ are as in Example 4. Again, using our Theorem 8, we
can reduce the≤ν-emptiness problem (defined similarly as in Example 9) for syntac-
tically restricted multi-weighted MSO logic overΣ andM to the emptiness problem
for multi-weighted automata. This problem is decidable, since the optimal conditional
reachability for multi-priced timed automata is decidable[20].

4 Multi-weighted Automata and MSO Logic on Infinite Words

In this section, we develop a general model for both multi-weighted automata and MSO
logic on infinite words. Recall that, for a setM , N〈〈M〉〉 is the collection of all multisets
overM . LetMω denote the set of allω-infinite words overM .

Definition 11. LetK be a set. AproductK-ω-valuation structure (K-ω-pv structure)
is a tuple(M, valω, ⋄, 1, Φ) where

– M is a set,1 ∈M andΦ : N〈〈M〉〉 → K;



– valω :Mω →M with valω(m1ω) = m for all m ∈M ;
– ⋄ :M ×M →M such thatm ⋄ 1 = 1 ⋄m = m for all m ∈M .

A Muller automatonover an alphabetΣ is a tupleA = (Q, I, T,F) whereQ
is a set of states,I ⊆ Q is a set of initial states,T ⊆ Q × Σ × Q is a
transition relation andF ⊆ 2Q is a Muller acceptance condition.Infinite paths
π = (ti)i∈ω of A are defined as infinite sequences of matching transitions, say
ti = (qi, ai, qi+1). Then we call the wordw = (ai)i∈ω the label of the pathπ and
π a path onw. We say that a pathπ = (qi, ai, qi+1)i∈ω is acceptingif q0 ∈ I and
{q ∈ Q | q = qi for infinitely manyi ∈ ω} ∈ F . Let AccA(w) denote the set of all
accepting paths ofA onw.

For the rest of this section, we fix an alphabetΣ and aK-ω-pv structure
M = (M, valω, ⋄, 1, Φ).

Definition 12. A multi-weighted Muller automatonover Σ and M is a tuple
A = (Q, I, T,F , γ) where(Q, I, T,F) is a Muller automaton andγ : T →M .

LetA be a multi-weighted Muller automaton overΣ andM,w ∈ Σω andπ = (ti)i∈ω

an accepting path onw. Theweightof π is defined byWeightA(π) = valω(γ(ti))i∈ω .
Let |A|(w) ∈ N〈〈M〉〉 be the multiset containing the weights of paths inAccA(w).
Formally, |A|(w)(m) = |{π ∈ AccA(w) | WeightA(w) = m}| where, for an infinite
setX , we put|X | = ∞. Thebehaviorof A is theω-series||A|| : Σω → K defined by
||A||(w) = Φ(|A|(w)).

Remark 13.The multiplication ⋄, the unital element 1 and the condition
valω(m1ω) = m are irrelevant for the definition of the behaviors of multi-weighted au-
tomata. However, they will be used to describe the semanticsof multi-weighted MSO
formulas.

We consider several examples of multi-weighted automataA overΣ andM, and their
behaviors.

Example 14.Consider the reward-cost ratio setting of Example 3 for infinite words.
For a sequence(ri, ci)i∈ω ∈ (R × R≥0)

ω of reward-cost pairs, thesupremum ra-

tio (cf. [5]) is defined bylim sup
n→∞

∑

n

i=0 ri
∑

n

i=0 ci
∈ R where r

0 = ∞. Unfortunately, since
∑∞

i=0 ri and
∑∞

i=0 ci may not exist or may be infinite, we cannot proceed as for fi-
nite words by considering pairs of accumulated rewards and costs and their ratios. In-
stead, we can defineM as follows. LetM = R × R≥0, K = R and 1 = (0, 0).
Let µ = (ri, ci)i∈ω ∈ (R × R≥0)

ω. If
∑∞

i=0 ri and
∑∞

i=0 ci are finite, then we put

valω(µ) = (
∑∞

i=0 ri,
∑∞

i=0 ci). Otherwise, we putvalω(µ) =

(

lim sup
n→∞

∑

n

i=0 ri
∑

n

i=0 ci
, 1

)

.

For sequencesµ ∈ Mω \ (R × R≥0)
ω, we definevalω(µ) arbitrarily keeping

valω(m1ω) = m. Let also⋄ be the componentwise sum where∞+(-∞) is defined ar-
bitrarily. The evaluator functionΦ is defined byΦ(r) = sup

(x,y)∈supp(r)

x
y . Then,||A||(w)

is the maximal supremum ratio of accepting paths ofw. The corresponding model for
timed automata was considered in [5, 6].



Example 15.Let Emax = (E1
max, ..., E

n
max) ∈ Zn whereEi

max > 0 for all i, and
M = [−Emax, Emax] ⊆ Zn, i.e.M consists of all vectors(v1, ..., vn) ∈ Zn such
that−Ei

max ≤ vi ≤ Ei
max for eachi ∈ {1, ..., n}. Let K = B = {false, true}, the

boolean semiring and1 = (0, ..., 0). Foru1 = (u11, ..., u
n
1 ) andu2 = (u12, ..., u

n
2 ) ∈M ,

we putu1 ⋄ u2 = (v1, ..., vn) wherevi = max{min{ui1 + ui2, E
i
max},−Ei

max}. For
(mi)i∈ω ∈Mω we define the sequence(vi)i∈ω inM as follows. We putv0 = (0, ..., 0)
andvi+1 = vi ⋄mi for all i ∈ ω. Then, letvalω((mi)i∈ω) = (x1, ..., xn) ∈ M where
xj = inf{vji | i ∈ ω} for all 1 ≤ j ≤ n. Let Φ be defined byΦ(r) = true iff there
exists(m1, ...,mn) ∈ supp(r) withmj ≥ 0 for all 1 ≤ j ≤ n. This model corresponds
to the one-player energy games considered in [16].

The syntax of themulti-weighted MSO logicoverΣ andM is defined exactly as for
finite words (cf. Section 3). To define the semantics of this logic, we proceed similarly as
for finite words, i.e. by means of the auxiliary multiset semantics. For this, we consider
N as the totally complete semiring(N,+, ·, 0, 1) (cf. [11]) where0 ·∞=∞· 0=0. The
sum⊕ and the Cauchy product· for infinite multisets fromN〈〈M〉〉 are defined as for
finite words. Theω-valuationvalω(ri)i∈ω for ri ∈ N〈〈M〉〉 is defined for allm ∈M by

valω((ri)i∈ω)(m) =
∑

(

∏

i∈ω
ri(mi) | (mi)i∈ω ∈Mω and valω(mi)i∈ω = m

)

.

Theempty multisetε ∈ N〈〈M〉〉 andsimple multisets[m] ∈ N〈〈M〉〉 (for m ∈ M ) are
defined in the same way as for finite words. LetMon(M) = {[m] | m ∈M}.

Let ϕ be a multi-weighted MSO formula overΣ andM, andV ⊇ Free(ϕ). We
define the auxiliary multiset semantics〈ϕ〉V : Σω

V → N〈〈M〉〉 inductively on the struc-
ture ofϕ as in Table 1 where we have to replaceval by valω. Forw ∈ Σω, we let
dom(w) = ω. To define the semantics〈∀Xϕ〉, we have to extendvalω for multisets to
index sets of size continuum such thatvalω((ri)i∈I) = ε wheneverri = ε for some
i ∈ I, andvalω(([1])i∈I ) = [1]. Thesemanticsof ϕ is defined by〈〈ϕ〉〉 = Φ ◦ 〈ϕ〉.

Example 16.Assume that a bus can operate two routes A and B which start andend
at the same place. The route R laststR time units and profitspR money units on the
average per trip, forR ∈ {A,B}. We may be interested in making an infinite schedule
for this bus which is represented as an infinite sequence from{A,B}ω. This schedule
must be fair in the sense that both routes A and B must occur infinitely often in this
timetable (even if the route A or B is unprofitable). The optimality of the schedule is
also preferred (we wish to profit per time unit as much as possible). We consider the
K-ω-pv structureM from Example 14 and a one-element alphabetΣ = {τ} which
is irrelevant here. Now we construct a weighted MSO sentenceϕ overΣ andM to
define the optimal income of the bus per time unit (supremum ratio between rewards
and time):

ϕ = ∃X
(∞
∃x(x∈X) ∧

∞
∃x(x /∈X) ∧ ∀x((x∈X→(pA, tA)) ∧ (x /∈X→(pB, tB))

)

where
∞
∃xψ is an abbreviation for a boolean formula∀y(¬∀x(¬(y ≤ x ∧ ψ))). Here,

the second order variableX corresponds to the set of positions in an infinite schedule



mwMA(Σ,M) wMA(Σ,Mon(M)) wMA(Σ,N〈M〉)

wMSO
res(Σ,Mon(M))mwMSO

res(Σ,M)

(i)

(ii)

(v)

(iii)
(iv)

Fig. 1. The proof scheme of Theorem 17

which can be assigned to the route A. Then,

|ϕ|(τω) = sup

{

lim sup
n→∞

pA · |I ∩ n|+ pB · |Ic ∩ n|
tA · |I ∩ n|+ tB · |Ic ∩ n| | I ⊆ N with I, Ic infinite

}

wheren = {0, ..., n} andIc = N \ I.

Now we state our main result for infinite words.

Theorem 17. LetΣ be an alphabet,K a set andM = (M, valω, ⋄, 1, Φ) a K-ω-pv
structure. Lets : Σω → K be anω-series. Thens = ||A|| for some multi-weighted
Muller automatonA overΣ and M iff s = 〈〈ϕ〉〉 for some syntactically restricted
multi-weighted MSO sentenceϕ overΣ andM.

In the rest of this section, we give the proof idea of this theorem. LetmwMA(Σ,M)
denote the collection of all multi-weighted Muller automata overΣ and M. Let
A ∈ mwMA(Σ,M). We can consider|A| as anω-series|A| : Σω → N〈〈M〉〉. We
call |A| the multiset-behaviorof A. Then||A|| = Φ ◦ |A|. Let mwMSO

res(Σ,M)
denote the set of all syntactically restricted multi-weighted MSO sentences overΣ and
M. Since, for any multi-weighted formulaϕ, 〈〈ϕ〉〉 = Φ ◦ 〈ϕ〉, it suffices to show
that mwMA(Σ,M) with the multiset-behavior andmwMSO

res(Σ,M) with the
multiset-semantics are expressively equivalent.

For this, we can show that(N〈〈M〉〉,⊕, valω, ·, ε, [1]) is anω-pv monoid as defined
in [14]. LetD ⊆ N〈〈M〉〉. We denote bywMA(Σ,D) the collection of weighted au-
tomata overΣ and theω-pv monoidN〈〈M〉〉 where the weights of transitions are taken
fromD. LetwMSO

res(Σ,D) denote the set of syntactically restricted sentences over
Σ and theω-pv monoidN〈〈M〉〉 with constants fromD. Let [[ϕ]] denote the semantics
of ϕ ∈ wMSO

res(Σ,M) as defined in [14]. The proof scheme of our result is depicted
in Fig. 1. Here,↔ means the expressive equivalence and→ the expressive inclusion.

(i) If we replace the weightm ∈M of every transition of a multi-weighted automaton
A by the simple multiset[m] ∈ Mon(M), we obtain a weighted automatonA′

over the pv monoidN〈M〉 such that the pv-monoid behavior ofA′ is equal to|A|.
Conversely, we can replace the weights[m] in A′ bym to obtain a multi-weighted
automaton with the same behavior.

(ii) Similarly to (i), we replace the constantsm occurring in MSO formulas by simple
multisets[m] and vice versa.

(iii) The proof is based on the proof of Theorem 6.2 (a) of Droste and Meinecke
[14]. We proceed inductively on the structure ofϕ ∈ wMSO

res(Σ,Mon(M)).



Using the propertyvalω(m1ω) = m for m ∈ M , we show that every almost
boolean formula is equivalent to a weighted Muller automaton with weights from
Mon(M) ⊆ N〈M〉. Let ϕ, ϕ1 andϕ2 be weighted MSO formulas with constants
from Mon(M) such that[[ϕ]], [[ϕ1]] and[[ϕ2]] are recognizable by weighted Muller
automata with weights fromD ⊆ N〈〈M〉〉. Let β be any boolean formula. It can
be shown that[[ϕ1 ∨ ϕ2]], [[∃xϕ]], [[∃Xϕ]] and[[ϕ ∧ β]] = [[β ∧ ϕ]] are also recog-
nizable by weighted Muller automata with weights fromD. If ϕ is almost boolean,
then [[ϕ]] is anω-recognizable step function with coefficients fromN〈M〉. Using
the construction of Lemma 8.11 of [11], cf. Theorem 6.2 of [14], we establish that
[[∀xϕ]] is recognizable by a weighted automaton with weights fromN〈M〉.

(iv) The proof follows from Theorem 6.2 of [14] where a weighted automaton with
weights inD⊆N〈〈M〉〉was translated into an MSO sentence with weights inD.

(v) Let A = (Q, I, T,F , γ) ∈ wMA(Σ,N〈M〉). We construct an automaton
A′ = (Q′, I ′, T ′,F ′, γ′) ∈ wMA(Σ,Mon(M)) with the same behavior by un-
folding each single transition ofA labeled by a finite multiset into several tran-
sitions labeled by elements of this multiset as follows.
• Q′ = I ∪ {(q,m, i) : t = (p, a, q) ∈ T,m ∈ supp(γ(t)), 1 ≤ i ≤ γ(t)(m)}
• I ′ = I, F ′ = {{(q1,m1, k1), ..., (qn,mn, kn)} ⊆ Q′ \ I | {q1, ..., qn} ∈ F}.
• T ′ = T1 ∪ T2, whereT1 consists of all transitions(p, a, (q,m, i)) from
I × Σ × (Q′ \ I) with (p, a, q) ∈ T ; T2 consists of all transitions
((q1,m1, i1), a, (q2,m2, i2)) from (Q′ \I)×Σ×(Q′\I) with (q1, a, q2) ∈ T .

• For all t = (q′, a, (q,m, i)) ∈ T ′, let γ′(t) = [m].

5 Conclusion

We have extended the use of weighted MSO logic to a new class ofmulti-weighted
settings. We just note that, as in [14], forK-pv-structures andK-ω-pv structures with
additional properties there are larger fragments of multi-weighted MSO logic which are
still expressively equivalent to multi-weighted automata. Since our translations from
formulas to automata are effective, we can reduce the decidability problems for multi-
weighted logics to the corresponding problems for multi-weighted automata. Decid-
ability results of, e.g., [5, 16, 18, 20] lead to decidability results for multi-weighted
nondeterministic automata. However, for infinite words, the authors did not consider
Muller acceptance condition for automata. Therefore, our future work will investigate
decision problems for multi-weighted Muller automata. Also, weighted MSO logic for
weighted timed automata was investigated in [21]. In our further work, we wish to com-
bine the ideas of [21] and the current work to obtain a Büchi theorem for multi-weighted
timed automata.
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