
ar
X

iv
:1

30
1.

15
14

v1
 [

cs
.F

L
]

 8
 J

an
 2

01
3

Composition Closure of Linear Extended Top-down Tree Transducers

Zoltán Fülöpa,1, Andreas Malettib,2,∗

aDepartment of Foundations of Computer Science, University of Szeged
Árpád tér 2, H-6720 Szeged, Hungary

bUniversität Stuttgart, Institut für Maschinelle Sprachverarbeitung
Pfaffenwaldring 5b, 70569 Stuttgart, Germany

Abstract

Linear extended top-down tree transducers (or synchronous tree-substitution grammars) are popular formal
models of tree transformations. The expressive power of compositions of such transducers with and without
regular look-ahead is investigated. In particular, the restrictions of nondeletion, ε-freeness, and strictness
are considered. The composition hierarchy turns out to be finite for all ε-free (all rules consume input)
variants of these transducers except for nondeleting ε-free linear extended top-down tree transducers. The
least number of transducers needed for the full expressive power of arbitrary compositions is presented.
In all remaining cases (incl. nondeleting ε-free linear extended top-down tree transducers) the composition
hierarchy does not collapse.

Keywords: extended top-down tree transducer; composition hierarchy; bimorphism

1. Introduction

The top-down tree transducer is a simple formal model that encodes a tree transformation (i.e., a relation
on trees). It was introduced in [22, 23] and intensively studied thereafter (see [13–15] for an overview).
Roughly speaking, a top-down tree transducer processes the input tree symbol-by-symbol and specifies in
its rules, how to translate an input symbol into an output tree fragment together with instructions on how
to process the subtrees of the input symbol. This asymmetry between input (single symbol) and output
(tree fragment) was removed in extended top-down tree transducers (xt), which were introduced and studied
in [1, 2]. In an xt the left-hand side of a rule now contains an input tree fragment, in which each variable can
occur at most once as a placeholder for a subtree. In particular, the input tree fragment can even be just a
variable, which matches every tree, and such rules are called ε-rules. In this contribution we consider linear
xt (l-xt), in which the right-hand side of each rule contains each variable at most once as well. Restricted
variants of l-xt are used in most approaches to syntax-based machine translation [17, 18].

We also add regular look-ahead [8] (i.e., the ability to check a regular property for the subtrees in an input
tree fragment) to l-xt, so our most expressive model is the linear extended top-down tree transducer with
regular look-ahead (l-xtR). Contrary to most of the literature [8, 16] we present our model as a synchronized
grammar [5] because we sometimes use the auxiliary link structure in our proofs. Instead of variables in
the left-hand side and a state-variable combination in the right-hand side of a rule, we immediately only
use states with the restriction that each state can occur at most once in the left-hand side and at most
once in the right-hand side. Moreover, all states that occur in the right-hand side must also occur in the
left-hand side. In this way, for each rule the states establish implicit links (a state links its occurrence in
the left-hand side with its occurrence in the right-hand side), which form a bijection between a subset of the

∗Corresponding author
1Supported by the program TÁMOP-4.2.1/B-09/1/KONV-2010-0005 of the Hungarian National Development Agency.
2Supported by the German Research Foundation (DFG) grant MA/ 4959 / 1-1.

Preprint submitted to arXiv August 27, 2018

http://arxiv.org/abs/1301.1514v1

state occurrences in the left-hand side and all state occurrences in the right-hand side. The state occurrences
(in the left-hand side) that do not participate in the bijection (i.e., those states that exclusively occur in the
left-hand side) can restrict the acceptable subtrees at their position with the help of regular look-ahead [8].
The implicit links in a rule are made explicit in a derivation, and a rule application expands (explicitly)
linked state occurrences at the same time. Example 2 shows an l-xtR, for which we illustrate a few derivation
steps in Figure 2. The tree transformation computed by the example l-xtR is shown in Example 8. In the
following, we use l-XTR and l-XT to denote the class of all tree transformations computed by l-xtR and l-xt,
respectively.

The expressive power of the various subclasses of l-XTR is already well understood [12, 16]. However,
in practice complex systems are often specified with the help of compositions of tree transformations [21]
because it is much easier to develop (or train) small components that manage a part of the overall transfor-
mation. Consequently, [18] and others declare that closure under composition is a very desirable property
for classes of tree transformations (especially in the area of natural language processing). If a class C of
tree transformations is closed under composition, then any composition chain τ1 ; · · · ; τn of tree transfor-
mations τ1, . . . , τn of C can be replaced by a single tree transformation τ ∈ C. If C represents the class of
all tree transformations computable by a device, then closure under composition means that we can replace
any composition chain specified by several devices by just a single device, which enables an efficient modular
development. Unfortunately, neither l-XTR nor l-XT are closed under composition [2, 3, 16].

In general, for a class C of tree transformations (that contains the identity transformation) we obtain a
composition hierarchy C ⊆ C2 ⊆ C3 ⊆ · · · , where Cn denotes the n-fold composition of C. The class C might
be closed under composition at power n (i.e., Cn = Cn+1) or its composition hierarchy might be infinite (i.e.,
Cn (Cn+1 for all n). In the former case, we say that the composition hierarchy of C collapses at power n,
which also yields that Cn = Cm for all m ≥ n. In particular, C is closed under composition if its composition
hierarchy collapses at power 1. We note that in practice (e.g., in machine translation) the classes that are
closed under composition at a small finite power are also important because for such classes we can limit
the length of composition chains [21]. In this contribution, we investigate the composition hierarchy of the
classes l-XTR and l-XT together with their subclasses determined by the properties: ε-freeness, strictness,
and nondeletion, which are abbreviated by ‘ 6ε’, ‘s’, and ‘n’, respectively. Roughly speaking, ε-freeness yields
that all rules are ε-free, strictness guarantees that the right-hand side of each rule contains an output symbol,
and nondeletion requires that for each rule exactly the same states occur in the left- and right-hand side.
We use the property abbreviations in front of l-XTR and l-XT to obtain the class of all tree transformations
computable by such restricted l-xtR and l-xt, respectively. For instance, 6εsl-XTR denotes the class of all
tree transformations computed by ε-free and strict l-xtR.

It is known that none of our considered classes is closed under composition [3, Section 3.4]. In addition,
it is known that 6εsnl-XT = 6εsnl-XTR is closed at power 2 [6, Section II-2-2-3-3]. We complete the picture
as follows. For each of the remaining classes, we either provide the least power at which the class is closed
under composition or show that the composition hierarchy of the class is infinite (denoted by ∞). Our
results (together with the mentioned existing result) are presented in Table 1.

Our contribution is organized as follows. Section 2 recalls the necessary concepts and introduces our
notation. We continue in Section 3 with the formal introduction of our main model (l-xtR) including its
syntax and semantics and the restrictions that we consider later. In addition, we recall some known equalities
between certain fundamental classes of tree transformations in preparation for our first main results. In
Section 4 we give a power at which the classes 6εsl-XT, 6εsl-XTR, 6εl-XT, and 6εl-XTR of tree transformations
are closed under composition (cf. Table 1). This is completed in Section 5, where we conclude that the
presented powers (Table 1) are minimal. Finally, in Section 6 we prove that the composition hierarchy of
the remaining classes is infinite.

2. Notation

We denote the set of all nonnegative integers by N. The set of all finite words (finite sequences) over a
set S is S∗ =

⋃

n∈N
Sn, where S0 = {ε} contains only the empty word ε. The length of a word w ∈ S∗ is the

2

Class Least power of closedness Proved in

6εsnl-XT = 6εsnl-XTR 2 [6, Section II-2-2-3-3]

6εsl-XTR, 6εsl-XT 2 Theorem 21

6εl-XTR 3 Theorem 25

6εl-XT 4 Corollary 26

otherwise ∞ Theorem 34

Table 1: Characterization of the composition hierarchies.

unique n ∈ N such that w ∈ Sn. We write |w| for the length of w. The concatenation of two words v, w ∈ S∗

is denoted by v.w or simply vw.
Every subset of S × T is a relation from S to T . Given relations R1 ⊆ S × T and R2 ⊆ T × U , the

inverse of R1 is the relation R−1
1 = {(t, s) | (s, t) ∈ R1}, and the composition of R1 and R2 is the relation

R1 ; R2 = {(s, u) | ∃t ∈ T : (s, t) ∈ R1, (t, u) ∈ R2} .

These notions and notations are lifted to classes C1 and C2 of relations in the usual manner. Namely, we let
C−1
1 = {R−1

1 | R1 ∈ C1} and
C1 ; C2 = {R1 ; R2 | R1 ∈ C1, R2 ∈ C2} .

Moreover, the powers of a class C are defined by C1 = C and Cn+1 = Cn ; C for n ≥ 1. The composition
hierarchy (resp. composition closure) of C is the family (Cn | n ≥ 1) (resp. the class

⋃

n≥1 C
n). If Cn+1 = Cn,

then C is closed under composition at power n. For n = 1 we shorten this to just C is closed under
composition. If C is closed under composition at power n, then

⋃

1≤i≤n C
i is the composition closure of C.

Moreover, we note that if C contains the identity relations, then Cn ⊆ Cn+1 for all n ≥ 1, so that in this case
Cn is the composition closure of C provided that C is closed under composition at power n. Our classes C of
tree transformations will always contain the identity relations.

An alphabet Σ is a nonempty and finite set, of which the elements are called symbols. The alpha-
bet Σ is ranked if there additionally is a mapping rk: Σ → N that assigns a rank to each symbol. We let
Σk = {σ ∈ Σ | rk(σ) = k} for every k ∈ N. Often the mapping ‘rk’ is obvious from the context, so we
typically denote ranked alphabets by Σ alone. If it is not obvious, then we use the notation σ(k) to indicate
that the symbol σ has rank k. For the rest of this paper, Σ, ∆, and Γ will denote arbitrary ranked alphabets
if not specified otherwise.

For every set T , let
Σ(T) = {σ(t1, . . . , tk) | σ ∈ Σk, t1, . . . , tk ∈ T } .

Let S be a set with S ∩ Σ = ∅. The set TΣ(S) of Σ-trees with leaf labels S is the smallest set U such that
S ⊆ U and Σ(U) ⊆ U . We write TΣ for TΣ(∅), and any subset of TΣ is a tree language. The height ht(t) of
a tree t ∈ TΣ(S) is defined such that ht(s) = 0 for all s ∈ S and

ht(σ(t1, . . . , tk)) = 1 +max {ht(ti) | 1 ≤ i ≤ k}

for all σ ∈ Σk and t1, . . . , tk ∈ TΣ(S). Given a unary symbol γ ∈ Σ1 and a tree t ∈ TΣ(S), we write γk(t)
for the tree γ(· · · γ

︸ ︷︷ ︸

k times

(t) · · ·).

The set pos(t) ⊆ N∗ of positions of t ∈ TΣ(S) is inductively defined by pos(s) = {ε} for every s ∈ S and

pos(σ(t1, . . . , tk)) = {ε} ∪
k⋃

i=1

{iw | w ∈ pos(ti)}

3

for every σ ∈ Σk and t1, . . . , tk ∈ TΣ(S). For words v, w ∈ N∗, we denote the longest common prefix of
v and w by lcp(v, w). Note that lcp(v, w) ∈ pos(t) for all v, w ∈ pos(t) because pos(t) is prefix-closed. The
positions pos(t) are partially ordered by the prefix order � on N∗ [i.e., v � w if and only if v = lcp(v, w)].
The size |t| of the tree t ∈ TΣ(S) is |pos(t)|; i.e., the number of its positions. Let t ∈ TΣ(S) and w ∈ pos(t).
The label of t at w is t(w), and the w-rooted subtree of t is t|w. Formally, s(ε) = s|ε = s for every s ∈ S and

t(w) =

{

σ if w = ε

ti(v) if w = iv and i ∈ N
and t|w =

{

t if w = ε

ti|v if w = iv and i ∈ N

where t = σ(t1, . . . , tk) with σ ∈ Σk and t1, . . . , tk ∈ TΣ(S). For every selection U ⊆ S of leaf symbols, we let
posU (t) = {w ∈ pos(t) | t(w) ∈ U} and poss(t) = pos{s}(t) for every s ∈ S. The tree t is linear (resp. non-
deleting) in U if |posu(t)| ≤ 1 (resp. |posu(t)| ≥ 1) for every u ∈ U . Moreover, var(t) = {s ∈ S | poss(t) 6= ∅}.
The expression t[u]w denotes the tree that is obtained from t ∈ TΣ(S) by replacing the subtree t|w at w
by u ∈ TΣ(S).

Let U ⊆ S be finite, t ∈ TΣ(S), and θ : U → {L | L ⊆ TΣ(S)}. We define the tree language tθ by
induction as follows.

• sθ = s for all s ∈ S \ U ,
• sθ = θ(s) for all s ∈ U , and
• for all σ ∈ Σk and t1, . . . , tk ∈ TΣ(S)

σ(t1, . . . , tk)θ = {σ(u1, . . . , uk) | u1 ∈ t1θ, . . . , uk ∈ tkθ} .

For every n ∈ N we fix the set Xn = {x1, . . . , xn} of variables, which we assume to be disjoint from all ranked
alphabets considered in the paper. Given t ∈ TΣ(S) and τ : Xn → TΣ(S), we write t[τ(x1), . . . , τ(xn)] for tθ,
where θ(xi) = {τ(xi)} for all 1 ≤ i ≤ n.

A tree homomorphism from Σ to ∆ is a family of mappings (hk | k ∈ N) such that hk : Σk → T∆(Xk)
for every k ∈ N. Such a tree homomorphism is

• linear if for every σ ∈ Σk the tree hk(σ) is linear in Xk,
• complete if for every σ ∈ Σk the tree hk(σ) is nondeleting in Xk,
• strict if hk : Σk → ∆(T∆(Xk)) for every k ∈ N, and
• delabeling if hk : Σk → Xk ∪∆(Xk) for every k ∈ N.

We abbreviate the above restrictions by ‘l’, ‘c’, ‘s’, and ‘d’. The tree homomorphism (hk | k ∈ N) induces a
mapping h : TΣ(S) → T∆(S) defined inductively by h(s) = s for all s ∈ S and

h(σ(t1, . . . , tk)) = hk(σ)[h(t1), . . . , h(tk)]

for all σ ∈ Σk and t1, . . . , tk ∈ TΣ(S). As usual, we also call the induced mapping h a tree homomorphism.
We denote by H the class of all tree homomorphisms, and for any combination w of ‘l’, ‘c’, ‘s’, and ‘d’ we
denote by w-H the class of all w-tree homomorphisms. For instance, lcs-H is the class of all linear, complete
and strict tree homomorphisms.

In the following, we need regular tree languages [14, 15] and basic results for tree automata, which
recognize the regular tree languages. The set Reg(Γ) contains all regular tree languages L ⊆ TΓ over the
ranked alphabet Γ. A particular well-known result, which we use, states that tθ ∈ Reg(Γ) for all t ∈ TΓ(U)
and θ : U → Reg(Γ). A bimorphism is a triple B = (ψ,L, ϕ) consisting of a regular tree language L ∈ Reg(Γ),
an input tree homomorphism ψ : TΓ → TΣ, and an output tree homomorphism ϕ : TΓ → T∆. The tree
transformation B ⊆ TΣ × T∆ computed by the bimorphism B is the relation B = {〈ψ(t), ϕ(t)〉 | t ∈ L}.
Given two combinations v and w of restrictions for tree homomorphisms, we let B(v, w) denote the class of
all tree transformations computed by bimorphisms B = (ψ,L, ϕ) such that ψ and ϕ are tree homomorphisms
of type v and w, respectively.

3. Linear extended top-down tree transducers

Our main model is the linear extended top-down tree transducer [1, 2, 17, 18] with regular look-ahead
(l-xtR), which is based on the classical linear top-down tree transducer without [22, 23] and with regular

4

look-ahead [8]. We will present it in a form that is closer to synchronized grammars [5] because we will use
an auxiliary structure, called the links, in a later proof. In synchronous grammars, equal states in the left
and right-hand side of a rule are implicitly linked, and equal states are explicitly linked in a derivation, in
which such linked states will be replaced at the same time by a rule for that state. In a rule of an l-xtR,
these implicit links form a bijection between a subset of the states in the left-hand side and all states in the
right-hand side. Thus, some states might exclusively occur in the left-hand side. For those states we can
use the regular look-ahead to restrict the subtrees that are acceptable at these positions.

Definition 1 (see [16, Section 2.2]). A linear extended top-down tree transducer with regular look-ahead
(l-xtR) is a tuple M = (Q,Σ,∆, I, R, c), where

• Q is a finite set of states,
• Σ and ∆ are ranked alphabets of input and output symbols,
• I ⊆ Q is a set of initial states,
• R ⊆ TΣ(Q)×Q × T∆(Q) is a finite set of rules such that ℓ and r are linear in Q and var(r) ⊆ var(ℓ)

for every (ℓ, q, r) ∈ R, and
• c : Q→ Reg(Σ) assigns regular look-ahead to each state.

It is worth noting that we assign look-ahead to each state, but in a derivation we will only use the look-
ahead if the state is deleted (see Definition 6). Moreover, in contrast to other definitions [12, 16], we do not
allow the same state to occur several times (neither in the left- nor in the right-hand side). However, with
the help of a simple renaming, each traditional linear extended top-down tree transducer can be written in
our slightly more restrictive format. Next, we recall some important syntactic properties of our model. To
this end, let M = (Q,Σ,∆, I, R, c) be an l-xtR in the following. It is

• a linear extended tree transducer (without look-ahead) [l-xt], if c(q) = TΣ for every q ∈ Q,
• a linear top-down tree transducer with regular look ahead [l-tR] if ℓ ∈ Σ(Q) for every (ℓ, q, r) ∈ R,
• a linear top-down tree transducer (without look ahead) [l-t] if it is both an l-xt and an l-tR,
• ε-free if ℓ /∈ Q for every (ℓ, q, r) ∈ R,
• strict if r /∈ Q for every (ℓ, q, r) ∈ R,
• a delabeling if ℓ ∈ Σ(Q) and r ∈ Q ∪∆(Q) for every (ℓ, q, r) ∈ R,
• nondeleting if var(r) = var(ℓ) for every (ℓ, q, r) ∈ R, and
• a finite-state relabeling [qr] if it is a nondeleting, strict delabeling l-t such that posp(ℓ) = posp(r) for

every (ℓ, q, r) ∈ R and p ∈ var(r).
We note that each l-tR and each l-t is automatically ε-free. To simplify the notation in examples and

illustrations, we sometimes write rules as ℓ
q

−→ r instead of (ℓ, q, r). Similarly, we write ℓ
q,p
−→ r as a

shorthand for the two rules ℓ
q

−→ r and ℓ
p

−→ r. Moreover, for every p ∈ Q and (ℓ, q, r) ∈ R we identify
posp(ℓ) and posp(r) with their unique element if the sets are non-empty. Since ℓ and r are linear in Q, there
is indeed at most one element in posp(ℓ) and posp(r). Finally, for every q ∈ Q, we let

Rq = {ρ ∈ R | ρ = (ℓ, q, r)}

be the subset of R that contains all rules for state q.

Example 2. Let us consider the l-xtR M1 = (Q,Σ,∆, {⋆}, R, c) given by
• Q = {⋆, p, q, q′, id, id′},

• Σ = {σ(2), γ
(1)
1 , γ

(1)
2 } ∪∆,

• ∆ = {σ
(2)
1 , σ

(2)
2 , γ(1), α(0)},

• R contains exactly the following rules

σ1(p, q)
⋆,p
−→ σ1(p, q) σ2(id, id

′)
p,q
−→ σ2(id, id

′) γ1(p)
p

−→ p

σ(q, id)
q

−→ q σ(q′, q)
q

−→ q γ2(q)
q

−→ q

γ(id)
id,id′

−→ γ(id) α
id,id′

−→ α

5

σ1

p q
⋆

−→

σ1

p q

σ

q′ q
q

−→ q

Figure 1: Illustration of two rules with their implicit links.

• c(q′) = {t ∈ TΣ | posσ2
(t) 6= ∅} and c(f) = TΣ for all other states f .

It can easily be checked that c(q′) is a regular tree language. The l-xtR M1 is an ε-free, nondeleting, delabeling
top-down tree transducer with regular look-ahead.

Next, we recall the semantics of the l-xtR M = (Q,Σ,∆, I, R, c), which is (mostly) given by synchronous
substitution. While the links in a rule are implicit and established due to occurrences of equal states, we
need an explicit linking structure for our sentential forms. These links will form dependencies that are used
in a proof later on. To encode the links, we store a relation between positions of the input and output tree.
Let L = {D | D ⊆ N∗ × N∗} be the set of all link structures. First, we define general sentential forms.
Roughly speaking, a sentential form consists of an input tree and an output tree, in which positions are
linked.

Definition 3 (see [11, Section 3]). An element 〈ξ,D, ζ〉 ∈ TΣ(Q) × L × T∆(Q) is a sentential form (for
M) if v ∈ pos(ξ) and w ∈ pos(ζ) for every (v, w) ∈ D. For a set S of sentential forms we define

links(S) = {D | 〈ξ,D, ζ〉 ∈ S for some trees ξ and ζ} .

Now we formalize the implicit links in a rule ρ by defining the explicit link structure determined by ρ.
This explicit link structure is added to the link structure of a sentential form whenever the rule ρ is applied
in the derivation process.

Definition 4. Let ρ ∈ R be the rule (ℓ, q, r), and let v, w ∈ N∗. The explicit link structure of ρ for the
positions v and w is defined as

linksv,w(ρ) = {(v. posp(ℓ), w. posp(r)) | p ∈ var(r)} .

Example 5. Let us compute two explicit link structures.

links1,21(σ1(p, q)
⋆

−→ σ1(p, q)) = {(11, 211), (12, 212)}

links1,21(σ(q
′, q)

q
−→ q) = {(12, 21)}

In illustrations we use grayed splines to indicate the links. The rules above and their implicit links [i.e.,
those of linksε,ε(ρ)] are displayed in Figure 1.

The derivation process is started with a simple sentential form 〈q, {(ε, ε)}, q〉 consisting of the input and
output tree q for some initial state q ∈ I and the trivial link relating both roots. The current sentential
form can evolve in two ways. Either we (nondeterministically) apply a rule (ℓ, q, r) to a pair (v, w) of linked
occurrences of the state q or we apply the look-ahead. In the former case, such a rule application replaces
the linked occurrences of q by the left and right-hand side of the rule. The explicit link structure of the rule
for v and w is added to the current (explicit) link structure to obtain a new sentential form. Since we are
interested in the dependencies created during derivation, we preserve all links and never remove a link from
the linking structure. This replacement process can be repeated until no linked occurrences of states remain.
Thus, we obtain an output tree without states, but the input tree of the sentential form can still contain
states, which do not take part in an active link (i.e., a link relating two states in the sentential form). Each
occurrence of such a state q can simply be replaced by any tree of the regular look-ahead tree language c(q),
where different occurrences of the same state can be replaced by different trees of c(q).

6

⋆ ⋆ ⇒M1

σ1

p q

σ1

p q
⇒M1

σ1

γ1

p

q
σ1

p q
⇒3

M1

σ1

γ1

σ2

α α

q
σ1

σ2

α α

q ⇒M1

σ1

γ1

σ2

α α

γ2

q

σ1

σ2

α α

q ⇒M1

σ1

γ1

σ2

α α

γ2

σ

q′ q

σ1

σ2

α α

q

⇒M1

σ1

γ1

σ2

α α

γ2

σ

γ

α

q

σ1

σ2

α α

q ⇒3
M1

σ1

γ1

σ2

α α

γ2

σ

γ

α

σ2

α α

σ1

σ2

α α

σ2

α α

Figure 2: Derivation using the l-XTR M1 of Example 2.

Definition 6 (see [11, Section 3]). Given two sentential forms 〈ξ,D, ζ〉 and 〈ξ′, D′, ζ′〉, we write

〈ξ,D, ζ〉 ⇒M 〈ξ′, D′, ζ′〉

if
• there exists a rule ρ = (ℓ, q, r) ∈ R and input and output positions (v, w) ∈ D ∩

(
posq(ξ) × posq(ζ)

)

such that
ξ′ = ξ[ℓ]v ζ′ = ζ[r]w D′ = D ∪ linksv,w(ρ) ,

• or there exists a position v ∈ posQ(ξ) with w /∈ posQ(ζ) for all (v, w) ∈ D and there exists t ∈ c(ξ(v))
such that

ξ′ = ξ[t]v ζ′ = ζ D′ = D .

A few derivation steps using the l-xtR M1 of Example 2 are illustrated in Figure 2. Next, we define the
tree transformation computed by an l-xtR.

Definition 7. The l-xtR M computes the dependencies dep(M), which are given by

dep(M) = {(t,D, u) ∈ TΣ × L× T∆ | ∃q ∈ I : 〈q, {(ε, ε)}, q〉 ⇒∗
M (t,D, u)} ,

where ⇒∗
M is the reflexive and transitive closure of ⇒M . Moreover, it computes the tree transformation M ,

which is given by M = {(t, u) | (t,D, u) ∈ dep(M)}.

Example 8. Let M1 be the l-xtR of Example 2. Then

(
σ1(γ1(σ2(α, α)), γ2(σ(γ(α), σ2(α, α)))), D, σ1(σ2(α, α), σ2(α, α))

)
∈ dep(M1)

where

D = {(ε, ε), (1, 1), (11, 1), (111, 11), (112, 12), (2, 2), (21, 2), (212, 2), (2121, 21), (2122, 22)} ,

7

which corresponds to the final element in the derivation displayed in Figure 2. Roughly speaking, the tree
transformation computed by M1 accepts only input trees of a certain shape. In such a tree it removes all
γ1-symbols on the left spine between the symbols σ1 and σ2. In addition, it also removes all symbols to the
right of σ1 except for those belonging to the left-most subtree rooted by σ2.

Since every translation (t, u) ∈ M is ultimately created by (at least) one successful derivation, we can
inspect the links in the derivation process to exhibit the dependencies. Roughly speaking, the links establish
which parts of the output tree were generated due to a particular part of the input tree. This correspondence
is called contribution in [10].

Definition 9. To allow concise statements, we introduce the following short-hands:

6ε = ε-free s = strict d = delabeling n = nondeleting .

We use these abbreviations in conjunction with l-xtR to restrict to devices with the indicated properties. For
example, dnl-xt stands for “delabeling and nondeleting linear extended top-down tree transducer” (without
look-ahead). We use the same abbreviations with the stem (i.e., the material behind the hyphen) in capital
letters for the corresponding classes of computed tree transformations. For instance, dnl-XT stands for the
class of all tree transformations computable by dnl-xt, and QR denotes the class of all tree transformations
computable by qr.

Our device develops the input and output tree from top to bottom, which yields the name top-down
tree transducer. Similarly, there exists a device called linear extended bottom-up tree transducer [12], which
creates the trees from the leaves to the root (i.e., bottom-up) [7]. We do not recall the device formally here,
but we use the abbreviations l-xb and l-XB together with the usual properties for it. We refer the reader
to [12] for full details.

Next, we recall two important known statements for the class l-XTR. The first statement relates the
classes l-XTR and l-TR to l-XB and l-B, respectively. In addition, we demonstrate that look-ahead is
superfluous in the nondeleting case. We use the brackets ‘[’ and ‘]’ for optional use of the restrictions 6ε, ‘d’,
‘s’, and ‘n’ that have to be consistently applied.

Theorem 10 ([12, Proposition 3.3 and Corollary 4.1]).

[6ε][s][d][n]l-XT
R
= [6ε][s][d][n]l-XB [s][d][n]l-T

R
= [s][d][n]l-B

[6ε][s][d]nl-XTR = [6ε][s][d]nl-XT [s][d]nl-TR = [s][d]nl-T

To illustrate the consistent application of optional restrictions, the following statements are instances of
the first result of the above theorem:

l-XTR = l-XB and 6εsl-XTR = 6εsl-XB .

Secondly, we relate the class l-XTR to l-TR, which tells us how to emulate linear extended top-down tree
transducers with regular look-ahead by linear top-down tree transducers with regular look-ahead [8].

Theorem 11.

6ε[s][d][n]l-XT
R
= lcs-H−1 ; [s][d][n]l-T

R
[s][d][n]l-XT

R
= lc-H−1 ; [s][d][n]l-T

R

Proof. The statements are easily obtained from Theorem 10 and [12, Lemma 4.1].

8

4. Four classes that are closed at a finite power

In this section, we show that the classes 6εl-XTR, 6εl-XT, 6εsl-XTR, and 6εsl-XT are closed under composi-
tion at a finite power. We first recall a central result [3] that proves that the (very restricted) class 6εsnl-XT
is closed under composition at power 2. Note that [3] expresses this result in terms of bimorphisms, and
‘strict’ is abbreviated by ‘e’ there. In fact, 6εsnl-XT = B(lcs, lcs) by [2] and [19, Theorem 4].

Theorem 12 ([3, Theorem 6.2]). For every n ≥ 2,

6εsnl-XT (6εsnl-XT2 = 6εsnl-XTn .

Now we establish our first composition result, which is analogous to the classical composition result for
linear top-down tree transducers with regular look-ahead [8]. The only difference is that our first transducer
has extended left-hand sides (i.e., it is an l-xtR instead of just an l-tR). Since this fact does not affect the
original composition construction [7], we can use the original result to obtain our first result.

Lemma 13 (composition on the right).

[6ε][s][d][n]l-XT
R
; [s][d][n]l-T

R
= [6ε][s][d][n]l-XT

R

Proof. By Theorem 11, [6ε][s][d][n]l-XT
R
= lc[s]-H

−1
; [s][d][n]l-T

R
, where the option [6ε] in the left-hand

side corresponds to the option [s] in lc[s]-H
−1

. Thus, we obtain the chain of equalities

[6ε][s][d][n]l-XT
R
; [s][d][n]l-T

R
= lc[s]-H

−1
; [s][d][n]l-T

R
; [s][d][n]l-T

R

= lc[s]-H
−1

; [s][d][n]l-T
R

= [6ε][s][d][n]l-XT
R
,

where in the second step we applied the following well-known composition result for linear top-down tree
transducers with regular look-ahead [8]:3

[s][d][n]l-T
R
; [s][d][n]l-T

R
= [s][d][n]l-T

R
. �

In the next result we present a decomposition that corresponds to property P of [6]. It demonstrates
how to simulate an l-xtR by a delabeling l-dR and an 6εsnl-xt, for which we have the composition closure
result in Theorem 12.

Lemma 14 (decomposition).

6ε[s]l-XT
R ⊆ [s]dl-T

R
; 6εsnl-XT

Proof. Let M = (Q,Σ,∆, I, R, c) be an arbitrary ε-free l-xtR. Moreover, let m ∈ N be such that
m ≥ |var(r)| for every (ℓ, q, r) ∈ R; i.e., the integer m is larger than the maximal number of states in
the right-hand side of the rules. For every rule ρ = (ℓ, q, r) ∈ R and non-state position w ∈ posΣ(ℓ) in its
left-hand side, let

usedρ(w) = {i ∈ N | wi ∈ pos(ℓ), var(ℓ|wi) ∩ var(r) 6= ∅}

be the indices of the direct subtrees below w in ℓ, which still contain states that occur in r. We construct a
delabeling l-xtR

M1 = (Q1,Σ, R ∪ {@i | 0 ≤ i ≤ m}, I1, R1, c1)

such that
• Q1 = {〈ρ, w〉 | ρ = (ℓ, q, r) ∈ R,w ∈ pos(ℓ)},
• rk(ρ) = |usedρ(ε)| for every rule ρ ∈ R and rk(@i) = i for every 0 ≤ i ≤ m,

3The abbreviation ‘d’ has a completely different meaning in [8].

9

• I1 = {〈ρ, ε〉 | q ∈ I, ρ ∈ Rq}, and
• for every rule ρ = (ℓ, q, r) ∈ R and non-state position w ∈ posΣ(ℓ) we construct the following rule

of R1:

ℓ(w)(〈ρ, w1〉, . . . , 〈ρ, wk〉)
〈ρ,w〉
−→







〈ρ, wi1〉 if r ∈ Q

ρ(〈ρ, wi1〉, . . . , 〈ρ, win〉) if r /∈ Q,w = ε

@n(〈ρ, wi1〉, . . . , 〈ρ, win〉) otherwise,

where k = rk(ℓ(w)) and {i1, . . . , in} = usedρ(w) with i1 < · · · < in,
• for every rule ρ = (ℓ, q, r) ∈ R, state position w ∈ posQ(ℓ) and rule ρ′ ∈ Rℓ(w) we construct the

following rule of R1:

〈ρ′, ε〉
〈ρ,w〉
−→ 〈ρ′, ε〉 ,

• c1(〈ρ, w〉) = (ℓ|w)c for every ρ = (ℓ, q, r) ∈ R and w ∈ pos(ℓ).
To obtain the desired l-tR we simply eliminate the ε-rules using standard methods. The elimination is
successful because the ε-rules are non-cyclic.4 Intuitively speaking, the transducer M1 processes the input
and deletes subtrees that are not necessary for further processing. Moreover, it marks the positions in the
input where a rule application would be possible. Finally, it also already executes all erasing rules of M .

Let m′ ∈ N be such that m′ ≥ |ℓ| for all (ℓ, q, r) ∈ R. We construct the l-xt

M2 = (Q,R ∪ {@i | 0 ≤ i ≤ m},∆, I, R2)

such thatR2 contains all valid rules (ρ(t1, . . . , tk), q, r) with ρ = (ℓ, q, r) ∈ R of a strict ln-xt with posR(ti) = ∅
and |ti| ≤ m′ for every 1 ≤ i ≤ k, where k = rk(ρ). �

Example 15. A full example for the construction of Lemma 14 would be quite lengthy, so let us only
illustrate the construction of M1 on the example rule ρ:

σ(p, σ(α, q))
q

−→ σ(α, σ(q, α)) ,

for which the only non-trivial look-ahead is c(p) = L. For this rule we construct the following rules in M1:

σ(〈ρ, 1〉, 〈ρ, 2〉)
〈ρ,ε〉
−→ ρ(〈ρ, 2〉) 〈ρ′, ε〉

〈ρ,1〉
−→ 〈ρ′, ε〉

σ(〈ρ, 21〉, 〈ρ, 22〉)
〈ρ,2〉
−→ @1(〈ρ, 22〉) α

〈ρ,21〉
−→ @0 〈ρ′′, ε〉

〈ρ,22〉
−→ 〈ρ′′, ε〉

for all rules ρ′ ∈ Rp and ρ′′ ∈ Rq. Moreover, the look-ahead c1 of M1 is such that

c1(〈ρ, 1〉) = L c1(〈ρ, 21〉) = {α} .

Now we are able to prove that the class 6εl-XTR is closed under composition at the third power.

Theorem 16. For every n ≥ 1,

(6ε[s]l-XT
R
)n ⊆ [s]dl-T

R
; 6εsnl-XT2 ⊆ (6ε[s]l-XT

R
)3 .

Proof. The second inclusion is trivial, so we prove the first inclusion by induction over n. The statement
is a trivial consequence of Lemma 14 for n = 1. In the induction step, we obtain

(6ε[s]l-XTR)n+1 = 6ε[s]l-XTR ; (6ε[s]l-XTR)n

⊆ 6ε[s]l-XTR ; [s]dl-TR ; 6εsnl-XT2

4Note that due to the ε-freeness of M , we have w 6= ε in the ε-rules of the second item. Since these rules are the only
constructed ε-rules, we cannot chain two ε-rules.

10

〈ρ, ε〉 〈ρ, ε〉 ⇒M1

σ

〈ρ, 1〉 〈ρ, 2〉

ρ

〈ρ, 2〉
⇒M1

σ

t 〈ρ, 2〉

ρ

〈ρ, 2〉
⇒M1

σ

t σ

〈ρ, 21〉 〈ρ, 22〉

ρ

@1

〈ρ, 22〉

⇒M1

σ

t σ

α 〈ρ, 22〉

ρ

@1

〈ρ, 22〉

⇒M1

σ

t σ

α 〈ρ′′, ε〉

ρ

@1

〈ρ′′, ε〉

Figure 3: Derivation using M1 of Example 15 for some t ∈ L and ρ′′ ∈ Rq .

= 6ε[s]l-XT
R
; 6εsnl-XT2

⊆ [s]dl-TR ; 6εsnl-XT ; 6εsnl-XT2

= [s]dl-T
R
; 6εsnl-XT2

where we used the induction hypothesis in the second step, Lemma 13 in the third step, Lemma 14 in the
fourth step, and finally, Theorem 12 in the last step. �

It is known that we can simulate an l-tR (with look-ahead) by a composition of two l-t (without look-
ahead). This fact allows us to obtain the following corollary for the closure of the class 6εl-XT under
composition at power four.

Corollary 17 (without look-ahead). For every n ≥ 1

6ε[s]l-XT
n ⊆ QR ; [s]dl-T ; 6εsnl-XT2 ⊆ 6ε[s]l-XT

4
.

Proof. The second inclusion is trivial, and for the first inclusion we use [s]dl-TR ⊆ QR ; [s]dl-T and
Theorem 16. �

Up to now, we have shown that the classes 6εl-XTR and 6εl-XT are closed under composition at the third
and fourth power, respectively. In the rest of the section, we will show that the (strict) classes 6εsl-XTR and
6εsl-XT are closed under composition already at the second power. We start with a lemma that proves the
converse of Lemma 14 in the strict case.

Lemma 18 (composition on the left).

lds-H ; 6εsl-XTR ⊆ 6εsl-XTR

Proof. Let d : TΣ → T∆ be a strict delabeling linear tree homomorphism. Recall that d also defines
a tree transformation d : TΣ(Q) → T∆(Q), which acts as an identity on states; i.e., d(q) = q for every
q ∈ Q. Moreover, let M = (Q,∆,Γ, I, R, c) be a strict l-xtR and m ∈ N be such that m ≥ |ℓ′| for every
ℓ′ ∈ d−1(ℓ) and (ℓ, q, r) ∈ R. Note that the set d−1(ℓ) is finite because d is strict. We construct the l-xtR

M ′ = (Q ∪ {1, . . . ,m},Σ,Γ, I, R′, c′) such that for every rule (ℓ, q, r) ∈ R we have each valid rule (ℓ′, q, r)
in R′ where ℓ′ ∈ d−1(ℓ) and |posΣ(ℓ

′)| = |pos∆(ℓ)|. Moreover, c′(q) = d−1(c(q)) for all q ∈ Q and c′(i) = TΣ
for every 1 ≤ i ≤ m. Clearly, d−1(c(q)) is a regular tree language because c(q) is a regular tree language and
regular tree languages are closed under inverse tree homomorphisms [8, Lemma 1.2]. Finally, we observe
that M ′ is also strict since it has the same right-hand sides as M . �

Now we state and prove the mentioned result for the class 6εsl-XTR. The general approach is the same
as in Theorem 16, but we now use Lemma 18 in the main step.

Theorem 19. For every n ≥ 1

(6εsl-XTR)n ⊆ 6εsnl-XT ; 6εsl-XTR ⊆ (6εsl-XTR)2 .

11

Class Closed at power Proved in

6εl-XTR 3 Theorem 16

6εl-XT 4 Corollary 17

6εsl-XTR 2 Theorem 19

6εsl-XT 2 Corollary 20

Table 2: Summary of the results of Section 4.

Proof. Again, the second inclusion is trivial. For the first inclusion, the induction basis is also trivial, and
we prove the induction step as follows

(6εsl-XTR)n+1 = (6εsl-XTR)n ; 6εsl-XTR

⊆ 6εsnl-XT ; 6εsl-XTR ; 6εsl-XTR

= 6εsnl-XT ; 6εsnl-XT ; lds-H ; 6εsl-XTR

⊆ 6εsnl-XT2 ; 6εsl-XTR

= 6εsnl-XT2 ; 6εsnl-XT ; lds-H

= 6εsnl-XT2 ; lds-H

= 6εsnl-XT ; 6εsl-XTR

using the induction hypothesis in the second step, Lemma 18 in the fourth step, and Theorem 12 in the
sixth step. The final step composes the tree homomorphism with the second tree transducer using the result
of Lemma 13. �

Again, we derive the “without look-ahead”-version of the general result. In contrast to Corollary 17, the
power of closedness does not increase by one for strict 6εl-xt.

Corollary 20 (without look-ahead). For every n ≥ 1

6εsl-XTn ⊆ 6εsnl-XT ; 6εsl-XT ⊆ 6εsl-XT2 .

Proof. The second inclusion is trivial. For the first inclusion, we observe that

6εsl-XTn ⊆ 6εsnl-XT ; 6εsl-XTR

= lcs-H−1 ; snl-T ; QR ; 6εsl-XT

= lcs-H−1 ; snl-T ; 6εsl-XT

= 6εsnl-XT ; 6εsl-XT

using first Theorem 19, and then Theorem 11 and [8, Theorem 2.6] in the second step. Next, we use the
composition result [4, Theorem 1] for top-down tree transducers and Theorem 11 again. �

Table 2 summarizes our results concerning the powers at which the considered classes are closed under
composition.

5. Least power of closedness

In this section, we will determine the least power at which each of the classes 6εl-XTR, 6εl-XT, 6εsl-XTR,
and 6εsl-XT is closed under composition.

12

Theorem 21. For every n ≥ 2

6εsl-XT (6εsl-XT2 = 6εsl-XTn (6εsl-XTR) ((6εsl-XTR)2 = (6εsl-XTR)n.

Proof. By [3, Section 3.4], the classes 6εsl-XT and 6εsl-XTR are not closed under composition at power 1.
Moreover, by Theorem 19 and Corollary 20 both classes are closed at power 2. �

In the following, we will use the computed dependencies, for which we observe some important properties
next. For the rest of this section, let M = (Q,Σ,∆, I, R, c) be the considered l-xtR. To simplify the
development, we disregard the actual input and output trees in the computed dependencies and will consider
only the set links(M) = links(dep(M)). We say that M computes the linking structures of links(M).

Definition 22 ([20, Definition 8]). A linking structure D ∈ L is input hierarchical5 if for all links
(v1, w1), (v2, w2) ∈ D

• if v1 ≺ v2, then w1 � w2, and
• if v1 = v2, then w1 � w2 or w2 � w1.

Input hierarchical linking structures have no crossing links, which are links (v1, w1), (v2, w2) ∈ D such
that v1 ≺ v2 and w2 ≺ w1. We define output hierarchical using the same conditions as in Definition 22 for the
output side; i.e., D is output hierarchical if and only if D−1 is input hierarchical. Moreover, D is hierarchical
if it is both input and output hierarchical. Finally, a set D ⊆ L of linking structures is hierarchical if each
element D ∈ D is hierarchical.

We also need a property that enforces the existence of certain links. Roughly speaking, for a set of
linking structures D ⊆ L there should be an integer that limits the distance between links in each linking
structure D ∈ D.

Definition 23 ([20, Definition 10]). A set D ⊆ L of link structures has bounded distance in the input
if there exists an integer k ∈ N such that for every D ∈ D and all (v, w), (vv′′, w′′) ∈ D there exists
(vv′, w′) ∈ D with v′ � v′′ and |v′| ≤ k.

In other words, in a set of link structures with bounded distance k in the input, we know for any of
its link structures that between any two source-nested links there exists a link such that the distance of
its source to the smaller link’s source is at most k. This yields that the distance to the source of the next
nested link (if such a link does exist) can be at most k. Note however, that the above property does not
require a link every k symbols. As before, a set D ⊆ L of linking structures has bounded distance in the
output if D−1 = {D−1 | D ∈ D} has bounded distance in the input. Finally, D has bounded distance if it
has bounded distance in both the input and the output.

Lemma 24. For every l-xtR M , the set links(M) is hierarchical with bounded distance.

Proof. This lemma follows trivially from Definition 6.

Next we consider the problem whether a tree transformation can be computed by an l-xtR. For this
we specify certain links that are intuitively clear and necessary between nodes of input-output tree pairs.
Hereby we obtain the specification sentential forms. Then we consider whether this specification can be
implemented by an l-xtR. Often we cannot identify the nodes of a link exactly. In such cases, we use splines
with inverted arrow heads, which indicate that there is a link to some position of the subtree pointed to.
For example, the splines in Figure 4 indicate that a node of t1 (resp. t2) on the left is linked to a node of t1
(resp. t2) on the right.

Theorem 25. (6εl-XTR)2 ((6εl-XTR)3 = (6εl-XTR)n for every n ≥ 3.

5This notion is called strictly input hierarchical in [20].

13

σ

t1 t2

σ

t2 t1

Figure 4: Links with inverted arrow.

σ1

σ1

σ1

σ2

tn tn−1 σ2

ti+2 ti+1

c

σ2

ti ti−1

σ2

t2 t1

σ1

σ1

σ1

σ1

σ1

tn σ2

tn−1 tn−2

σ2

ti+1 ti

σ2

ti−1 ti−2

σ2

t3 t2

t1

ui+1 ui ui−1

v′
v′′

Figure 5: Illustration of the relevant part of the specification used in the proof of Theorem 25.

Proof. The inclusion is trivial and the equality follows from Theorem 16, so we only have to prove strict-
ness. Recall the l-xtR M1 of Example 2. In addition, we use the two bimorphisms B2 and B3 of [6,
Section II.2.2.3.1], which are in B(lcs,lcs).6 As mentioned, 6εsnl-XT = B(lcs, lcs), hence B2 and B3 can also
be defined by some 6εsnl-xt M2 and M3, respectively. For convenience, we present M2 and M3 explicitly
before we show that τ =M1 ;M2 ;M3 cannot be computed by a composition of two 6εl-xtR.

Let M2 = (Q2,∆,Γ, {⋆}, R2) be the 6εsnl-xt with
• Q2 = {⋆, id, id′} and Γ = {σ(2), γ(1), α(0)}, and
• R2 is the set of the rules

σ1(⋆, σ2(id, id
′))

⋆
−→ σ(σ(⋆, id), id′) σ2(id, id

′)
⋆

−→ σ(id, id′)

γ(id)
id,id′

−→ γ(id) α
id,id′

−→ α .

Moreover, let M3 = (Q3,Γ,∆, {⋆}, R3) be the 6εsnl-xt with
• Q3 = {⋆, p, id, id′},

6In [6] strictness is denoted by ‘e’.

14

• R3 is the set of the rules

σ(p, id)
⋆

−→ σ1(p, id) σ(σ(p, id), id′)
p

−→ σ1(p, σ2(id, id
′)) γ(id)

id,id′

−→ γ(id)

γ(id)
p

−→ γ(id) α
id,id′

−→ α .

We present a proof by contradiction, hence we assume that τ = N1 ; N2 for some 6εl-xt N1 and N2.
With the help of Lemma 24, we conclude that links(N1) and links(N2) are hierarchical with bounded
distance k1 and k2, respectively. We consider (t, u) ∈ τ such that the left σ1-spines of t and u are longer
than k1 and k2, respectively.7 Moreover, by assumption, there exists an intermediate tree s and linking
structures D1, D2 ∈ L such that (t,D1, s) ∈ dep(N1) and (s,D2, u) ∈ dep(N2). We specify some links that,
due to the last two inclusions, should be necessarily present in D1 and D2 and show that they lead to a
contradiction (see Figure 5).

First, we consider the links D2 generated by N2. Since the left σ1-spine in u is longer than k2 and there
are links at the root (i.e., (ε, ε) ∈ D2) and inside tn, there must be a linking point at position w ∈ posσ1

(u)
along the left σ1-spine with w 6= ε, which links to position v′ in the intermediate tree s (i.e., (v′, w) ∈ D2).
Let u|w = σ1(u

′, σ2(ti+1, ti)). We assume that every tj with j ≤ n is high enough (i.e., ht(tj) > k2). This
yields that there exist linking points in ti+1, ti, and ti−1 of u. Let (v′i+1, wi+1), (v

′
i, wi), (v

′
i−1, wi−1) ∈ D2 be

those linking points. Since D2 is hierarchical and wi+1 and wi are below w in u, we know that v′i+1 and v′i
are below v′ in s (i.e., v′ � v′i+1, v

′
i), whereas v′ 6� v′i−1. Next, we locate ti in the input tree t. By the general

shape of t, the subtree ti occurs in a subtree σ1(t
′, c[σ2(ti, ti−1)]) for some tree c ∈ TΣ(X1) with exactly one

occurrence of x1. Again we assume that c is suitably large8, which forces a linking point inside c in addition
to those in ti+1, ti, and ti−1 because (t, s) ∈ N1. Using the same arguments for N1 as before for N2, we now
locate the links (y, v′′) ∈ D1 linking into c, which dominates the links (yi, v

′′
i), (yi−1, v

′′
i−1) ∈ D1 linking to

ti and ti−1, respectively. Thus, v′′ � v′′i , v
′′
i−1. In addition, there is a link (yi+1, v

′′
i+1) ∈ D1 linking into ti+1,

which is not dominated by v′′. Consequently, v′′ 6� v′′i+1. Finally, let

vi−1 = lcp(v′i−1, v
′′
i−1) vi = lcp(v′i, v

′′
i) vi+1 = lcp(v′i+1, v

′′
i+1) .

It is easy to see that the relevant links can be chosen such that

v′ 6� vi−1 v′ � vi v′ � vi+1

v′′ � vi−1 v′′ � vi v′′ 6� vi+1 .

Now, we have either lcp(vi−1, vi) � lcp(vi, vi+1) or lcp(vi, vi+1) � lcp(vi−1, vi). In the first case we get

v′′ � lcp(vi−1, vi) � lcp(vi, vi+1) � vi+1 ,

and in the second case we get

v′ � lcp(vi, vi+1) � lcp(vi−1, vi) � vi−1 ,

which are contradictions. �

Fortunately, we can use the proof of the previous theorem to conclude that four is the least power at
which the class 6εl-XT is closed under composition.

Corollary 26. 6εl-XT3 (6εl-XT4 = 6εl-XTn for every n ≥ 4.

7Some additional requirements on t and u are developed in the proof later on.
8More precisely, we assume that the only element of pos

x1
(c) is longer than k1.

15

Class Least power of closedness Proved in

B(l, l) 4 [6, Section II-2-2-3-3]

6εsnl-XT = 6εsnl-XTR 2 [3, Theorem 6.2]

6εsl-XTR, 6εsl-XT 2 Theorem 21

6εl-XTR 3 Theorem 25

6εl-XT 4 Corollary 26

Table 3: Summary of the results of Sections 4 and 5.

Proof. The inclusion is trivial and the equality follows from Corollary 17. For the strictness, the proof of
Theorem 25 essentially shows that in the first step we must delete the contexts indicated by triangles (such
as c) in Figure 5 because otherwise we can apply the method used in the proof to derive a contradiction (it
relies on the existence of a linking point inside such a context c). Thus, in essence we must first implement a
variant of the l-xtR M1 of Example 2. It is a simple exercise to show that the deletion of the excess material
cannot be done by a single l-xt as it cannot reliably determine the left-most occurrence of σ2 without the
look-ahead. Thus, if we only have l-xt to achieve the transformation, then we already need a composition
of two l-xt to perform the required deletion of the contexts, which proves the main statement. �

In Table 3 we summarize the results of this and the previous section, which allow us to present the
least power at which the closure of the considered composition hierarchies is achieved. For the sake of
completeness, we also present the corresponding results for the classes 6εsnl-XT and B(l, l) that were obtained
in [3, 6]. Recall that B(l, l) is the class of all tree transformations computable by bimorphisms, in which
both tree homomorphisms are linear.

6. Infinite composition hierarchies

To complete the picture, we will need one further result showing the infiniteness of the composition
hierarchy for a large number of classes. In order to obtain a result that is as general as possible, we use
bimorphisms [3] instead of l-xtR in this section. We conclude several results for various tree transducer
classes from the result for bimorphisms.

The main auxiliary notion used in the proof of the infiniteness of the composition hierarchy is a notion
assigning levels to positions in a tree. Let t ∈ TΣ and ℓ ∈ N be an arbitrary integer. Since branching
positions (i.e., those that are labeled by symbols of rank at least 2) will play an essential role, we define the
set of all branching positions of t together with two different successors and the branching positions along
a given path. For every w,ww′′ ∈ pos(t), let

brt = {〈w, i, j〉 | w ∈ pos(t), t(w) /∈ Σ0 ∪ Σ1, 1 ≤ i, j ≤ rk(t(w)), i 6= j}

brt(w,w
′′) = {ww′ | w′ � w′′ and (ww′, i, j) ∈ brt for some i, j} .

We inductively define the sets SPℓ
n(t) ⊆ pos(t) × N × N and Pℓ

n(t) ⊆ pos(t) for every t ∈ TΣ and n ∈ N as
follows:

SPℓ
0(t) = brt and Pℓ

0(t) = {w | 〈w, i, j〉 ∈ SPℓ
0(t)}

SPℓ
n+1(t) = {〈w, i, j〉 ∈ brt | ∃w1 ∈ Pℓ

n(t|wi) : |brt(wi, w1) ∩ Pℓ
n(t)| ≥ ℓn+1,

∃w2 ∈ Pℓ
n(t|wj) : |brt(wj,w2) ∩ Pℓ

n(t)| ≥ ℓn+1}

Pℓ
n+1(t) = {w | 〈w, i, j〉 ∈ SPℓ

n+1(t)} .

16

σ

σ

σ

α σ

σ

σ

α α

α

α

σ

σ

α α

α

σ

σ

σ

σ

α α

α

α

α

Figure 6: Tree used in Example 27.

Intuitively, all branching positions have level 0 (for any distance ℓ) and a branching position w has level n+1
if there are 2 paths in different direct subtrees below w that both have at least ℓn+1 branching positions of
level n along the path. Clearly, SPℓ

n+1(t) ⊆ SPℓ
n(t) and Pℓ

n+1(t) ⊆ Pℓ
n(t) for all n ∈ N and t ∈ TΣ.

Example 27. Let t be the tree depicted in Figure 6. Then

P2
0(t) = {ε, 1, 11, 112, 1121, 11211, 12, 121, 2, 21, 211, 2111}= brt

P2
1(t) = {ε, 1}

P2
2(t) = ∅ .

Lemma 28. Let ϕ : TΓ → T∆ be a complete tree homomorphism. Moreover, let t ∈ TΓ and ℓ, n ∈ N. If
〈ε, i, j〉 ∈ SPℓ

n(t), then there exists 〈v, i′, j′〉 ∈ SPℓ
n(ϕ(t)) such that

• v ∈ pos(ϕ(t(ε))),
• vi′ � v1 for some v1 ∈ posxi

(ϕ(t(ε))), and
• vj′ � v2 for some v2 ∈ posxj

(ϕ(t(ε))).

Proof. Let t = γ(t1, . . . , tk) with γ ∈ Γk and t1, . . . , tk ∈ TΓ, and let u = ϕ(t). We prove the statement
by induction on n. In the induction base, we have n = 0 and 〈ε, i, j〉 ∈ SPℓ

0(t). We arbitrarily select
v1 ∈ posxi

(ϕ(γ)) and v2 ∈ posxj
(ϕ(γ)), which are positions of the variables xi and xj in ϕ(γ), respectively.

Since ϕ is complete, such positions exist. Let v = lcp(v1, v2) be the longest common prefix, and let v1 = vi′v′1
and v2 = vj′v′2. Clearly, v ∈ pos(ϕ(γ)) and 〈v, i′, j′〉 ∈ brϕ(t) because v1 and v2 are in the distinct direct
subtrees i′ and j′ below v. Trivially, vi′ � v1 and vj′ � v2, which completes the induction base.

In the induction step, let 〈ε, i, j〉 ∈ SPℓ
n+1(t) and w1 ∈ Pℓ

n(ti) and w2 ∈ Pℓ
n(tj) be the required positions

of level n such that

|brt(i, w1) ∩ Pℓ
n(t)| ≥ ℓn+1 and |brt(j, w2) ∩ Pℓ

n(t)| ≥ ℓn+1 .

We observe that
u = ϕ(t) = ϕ(γ)[ϕ(t1), . . . , ϕ(tk)] .

Now, we follow a similar approach as in the induction base. Since ϕ is complete, the tree u contains the
subtrees ϕ(ti) and ϕ(tj) at any of the positions v1 ∈ posxi

(ϕ(γ)) and v2 ∈ posxj
(ϕ(γ)), respectively. As

before, we let v = lcp(v1, v2) ∈ pos(ϕ(γ)) be the longest common prefix, and let v1 = vi′v′1 and v2 = vj′v′2.
Clearly, 〈v, i′, j′〉 ∈ bru is a branching position. It remains to show that 〈v, i′, j′〉 ∈ SPℓ

n+1(u) because the
remaining conditions of the lemma are already fulfilled.

Due to the fact that w1 ∈ Pℓ
n(ti), we have 〈ε, i′′, j′′〉 ∈ SPℓ

n(ti|w1
) for some i′′, j′′ ∈ N. Moreover, since

ϕ is complete, the subtree ϕ(ti|w1
) occurs in u|v1 . By the induction hypothesis, there exist v′′1 ∈ Pℓ

n(ϕ(ti|w1
)).

Moreover, v1v
′v′′1 ∈ Pℓ

n(u) for some v′ ∈ pos(u|v1) such that u|v′ = ϕ(ti|w1
). We will only verify the condition

|bru(vi
′, v′1v

′v′′1) ∩ Pℓ
n(u)| ≥ ℓn+1 (1)

17

because the proof for the second path works analogously.
Let w′

1 ∈ brt(i, w1)∩P
ℓ
n(t) be any position of level n along the path from i to iw1 such that w′

1 ≺ iw1. Let
i′′′ ∈ N be the unique integer such that w′

1i
′′′ � iw1. Since w′

1, iw1 ∈ Pℓ
n(t) we can conclude that there exist

i′′, j′′ ∈ N such that i′′′ 6= j′′ and that 〈w′
1, i

′′, j′′〉 ∈ SPℓ
n(t). Then 〈w′

1, i
′′′, j′′〉 ∈ SPℓ

n(t) because iw1 ∈ Pℓ
n(t).

In other words, 〈ε, i′′′, j′′〉 ∈ SPℓ
n(t|w′

1
). Since ϕ is complete, the translation ϕ(t|w′

1
) occurs in ϕ(ti). By the

induction hypothesis, there exists 〈v′′′, i1, j1〉 ∈ SPℓ
n(ϕ(t|w′

1
)), which yields 〈v′′v′′′, i1, j1〉 ∈ SPℓ

n(ϕ(ti)) for
some position v′′ ∈ pos(ϕ(ti)) with ϕ(ti)|v′′ = ϕ(tw′

1
), such that v′v′′v′′′i1 � v′1. Clearly,

v1v
′v′′v′′′ ∈ bru(vi

′, v′1v
′v′′1) ∩ Pℓ

n(u) .

Moreover, the two conditions that v′′′ ∈ pos(ϕ(t(w′
1))) and that ϕ is complete guarantee that for each

selection of w′
1 we obtain a different position v1v

′v′′v′′′ ∈ bru(vi
′, v′1v

′v′′1)∩Pℓ
n(u). This verifies (1), because

there are at least ℓn+1 possible selections of w′
1. �

Lemma 29. Let ψ : TΓ → TΣ be a linear tree homomorphism. Moreover, let t ∈ TΓ and ℓ, n ∈ N be such
that ℓ > ht(ψ(γ′)) for all symbols γ′ ∈ Γ. If 〈v, i′, j′〉 ∈ SPℓ

n+1(ψ(t)) with v ∈ pos(ψ(t(ε))), then there exists

〈ε, i, j〉 ∈ SPℓ
n(t) such that

• vi′ � v1 for some v1 ∈ posxi
(ψ(t(ε))) and

• vj′ � v2 for some v2 ∈ posxj
(ψ(t(ε))).

Proof. Let t = γ(t1, . . . , tk) with γ ∈ Γk and t1, . . . , tk ∈ TΓ, and let u = ψ(t) be its image. Moreover, let
〈v, i′, j′〉 ∈ SPℓ

n+1(u) with v ∈ pos(ψ(γ)). By definition, there exist long paths in u starting at vi′ and vj′,
which are longer than ℓ, which in turn is longer than any path in ψ(γ′) for every γ′ ∈ Γ. Consequently,
there exist 1 ≤ i, j ≤ k and

v1 ∈ posxi
(ψ(γ)) and v2 ∈ posxj

(ψ(γ))

such that vi′ � v1 and vj′ � v2. Since ψ is linear, we know that i 6= j. It remains to prove that
〈ε, i, j〉 ∈ SPℓ

n(t) as the additional properties of the lemma are already satisfied. We prove this remaining
property by induction on n, and the induction base is already proven as 〈ε, i, j〉 ∈ brt.

We proceed with the induction step. By definition, there exist positions v′1 ∈ Pℓ
n(u|vi′) and v′2 ∈ Pℓ

n(u|vj′)
such that

|bru(vi
′, v′1) ∩ Pℓ

n(u)| ≥ ℓn+1 and |bru(vj
′, v′2) ∩ Pℓ

n(u)| ≥ ℓn+1 .

Let w1 ∈ pos(ti) be the position that creates the symbol u(vi′v′1). We only prove the required property for
the path brt(i, w1).

Since w1 creates the symbol u(vi′v′1), there exists a position v′′ ∈ pos(u) such that vi′ � v′′ � vi′v′1
and u|v′′ = ψ(t|w1

). Moreover, by v′1 ∈ Pℓ
n(u|vi′) there exists 〈v′′1 , i

′
1, j

′
1〉 ∈ SPℓ

n(u|v′′) with vi′v′1 = v′′v′′1 ,
which yields that v′′1 ∈ pos(ψ(t(w1))). With the help of the induction hypothesis we conclude the existence
of 〈ε, i1, j1〉 ∈ SPℓ

n(t|w1
), and thus w1 ∈ Pℓ

n(t). Finally, for every v′ ∈ bru(vi
′, v′1) ∩ Pℓ

n(u). Let w′ ∈ pos(ti)
with i � w′ � w1 be the position that creates the symbol u(v′), and let v′′ ∈ pos(u) be the position such
that vi′ � v′′ � v′ and u|v′′ = ψ(t|w′). Since v′ ∈ Pℓ

n(u) there exists 〈v′′1 , i
′
1, j

′
1〉 ∈ SPℓ

n(u|v′′) with v′ = v′′v′′1 ,
which yields that v′′1 ∈ pos(ψ(t(w′))). Moreover, let i′′1 ∈ N be the unique integer such that v′i′′1 � vi′v′1.
Consequently, 〈v′′1 , i

′′
1 , j

′
1〉 ∈ SPℓ

n(u|v′′) because vi′v′1 ∈ Pℓ
n(u). By the induction hypothesis, there exists

〈ε, i1, j1〉 ∈ SPℓ
n(t|w′) such that

• v′′1 i
′′
1 � v′′′1 for some v′′′1 ∈ posxi1

(ψ(t(w′))) and

• v′′1 j
′
1 � v′′′2 for some v′′′2 ∈ posxj1

(ψ(t(w′))).

Moreso, we have w′ ∈ brt(i, w1) ∩ Pℓ
n(t), and ψ(t|w′i1) = u|v′′′ for some position vi′ � v′′′ � vi′v′1, which

determines another position of bru(vi
′, v′1). Since at most ℓ positions of bru(vi

′, v′1) can be created by a
single symbol of t and |bru(v1, v′1) ∩ Pℓ

n(u)| ≥ ℓn+1 − ℓ + 1 = (ℓn − 1 + ℓ−1)ℓ. Consequently, we obtain at
least ℓn positions in brt(i, w1) ∩ Pℓ

n(t), which completes the induction step and the proof. �

Next, we combine the previous two lemmas into the main statement that will be used to prove the infinity
of several composition hierarchies. In essence, we show that a bimorphism in B(l, c) can reduce the level by
at most 1 (while keeping the distance ℓ).

18

σ

σ

σ

α σ

σ

σ

α σ

σ

σ

α α

α

α

σ

σ

σ

α α

α

α

σ

σ

σ

α α

α

α

σ

σ

σ

α σ

σ

σ

α α

α

α

σ

σ

σ

α α

α

α

σ

σ

σ

α α

α

α

σ

σ

σ

α σ

σ

σ

α α

α

α

σ

σ

σ

α α

α

α

σ

σ

σ

α α

α

α

7→

σ

σ

σ

α σ

σ

σ

α α

α

α

σ

σ

σ

α α

α

α

σ

σ

σ

α α

α

α

7→

σ

σ

σ

α α

α

α
7→ α

Figure 7: Illustration of the 3-fold composition of the tree transformation computed by the 6εnl-xt M of Example 32.

Theorem 30. Let B = (ψ,L, ϕ) be a bimorphism such that ψ : TΓ → TΣ is linear and ϕ : TΓ → T∆ is
complete. Moreover, let (t, u) ∈ B, and let ℓ ∈ N be such that ℓ > ht(ψ(γ)) for every γ ∈ Γ. If Pℓ

n+1(t) 6= ∅,

then Pℓ
n(u) 6= ∅.

Proof. Since (t, u) ∈ B, there exists s ∈ L such that ψ(s) = t and ϕ(s) = u. By assumption, we have that
Pℓ
n+1(ψ(s)) 6= ∅, which by Lemma 29 yields that Pℓ

n(s) 6= ∅. Using the completeness of ϕ and Lemma 28,

we obtain that Pℓ
n(u) 6= ∅ as desired. �

Now we can simply chain Theorem 30 to show that an n-fold composition of tree transformations of B(l, c)
can decrease the level by at most n (for a suitable distance ℓ).

Corollary 31 (of Theorem 30). Let n ≥ 1, and for every 1 ≤ i ≤ n, let Bi = (ψi, Li, ϕi) be a bimorphism
such that ψi is linear and ϕi is complete. Moreover, let ϕi : TΓi

→ T∆i
and ψi+1 : TΓi+1

→ T∆i
for every

1 ≤ i < n. Finally, let ℓ ∈ N be such that ℓ > ht(ψi(γ)) for every 1 ≤ i ≤ n and γ ∈ Γi, and let
(t, u) ∈ B1 ; · · · ;Bn. If Pℓ

n+1(t) 6= ∅, then Pℓ
1(u) 6= ∅.

It remains to demonstrate a tree transformation that can be computed by (n+1) 6εnl-xt and that reduces
the level of positions from n + 1 to 0. Clearly, this tree transformation cannot be computed by an n-fold
composition of tree transformations from B(l, c) because the output tree should contain a position of level 1
by Corollary 31. We make sure that the assumptions of Corollary 31 are satisfied.

Example 32. Let M = (Q,Σ,Σ, {⋆}, R) be the 6εnl-xt such that
• Q = {⋆, q} and Σ = {σ(2), α(0)}, and

19

• R contains exactly the following rules

σ(⋆, α)
⋆,q
−→ ⋆ σ(⋆, q)

⋆,q
−→ σ(⋆, q) α

⋆
−→ α

The 3-fold composition M ;M ;M can compute the transformation indicated in Figure 7.

We use the tree transformation computed by the 6εnl-xt M of Example 32, and show that n transforma-
tions from B(l, c) cannot compute the tree transformation Mn+1.

Lemma 33. For every n ≥ 1,
6εnl-XTn+1 6⊆ B(l,c)

n
.

Proof. Let L0 = {α}. For every i ≥ 1, let Ci and Li be the smallest sets such that
• σ(x1, t) ∈ Ci for every t ∈ Li−1 and c[c′] ∈ Ci for all c, c′ ∈ Ci, and
• Li = {c[α] | c ∈ Ci}.

It is easy to see that n + 1 compositions of the tree transformation M computed by the 6εnl-xt M of
Example 32 can relate Ln+2 and L1 (see Figure 7); more precisely, for every t ∈ Ln+2 there exists u ∈ L1

such that (t, u) ∈ Mn+1. With the help of Corollary 31 we can complete the proof if Pℓ
n+1(t) 6= ∅ for some

t ∈ Ln+2 and suitably large ℓ ∈ N.
Let ℓ ∈ N be fixed. Thus, we now prove that for every n ∈ N there exists a tree t ∈ Ln+1 such that

Pℓ
n(t) 6= ∅ by induction on n. In fact, we prove the stronger statement that there exists t ∈ Ln+1 and

w ∈ pos(t) such that |brt(ε, w)∩Pℓ
n(t)| ≥ ℓn+1. For n = 0, we select the tree cℓ[α] ∈ L1, where c = σ(x1, α),

and the position w = 1ℓ−1. Since Pℓ
0(t) = brt(ε, w), the selection of t and w fulfills the requirements. In

the induction step, there exist a tree t ∈ Ln+1 and w ∈ pos(t) such that |brt(ε, w) ∩ Pℓ
n(t)| ≥ ℓn+1. We

consider the tree t′ = cℓ
n+2

[c[α]] with c = σ(x1, t) and the position w′ = 1ℓ
n+2−1. Obviously, t′ ∈ Ln+2 and

w′′ ∈ Pℓ
n+1(t

′) for every w′′ � w′ (via the paths 12w and 2w), which completes our induction and proof. �

Now we are able to prove that the composition hierarchy of 6εnl-XT and several other classes is infinite.

Theorem 34. For every n ≥ 1,

B(l,c)
n
(B(l,c)

n+1
[s][n]l-XT

n
([s][n]l-XT

n+1

6εnl-XTn (6εnl-XTn+1 ([s][n]l-XT
R
)n (([s][n]l-XT

R
)n+1 .

Proof. First, we note that all inclusions are trivial. Thus, we only need to argue the strictness. By [19,
Theorem 17] we have B(lcs, lc) = 6εnl-XT, hence

6εnl-XTn ⊆ B(l,c)
n

and 6εnl-XTn+1 ⊆ B(l,c)
n+1

.

These facts together with Lemma 33 imply the strictness of the two inclusions on the left. Moreover,

· · · ⊆ ([s][n]l-XTR)n ⊆ [s][n]l-XTn+1 ⊆ ([s][n]l-XTR)n+1 ⊆ [s][n]l-XTn+2 ⊆ · · ·

for all n ≥ 1, which shows that the composition hierarchy of [s][n]l-XT is infinite if and only if the composition

hierarchy of [s][n]l-XT
R

is infinite. Thus, it remains to show the latter property.
Using simple symmetry, we observe that snl-XT = 6εnl-XT−1, which together with the symmetric version

of Lemma 33 yields snl-XTn+1 6⊆ B(c,l)n. Furthermore, B(lc, l) = l-XTR by [19, Theorem 4], so naturally,

([s][n]l-XT
R
)n ⊆ B(c, l)n and snl-XTn+1 ⊆ ([s][n]l-XT

R
)n+1

for all n ≥ 1. Taken together with snl-XTn+1 6⊆ B(c,l)
n

we obtain the desired strictness. �

Table 4 summarizes our results of this section. For the sake of completeness, we mention some additional
results from the literature, where T stands for the class of all tree transformations computable by top-down
tree transducers [7], and 6ε-XT stands for the class of tree transformations computable by ε-free extended
top-down tree transducers [16]. The mentioned result 6ε-XT ⊆ T2 can be concluded from [16, Theorem 4.8].

20

Class with infinite composition hierarchy Proved in

B(l,c), 6εln-XT, [s][n]l-XT, [s][n]l-XTR Theorem 34

T [9, Theorem 3.14]

6ε-XT 6ε-XT ⊆ T2 and (Tn | n ≥ 1) is infinite

B(c,c) [1] and [6, Section II-2-2-3-4]

Table 4: Summary of the results of Section 6.

References

[1] Arnold, A., Dauchet, M.: Transductions inversibles de forêts. Thèse 3ème cycle M. Dauchet, Université de Lille (1975)
[2] Arnold, A., Dauchet, M.: Bi-transductions de forêts. In: ICALP. pp. 74–86. Edinburgh University Press (1976)
[3] Arnold, A., Dauchet, M.: Morphismes et bimorphismes d’arbres. Theoret. Comput. Sci. 20(1), 33–93 (1982)
[4] Baker, B.S.: Composition of top-down and bottom-up tree transductions. Inform. and Control 41(2), 186–213 (1979)
[5] Chiang, D.: An introduction to synchronous grammars. In: ACL. Association for Computational Linguistics (2006), part

of a tutorial given with K. Knight
[6] Dauchet, M.: Transductions de forêts bimorphismes de magmoïdes. Première thèse, Université de Lille (1977)
[7] Engelfriet, J.: Bottom-up and top-down tree transformations—a comparison. Math. Systems Theory 9(3), 198–231 (1975)
[8] Engelfriet, J.: Top-down tree transducers with regular look-ahead. Math. Systems Theory 10(1), 289–303 (1977)
[9] Engelfriet, J.: Three hierarchies of transducers. Math. Systems Theory 15(2), 95–125 (1982)

[10] Engelfriet, J., Maneth, S.: Macro tree translations of linear size increase are MSO definable. SIAM J. Comput. 32(4),
950–1006 (2003)

[11] Fülöp, Z., Maletti, A., Vogler, H.: Preservation of recognizability for synchronous tree substitution grammars. In:
ATANLP. pp. 1–9. Association for Computational Linguistics (2010)

[12] Fülöp, Z., Maletti, A., Vogler, H.: Weighted extended tree transducers. Fundam. Inform. 111(2), 163–202 (2011)
[13] Fülöp, Z., Vogler, H.: Syntax-Directed Semantics—Formal Models Based on Tree Transducers. EATCS Monographs on

Theoret. Comput. Sci., Springer (1998)
[14] Gécseg, F., Steinby, M.: Tree Automata. Akadémiai Kiadó, Budapest (1984)
[15] Gécseg, F., Steinby, M.: Tree languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 3,

chap. 1, pp. 1–68. Springer (1997)
[16] Graehl, J., Hopkins, M., Knight, K., Maletti, A.: The power of extended top-down tree transducers. SIAM J. Comput.

39(2), 410–430 (2009)
[17] Graehl, J., Knight, K., May, J.: Training tree transducers. Comput. Linguist. 34(3), 391–427 (2008)
[18] Knight, K., Graehl, J.: An overview of probabilistic tree transducers for natural language processing. In: CICLing. LNCS,

vol. 3406, pp. 1–24. Springer (2005)
[19] Maletti, A.: Compositions of extended top-down tree transducers. Inform. and Comput. 206(9–10), 1187–1196 (2008)
[20] Maletti, A.: Tree transformations and dependencies. In: MOL. LNAI, vol. 6878, pp. 1–20. Springer (2011)
[21] May, J., Knight, K., Vogler, H.: Efficient inference through cascades of weighted tree transducers. In: ACL. pp. 1058–1066.

Association for Computational Linguistics (2010)
[22] Rounds, W.C.: Mappings and grammars on trees. Math. Systems Theory 4(3), 257–287 (1970)
[23] Thatcher, J.W.: Generalized2 sequential machine maps. J. Comput. System Sci. 4(4), 339–367 (1970)

21

	1 Introduction
	2 Notation
	3 Linear extended top-down tree transducers
	4 Four classes that are closed at a finite power
	5 Least power of closedness
	6 Infinite composition hierarchies

