
Fixed Points, Nash Equilibria, and the Existential

Theory of the Reals

Marcus Schaefer

School of Computing
DePaul University
243 South Wabash

Chicago, Illinois 60604, USA
mschaefer@cdm.depaul.edu

Daniel Štefankovič

Computer Science Department
University of Rochester

Rochester, NY 14627-0226
stefanko@cs.rochester.edu

Abstract

We introduce the complexity class ∃R based on the existential the-
ory of the reals. We show that the definition of ∃R is robust in the
sense that even the fragment of the theory expressing solvability of
systems of strict polynomial inequalities leads to the same complexity
class. Several natural and well-known problems turn out to be com-
plete for ∃R; here we show that the complexity of decision variants of
fixed-point problems, including Nash equilibria, are complete for this
class, complementing work by Etessami and Yannakakis [13].

Keywords: Fixed point problems, Brouwer, existential theory of the real
numbers, Nash equilibrium, computational complexity

1 Introduction

Many computational problems in geometry, graph drawing and other areas
can be shown decidable using the (existential) theory of the real numbers,
including the rectilinear crossing number, the Steinitz problem, and find-
ing a Nash equilibrium; what is less often realized, though there are some
exceptions, is that the existential theory of the reals captures the compu-
tational complexity of many of these problems precisely. In previous pa-
pers, the first author investigated some geometric problems related to graph
drawing [30, 31]. In the current paper, we present tools to deal with semi-
algebraic and algebraic sets, such as effective lower bounds on the distance
between two semialgebraic sets. These tools are useful in solving compu-
tational complexity problems related to the existential theory of the reals.

1

We illustrate this by applying them to a variety of fixed point-problems and
Nash equilibria, complementing work of Etessami and Yannakakis [13].

From an algebraic point of view, there are two ways to define the existen-
tial theory of the reals depending on whether we allow equality or not; for
example, take the rectilinear crossing number, which is the smallest number
of crossings in a straight-line drawing of a graph. The rectilinear crossing
number problem can be expressed as a system of strict inequalities, and,
as a consequence, a drawing realizing the rectilinear crossing number of a
graph can be assumed to have vertices with rational coordinates (even if
some of them may require exponential precision, see [4]); similarly, inter-
section graph problems can typically be captured by strict inequalities (for
example, the problems in [30], including segment intersection graphs). On
the other hand, fixed-point problems need equality to be modeled in the
existential theory of the reals, and so their solution sets do not necessarily
contain rational points: the fixed point of f(x) = 2/x is

√
2. In Section 4

we prove the rather unexpected result that from a computational point of
view, these two variants of the existential theory of the reals are the same,
justifying the introduction of a single complexity class ∃R. Section 2 reviews
the logical and computational side of the existential theory of the reals, and
Section 3 presents some tools based on algebraic geometry which turn out to
be useful in handling problems in the class ∃R. In Section 5 we then show
that several fixed-point problems are complete for this class.

Since the class ∃R was first introduced (in an earlier version of this paper,
as well as [30, 31]), there have been several new ∃R-completeness results,
including:

• straight-line realizability of abstract topological graphs (even the com-
plete graph) [22],

• recognizing unit disk graphs and dot-product graphs [18],

• simultaneous geometric planarity [10],

• a data exchange problem for arithmetic schema mapping [35],

• stretchability of pseudocircles [19].

Together with the results from earlier papers this already gives us a sizable
collection of complete problems for ∃R from many different areas (see [24,
32, 4, 20, 34, 28, 27, 12, 8], for example; a survey on the topic is in prepa-
ration [29]; there is a wikipedia page on ∃R [39]).

2

We assume that the reader is familiar with basic notions of computa-
tional complexity, including polynomial time, polynomial-time many-one
reducibilities and complexity classes such as NP, and PSPACE [25, 33].

2 The Existential Theory of the Reals

The existential theory of the reals, ETR, is the set of true sentences of the
form

(∃x1, . . . , xn) ϕ(x1, . . . , xn),
where ϕ is a quantifier-free (∨,∧,¬)-Boolean formula over the signature
(0, 1,+, ∗, <,≤,=) and the sentence is interpreted over the universe of real
numbers.1

In a 1948 paper entitled “A Decision Method for Elementary Algebra
and Geometry”, Alfred Tarski proved a quantifier elimination result for the
existential theory of the reals, which implied that the theory of the reals, with
arbitrary quantifiers, is decidable. In his 1988 dissertation, Canny showed
that ETR can be decided in PSPACE, to date the best theoretical upper
bound on ETR. For a recent survey, see [23], for experimental comparisons
of running times, see [15].

We will find it useful to distinguish two special cases of ETR. Let INEQ
be the subset of ETR, in which we do not allow ∨,¬ and =, that is ϕ is a
conjunction of atoms of the form s < t and s ≤ t (s = t can be expressed as
s ≤ t∧ t ≤ s so not allowing equality is not a real restriction). Furthermore,
let STRICT INEQ be the subset of INEQ, in which we do not allow ≤, that
is, ϕ is a conjunction of strict inequalities s < t.

Following our first impulse as complexity theorists we use STRICT INEQ

and INEQ to define complexity classes ∃<R and ∃=R as the downward clo-
sures of these problems under polynomial-time many-one reductions; with
this definition ∃<R ⊆ ∃=R and there seems to be evidence that these two
classes are different: solutions to an INEQ-type problem can require irra-
tional numbers, e.g. x2 = 2, while solutions to STRICT INEQ can always be
perturbed slightly to make them rational. These differences are of an alge-
braic nature and, in a slightly surprising twist of events, do not affect the
computational complexity of these problems. It turns out that ∃<R = ∃=R

as we will see in Section 4. In other words, INEQ polynomial-time many-one
reduces to STRICT INEQ.

1When writing formulas in the existential theory of the reals, we will freely use integers
and rationals, since these can easily be eliminated without affecting the length of the
formula substantially.

3

Note that NP ⊆ ∃<R (a result first explicitly stated by Shor [32]), since
we can express satisfiability of a Boolean formula in ∃<R. For example,
ϕ = (x ∨ y ∨ z) ∧ (x ∨ y ∨ z) ∧ (x ∨ y ∨ z) is equivalent to

(∃x, y, z, ε)[(−ε < x < 1 + ε) ∧ (−ε < y < 1 + ε) ∧ (−ε < z < 1 + ε)

∧ (x(1− y)z) + ((1− x)yz) + ((1− x)(1 − y)(1− z)) < ε,

∧ ε > 0 ∧ ε < 1/104].

If the formula is satisfiable, then we assign a variable the value 0 if it is true
and 1 otherwise, so that the sum becomes 0 < ε; in the example: x = y = 0
and z = 1 will do. For the reverse direction, assume x, y, z, and ε satisfy
the formula. Note that 0 < ε < 1/104 = 1/8(1 + 4m), where m = 3 is the
number of clauses. Each term of the sum is at least −ε · (1 + ε)2 ≥ −4ε;
so the whole sum is at least −4mε ≥ −12/104. For the sum to be less
than 1/104, every term must be less than 1/104 + 12/104 = 1/8. Each
term is the product of three factors, so at least one factor must be less than
(1/8)1/3 = 1/2. Let the corresponding variable be true if the factor is of the
form x and false if it is of the form 1−x. This yields a satisfying assignment
of the original Boolean formula ϕ.

So, with respect to classical complexity classes, we can summarize our
present knowledge of the existential theory of the reals by

NP ⊆ ∃<R ⊆ ∃=R ⊆ PSPACE,

where the last implication is due to Canny’s result [9].

Remark 2.1 (Models of Real Computation). We are not treating the ex-
istential theory of the real numbers as a model of real computation in two
senses: there are no “real” real numbers in ETR (other than rationals), and
we do not present a machine model for the classes ∃<R and ∃=R. It turns
out that it is possible to construct a machine model for ∃=R; this was es-
sentially done by Blum, Shub, and Smale [6] whose results imply that the
languages in {0, 1}∗ decided by a real non-deterministic polynomial-time
Turing machine that has no registers for real numbers are precisely the lan-
guages in ∃=R.

2 This connection between ETR and the BSS-model does not

2The class of Boolean languages decided by real non-deterministic Turing machines
without real constants was introduced under the name BP(NP

0
R) by Bürgisser and

Cucker [7, Corollary 8.2] who observed that the feasibility problem FEAS (which we will de-
fine in Section 4) is complete for that class, based on work by Blum, Shub, and Smale [6].
Since FEAS is also complete for ∃=R, as we will show in Theorem 4.1, the two classes
coincide.

4

give any insights on the problems dealt with in the current paper, which is
why we do not discuss this (or other models of real computation) any fur-
ther. However, the BSS-model could be a first step toward more structural
results such as oracle separations. ⊳

3 Semi-Algebraic Sets of Bounded Complexity

Our goal in this section is to collect a couple of tools for dealing with semi-
algebraic sets of bounded complexity. In particular, we want to show that
such sets always contain a point not too far from the origin (Corollary 3.4),
that we can find a ball that contains a bounded semi-algebraic set (Corol-
lary 3.7), and that there is a lower bound on the distance between two
semi-algebraic sets that have positive distance (Corollary 3.8).

We will use the following notations throughout this paper: [n] as an
abbreviation for the set {1, . . . , n}, ‖x‖2 :=

∑

i∈[n] x
2
i is the square of the

distance of x from the origin, the distance d(A,B) between two sets A,B ⊆
Rn is defined as d(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}, where ‖a − b‖ is the
Euclidean distance between two points. The bitlength of an integer n is the
smallest number b(n) of bits to write down the number in binary digits. So
b(n) = ⌊(log2(n)⌋+ 1 for n ≥ 1 and b(0) = 1. In particular, n < 2b(n) for all
n.

3.1 Definitions and Basic Results

In algebraic geometry semi-algebraic sets are solution sets to systems of
polynomial equalities and inequalities; taking a more logical approach, we
say a set S ⊆ Rn is semi-algebraic if there is a (∨,∧,¬)-Boolean quantifier-
free formula over the signature (0, 1,+, ∗, <,≤,=) and with (free) variables
x = (x1, . . . , xn) so that S = {x ∈ Rn : ϕ(x)}. If ϕ does not contain ∨ or ¬,
we call the set a basic semi-algebraic set. If, moreover, ϕ does not contain
< and ≤, the set is algebraic. We use |ϕ| to denote the length of ϕ, that
is, the number of bits necessary to write down ϕ. The (bit)-complexity of a
semi-algebraic set is the shortest length of any formula defining the set.

In algebraic geometry, semi-algebraic sets are defined as finite unions of
basic semi-algebraic sets; since we gave a definition via defining formulas,
we have to prove that result. We also show that the complexity of the basic
semi-algebraic sets need be no larger than the complexity of the original set.

Lemma 3.1. Every semi-algebraic set of complexity at most L is the finite
union of basic semi-algebraic sets each of complexity at most L. We can

5

assume that the defining formula of each of the basic semi-algebraic sets
does not contain the comparison operator ≤.

Proof. Let ϕ be a formula of bitlength at most L defining the semi-algebraic
set S = {x : Rn : ϕ(x)}. If ϕ contains any negations, we push them to the
lowest level of the formula, and absorb them in the atomic formulas: s < t
becomes t ≤ s, s ≤ t becomes t < s, and s = t turns into s < t ∨ t < s.
Replace all inequalities of type s ≤ t by s < t ∨ s = t and convert the
resulting formula ψ into disjunctive normal form: ψ =

∨

i∈I ψi for some
I ⊆ N. Then each ψi defines a basic semi-algebraic set (not using ≤), and S
is the union of these sets. Each ψi uses at most one clause of each disjunction
we introduced when rewriting s ≤ t and s = t, so each of its clauses stems
from a different clause in the original ϕ and so |ψi| ≤ |ϕ|.

The following lemma gives us a way to replace the defining formula of
a semi-algebraic set with a single multivariate polynomial. Multivariate
polynomials are sums (or differences) of monomials, the complexity of a
polynomial is the number of bits needed to write it down in this form;
this means, that while we may write (x + 1)(y + 1) to simplify notation,
the polynomial has to be written out as xy + x + y + 1 explicitly. Other
measures of complexity for polynomials include bounds on the bitlength of
the coefficients (as integers) of monomials, typically written as τ , and the
(total) degree of the polynomial f which is defined as the maximum over the
sum of the variable exponents in each monomial term occurring in f . E.g.
f(x, y, x) = 5x7y2 − 2x3yz6 has total degree 3 + 1 + 6 = 10.

Lemma 3.2. If S is a semi-algebraic set in Rn given by a formula ϕ of
complexity at most L ≥ 3, then we can efficiently (that is in time polynomial
in L and n) construct

(i) a family of quadratic polynomials fj : Rn+m → R, j ∈ [k], so that
S = {x ∈ Rn : (∃y ∈ Rm)

∧

j∈[k] fj(x, y) = 0}, for some m,k ≤ 3L,

(ii) a non-negative polynomial g : Rn+m → R of degree at most 4 so that
S = {x ∈ Rn : (∃y ∈ Rm) g(x, y) = 0}, for some m ≤ 3L.

The coefficients of the polynomials fj have bitlength at most L and coeffi-
cients in g have bitlength at most 2L.

This lemma is an efficient version of the well-known fact that every
semi-algebraic set is the projection of an algebraic set (the set of zeros of
a polynomial). Similar to the situation in the Blum-Shub-Smale model of

6

real computation, it is unlikely that the degree of g can be reduced below 4,
since it can be decided in polynomial time whether a polynomial of degree
at most 3 has a zero [36].

Proof of Lemma 3.2. Clearly, (i) implies (ii): with the family f from (i),
define g(x, y) =

∑

1≤j≤k(fj(x, y))
2. Then fj(x, y) = 0 for all j ∈ [k] if and

only if g(x, y) = 0, and the bitlength of coefficients at most doubles. Note
that g is non-negative. Hence, it is sufficient to prove (i). Let S = {x ∈
Rn : ϕ(x)}, where ϕ has complexity at most L. As in Lemma 3.1, push
all negations to the atomic level, and replace s < t with t ≤ s, s ≤ t with
t < s, and s = t with s < t ∨ t < s. This at most doubles the length of
ϕ. We now use a trick based on an idea due to Tseitin [37, 21], to build
quadratic polynomials fj(x, y) with new variables y ∈ Rm, for some m, so
that ϕ(x) ≡ (∃y)∧j∈[k] fj(x, y) = 0.

For any subformula γ of ϕ create a new real variable yγ and, as needed,
y′γ and y′′γ . For any subterm s of ϕ create a new real variable ys. We will
ensure that for any x, y with the property that fi(x, y) = 0 for every i ∈ [k],
we have that ys = s and that if yγ = 0, then γ(x) is true. The variables y′γ
and y′′γ are needed for intermediate calculations only.

To simplify notation, we index the family of polynomials f using sub-
formulas and subterms of ϕ. Let s be any subterm of ϕ. If s = t ◦ u, we
define fs(x, y) = s − (t ◦ u) (where ◦ ∈ {+,−, ∗}); if s = xi, we define
fs(x, y) = s− xi

Let γ be any subformula of ϕ. If γ = α∨β, we define fγ(x, y) = yγ−yαyβ;
if γ = α ∧ β, we define fγ(x, y) = yγ − (y2α + y2β). If γ = (s = t), we
define fγ(x, y) = yγ − (ys − yt). If γ = (s < t), we need to define two
polynomials, let us call them fγ,0, and fγ,1; we define fγ,0(x, y) = y′γ− (y′′γ)

2,
and fγ,1(x, y) = (yt− ys)y′γ − (1− yγ). Note that if fγ,0(x, y) = fγ1(x, y) = 0
and yγ = 0, then y′γ ≥ 0 and 1− yγ = 1, so yt > ys; the reverse need not be
true.

Now, if ϕ(x) is true, then by construction, we can choose values for ys,
yγ , y

′
γ and y′′γ so that for all j we have fj(x, y) = 0. If, on the other hand,

for all j we have fj(x, y) = 0, then all the terms fγ and fs are zero. In
particular, yϕ = 0, so, γ is true (since this implication holds for each step of
the recursive construction of yϕ).

The degree of the polynomials in f are at most 2, and the bitlengths
of coefficients was not increased by the construction. Since a formula ϕ of
length L can have at most L subformulas and subterms, we conclude that
k ≤ 2L (at most two polynomials per subformula), and m ≤ 3L (at most
three variables per subformula).

7

3.2 Main Tools

The three main corollaries in this section (3.4, 3.7, 3.8) are based on corre-
sponding results from algebraic geometry on systems of polynomial equali-
ties and inequalities. For example, Vorobjov [38] and Grigor’ev and Vorob-
jov [14] were the first to show that every semi-algebraic set of complexity at

most L contains a point of distance at most 22
O(L)

from the origin.3 We use
a more recent result due to Basu and Roy [3] which gives explicit constants
(which may be of interest in applications).4

Theorem 3.3 (Basu, Roy [3, Theorem 4]). Let (fi)i∈[s] be a family of poly-
nomials of type Rn → R all of degree at most d and with coefficients of
bitlength at most τ . Define

R = ((2DN(2N − 1) + 1)2(2N−1)(τ ′+b(2N−1)+b(2DN+1)))1/2,

with d′ = max(2(d + 1), 6), D = n(d′ − 2) + 2, N = d′(d′ − 1)n−1, τ ′ =
N(τ2 + b(N) + 2b(2D+1) + 1), τ2 = τ1 +2(n− 1)b(N) + (2n− 1)b(n), τ1 =
D(τ0+4b(2D+1)+b(N))−2b(2D+1)−b(N), τ0 = 2τ+nb(d+1)+b(2d′)+b(s).
Then a ball of radius R around the origin contains a point of every semi-
algebraic set S = {x ∈ Rn : fi(x)△i0} that can be defined by choosing
△i ∈ {>,<,=}.

These estimates are much finer than what is needed for our purposes,
since we are only bounding the overall complexity of the formula. Deriving
the following bound is tedious, but straightforward, the details can be found
in Appendix A.

Corollary 3.4. Every semi-algebraic set in Rn of complexity at most L ≥ 4
contains a point of distance at most 2L

8n
from the origin.

The remaining two corollaries we base on a result by Jeronimo and Per-
rucci who showed that a positive polynomial (all values are greater than 0)
defined over a simplex can be bounded away from 0.5 Let ∆n = {x ∈ Rn

≥0

with
∑

i∈[n] xi ≤ 1} be the standard simplex in Rn.

3The theorem can also be found in [2, Theorem 13.15] though the statement contains
a typo in the radius of the ball.

4As far as complexity theory is concerned, the original result by Grigor’ev and Vorobjov
would be sufficient, however.

5Using the simplex results to get estimates with explicit constants, was suggested to
us by Jǐŕı Matoušek.

8

Theorem 3.5 (Jeronimo, Perruci [16]). If f : Rn → R is a polynomial of
degree d so that f(x) > 0 for all x ∈ ∆n, and all coefficients of f have
bitlength at most τ , then

f(x) > 2−(τ+1)dn+1
d−(n+1)dn+1

for all x ∈ ∆n.

The obvious generalization from ∆n to Rn fails; for example, f(x, y) =
x2 + (1− xy)2 is positive for all x, y ∈ R but cannot be bounded away from
0. Instead, we require that we know that f is bounded away from 0.

Corollary 3.6. If f : Rn → R is a polynomial of degree d so that f(x) ≥
δ > 0 for all x ∈ Rn and some fixed δ, and all coefficients of f have bitlength
at most τ , then

f(x) > 2−(τnd+1)dn+1
d−(n+1)dn+1

for all x ∈ Rn.

Proof. Let ∆′
n = {y ∈ Rn

≥0 :
∑

i∈[n] yi < 1} and define r(y) = y/(1 −
∑

i∈[n] yi) for y ∈ ∆′
n. Then r is a homeomorphism between ∆′

n and Rn
≥0. Let

f(x) =
∑

j∈J ajx
j, where J ⊆ Nn and xj := xj11 · · · xjnn . The function f ◦ r is

a rational function and can be written as f(r(y)) = g(y)/h(y), where g(y) =
∑

j∈J ajy
j(1−∑

i∈[n] yi)
d−(

∑
i∈[n] ji) and h(y) = (1−∑

i∈[n] yi)
d. We see that

both g and h are polynomials of degree at most d, and the bitlength of their
coefficients is bounded by τ ′ = ndτ . Now for y ∈ ∆′

n we have h(y) ≤ 1 and,

by Theorem 3.5, g(y) > 2−(τ ′+1)dn+1
d−(n+1)dn+1

= 2−(τnd+1)dn+1
d−(n+1)dn+1

.

Therefore, f(r(y)) = g(y)/h(y) ≥ g(y) ≥ 2−(τnd+1)dn+1
d−(n+1)dn+1

for all

y ∈ ∆′
n. Hence f(x) ≥ 2−(τnd+1)dn+1

d−(n+1)dn+1
for all x ∈ Rn

≥0. By
modifying the definition of r we can establish this lower bound on f for each
of the hyperoctants of Rn proving the result.

We derive two further consequences from Corollary 3.6: an upper bound
(in terms of distance) on all points in a bounded semi-algebraic set, and a
lower bound on the distance between two semi-algebraic sets that have a
positive distance.

Corollary 3.7. If a bounded semi-algebraic set in Rn has complexity at most
L ≥ 5n, then all its points have distance at most 22

L+5
from the origin.

There is a finer bound in terms of n, d, and τ due to Basu and Roy [3].

9

Proof of Corollary 3.7. Let S = {x ∈ Rn : ϕ(x)}, where ϕ has complexity
at most L, be a bounded semi-algebraic set. Then R = supx∈S ‖x‖2 < ∞.
By Lemma 3.2, there is a polynomial g of degree at most 4 with coefficients
of bitlength at most 2L, so that S = {x ∈ Rn : (∃y ∈ Rm) g(x, y) = 0}. Let
f : Rn+m+1 → R be the polynomial defined by f(x, y, u) = u2 + (u‖x‖2 −
1)2 + g(x, y). Then f has degree at most 4 and coefficients of bitlength
at most 2L. Moreover, infx,y,u f(x, y, u) ≤ 1/R2: Let x(j) be a sequence of
points in S such that ‖x(j)‖2 converges to R. Then for each x(j) there is a y(j)

so that g(x(j), y(j)) = 0. Then f(x(j), y(j), 1/R) = 1/R2 + (‖x(j)‖2/R − 1)2

which tends to 1/R2 as j → ∞. By Corollary 3.6, f can be bounded below
by

2−(τnd+1)dn+1
d−(n+1)dn+1 ≥ 2−(τn4+2n+3)4n+1 ≥ 2−2L+6

,

where we used d ≤ 4 in the first inequality, and τ ≤ 2L and n ≤ L/5 in the

second. Since (1) is a lower bound on 1/R2, we get R2 ≤ 22
L+6

and hence

R ≤ 22
L+5

.

The second consequence is a lower bound on the distance between two
semi-algebraic sets.

Corollary 3.8. If two semi-algebraic sets in Rn each of complexity at most
L ≥ 5n have positive distance (for example, if they are disjoint and compact),

then that distance is at least 2−2L+5
.

Jeronimo, Perrucci, Tsigaridas [17, Theorem 2] give bounds on the mini-
mum distance between two semi-algebraic sets in terms of n, τ and d, which
is more than we need. Their result makes the stronger assumption that one
of the two sets be compact.

Proof of Corollary 3.8. Let S = {x ∈ Rn : ϕ(x)} and T = {x ∈ Rn : ψ(x)}
so that ϕ and ψ have complexity at most L. We can assume that both S
and T are non-empty. By Lemma 3.1 both S and T are the finite union of
basic semi-algebraic sets of complexity at most L, so we can choose basic
semi-algebraic subsets of S and T that realize the minimum distance. So
let us assume that S and T are basic. Lemma 3.2 gives us polynomials g
and h each of degree at most 4 and with coefficients of bitlength at most
2L so that S = {x ∈ Rn : (∃y ∈ Rm) g(x, y) = 0 and T = {x : Rn : (∃y ∈
Rm) h(x, y) = 0} (we can pad y if necessary so m is the same and g and h
have the same number of variables). Consider the polynomial f(x, y, x′, y′) =
g(x, y) +h(x′, y′)+ ‖x− x′‖2. Then infx,x′,y,y′ f(x, y, x

′, y′) is a lower bound

10

on the square of the distance between S and T (pick x in the closure of S
and x′ in the closure of T so that d(x, x′) = d(S, T), then choose sequences
of elements in S and T converging to x and x′, with corresponding choices of
y and y′). Since f has degree d ≤ 4 ≤ 2L and its coefficients have bitlength

τ ≤ 2L as well, Corollary 3.6 implies that f has a lower bound of 2−2L+6

(just as in Equation (1) above, using the same estimates). Since this is a

lower bound on the square of the distance which is less than 1, 2−2L+5
is a

lower bound on the distance.

4 The Complexity Class ∃R

We have defined three variants of the existential theory of the reals, ETR,
INEQ, and STRICT INEQ; in this section we will show that they are all
computationally equivalent. In particular, it will follow that ∃<R = ∃=R,
which is a bit of a surprise, since algebraically these two classes differ. For
the proof, we will use an intermediate problem FEAS which restricts ETR

to formulas not containing 6=, ∨, ∧, < and ≤; in other words, FEAS asks
whether a multivariate polynomial is feasible, that is, has a root over the
reals.

Theorem 4.1. The following problems are polynomial-time equivalent: ETR,
FEAS, STRICT INEQ.

Proof. In slightly different language, we already saw that ETR reduces to
FEAS, that was what we proved in Lemma 3.2. Since STRICT INEQ is a
special case of ETR, we are left with the proof that FEAS reduces to STRICT

INEQ.
So suppose we are given a multivariate polynomial g and ask whether

there is an x ∈ Rn so that g(x) = 0. Let L be the complexity of g (recall that
this is the number of bits required to write down g as a sum of monomials).
By Corollary 3.4 we know that if S = {x ∈ Rn : g(x) = 0} is not empty,
it contains a point of distance at most R = 2L

8n
from the origin. Consider

the two semi-algebraic sets {(z, x) ∈ Rn+1 : g(x) = z, ‖x‖2 ≤ R2} and
{(z, x) ∈ Rn+1 : z = 0, ‖x‖2 ≤ R2}. If these two sets do not intersect, they
have positive distance (both being compact), and, by Corollary 3.8, that

distance is at least 2−2L+5
. Hence, g = 0 is equivalent to the system

−δ < g(x), g(x) < δ, δ < 2−2L+5
, ‖x‖2 ≤ R2

of strict inequalities being solvable. The inequality δ < 2−2L+5
can be re-

placed by a sequence of at most L+ 5 inequalities using repeated squaring,

11

so we have shown that FEAS can be reduced to STRICT INEQ. Note that
this reduction does not (and cannot) maintain the realization space of the
system (the set of solutions).

As a corollary of Theorem 4.1 we obtain:

Corollary 4.2. ∃<R = ∃=R.

The corollary allows us to simplify our notation and call our new com-
plexity class simply ∃R. Our computational world now looks as follows:

NP ⊆ ∃R ⊆ PSPACE.

Remark 4.3. Following standard usage, we will say a problem is ∃R-hard,
if every problem in ∃R polynomial-time many-one reduces to it; it is ∃R-
complete, if it is ∃R-hard and belongs to ∃R. The complements of problems
in ∃R can be said to belong to ∀R, or co∃R (used in [35]). ⊳

Let QUAD be the computational problem asking whether a family of
quadratic polynomials fi : Rn → R, i ∈ [k], has a common zero, and let
4-FEAS be the special case of FEAS in which the polynomial has degree at
most 4. The algebraic versions of these problems are known to be hard for
NPR, the analogue of NP in the Blum-Shub-Smale model [5, Section 5.4].

Corollary 4.4. QUAD and 4-FEAS are ∃R-complete.

In [31, Lemma 3.9] it is shown (assuming Corollary 4.4) that QUAD

remains ∃R-complete if we ask for a common zero in the unit ball Bn(0, 1).

Proof. Lemma 3.2 shows that ETR reduces to QUAD, which in turn reduces
to 4-FEAS. Obviously, both problem belong to ∃R.

Ten Cate, Kolaitis and Othman [35] recently showed that ∃R is down-
ward closed under NP-reductions, that is, if a problem NP-reduces to a
problem in ∃R, then it also belongs to ∃R, where an NP-reduction is a
many-one reduction computed by a non-deterministic polynomial time Tur-
ing machine. This allows the authors to show that the data exchange prob-
lem they are interested in lies in ∃R. They show ∃R-completeness by reduc-
ing the rectilinear crossing number problem to the data exchange problem.

Let us mention one more tool that may be useful in showing some prob-
lem lies in ∃R; the first author used this result in [31] (without proof) to
show that non-rigidity of linkages lies in ∃R.

12

Lemma 4.5. Let
Φ(ε, y) = (∃x) ϕ(ε, x, y),

with ε > 0, x ∈ Rk, y ∈ Rℓ, be such that Φ(ε, y) implies Φ(ε′, y) for all
ε′ > ε. Then we can find a quantifier-free formula ψ(ε, x, y, z), with z ∈ Rm,
of length at most |ϕ|+ dm, where m = |ϕ|+ 5 so that

(∀ε > 0)(∃x) ϕ(ε, x, y)

is equivalent to
(∃ε > 0, x, z) ψ(ε, x, y, z).

Proof. We assume y ∈ Rℓ is fixed and will drop it from the formulas (that
is, we really prove the case ℓ = 0).

Define two sets A := {(ε, x) ∈ Rk+1 : ϕ(ε, x), ε > 0} and B := {0} × Rk.
If d(A,B) = 0, then for every δ > 0 there must be an ε so that δ > ε > 0
and (ε, x) ∈ A for some x which, by monotonicity, implies that (ε′, x) ∈ A
for all ε′ > ε. Since δ can be chosen arbitrarily small, this means that
(∀ε > 0)(∃x) ϕ(ε, x) is true.

Otherwise, d(A,B) > 0 and, by Corollary 3.8, d(A,B) > 2−2L+5
. By

construction, d(A,B) is a lower bound on the infimum over all ε > 0 for
which there is an x so that ϕ(x) is true; hence, ϕ(ε, x) is false for all x and

all ε < 2−2|ϕ|+5
, so (∀ε > 0)(∃x) ϕ(ε, x) is false.

In other words, the truth of (∀ε > 0)(∃x) ϕ(ε, x) is equivalent to (∃ε >
0)(∃x) [ϕ(ε, x) ∧ ε < 2−2L+5

]. Using repeated squaring, ε < 2−2|ϕ|+5
can be

expressed using a formula with at most m = |ϕ|+6 variables z. Combining
this formula with ϕ(ε, x) we obtain ψ(ε, x, z) so that the conclusion of the
lemma holds.

To see how this lemma can be useful, we give two examples, the first is
from [31]. Let ISO be be the problem of deciding whether a point x ∈ Rn

is an isolated zero of a family (fi)i∈[s] of multivariate polynomials. Then
((fi)i∈[s], x) is not an instance of ISO, if x is not a zero of (fi)i∈[s] or (∀ε >
0)(∃y) [∑i∈[n](xi−yi)2 < ε∧∧

i∈[s] fi(y) = 0]. By Lemma 4.5 the monotone
all-quantification over ε can be replaced with an existential quantifier, and
we conclude that ISO belongs to ∃R; in other words ISO belongs to ∀R.

Our second example is new:

Lemma 4.6. Deciding whether two semi-algebraic sets have distance zero
is ∃R-complete.

13

It is tempting to conjecture that the condition is equivalent to the closure
of the two algebraic sets having a non-empty intersection, but that is not
correct, as the earlier example f(x, y) = x2 + (1 − xy)2 and g(x, y) = 0
shows.

Proof. ∃R-hardness is an obvious reduction from FEAS: a multivariate poly-
nomial f : Rn → R has a zero if and only if {(x, y) ∈ Rn+1 : y = f(x), ‖x‖ ≤
R} and {(x, 0) ∈ Rn+1 : ‖x‖ ≤ R} have distance 0, where R is an upper
bound on a zero of f (use Corollary 3.4 applied to {x ∈ Rn : f(x) = 0}).

The interesting part is showing that the problem lies in ∃R. Using
Lemma 4.5 this is easy now, because we can express that two semi-algebraic
sets defined by polynomials f(x, y) and g(x, y) (use Lemma 3.2) have dis-
tance 0 as (∀ε)(∃x, y, x′, y′)[f(x, y) = 0 ∧ g(x′, y′) = 0 ∧ ‖x− x′‖ ≤ ε].

5 Fixed Points and the Nash Equilibrium

How hard is it to find a fixed point of a function? Consider a simple ver-
sion of that problem called FIXED in which we ask whether a family f of
polynomials fi : R

n → R, i ∈ [n], has a fixed point, that is an x ∈ Rn so
that f(x) = (f1(x), . . . , fn(x)) = x. FIXED is ∃R-complete: Obviously, it is
a special case of INEQ, and we can reduce FEAS to it, since g : Rn → R has
a zero, if and only if the family of polynomials defined by fi(x) = g(x) + xi
has a fixed point.

In this section we consider continuous functions from a convex, com-
pact set to itself. Such functions always have a fixed point by the Brouwer
Fixed-Point Theorem, trivializing the question we asked for FIXED, but also
giving a first hint that encoding is going to be harder with these functions.
There are several computational questions that can be asked for this prob-
lem (see the detailed discussion by Etessami and Yannakakis [13]). We start
with the decision version of the problem and discuss variants and the Nash
Equilibrium problem in Section 5.2.

5.1 The Brouwer Fixed-Point Problem

Brouwer’s fixed point theorem implies that a continuous function from a
convex compact set to itself has a fixed point. We are interested in the
computational complexity of deciding whether there is a fixed point of the
function in a given neighborhood. To slightly simplify the argument, we
work over the domain Bn(x, r), the closed ball around x ∈ Rn of radius

14

r in the ℓ∞-metric; in other words, Bn(x, r) is an n-dimensional box; for
example, Bn(0, 1/2) is the unit cube centered at the origin.

There are several choices for what continuous functions we allow. Typi-
cally, functions defined using straight-line programs (a very compact repre-
sentation of polynomials) or even extended straight-line programs (a com-
pact representation of a class of functions that includes all rational func-
tions) are allowed in this context (see [13], for example). Since we want to
show that the problem is hard, we obtain a stronger result, the more lim-
ited our set of continuous functions, so we settle on the set of polynomials,
represented explicitly, that is, in the form f(x) =

∑

i∈I cix
i, where x ∈ Rn,

I ⊆ Nn, ci ∈ Q, and xi = (xi11 , . . . , x
in
n). We even restrict ci to the set of

values {−1,−1/2, 0, 1/2, 1}. We can now define the computational version
of the Brouwer fixed-point problem:

BROUWER

Given: A polynomial family f : Bn(0, 1) → Bn(0, 1), represented explicitly,
x ∈ Qn, r ∈ Q.

Question: Does f have a fixed point in Bn(x, r)?

Our goal is to show that BROUWER is ∃R-hard. The strategy for the
proof is simple: reduce the fixed-point problem FIXED to BROUWER. To
encode FIXED, we need to scale the computations, since f has to take val-
ues in Bn(0, 1). This is rather hard to achieve with explicitly represented
polynomials, but becomes much easier if we use the (extended) straight-line
representation. Consequently, the proof is in two parts: we show that (1)
FIXED reduces to a fixed-point problem for extended straight-line programs
(Theorem 5.3), and (2) explicitly represented polynomials have roughly the
same power as extended straight-line programs when it comes to sets of fixed
point (Lemma 5.1).

We start with the second part, for which we need a formal definition
of the two variants of straight-line programs we mentioned. A straight-
line program (SLP) is a sequence of assignments of the form Si := c, c ∈
{−1,−1/2, 0, 1/2, 1}, Si := xj , i ∈ [ℓ], j ∈ [n] or Si := Sj ◦ Sk, where 1 ≤
j, k < i ≤ ℓ and ◦ ∈ {+,−, ∗}; ℓ is the length of the program.6 We can think
of the straight-line program as a succinct way of describing a multivariate

6We could allow arbitrary assignments Si := c, where c ∈ Q or c ∈ [−1, 1] ∩ Q, the
following results would still be true if we redefine length in this case to include the number
of bits needed to write down any rational constants used. We will see presently that this
would not significantly change the model as far as fixed point computations are concerned:
allowing division does not yield any additional computational power.

15

polynomial in variables xj, j ∈ [n], and we will sometimes write Si(x) if we
want to emphasize the dependence of Si on the input variables x. A straight-
line program for a function f = (fi)i∈[m] : U → V , where U ⊆ Rn, V ⊆ Rm,
is a straight-line program in which the first n assignments are Si := xi, and
the last m assignments calculate fi(x1, . . . , xn) so that Sℓ−m+i(x1, . . . , xn) =
fi(x1, . . . , xn), for i ∈ [m]. In an extended straight-line program (ESLP) we
also allow operations /, max, min, and k

√·. (The definition in this case
implies that for inputs in U no division by zero or even roots of negative
numbers occur.)

The following lemma shows that ESLPs have no edge on explicitly rep-
resented polynomials with respect to capturing sets of fixed points: for each
ESLP there is such a polynomial family that has essentially the same set of
fixed points. We write Ff for the set of fixed points of a function f in its
domain, and use 1 and 0 for the vector consisting of all ones or zeros (of
appropriate dimension).

Lemma 5.1. If f : Bn(0, 1) → Bn(0, 1) is a function given by an ESLP,
then we can construct in polynomial time a polynomial family g : Bn′(0, 1) →
Bn′(0, 1), n′ ≥ n, so that Ff ∪ {1} = πn(Fg), where πn : Rn′ → Rn

projects a vector on its first n coordinates. Moreover, we can ensure that
Ff ∩Bn(0, 1/2) = πn(Fg ∩Bn′(0, 1/2)).

Remark 5.2. Two comments about the lemma: (i) There is nothing special
about adding 1 as a fixed point when going from f to g, the construction
we will use could be adapted to add any point in [−1, 1]n

′
describable by

a polynomial. So one way to eliminate that point is by making this added
fixed point a fixed point of f , however that would require the ability to
find some (any) fixed point of f and that we will probably not be able to
do in polynomial time: Papadimitriou showed that this problem is PPAD-
complete [26]. It seems possible that there is a different construction which
obviates the need to add an extra point as fixed point. One way to approach
the problem would be to start with the stronger assumption that there is an
SLP computing f . (ii) As it is, Lemma 5.1 tells us that finding an arbitrary
fixed point of a function f : Bn(0, 1) → Bn(0, 1) specified by an ESLP can
be reduced to finding at least two (arbitrary) fixed points of a polynomial
family g : Bn′(0, 1) → Bn′(0, 1). ⊳

Proof of Lemma 5.1. Let (Si)i∈[ℓ] be the ESLP computing f . The first n
instructions have the form Si := xi, i ∈ [n], and the last n variables,
Sℓ−n+1, . . . , Sℓ contain the outputs. We can assume that divisions are of
the form Si := 1/Sk; moreover, since max{x, y} = (x + y + |x − y|)/2,

16

min{x, y} = x + y − max{x, y} and |x| =
√
x2, we can assume that the

ESLP does not contain max or min (Etessami and Yannakakis use the same
trick in [13]). Finally, we replace any instruction Si := k

√

Sj for even k with
two instructions: A := 2k

√

Sj, Si := A ∗ A; here A is a new variable of the
ESLP we insert just before Si (and which is only used to calculate Si). This
modified ESLP will calculate Si (and thus the rest of the program) correctly
as the positive kth root of Sj, independently of whether A = 2k

√

Sj evaluates
to the positive or negative 2k-th root of Sj.

We can consider each Si as a function Si(x1, . . . , xn) from Rn to R; we
know that every Si is well-defined (no divisions by zero or even roots of
negative arguments), but while the Si calculating the output are restricted
to values in [−1, 1], the intermediate values can be large; however, since the
input set is compact, there is an M so that Si(x1, . . . , xn) ≤ M/2 for all
i ∈ [ℓ] and (x1, . . . , xn) ∈ [−1, 1]n. Consider S := {(S1(x), . . . , Sℓ(x)) : x ∈
[−1, 1]n}. Then S is a semi-algebraic set (all instructions can be rewritten
as polynomial (in)equalities, e.g. Si := 2k

√

Sj becomes Si ≥ 0∧S2k
i −Sj = 0

and Si := 2k+1
√

Sj becomes S2k+1
i −Sj = 0); hence, by Corollary 3.7, we can

choose M = 22
log(cℓ)⌉+5

(for some c > 0 which bounds the number of symbols
needed to express a straight-line instruction).

The polynomial family g will have n′ = 3n+ 2ℓ+ 1+m scalar variables
grouped as x = (x1, . . . , xn), y = (y0, y1, . . . , yℓ), y

′ = (y′1, . . . , y
′
ℓ), z =

(z1, . . . , zn), z
′ = (z′1, . . . , z

′
n), and u

′ = (u1, . . . , um), where m = ⌈log(cℓ)⌉+
5. For a fixed point g(x, y, y′, z, z′, u) = (x, y, y′, z, z′, u) we will ensure that

• ui = 2−2i for i ∈ [m],

• y′i = 0, and yi = Si/M for i ∈ [ℓ],

• z′i = 0, and zi = Sℓ−n+i for i ∈ [n],

unless y0 = 1, in which case we guarantee that x = 1. This means that (as
long as y0 6= 1), um = 1/M , the yi simulate the calculations of the straight-
line program scaled by the factor 1/M , and the zi contain the actual output
f(x). To simplify the presentation, we label the components of g by their
variables, so we write gxi

or guj
rather than using a uniform integer labeling

gi.
We start by defining gxi

, gzi , gz′i , and gui
. Let p(x) := 1− (x− (1/4))2 ∗

(1/4) and q(x) := x2 ∗(1/16), where (1/4) is short for 1/2∗1/2 and similarly
for (1/16).

• gxi
= zi for i ∈ [n],

17

• gzi = p(y0) ∗ zi + 1− p(y0) for i ∈ [n],

• gz′i = q(yℓ−n+i − zi ∗ um) for i ∈ [n],

• gu1 = 1/2, and gui+1 = u2i for i ∈ [m− 1].

Based on the instructions in the ESLP for f we construct the polynomials
gy′i for i ∈ [ℓ]:

Si := c → gy′i := q(yi − c ∗ um)

Si := xj → gy′
i
:= q(yi − xj ∗ um)

Si := Sj + Sk → gy′i := q(yi − (yj + yk))

Si := Sj ∗ Sk → gy′i := q(yi ∗ um − (yj ∗ yk))
Si := 1/Sj → gy′i := q(yi ∗ yj − 1 ∗ u2m)

Si :=
k
√

Sj → gy′i := q(yki − yj ∗ uk−1
m).

Finally, let

• gy0 = 1− (1− y0) ∗
(

1−∑

i∈[ℓ]((y
′
i)
2 + (z′i)

2) ∗ (1/2)⌈log 2ℓ⌉
)

, and

• gyi = yi, for i ∈ [ℓ].

This completes the definition of g which clearly is a polynomial family
represented explicitly (the terms in gy0 can be multiplied out easily). We
need to show that g also is a function from [−1, 1]3n+ℓ+1+m to [−1, 1]3n+ℓ+1+m.
This is obvious for gxi

, gyi , and gui
. Note that gy′i and gz′i take on values

in [0, 1] by choice of q: the terms to which q is applied all lie in the range
[−3, 3], since yi, xj , zk, and um all lie in [−1, 1], so by applying q we obtain
numbers in [0, 1]. Finally, gzi ∈ [−1, 1], since gzi = p(y0) ∗ zi + 1 − p(y0) ≤
p(y0) + 1 − p(y0) = 1 and gzi ≥ 1 − 2p(y0) ≥ −1, and gy0 ∈ [−1, 1], since
0 ≤ ∑

i∈[ℓ](y
′
i)
2 + (z′i)

2 ≤ 2ℓ ≤ 2⌈log 2ℓ⌉.

We next show that πn(Fg) ⊆ Ff ∪ {1}. To that end, let (x, y, y′, z, z′, u)
be an arbitrary fixed point of g, that is, g(x, y, y′, z, z′, u) = (x, y, y′, z, z′, u).
From the definition of gui

, for i ∈ [m], we conclude that um = 1/M .
If y0 = 1, then p(y0) < 1. Since zi = gzi = p(y0) ∗ zi + 1 − p(y0),

we have zi(1 − p(y0)) = 1 − p(y0) and thus zi = 1 for i ∈ [n]; but then
xi = gxi

= zi = 1 for i ∈ [n], so x = 1.
If, on the other hand, y0 6= 1, then because of y0 = gy0 = 1− (1 − y0) ∗

(1 − (
∑

i∈[ℓ](y
′
i)
2 + (z′i)

2) ∗ (1/2)⌈log 2ℓ⌉) we have 1 − y0 = (1 − y0) ∗ (1 −
(
∑

i∈[ℓ](y
′
i)
2 + (z′i)

2) ∗ (1/2)⌈log 2ℓ⌉) and thus
∑

i∈[ℓ](y
′
i)
2 + (z′i)

2 = 0 which

18

implies y′i = 0 for all i ∈ [ℓ] and z′i = 0 for all i ∈ [n]. To argue that
yi = Si/M , we distinguish cases based on the instruction defining Si; we use
that q(x) = 0 implies that x = 0.

• Si := c: since y′i = 0 we get that q(yi − c ∗ um) = 0 and thus yi =
c ∗ um = c/M ,

• Si := xj : since y′i = 0 we get that q(yi − xj ∗ um) = 0 and thus
yi = xj ∗ um = xj/M , or, in other words, M ∗ yi = xj,

• Si := Sj + Sk; we get yi = yj + yk,

• Si := Sj ∗Sk we get yi/M = (yj ∗ yk), so M ∗ yi = (M ∗ yj) ∗ (M ∗ yk),

• Si := 1/Sj ; we get yi ∗ yj = 1/M2, so M ∗ yi = 1/(M ∗ yj),

• Si := k
√

Sj ; we get yki = yj/M
k−1, so (M ∗ yi)k = M ∗ yj (recall that

if k is even we have ensured that Sj ≥ 0).

This is enough to show inductively that yi = Si/M in the first five cases
and |yi| = |Si|/M in the last case (which is sufficient as we saw earlier). A
similar argument about the gz′i with z′i = 0 shows that yℓ−n+i = zi/M , so
zi = M ∗ yℓ−n+i = Sℓ−n+i; now, since xi = gxi

= zi, this shows that the
fixed point of g, if projected on its first n coordinates (x1, . . . , xn), is a fixed
point of f . This completes the proof that πn(Fg) ⊆ Ff ∪{1} which, in turn,
implies that πn(Fg ∩ Bn′(0, 1/2)) ⊆ πn(Fg) ∩ Bn(0, 1/2) ⊆ Ff ∩ Bn(0, 1/2),
where n′ = 3n+ 2ℓ+ 1 +m.

To see that Ff ∪ {1} ⊆ πn(Fg), let x be a fixed point of f , that is,

f(x) = x. We set ui = 2−2i satisfying gui
= ui. Let y0 = 1/4, so that

p(y0) = 1, and thus gzi = p(y0) ∗ zi + 1 − p(y0) = zi for any choice of
zi ∈ [−1, 1]. Then letting y′i = 0, and yi = Si(x)/M for i ∈ [ℓ], and z′i = 0,
and zi = Sℓ−n+i(x) for i ∈ [n], satisfies the remaining clauses of g, showing
that (x, y, y′, z, z′, u) is a fixed point of g and Ff ⊆ πn(Fg). Moreover, for
the same values of y, y′, z′, and u, we see that (1, y, y′,1, z′, u) is a fixed
point of g as well (recall that there is no restriction on the zi, since g(zi) = zi
for the particular value of y0 we chose, and x = z is all that is required to
satisfy the gxi

), showing that 1 ∈ πn(Fg).
We note that something slightly stronger than Ff ⊆ πn(Fg) is true,

since we can bound by 1/2 all the intermediate variables for the fixed point
(x, y, y′, z, z′, u) of g corresponding to the fixed point x of f : We have y0 =
1/4, |yi| = |Si(x)/M | ≤ 1/2 (by choice of M), |ui| ≤ 1/2, y′i = 0, and z′i = 0.
So (x, y, y′, z, z′, u) ∈ Ff ×B2ℓ+1(0, 1/2)×Ff ×Bn+m(0, 1/2). In particular,
Ff ∩Bn(0, 1/2) ⊆ πn(Fg ∩Bn′(0, 1/2), where n′ = 3n+ 2ℓ+ 1 +m.

19

In summary, πn(Fg) = Ff∪{1}, and Ff∩Bn(0, 1/2) = πn(Fg∩Bn′(0, 1/2)),
concluding the proof of the lemma.

With Lemma 5.1 it is now easy to show that BROUWER is ∃R-hard.

Theorem 5.3. Deciding BROUWER is ∃R-complete, even for x = 0 and
r = 1/2.

The theorem remains true for any other appropriate choice of x and r.
For fixed dimension, e.g. n = 1 or n = 2, BROUWER can be decided in P

using quantifier elimination for the fixed number of quantifiers.

Proof. The problem is easily seen to lie in ∃R (this remains true even if f
is specified by an SLP or an ESLP). We saw earlier that deciding whether
a family of multivariate polynomials f = (fi)i∈[n] : R

n → Rn has a fixed
point is hard for ∃R; since these polynomials are given explicitly, it is easy
to construct an SLP S computing f . By Corollary 3.4 if f has a fixed
point, there has to be a fixed point at distance less than R/2 = 2(cℓ)

8n

from 0, where ℓ is the length of S, and c is a fixed constant. Now f maps

Bn(0, R) to Bn(0, R
′), where R′ = ⌈R2ℓ⌉ ≤ ⌈22c

′ℓn⌉ (each coordinate can be
at most squared in each of the at most ℓ steps of the computation; c′ only
depends on c, so it is a fixed constant). Let g be the continuous map that is
the identity on Bn(0, R/2) and bijectively maps Bn(0, R

′) − Bn(0, R/2) to
Bn(0, R) −Bn(0, R/2) defined component-wise by:

gi(x) =

{

xi if xi ∈ B1(0, R/2)

sgn(xi)
R
2

(

|xi|−(R/2)
R′−R/2 + 1

)

if xi ∈ B1(0, R
′)−B1(0, R/2)

for i ∈ [n], where sgn(x) is the sign function. Then g ◦ f maps Bn(0, R)
to Bn(0, R); moreover, any fixed point of f in Bn(0, R/2) is still a fixed
point of g ◦ f in Bn(0, R/2) and vice versa. Finally, let h be a scaling by
R, that is h is a continuous bijection between Bn(0, R) and Bn(0, 1). Thus
h ◦ g ◦ f ◦ h−1 : Bn(0, 1) → Bn(0, 1) has a fixed point in Bn(0, 1/2) if and
only if f has a fixed point (in Rn).

Now, there will not, in general, be an SLP computing h ◦ g ◦ f ◦ h−1

since such an SLP would require division and case distinction; however, it is
easy to see that there is an ESLP: this is clear for h and most of g; the only
interesting question is how to perform the case distinction, but that can be

20

done using max and min:

gi(x) = max(0,min(xi, R/2) +
R

2
max(0,

xi −R/2

R′ −R/2
))

−max(0,min(−xi, R/2) +
R

2
max(0,

−xi −R/2

R′ −R/2
)).

Finally, ESLPs are closed under composition of functions, so we can conclude
that there is an ESLP for h◦g◦f ◦h−1 and thus, by Lemma 5.1 an explicitly
represented polynomial family f ′ : Bn′(0, 1) → Bn′(0, 1) so that Fh◦g◦f◦h−1 ∪
{1} = πn(Ff ′). Moreover, the lemma allows us to conclude that

Fh◦g◦f◦h−1 ∩Bn(0, 1/2) = πn(Ff ′ ∩Bn′(0, 1/2)).
Now f has a fixed point if and only if h ◦ g ◦ f ◦ h−1 has a fixed point

in Bn(0, 1/2) if and only if f ′ has a fixed point in Bn′(0, 1/2), which is the
BROUWER problem for the explicitly represented polynomial family f ′.

5.2 The Nash Equilibrium

Etessami and Yannakakis [13] studied in depth the search versions of fixed-
point problems and Nash equilibriums7: Suppose we are given a function
f : Bn(0, 1) → Bn(0, 1) via an ESLP. How hard is it to find some (any)
fixed point of f? This, of course, is a problem over real numbers, but one
can turn it into a discrete problem as follows. For any input r ∈ Qn we are
allowed to ask questions of the type xΘr, where Θ is one of {≤,≥, <,>}n, a
vector of comparison operators. If xΘr for all fixed points x of f the answer
has to be “yes”, if xΘr is false for all fixed points of f the answer has to
be “no”; otherwise, the answer can be either “yes” or “no”. Etessami and
Yannakakis call this the decision problem (in their terminology, BROUWER

is an existence problem, not a decision problem). The class of all such
fixed-point decision problems they call FIXPd. FIXPd is rather robust,
for example it is not affected by changing the domain of the function (to
a cube, or a sphere, say). Etessami and Yannakakis [13, Theorem 4.7] also
show that FIXPd remains the same if ESLPs are restricted to {+, ∗,max}.8

Moreover, FIXPd has natural complete problems, including, among sev-
eral others, the decision (in Etessami and Yannakakis’s terminology) versions
of BROUWER and the Nash equilibrium problem for 3 players. Clearly,

7We refer the reader to their paper—specifically their Section 2.2—for all terminology
and definitions related to equilibria used in this section.

8The proof uses Nash equilibria, compare Lemma 5.1 which gets rid of max as well,
but adds a fixed point.

21

FIXPd ⊆ ∃R, and Etessami and Yannakakis show that PosSLP reduces
to any FIXPd-complete problem, where PosSLP is the problem of deciding
whether a given SLP computes a positive number; currently this is the best
known lower bound on FIXPd (in turn, the best-known upper bound on
PosSLP is the counting hierarchy, due to a result by Allender, Bürgisser,
Kjeldgaard-Pedersen, and Miltersen [1]). Etessami and Yannakakis point
out that it is unlikely that any FIXPd-problem is NP-hard, since in that
case it is also coNP-hard, which would imply coNP ⊆ ∃R, which is not im-
possible, but seems counterintuitive. Similarly, FIXPd = ∃R would imply
that ∃R is closed under complement, which again appears unlikely.

Here we consider decision versions of the Nash equilibrium problem in
which we ask whether there is a Nash equilibrium in a given ball Bn(x, r).
Etessami and Yannakakis’s core result works in this setting as well; we
summarize it in the following lemma:

Lemma 5.4 (Etessami, Yannakakis [13, Claim 2 in Theorem 4.3]). Given
a function f : Bn(0, 1) → Bn(0, 1) specified by an SLP of length ℓ, one can
construct in polynomial time a 3-player game G and compute an integer
N = O(ℓ) so that

• if x∗ is a fixed point of f then there is a Nash equilibrium z = (z1, z2, z3)
of Γ so that z1[1 : n] = x∗/N ,

• if z = (z1, z2, z3) is a Nash equilibrium of Γ, then x∗ = Nz1[1 : n] is a
fixed point of f .

By Theorem 5.3, BROUWER is ∃R-hard, and Lemma 5.4 shows that
there is a reduction from BROUWER to the Nash equilibrium problem, so
the following corollary is immediate now.

Corollary 5.5. Deciding whether a 3-player game Γ has a Nash equilibrium
in Bn(x, r) for x ∈ Qn, r ∈ Q is ∃R-complete even for x = 0.

In the corollary, we can take r = 1/(2N), where N is as in Lemma 5.4.
More precisely, given an instance of BROUWER with r = 1/2 we use
Lemma 5.4 to construct a 3-player game G and N and then use G and
r = 1/(2N) as an instance of the “Nash equilibrium in a ball” problem.

Remark 5.6. Datta showed the universality of 3-player totally mixed Nash
equilibria [11]; algebraically this is a stronger result, since it shows that
arbitrary semi-algebraic sets can be encoded as Nash equilibria; however,
the reduction is not polynomial time, since some players in her game use

22

Ω(dn) pure strategies, where d is the highest power of any variable in the
polynomial equations encoding the semi-algebraic sets, see [11, Theorem 2].
It may be an interesting open problem whether Datta’s universality theorem
can be improved to an efficient, that is, polynomial-time, reduction. ⊳

Etessami and Yannakakis have also given a reduction from BROUWER

(with max) to the exchange equilibrium problem (see [13, Proposition 4.4]
for details); starting with our more restrictive version of BROUWER, we can
conclude that the problem remains hard if the ESLP is restricted further.

Corollary 5.7. The exchange equilibrium problem with an excess demand
function given by an ESLP is ∃R-complete. Indeed, this remains true if the
ESLP is restricted to division (that is, no roots, max or min operations are
allowed).

A Proof of Corollary 3.4

Let S = {x ∈ Rn : ϕ(x)} be the semi-algebraic set defined by ϕ of complexity
at most L. If S = ∅, there is nothing to show, so we can assume that S 6= ∅.
By Lemma 3.1 there is a conjunction ψ =

∧ℓ
i=1 si△iti with △i ∈ {<,=} so

that S′ = {x ∈ Rn : ψ(x)} is a non-empty subset of S and |ψ| ≤ |ϕ| ≤ L.
In particular, ℓ < L. Now S′ = {x ∈ Rn : si − ti△i0}. Let fi := si − ti,
and s = ℓ. Then s < L, each fi has degree d at most L − 2 (we need two
symbols for △i and 0), and the bitlength of each coefficient of fi is bounded
by L − 1, so τ < L (these are wildly generous bounds). Hence, we can
apply Theorem 3.3 to conclude that S′, and therefore S contains a point at
distance at most R from the origin if it is non-empty. We are left with the
estimate of R. Let us first simplify the expression for R:

R ≤ ((4DN2)22N(τ ′+b(2N)+b(2DN+1)))1/2

≤ 2DN2N(τ ′+b(2N)+b(2DN+1))

≤ 2b(N)+b(2D)+N(τ ′+b(2N)+b(2DN+1)) .

We know that d′ < 2L (using L ≥ 4); then D ≤ nd′ < 2nL, and 2D +
1 ≤ 4nL. With this b(2D + 1) ≤ b(4nL) ≤ 3 + log(nL) ≤ nL + 3 (we’re
using b(x) ≤ log(x) + 1). Now N ≤ (d′)n ≤ (2L)n, so b(N) = b((2L)n) ≤
1 + n log(2L) ≤ nL + 1 (for L ≥ 4), and b(2N) ≤ nL + 2. We can now
evaluate the τ -values: τ0 ≤ 2L+ (n+1)b(L) + b(4L) ≤ 2L+ (n+2) logL+
(n + 4) ≤ 5nL (for L ≥ 4); with that, τ1 ≤ D(τ0 + 4b(2D + 1) + b(N)) ≤

23

2nL(5nL + 4(nL + 3) + (nL + 1)) ≤ 27n2L2, and τ2 ≤ τ1 + 2n(b(N) +
b(n)) ≤ τ1 + 2n2L2 ≤ 29n2L2, τ ′ ≤ N(τ2 + (nL + 1) + 2(nL + 3) + 1) ≤
(2L)n(31n2L2 + 8) ≤ (2L)n32n2L2 ≤ 32n2L3n. This allows us to evaluate
the expression τ ′ + b(2N) + b(2DN + 1) ≤ τ ′ + 1 + 2b(N) + b(2D + 1) ≤
32n2L3n + 3nL+ 5 ≤ 35n2L3n. Finally,

R ≤ 2b(N)+b(2D)+N(τ ′+b(2N)+b(2DN+1))

≤ 2(nL+1)+(nL+3)+N(35n2L3n)

≤ 2(2nL+4)+(2L)n(35n2L3n)

≤ 235n
2L5n

≤ 2L
8n
,

which is what we had to show.

Acknowledgments

We’d like to thank Dejan Jovanović, Nicolai Vorobjov, Leonardo De Moura,
and Jǐŕı Matoušek for useful comments and suggestions on an earlier version
of this paper. Finally, we are grateful for detailed comments and improve-
ments received from several referees.

References

[1] Eric Allender, Peter Bürgisser, Johan Kjeldgaard-Pedersen, and Pe-
ter Bro Miltersen. On the complexity of numerical analysis. SIAM J.
Comput., 38(5):1987–2006, 2008.

[2] Saugata Basu, Richard Pollack, and Marie-Françoise Roy. Algorithms
in real algebraic geometry, volume 10 of Algorithms and Computation
in Mathematics. Springer-Verlag, Berlin, second edition, 2006.

[3] Saugata Basu and Marie-Françoise Roy. Bounding the radii of balls
meeting every connected component of semi-algebraic sets. J. Symbolic
Comput., 45(12):1270–1279, 2010.

[4] Daniel Bienstock. Some provably hard crossing number problems. Dis-
crete Comput. Geom., 6(5):443–459, 1991.

[5] Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale. Com-
plexity and real computation. Springer-Verlag, New York, 1998. With
a foreword by Richard M. Karp.

24

[6] Lenore Blum, Mike Shub, and Steve Smale. On a theory of computa-
tion and complexity over the real numbers: NP-completeness, recur-
sive functions and universal machines. Bull. Amer. Math. Soc. (N.S.),
21(1):1–46, 1989.

[7] Peter Bürgisser and Felipe Cucker. Counting complexity classes for
numeric computations. II. Algebraic and semialgebraic sets. J. Com-
plexity, 22(2):147–191, 2006.

[8] Jonathan F. Buss, Gudmund S. Frandsen, and Jeffrey O. Shallit. The
computational complexity of some problems of linear algebra. J. Com-
put. System Sci., 58(3):572–596, 1999.

[9] John Canny. Some algebraic and geometric computations in pspace.
In STOC ’88: Proceedings of the twentieth annual ACM symposium on
Theory of computing, pages 460–469, New York, NY, USA, 1988. ACM.

[10] Jean Cardinal and Vincent Kusters. The complexity of simultaneous
geometric graph embedding. CoRR, abs/1302.7127, 2013.

[11] Ruchira S. Datta. Universality of Nash equilibria. Math. Oper. Res.,
28(3):424–432, 2003.

[12] Ernest Davis, Nicholas Mark Gotts, and Anthony G. Cohn. Constraint
networks of topological relations and convexity. Constraints, 4(3):241–
280, 1999.

[13] Kousha Etessami and Mihalis Yannakakis. On the complexity of Nash
equilibria and other fixed points. SIAM J. Comput., 39(6):2531–2597,
2010.

[14] D. Yu. Grigor’ev and N. N. Vorobjov. Solving systems of polynomial
inequalities in subexponential time. J. Symb. Comput., 5(1-2):37–64,
1988.

[15] Hoon Hong. Comparison of several decision algorithms for the existen-
tial theory of the reals. Technical Report 91-41, RISC-Linz, Johannes
Kepler University, Linz, Austria, 1991.

[16] Gabriela Jeronimo and Daniel Perrucci. On the minimum of a positive
polynomial over the standard simplex. J. Symbolic Comput., 45(4):434–
442, 2010.

25

[17] Gabriela Jeronimo, Daniel Perrucci, and Elias Tsigaridas. On the Min-
imum of a Polynomial Function on a Basic Closed Semialgebraic Set
and Applications. SIAM J. Optim., 23(1):241–255, 2013.

[18] Ross J. Kang and Tobias Müller. Sphere and dot product representa-
tions of graphs. Discrete Comput. Geom., 47(3):548–568, 2012.

[19] Ross J. Kang and Tobias Müller. Arrangements of pseudocircles and
circles. Unpublished manuscript, 2013.

[20] Jan Kratochv́ıl and Jǐŕı Matoušek. Intersection graphs of segments. J.
Combin. Theory Ser. B, 62(2):289–315, 1994.

[21] Daniel Kroening and Ofer Strichman. Decision procedures. Texts
in Theoretical Computer Science. An EATCS Series. Springer-Verlag,
Berlin, 2008. An algorithmic point of view, With a foreword by Randal
E. Bryant.

[22] Jan Kynčl. Simple realizability of complete abstract topological graphs
in P. Discrete Comput. Geom., 45(3):383–399, 2011.

[23] Bhubaneswar Mishra. Computational real algebraic geometry. In Hand-
book of discrete and computational geometry, CRC Press Ser. Discrete
Math. Appl., pages 537–556. CRC, Boca Raton, FL, 1997.

[24] N. E. Mnëv. The universality theorems on the classification problem of
configuration varieties and convex polytopes varieties. In Topology and
geometry—Rohlin Seminar, volume 1346 of Lecture Notes in Math.,
pages 527–543. Springer, Berlin, 1988.

[25] Christos H. Papadimitriou. Computational complexity. Addison-Wesley
Publishing Company, Reading, MA, 1994.

[26] Christos H. Papadimitriou. On the complexity of the parity argu-
ment and other inefficient proofs of existence. J. Comput. System Sci.,
48(3):498–532, 1994. 31st Annual Symposium on Foundations of Com-
puter Science (FOCS) (St. Louis, MO, 1990).

[27] Jürgen Richter-Gebert. Realization spaces of polytopes, volume 1643 of
Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1996.

[28] Jürgen Richter-Gebert and Günter M. Ziegler. Realization spaces of 4-
polytopes are universal. Bull. Amer. Math. Soc. (N.S.), 32(4):403–412,
1995.

26

[29] Marcus Schaefer. The real logic of drawing graphs. Unpublished
Manuscript.

[30] Marcus Schaefer. Complexity of some geometric and topological prob-
lems. In David Eppstein and Emden R. Gansner, editors, Graph Draw-
ing, volume 5849 of Lecture Notes in Computer Science, pages 334–344.
Springer, 2009.

[31] Marcus Schaefer. Realizability of graphs and linkages. In János Pach,
editor, Thirty Essays on Geometric Graph Theory, pages 461–482.
Springer, 2012.

[32] Peter W. Shor. Stretchability of pseudolines is NP-hard. In Applied
geometry and discrete mathematics, volume 4 of DIMACS Ser. Dis-
crete Math. Theoret. Comput. Sci., pages 531–554. Amer. Math. Soc.,
Providence, RI, 1991.

[33] Michael Sipser. Introduction to the Theory of Computation. Course
Technology, 2nd edition, 2005.

[34] Paul J. Tanenbaum, Michael T. Goodrich, and Edward R. Scheinerman.
Characterization and recognition of point-halfspace and related orders
(preliminary version). In Graph drawing (Princeton, NJ, 1994), volume
894 of Lecture Notes in Comput. Sci., pages 234–245. Springer, Berlin,
1995.

[35] Balder ten Cate, Phokion G. Kolaitis, and Walied Othman. Data ex-
change with arithmetic operations. In Giovanna Guerrini and Nor-
man W. Paton, editors, EDBT, pages 537–548. ACM, 2013.

[36] E. Triesch. A note on a theorem of Blum, Shub, and Smale. J. Com-
plexity, 6(2):166–169, 1990.

[37] G. S. Tseitin. On the complexity of derivation in propositional logic. In
Graham Wrightson Jörg Siekmann, editor, Automation of Reasoning:
Classical Papers on Computational Logic 1967–1970, volume 2, pages
466–483. Springer, 2009.

[38] N. N. Vorob′ev. Estimates of real roots of a system of algebraic
equations. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov.
(LOMI), 137:7–19, 1984. Theory of the complexity of computations, II.

[39] Wikipedia. Existential theory of the reals, 2012. (Online; accessed
12-September-2015).

27

