arXiv:1402.3452v1 [cs.DS] 14 Feb 2014

Processing Succinct Matrices and Vectors

Markus Lohrey and Manfred Schmidt-Schatid

1 Universitat Siegen, Department filr Elektrotechnik unfbimatik, Germany
2 Institut fir Informatik, Goethe-Universitat, D-60054afRkfurt, Germany

Abstract. We study the complexity of algorithmic problems for matsdéat
are represented by multi-terminal decision diagrams (MJ.DODese are a vari-
ant of ordered decision diagrams, where the terminal nodekbeled with ar-
bitrary elements of a semiring (instead @fand 1). A simple example shows
that the product of two MTDD-represented matrices cannatepeesented by an
MTDD of polynomial size. To overcome this deficiency, we exted MTDDs
to MTDD. by allowing componentwise symbolic addition of variable$ the
same dimension) in rules. It is shown that accessing an,aguoality checking,
matrix multiplication, and other basic matrix operatioas de solved in polyno-
mial time forMTDD_ -represented matrices. On the other hand, testing whether
the determinant of a MTDD-represented matrix vanishé3SBACE-complete,
and the same problem &P-complete foMTDD . -represented diagonal matri-
ces. Computing a specific entry in a product of MTDD-represgématrices is
#P-complete.

1 Introduction

Algorithms that work on a succinct representation of cartdijects can nowadays be
found in many areas of computer science. A paradigmatic pleisithe use of OBDDs
(ordered binary decision diagrams) in hardware verificafi26]. OBDDs are a suc-
cinct representation of Boolean functions. Consider adamofunctionf (z1, ..., z,)
in n input variables. One can represgny its decision tree, which is a full binary tree
of heightn with {0, 1}-labelled leaves. The leaf that is reached from the roothéa t
path(ay,...,a,) € {0,1}" (Wherea; = 0 means that we descend to the left child
in thei-th step, andi; = 1 means that we descend to the right child in tkié step)
is labelled with the bitf (a1, ..., a,). This decision tree can be folded into a directed
acyclic graph by eliminating repeated occurrences of igpimo subtrees. The result is
the OBDD for f with respect to the variable ordering, . . . 2, 0 Bryant was the first
who realized that OBDDs are an adequate tool in order to leathdl state explosion
problem in hardware verification|[5].

OBDDs can be also used for storing large graphs. A gt@p¥ith 2" nodes and ad-
jacency matrixM can be represented by the boolean funcliefe1, y1, . . ., Tn, Yn),
wherefs (a1, b1, ..., an, b,) is the entry ofM at position(a, b); herea; - - - a,, (resp.,

* The first (second) author is supported by the DFG grant LO8?28SCHM 986/9-2).

3 Here, we are cheating a bit: In OBDDs a second eliminatioa isilapplied that removes
nodes for which the left and right child are identical. On titeer hand, it is known that
asymptotically the compression achieved by this elimoratile is negligible[[36].

http://arxiv.org/abs/1402.3452v1

b1 - - - by) is the binary representation of the indeXresp.b). Note that we use the so
called interleaved variable ordering here, where the Hith® two coordinateg and

b are bitwise interleaved. This ordering turned out to be eoient in the context of
OBDD-based graph representation, see e.g. [11].

Classical graph problems (like reachability, alternatiegchability, existence of
a Hamiltonian cycle) have been studied for OBDD-represegraphs in[[10,35]. It
turned out that these problems are exponentially hardédRiDD-represented graphs
than for explicitly given graphs. In [35] an upgrading thewrfor OBDD-represented
graphs was shown. It roughly states that completeness afidgm A for a complexity
classC under quantifier free reductions implies completenessefiBDD-variant of
A for the exponentially harder version 6funder polynomial time reductions.

In the same way as OBDDs represent boolean mappings, fasdtiom{0, 1}"™ to
any setS can be represented. One simply has to label the leaves okthisiah tree
with elements front. This yields multi-terminal decision diagrams (MTDDSs) [19f
particular interest is the case, whefds a semiring, e.gN or Z. In the same way as
an adjacency matrix (i.e., a boolean matrix) of dimengbrtan be represented by an
OBDD, a matrix of dimensio2™ over any semiring can be represented by an MTDD.
As for OBDDs, we assume that the bits of the two coordinateadb are interleaved
in the orderaq, by, . .., an, b,. This implies that an MTDD can be viewed as a set of
rules of the form

A= (A1=1 A1=2> or B—awithacs. (1)
Az Ao

whereA, A1, A1 2, A21, and A, , are variables that correspond to certain nodes of
the MTDD (namely those nodes that have even distance fromathienode). Every
variable produces a matrix of dimensigh for someh > 0, which we call the height
of the variable. The variable$; ; in (I) must have the same heightand A has height
h+ 1. The variableB has height. We assume that the additive monoid of the semiring
S is finitely generated, hence everye S has a finite representation.

MTDDs yield very compact representations of sparse matritevas shown that
an (n x n)-matrix with m nonzero entries can be represented by an MTDD of size
O(mlogn) [12, Theorem 3.2], which is better than standard succinmteentations
for sparse matrices. Moreover, MTDDs can also yield very gach representations
of non-sparse matrices. For instance, the Walsh matrixroedsion2” can be repre-
sented by an MTDD of siz€(n), see [12]. In fact, the usual definition of theth
Walsh matrix is exactly an MTDD. Matrix algorithms for MTDEse studied in[[12]
as well, but no precise complexity analysis is carried aufakt, the straightforward
matrix multiplication algorithm for multi-terminal ded¢en diagrams from[12] has an
exponential worst case running time, and this is unavoaaliie smallest MTDD that
produces the product of two MTDD-represented matrices neagflexponential size
in the two MTDDs, see Theorelm 5. The first main contributionhig paper is a gen-
eralization of MTDDs that overcomes this deficiency: WA'DD . consists of rules of
the form [1) together with addition rules of the fouin— B + C, where “+” refers to
matrix addition over the underlying semiring. Herg, B, andC must have the same
height, i.e., produce matrices of the same dimension. Wev shat anMTDD . for
the product of twaMTDD , -represented matrices can be computed in polynomial time

(Theoreni). In Sectidn 4.1 we also present efficient (patyiabtime) algorithms for
several other important matrix problems®iT'DD . -represented input matrices: com-
putation of a specific matrix entry, computation of the tramatrix transposition, tensor
and Hadamard product. Sectign 5 deals with equality checkinurns out that equal-
ity of MTDD . -represented matrices can be checked in polynomial tintlee iadditive
monoid is cancellative, in all other cases equality chegiditoNP-complete.

To the knowledge of the authors, complexity results sintitathose from([10,35]
for OBDDs do not exist in the literature on MTDDs. Our secoraimrcontribution fills
this gap. We prove that already for MTDDs ov&rit is PSPACE-complete to check
whether the determinant of the generated matrix is zerodime[1%). This result is
shown by lifting a classical construction of Toda[[32] (shogvthat computing the
determinant of an explicitly given integer matrix is contpldor the counting class
Gapl) to configuration graphs of polynomial space bounded Tuniraghines, which
are of exponential size. It turns out that the adjacencyimatithe configuration graph
of a polynomial space bounded Turing machine can be prodogedsmall MTDD.
TheoreniIb sharpens a recent result from [16] stating thatAiSPACE-complete to
check whether the determinant of a matrix that is represdme boolean circuit (see
Sectior4.P) vanishes. We also prove several hardnesssrésutounting classes. For
instance, computing a specific entry of a matrix powé@r, where A is given by an
MTDD overN is #P-complete (resp#PSPACE-complete) ifn is given unary (resp.
binary). Here #P (resp.#PSPACE) is the class of functions counting the number of
accepting computations of a nondeterministic polynomiaktTuring machine [34]
(resp., a nondeterministic polynomial space Turing mazljii&]). An example of a
natural#PSPACE-complete counting problem is counting the number of s&ingt
accepted by a given NFA[18].

2 Related work

Sparse matrices and quad-treesTo the knowledge of the authors, most of the litera-
ture on matrix compression deals with sparse matrices,evnest of the matrix entries
are zero. There are several succinct representationsrsespatrices. One of which are
guad-treesused in computer graphics for the representation of laogstant areas in
2-dimensional pictures, see for examplel[29,9]. Actualy,MTDD can be seen as a
quad-tree that is folded into a dag by merging identical st

Two-dimensional straight-line programs. MTDDs are also a special case of 2-dimen-
sional straight-line programs (SLPs). A (1-dimension&lP$s a context-free grammar
in Chomsky normal form that generates exactly one OBDD. AR 8lith » rules can
generate a string of lengf#; therefore an SLP can be seen as a succinct representation
of the string it generates. Algorithmic problems that carstieed efficiently (in poly-
nomial time) on SLP-represented strings are for instanaaléy checking (first shown
by Plandowskil[2B]) and pattern matching, Se€ [22] for aeurv

In [3] a 2-dimensional extension of SLPs (2SLPs in the foltayy was defined.
Here, every variable of the grammar generates a (not nedgsspiare) matrix (or pic-
ture), where every position is labeled with an alphabet syirdoreover, there are two

(partial) concatenation operations: horizontal comparsitwhich is defined for two
pictures if they have the same height) and vertical comjoos{twvhich is defined for
two pictures if they have the same width). This formalismsloet share all the nice al-
gorithmic properties of (1-dimensional) SLPs [3]: Testimigether two 2SLPs produce
the same picture is only known to bedoRP (co-randomized polynomial time). More-
over, checking whether an explicitly given (resp., 2SLPresented) picture appears
within a 2SLP-represented pictureN®-complete (resp Xl -complete). Related hard-
ness results in this direction concern the convolution af BLP-represented strings
of the same length (which can be seen as a picture of heigfth2).convolution of
stringsu = aq - --a, andv = by - - - b, is the string(a1,b1) - - - (an, b,). By a result
from [4] (which is stated in terms of the related operatioditgfral shuffle), the size
of a shortest SLP for the convolution of two strings that axvernyby SLPsG and H
may be exponential in the size 6fand H. Moreover, it iSPSPACE-complete to check
for two SLP-represented stringsandv and an NFAT" operating on strings of pairs of
symbols, whethef accepts the convolution afandv [21]].

MTDDs restrict 2SLPs by forbidding unbalanced derivatiores. The derivation
tree of an MTDD results from unfolding the rules [d (1); it isree, where every non-
leaf node has exactly four children and every root-leaf paththe same length.

Let us finally mention that straight-line programs are alsed.for the compact rep-
resentation of other objects, e.g. polynomialg [17], t{283, graphs[[18], and regular
languaged [15].

Tensor circuits. In [2/8], the authors investigated the problems of evahgatensor
formulas and tensor circuits. Let us restrict to the lattetensor circuit is a circuit
where the gates evaluate to matrices over a semiring anallogiing operations are
used: matrix addition, matrix multiplication, and tensooguct. Recall that the tensor
product of two matricest = (a; j)1<i<m,i<i<m andB is the matrix

al,lB al,mB
A® B =

an1B - apnmB

Itis a(mk x nl)-matrix if B is a(k x)-matrix. In [2] it is shown among other results
that computing the output value of a scalar tensor circugt,(@ tensor circuit that yields
a (1 x 1)-matrix) over the natural numbers is complete for the cowntlass#EXP.

An MTDD. overZ can be seen as a tensor circuit that (i) does not use matrit-mul
plication and (ii) where for every tensor product the lefttéa is a(2 x 2)-matrix. To
see the correspondence, note that

Ay As) (10 01 00 00
(AQ’1 Aoy =100 ®A11+ 00 ®A1 2+ 10 ®Ar1 + 01 ® Az 9
a1 a1,2 a11B a1 2B
9 9 ® B — 9)
<G2,1 a2,2> (G2,1B (12,2B>

Each of the matrices; ; B can be generated fro® and —B usinglog |a; ;| many
additions (here we use the fact that the underlying semisizg.

3 Preliminaries

We consider matrices over a semiriftg) +, -) with (S, +) a finitely generated commu-
tative monoid with uni0. The unit of the monoids, -) is 1. We assume thdt - a =
a-0 =0foralla € S. Hence, if|S| > 1,thenl #0(0 = 1impliesa =1-a=0-a=0
for all a € S). With S"*™ we denote the set of alh x n)-matrices oves.

All time bounds in this paper implicitly refer to the RAM mddaf computation
with a logarithmic cost measure for arithmetical operation integers, where arith-
metic operations on-bit numbers need timé@(n). For a number. € Z let us denote
with bin(n) its binary encoding.

We assume that the reader has some basic background in caimfiieory, in par-
ticular we assume that the reader is familiar with the clabS& coNP, andPSPACE.
With polyL (polylogarithmic space) we denote the clags. , DSPACE(log’“(n)) (which

by Savitch’s theorem is equal tg, -, NSPACE (log" (n))).

A function f : {0,1}* — {0,1}* belongs to the clasESPACE(s(n)) (resp.
FTIME(s(n))) if f can be computed on a deterministic Turing machine in spasg (r
time) s(n)d As usual, only the space on the working tapes is counted. dlerethe
output is written from left to right on the output tape, i.ev,each step the machine
either outputs a new symbol on the output tape, in which das@ttput head moves
one cell to the right, or the machine does not output a new symbwhich case the
output head does not move. We define

FP = | FTIME(n"),

k>1
FpolyL = |_J FSPACE(log"(n)),
k>1
FPSPACE = |_J FSPACE(n").
k>1

‘O(l)

Note that for a functiorf € FPSPACE we have f (w)| < 2!* for every input. The
function that maps an explicitly given integer matrix (whilmary encoded entries) to
its determinant belongs to uniforNC? [7] and hence t&SPACE (log?(n)).

We need the following simple lemma, see €.gl[24, Lemma 2.1].

Lemma 1. If f € FPSPACE and L € polyL thenf~!(L) € PSPACE.
The following result can be shown in the same way as Lefima 1:

Lemma 2. If f € FPSPACE andg € FpolyL then the mapping defined byh(z) =
g(f(x)) for all inputsz belongs ta-PSPACE.

The counting clasg#P consists of all functiong : {0,1}* — N for which there
exists a nondeterministic polynomial time Turing machivfewith input alphabet?”

4 The assumption that the input and output alphabef & binary is made here to make the
definitions more readable; the extension to arbitrary figiphabets is straightforward.

such that for alle € X*, f(x) is the number of accepting computation pathd.bfor
input z. If we replace nondeterministic polynomial time Turing rha@s by nonde-
terministic polynomial space Turing machines (resp. ntgreinistic logspace Turing
machines), we obtain the clagd®SPACE [18] (resp.#L [1]). Note that for a mapping
f € #PSPACE, the numberf(z) may grow doubly exponential ifx:|, whereas for
f € #P, the numberf(z) is bounded singly exponential jm|. Ladner[18] has shown
that a mappingf : 2* — N belongs to#PSPACE if and only if the mappinge —
bin(f(x)) belongs td-PSPACE. One cannot expect a corresponding result for the class
#P: If for every functionf € #P the mappinge — bin(f(z)) belongs taFP, then by
Toda’s theorem [33] the polynomial time hierarchy collapdewn toP. For f € #L,
the mapping: — bin(f(z)) belongs taNC? and hence t&P N FSPACE (log®(n)) [
Theorem 4.1]. The clasSapL (resp.,GapP, GapPSPACE) consists of all differences of
two functions in#L (resp.#P, #PSPACE). From Ladner’s resuli[18] it follows eas-
ily that a functionf : {0,1}* — Z belongs taGapPSPACE if and only if the mapping
x +— bin(f(z)) belongs toFPSPACE, see alsa [13, Theorem 6].

Logspace reductions between functions can be defined anallygto the language
case: Iff,¢g: {0,1}* — X with X € {N,Z}, thenf is logspace reducible tpif there
exists a functiorh € FSPACE(logn) such thatf (x) = g(h(z)) for all . Toda [32] has
shown that computing the determinant of a given integerimtGapL-complete.

4 Succinct matrix representations

In this section, we introduce several succinct matrix repngations. We formally de-
fine multi-terminal decision diagrams and their extensignhe addition operation.
Moreover, we briefly discuss the representation of matitigelsoolean circuits.

4.1 Multi-terminal decision diagrams

Fix a semiring(S, +, -) with (S, +) a finitely generated commutative monoid, and let
I" C S be afinite generating set f0f, +). Thus, every element &f can be written as a
finite sumZaeF nga With n, € N. A multi-terminal decision diagrar&’ with addition
(MTDD.,;) of heighth is a triple(N, P, Ay), whereN is a finite set of variables which
is partitioned into non-empty sef§; (0 < i < h), N}, = {A4p} (Ao is called thestart
variable), andP is a set of rules of the following three forms:

— A (VA2 with A € N and vy, Av, As, Asz € Ny for some
A1 Az ’ 7 ’ 7

1<i<h
—A— A1 +Aswith A, A1, Ay € N; forsome) <: < h
— A — awith A € Nganda € I" U {0}

Moreover, for every variablel € N there is exactly one rule with left-hand sidg
and the relatio{ (4, B) € N x N | B occurs in the right-hand side fot} is acyclic.
If A € N; then we say tha#l has height. TheMTDD_. G is called anMTDD if for
every addition rul§ A — A; + As) € P we haveA, A;, A> € Ny. In other words,
only scalars are allowed to be added. Since we assumé¢S$hat) is generated by,

this allows to produce arbitrary elements ®fas matrix entries. For evert € N;
we define a square matrixal(A) of dimension2 in the obvious way by unfolding
the rules. Moreover, letal(G) = val(A) for the start variabled, of G. This is a
(2" x 2h)-matrix. The size of a rulel — a with @ € " U {0} is 1, all other rules
have sizdog |N|. The size|G| of the MTDD. G is the sum of the sizes of its rules;
this is up to constant factors the length of the binary codihg'. An MTDD G of
sizenlogn can represent 2" x 2™)-matrix. Note that only square matrices whose
dimension is a power of 2 can be represented. Matrices niotfitthis format can be
filled up appropriately, depending on the purpose.

An MTDD, where all rules have the ford — a € T'U{0}or A — B+ C
generates an element of the semirfh@guch an MTDD is an arithmetic circuitin which
only input gates and addition gates are used, and is calledtiecuit in the following.

In case the underlying semiring4s a +-circuit with n variables can produce a number
of size2”, and the binary encoding of this number can be computed @m?) from
the+--circuit (since, we need additions of numbers with at mostbits). In general, for
a+-circuit over the semiring, we can compute in quadratic time numbega € I')
suchthab - n, - a is the semiring element to which the-circuit evaluates to.

Note that the notion of aMTDD_ makes sense for commutative monoids, since
we only used the addition of the underlying semiring. Butrsome want to multiply
matrices, for which we need a semiring. Moreover, the notiban MTDD_ makes
sense in any dimension, here we only defined the 2-dimerisiase.

Example 3.t is straightforward to produce the unit matrix. of dimensior2™ by an
MTDD of size O(nlogn):

Aj—1 01 0j-1 0'1> .
Ao =1, 000, 45 = (7" 4 L0 = (I 1<i<n).
0 0 J <0j—1 Aj—l) J (Oj—l Oj—l (S7 s n)

(the start variable isl,, here). In a similar way, one can produce the lower triangular
(2™ x 2™)-matrix, where entries on the diagonal and belowlarEo produce th¢2™ x
2™)-matrix overZ, where all entries in thé-th row arek, we need the following rules:

E; «+E; 1 E; 1+ FE;)
] 1< <
Ejfl + Ej71 Ejfl —+ Ej71 (=)= TL)

Cj_l Cj_l > .
; 1< < .
Cj—l + Ej—l Cj_l + Ej_l (=J= n)

Ey—1, EJ—><
Co — 1, C’]——><

Here, we are bit more liberal with respect to the format oésubut the above rules can
be easily brought into the form from the general definitiorao®TDD, . Note that
E; generates th2? x 27)-matrix with all entries equal t&/, and thatC,, generates the
desired matrix.

Note that the matrix from the last example cannot be prodbgeah MTDD of poly-

nomial size, since it contains an exponential number okdiffit matrix entries (for
the same reason it cannot be produced by an 25LP [3]). This liof any non-trivial
semiring.

Theorem 4. For any semiring with at least two elements, MTDRre exponentially
more succinct than MTDDs.

Proof. For simplicity we argue with MTDDs in dimension 1 (which geate vectors).
We must havd # 0in S. Letm,d > 0 be such thatn = 2¢. For0 < i < m — 1 let
A; such thawal(A;) has lengthn, thei-th entry is1 (the first entry is thé-th entry)
and all other entries af@ Moreover, letB; such thatval(B;) is the concatenation of
2! copies ofval(A;). Let Cy produce the)-vector of lengthn = 2¢, and for0 < i <
m —1letCiyy — (Cy;,C; + B;). Thenval(C,,) is of length2¢+™ and consists of
the concatenation of all binary strings of length ThisMTDD_ for this vector is of
sizeO(m? log m), whereas an equivaleMTDD must have size at leagt*, since for
every binary string of lengtin there must exist a nonterminal. a

The following result shows that the matrix product of two MDBepresented matrices
may be incompressible with MTDDs.

Theorem 5. For any semiring with at least two elements there exist MTDIsand
H,, of the same height and sizeD(n? log n) such thawal(G,,) - val(H,,) can only be
represented by an MTDD of size at least

Proof. The construction is similar to those in the proof of Theoféri\é must have
0+#1inS.Letm =27 For0 < i < m—1let A; be such thatal(4;) is the(m x m)-
matrix withval(4;)1 ;41 = 1 and all other entrie8. DefineB,; o by B; o — A; and

. B;ij-1 Bij-1
Bij = <0 0

for 1 < j < i. Thenval(B; ;) is the (29+% x 2¢+%)-matrix, where the first row is the
vectorval(B;) from the proof of Theorerl4, and all other entries @ré-inally add
nonterminals’y, . . ., Cp,, whereval(Cp) is the(m x m)-matrix with all entrie®) and

0 <14 < m— 1. Inthis way we obtain an MTDD for th@™+4 x 2m+4)-matrixval(C,,,)

of size O(m? log m). This matrix containd in thei-th column if and only if thei-th
entry in the vectoral(C,,) from the proof of Theoreml4 is. Moreover, no column of
val(C,,) contains more than oneentry. Hence, the product of thgm+4 x 2m+d)-
matrix where every entry i$ with val(C,,) a matrix where every row is the vector
val(C,,) from the proof of Theorermnl4. O

On the other hand, the product of tW6I'DD . -represented matrices can be represented
by a polynomially sizedMTDD_:

Theorem 6. For MTDD, G; and G, of the same height one can compute in time
O(|G1| - |G2]) anMTDD . G of sizeO(|G1 | - |G2|) with val(G) = val(Gy) - val(G2).

Proof. Recall thatl” is a finite generating set for the additive monoid of our uhydeg
semiringS. For all pairs(a, b) € I" x I', we can write down a-circuit of constant size
that computesb, let S, ; its start variable.

Given twoMTDD, G; andG2, we compute a newITDD G that contains for
all variablesA of G; and B of G2 of the same height a variable4, B) such that
valg(A4, B) = valg, (A) -valg, (B). So, letA andB be variables of7; andGs, respec-
tively, of the same height.

1. If A and B are of height 0 and the corresponding rules &re» a, B — b with
a,b € I' U {0}, then the rule for(4, B) is (A, B) — S, (actually, we should
replaceS, ; by its corresponding right-hand side).

2. If the rule for A is of the formA — A; + A, then we add the rulé4, B) —
(A1,B) + (A2, B) to G.

3. If the right-hand side forl is not a sum but the rule faB is of the formB —
B + Bs, then we add the ruled, B) — (A, B1) + (A, B2) to G.

4. Finally, assume that neither the right-hand side Aonor for B is a sum or an
explicit integer. Then the rules fot and B have the form

Al 1 Al 2 Bl 1 Bl 2
A— o) andB — S I
(AQJ A2,2> <Bg71 3272)

Then we add the following rules 1G:

C@j — (Ai71,Bl,j) + (A@z, ngj) forl1 <i,j <2

Cll 012
AB 3 9
(4,B) = (Cu 02,2)

Clearly, if S; is the start variable of7;, thenvals(S1, S2) = val(Gy) - val(Gs). The
bound from the theorem for the construction and sizé&'dbllows immediately from
the construction. Note that every rulé — ¢ of G; with ¢ € Z contributedog |c| to
the size ofG;. Hence in timeO(|G1 | - |G2|) we can compute all products for rules
A — aandB — b of G; andGs, respectively. O

The following proposition presents several further mabperations that can be easily
implemented in polynomial time for aMi TDD_ -represented input matrix.

Proposition 7. Let G, H be aMTDD,. with |G| = n, |[H| = m, and1 < i,j <
gheight(G)

(1) AnMTDD, for the transposition ofal(G) can be computed in tim@(n).

(2) +-circuits for the sum of all entries okl(G) and the trace ofal(G) can be com-
puted in timeO(n).

(3) A+-circuit for the matrix entrywal(G); ; can be computed in tim@(n).

(4) MTDD, of sizeO(n - m) for the tensor productal(G) ® val(H) (which includes
the scalar product) and the element-wise (Hadamard) prodalG) o val(H)
(assumingheight(G) = height(H)) can be computed in tim@(n - m).

Proof. Point (1) (transposition): We replace every ruleirof the form

Ay A
A— : ’ 2
<A2,1 A272) ()

Al 1 AQ 1
A ' P
- <A1,2 A2,2)
Point (2): The sum of all entries ofal(G) can be represented by the-circuit that
contains allrulest — A; 1 + Ay 2+ Az 1 + Az 2 for G-rules of the forml(R). Similarly,

we can compute a-circuit for the trace ofial(G) by replacing every rulé{2) byt —
Aiq + Ago.

Paint (3): We transform th&ITDD_ G into a+-circuit G’ with the same set of vari-
ables such thatal(G’) = (val(G)), ;. Let (i, ---41) and(jn - - - j1) the binary expan-
sions ifi — 1 andj — 1 (numbers in the range, 2"<8"() _ 1]), respectively, wherg,
andj; are the most significant bits. Here, we add leading zeros®tethso that both
numbers have exactly bits.

Now we can define the rules of the-circuit G’. Rules of the formA — « with
a € ZandA — A; + A, are simply copied ta@’. For a rule of the form

Ago Ao)
A ’ ’ .
- <A1,0 Aiq

whereA has height we add toG’ the ruled — A;, ;. .

Paint (4): For every variabl€' of G and every variabld of H let (C, D) be a new
variable of heightieight(C') + height(D). We define the rule fofC, D) in such a way
thatval(C, D) = val(C')®val(D). The rules reflect the bilinearity of the tensor product.
If C - aandD — bfora,b € I', then(C, D) — S,, WhereS, ;, is the start
variable for a (constant size)-circuit that computes - b.
Now assume that’ — « but the rule forD is not terminal. IfD — D, + D, then
(C,D) = (C,D1) + (C, D2) and if

D <D1,1 D1,2>

by the rule

Dy 1 Do

then (C.D11) (C.Dy2)
o= (G Ene).

Finally, assume that the rule for is not terminal. IfC — C; + Cs, then(C, D) —

(C1,D) + (Cy, D), and if
Cl 1 Cl 2
C 9 3
- (02,1 02,2) ’

then (C1.1,D) (Cy2,D)
(C.D) (<clj1§D> @ZZD)) |

The proof for the construction of the element-wise prodsicimilar as for the tensor-
product. a

10

4.2 Boolean circuits

Another well-studied succinct representation are bootdauits [14]. A boolean cir-
cuit with n inputs represents a binary string of leng@th namely the string of output
values for the2™ many input assignments (concatenated in lexicographierirth a
similar way, we can use circuits to encode large matricespkfpose two alternatives:

A boolean circuitC(z, 7, z) with [Z] = m and|g| = |z| = n encodes #2" x 2")-
matrix Mc¢ 2 with integer entries bounded " that is defined as follows: For all
@ < {0,1}™ andb,c € {0, 1}", thea-th bit (in lexicographic order) of the matrix entry
at position(b, ¢) in Mc is 1 if and only if C(a, b,¢) = 1.

Note that in contrast tdITDD,, the size of an entry in\/c > can be doubly
exponential in the size of the representat@r(this is the reason for the indexin
Mc¢ 2). The following alternative is closer el TDD_ : A boolean circuitC(z, 7) with
|Z| = [g| = n andm output gates encodeg 2’ x 2")-matrix M¢,; with integer entries
bounded by2™ that is defined as follows: For ail b € {0,1}", C(a, b) is the binary
encoding of the entry at positiq@, b) in M.

Circuit representations for matrices are at least as sacasMTDD .. More pre-
cisely, from a giveMTDD . G one can compute in logspace a Boolean cir€uguch
that Mc 1 = val(G). This is a direct corollary of Propositign 7(3) (statingtthagiven
entry of anMTDD_, -represented matrix can be computed in polynomial time)thad
fact that polynomial time computations can be simulateddiyléan circuits. Recently,
it was shown that checking whether for a given circuithe determinant of the matrix
M¢ 1 vanishes i®SPACE-complete[[16]. An algebraic version of this result for the a
gebraic complexity clasgPSPACE is shown in[[25]. Theorein 15 from Sectibh 6 will
strengthen the result from [16] to MTDD-represented masic

5 Testing equality

In this section, we consider the problem of testing equalitp/ TDD . -represented
matrices. For this, we do not need the full semiring struestiout we only need the
finitely generated additive monoid, +). We will show that equality can be checked
in polynomial time if(,S, 4) is cancellative andoNP-complete otherwise.

First we consider the case of a finitely generated abelianmréhe proof of the
following lemma involves only basic linear algebra.

Lemma 8. Leta;1x1 + -+ + ajnxy, = 0for 1 <i <m < n+ 1 be equations over
a torsion-free abelian groug, wherea; 1, ..., a; , € Z, and the variables, ..., z,
range overA. One can determine in time polynomiakirandmax{log|a; ;| | 1 < ¢ <
m,1 < j < n} an equivalent set of at mostlinear equations.

Proof. Leta; = (a;1,...,a:n) € Z™ be the vector of coefficients of thieth equation.
For0 < i < nletU; C Q™ be the subspace of the vector space generateg,by. , a;

(Uy is the 0-space). Far=1,...,n + 1, we now test whethet; € U,_;. This can
be checked by testing whether a system of linear equatioma lsalution inQ™. This
problem can be solved in time polynomialinandlog(max{|a; ;| | 1 <i < m,1 <

j <n}), e.qg. by Gaussian elimination.df € U;_; then we obtain an equation

Aia; = a1+ -+ Nis16i1

11

with A1,...,\; € Z and); # 0. Hence, if group elements,, ..., z, € A satisfy
a;1x1+- - +ajnr, =0foralll <j <i—1,thenwegeh;(a; 11+ - -+a;nxn) =0

in A. SinceA is assumed to be torsion-free, we ggtz, +- - - +a; .z, = 0. Hence, the
i-th equation is redundant. Moreover, there must bé ani < n + 1 with a; € U;_1:

If a; € U;_q for1 < ¢ < n, thenay,...,a, are linearly independent and therefore
generate the fulQ™. But thena,, 1 € U,. O

Recall that thexponenbf an abelian groupl is the smallest integér (if it exists) such
thatkg = 0 for all g € A. The following result is shown in [30]:

Lemma 9. Letk > 2 and letA be an abelian group of exponeftLeta; 11 + --- +

a;nxy, = 0forl <i <m < n+1be equations, where; 1,...,a;, € Z, and the
variablesz1, ..., z, range overA. Then one can determine in time polynomiahin
log(k), andmax{log |a; ;| | 1 <1i < m,1 < j < n} an equivalent set of at most
linear equations.

Proof. We can consider the coefficients; as elements frori,. By [30] we can com-
pute the Howell normal form of the matrix; ;)1<i<n+1,1<j<n € Zg“’l)xn in poly-
nomial time. The Howell normal form is am x n)-matrix with the same row span (a
subset of the modulg}) as the original matrix, and hence defines an equivalentfset o

linear equations. a

Theorem 10. Let G be anMTDD, over a finitely generated abelian group Given
two different variablesd,, A, of the same height, it is possible to cheak(A;) =
val(Asz) in time polynomial inNG|.

Proof. Since every finitely generated group is a finite direct prodficopies ofZ and
Zy (k > 2), it suffices to prove the theorem only for these groups.

Consider the cas8 = Z. The algorithm stores a system @f equations { will
be bounded later) of the formy ; By + - - - + a; xBr = 0, where allBy,..., By are
pairwise different variables of the same heighiVe treat the variableBy, ..., By as
variables that range over the torsion-free abelian g%ﬁﬁ'ﬁQh, We start with the single
equationd; — A, = 0. We use the rules a¥ to transform the system of equations into
another system of equations whose variables have stricthllar height. Assume the
current height ish > 1. We iterate the following steps until only variables of Hig
h — 1 occur in the equations:

Step 1.Standardize equations: Transform all equations into thefe, B, + --- +
am Bm = 0, where theB; are different variables and tlg are integers.

Step 2.Reduce the number of equations, using Leniina 8 applied tootis®n-free
abelian grougz2"x2",

Step 3.f a variable A of height/ occurs in the equations, and the rule fohas the
form A — A; + A,, thenreplace every occurrence4in the equations byl; + As.

Step 4If none of steps 1-3 applies to the equations, then only aflése form
Al.l Al 2
A ' ' 3
- (A2,1 Am) ®)

12

are applicable to a variablé (of heighth) occurring in the equations. Applying all
possible rules of this form for the current height resulta iset of equations where all
variables aré2 x 2)-matrices over variables of height— 1 (like the right-hand side

of [@)). Hence, every equation can be decomposed into 4 ieqsatvhere all variables
are variables of heightt — 1.

If the height of all variables is finally 0, then only rules dftformA — o are
applicable. In this case, replace all variables by the spwading integers, and check
whether all resulting equations are valid or not. If all etipras hold, then the input
equation holds, i.eval(A;) = val(A4,). Otherwise, if at least one equation is not valid,
thenvaI(Al) 7§ vaI(AQ).

The number of variables in the equations is bounded by thebeuof variables of
G. An upper bound on the absolute value of the coefficients énettuations ig/!,
since only iterated addition can be performed to increasectefficients. Lemmal 8
shows that the number of equations after step 2 above is at|Gipgthe bound for the
number of different variables).

For the caseS = Z; the same procedure works, we only have to use Lefdma 9
instead of LemmEgl8. O

Corollary 11. Let M be a finitely generated cancellative commutative monoidef®i
anMTDD, G over M and two variablesA; and A, of G, one can checkal(4;) =
val(Ay) in time polynomial inG|.

Proof. A cancellative commutative monoitd embeds into its Grothendieck group
which is the quotient o x M by the congruence defined ky, b) = (¢, d) if and only
if a4+d = c+bin M. Thisis an abelian group, which is moreover finitely gerestat
M is finitely generated. Hence, the result follows from Theo[fE. a0

Let us now consider non-cancellative commutative monoids:

Theorem 12. Let M be a non-cancellative finitely generated commutative ntbribi
is coNP-complete to checkal(A;) = val(Az) for a givenMTDD_. G over M and
two variables4; and A, of G.

Proof. We start with the upper bound. Lét, ..., ai } be a finite generating set of .
Let G be anMTDD, over M and letA; and A5 two variables ofG. Assume thatd;
and A; have the same height It suffices to check in polynomial time for two given
indices1 < 4,5 < 2" whetherval(A;); ; # val(42); ;. From1 < i, j < 2" we can
computet-circuits for the matrix entriegal (A4,); ; andval(Asz); ;. From these circuits
we can compute numbers, ..., ng, m1,...,mg € Nin binary representation such
thatval(A1); ; = ni1a1+- - -+ngax andval(A4z), ; = mia1+- - - +myar. Now we can
use the following result froni [31]: There is a semilinear setts C N?* (depending

only on our fixed monoid\/) such that for alley, ..., 2k, y1,...,yx € N we have:
101 + -+ xRpag = yra1 + - - + yrag ifand only if (z1,. .., 2k, y1,. .., yx) € S.
Hence, we have to check, whethet: (nq,...,ng,m1,...,mg) € S. The semilinear

setS is a finite union of linear sets. Hence, we can assumeShatinear itself. Let

S:{U0+)\1U1+"'+Alvl|)\1,---,A16N},

13

wherevy, ..., v; € N?*, Hence, we have to check, whether there exist.., \; € N
such thaty = vy + A\jv1 + - - - \juy. This is an instance of integer programming in the
fixed dimensior2k, which can be solved in polynomial time [20].

For the lower bound we take elementg, = € M such that: # y butz+2z = y+=.
These elements exist sindé is not cancellative. We use an encoding of 3SAT from
[3]. Take a 3CNF formula® = A", C; overn propositional variables, ..., z,,
and letC; = (aj, V oy, V ayy), wherel < j; < jo < j3 < n and everya;, is
eitherz;, or —x;, . For everyl < i < m we define an MTDDG; as follows: The
variables aredy, ..., A,, andBy, ..., B,_1, whereB; produces the vector of length
2% with all entries equal t6 (which corresponds to the truth valtree, whereas € M
corresponds to the truth valtedse). For the variablesgl, . . ., A,, we add the following
rules: For everyl < j < nwith j & {j1, j2, js} we take the ruled; — (A;_1,4;_1).
For everyj € {j1, j2,j3} such thaty; = z; (resp.c;; = —x;) we take the rule

Aj — (Aj_l,Bj_l) (resp.Aj — (Bj_l,Aj_l)).

Finally add the ruled, — z and letA,, be the start variable of7;. Moreover, let
G (resp.H) be the 1-dimensional MTDD that produces the vector congjstf 2"
manyz-entries (respy-entries). Therval(G) + val(G1) + - - - +val(G,,) = val(H) +
val(Gy) + - - - + val(G,,) if and only if C is unsatisfiable. O

It is worth noting that in the above proof faoNP-hardness, we use addition only at
the top level in a non-nested way.

6 Computing determinants and matrix powers

In this section we present several completeness resultglT@®@Ds over the ringsZ
andZ, (n > 2). It turns out that over these rings, computing determisiaiterated
matrix products, or matrix powers are infeasible for MTD&presented input matrices,
assuming standard assumptions from complexity theorgdktipleteness results in this
section are formulated for MTDDs, but they remain valid if add addition. In fact, all
upper complexity bounds in this section even hold for megrithat are represented by
circuits as defined in Sectign 4.2.

All hardness results in this section rely on the fact thatddgcency matrix of
the configuration graph of a polynomial space bounded macotam be produced by
a small MTDD (with terminal entrieg and1), see Sectiori_6l2. This was also shown
in [10, proof of Theorem 7] in the context of OBDDs. We will pethis fact using
an automata theoretic framework that we introduce in Se@id. This framework will
simplify the technical details in the proofs in Sectiénd &18(6.4.

6.1 Layered automata and MTDDs

In the following we will use some standard notations conicgyrfinite automata. A
layered DFA (deterministic finite automaton) of depths an acyclic DFAA for which
the state sef) is partitioned intan + 1 layersQy, . . . , @ such that:

14

— Qo only contains the initial statg, of A.

— Q. only contains two states, one of which is the unique finabstatd.

— Every transition goes from layé&p; to Q; 1 for some0 < i < m.

— Forevery statg € Q; (1 < i < m)and every input lettes there exists an-labeled
transition fromg to a state from laye®); ;1.

Theconvolutionof a stringu = a1 - - - a, € X* and a stringy = by ---b,, € I'* is the
stringu®v = (a1,b1) - - - (an, by,) Over the alphabe¥ x I". A layered DFAA of depth
m with input alphabef0,1} x {0, 1} defines the directed gragh(A) with node set
{0,1}™ (all binary strings of lengtin) and an edge from € {0,1}"™ tov € {0,1}™
ifand only ifu®v € L(A). So,A recognizes the edge relation@fA). Layered DFAs
over the paired alphabg0, 1} x {0, 1} are basically the same as MTDDs o\ér, 1}
(or OBDDs with the interleaved variable ordering):

Lemma 13. One can construct in logspace from a given layered DFdver the paired
alphabet{0,1} x {0,1} an MTDDsG over {0, 1} such thatval(G) is the adjacency
matrix of the graphG(A), and vice versa.

Proof. The variables of5 are the states of the automatdn and the start variable is
the initial stategy. Let Py, ..., Py be the layers ofA and letP, = {po, p1}, wherep;
is the final state ofd. First, we add the transitions — i fori € {0,1} to G. Next,

letp € P; for somei < k and letp {ab), pab fOr a,b € {0, 1} be the four outgoing

transitions from statg. Then we add the rule

p— Po,o Po,1
P10 P11
to G. The reverse transformation works similarly. a

6.2 Generating the configuration graph of a Turing machine byan MTDD

Let M be a nondeterministic Turing machine (NTM). L@tbe the set of states aff,
and letl” be the tape alphabet 8f , whereQ N I" = (). As usual, configurations af/
are encoded as words frofff Q"*. For two configurations,, co € I'"*QI™* we write
c1 Far e if M can move in one transition from configurationto configurationcs.
Let us fix an injective encodingiy; : Q U I — {0,1}*» \ 0%, which is extended to
a homomorphism fronj@ U I")* to {0, 1}*. Here,ky, is a large enough constant. We
exclude words only consisting 6fs from the range off; for technical reasons. The
following proposition makes use of the folklore fact (seg. ¢he work on automatic
structures) that a Turing machine transition only locallgdifies the current configu-
ration and that this local modification can be recognized fiyige automaton. This
locality is not destroyed by an application of the codingdiion £, :

Lemma 14. Let M be afixed NTM. Forn € N, one can compute in spacglogm) a
layered DFAA(M, m) of depthk), (m+1) over the paired alphabdgD, 1} x{0, 1} such
that L(A(M,m)) = {fu(c1)®fu(c2) [c1,c2 € QL™ |er| = |eo| = m+1,¢1 by
CQ}.

15

Proof. Due to the local nature of Turing machines, there exists a DA A(M) over
the alphabef (0, 0), (0,1), (1,0), (1,1)} such that

L(A(M)) = {fm(c1) ® far(e2) | cr,co € T*QI™, [c1] = |ea|, 1 Far 2}

Using the classical product construction, we intersec #hitomaton with a layered
DFA of depthky, (m + 1) for the languagd0, 1}*v(m+1) @ {0, 1}F»(m+1) Such an
automaton can be constructed in logspace. By adding dumatgssto the resulting
product automaton, we obtain a layered DFA with the desireggrties. O

For the layered DFAA (M, m) from Lemmad 14, the grapfi(A(M, m)) is the configu-
ration graph of\/ on configurations of tape length. With LemmdI8 we can compute
in spacdog m an MTDD for the adjacency matrix of this configuration graph.

6.3 Hardness of the determinant for MTDDs

Recall that the determinant of a mateix= (a; ;)1<:,j<» (OVer any ring) can be com-
puted as follows, wher8,, denotes the set of all permutationsh. .., n}:

n

det(A4) = Z sgn(o) - HAi,a(i)-

oESy i=1

Here, sgiio) denotes the signum of the permutatiorwhich is1 (resp.,—1) if o is a
product of an even (resp., odd) number of transpositiond.iff the adjacency matrix
of a directed grapld, then we can computéet(A) by taking the sum over all cycle
covers ofg (a cycle cover of; is a subset of the edges@fsuch that the corresponding
subgraph is a disjoint union of directed cycles), where eycle cover contributes to
the sum by the signum of the corresponding permutation. IRéwd det(A) # 0 if
and only if A is invertible. The valuelet(val(G)) for an MTDD G may be of doubly
exponential size (and hence needs exponentially many Bbit€) diagonal(2™ x 2™)-
matrix with 2’s on the diagonal has determinaxt .

By the next theorem, computing the determinant of an MTDpPr-&sented matrix is
indeed difficult. To prove this result we use a reduction al@showing that computing
the determinant of an explicitly given integer matrixGspL-complete[[32] (which in
turn is based on Valiant's classical construction for thversality of the determinant
[34]). We apply this reduction to configuration graphs ofypmmial space bounded
Turing machines, whose adjacency matrices can be prodyceaddll MTDDs.

Theorem 15. The following holds for every rin§ € {Z} U{Z,, | n > 2}:

(1) The sef{ G | G is an MTDD overS, det(val(G)) = 0} is PSPACE-complete.
(2) The functiorG — det(val(G)) with G an MTDD overZ is GapPSPACE-complete.

Proof. Let us start with the upper bounds. Membershif?BPACE in statement (1)
can be shown as follows: Since the determinant of an expligiven integer matrix
can be computed iRSPACE(log?(n)), one can check iDSPACE(log?(n)) whether
the determinant of an explicitly given integer matrix is@eMoreover, from a given

16

MTDD G we can compute the matrial(G) in polynomial space. For this, it suffices
to compute forGG and given positions, j the entryval(G), ; in PSPACE; then we can
iterate over all matrix positiong, 7). Actually, a specific matrix entryal(G); ; can
be even computed in polynomial time by Theoidem 7(3). Mentbprim PSPACE for
MTDD follows from Lemmdl. Note that the same argument evesliep for matrices
that are represented by boolean circuits in the sense Gb8EER.

The upper bounds in (2) can be shown in the same way using L&rand the fact
that computing the determinant of an explicitly given irgematrix with binary coded
integer entries is iapL.

Let us now prove the lower bound. We start with (1). Let us talaeterministic
polynomial space bounded Turing machih& Let gy be the initial state of\/ and
gs the unique accepting state. Listbe the blank symbol. We can assume thatis
non-looping in the sense that there does not exist a configarasuch that -3, c.
This property can be ensured by adding a binary countéi/tthat is decremented
during each transition of the original machine. Moreoveg, @an assume that every
accepting computation path @f has odd length (i.e., an odd number of transitions),
and that every tape cell contaifsas soon as\/ enters the accepting stage. Let
p(n) (a polynomial) be the space boundf and letx be an input forM of lengthn.
Moreover, letmn = p(n) andk = kps(m + 1). By Lemmd14 we can compute in space
O(logm) = O(log n) a layered DFAA(M, m) of depthk such that

L(AM,m)) = {fu(c1)®@fru(c2) | e1,c2 € I"QI™, |e1| = |e2| = m+1,¢1 Far 2}

Let wo = far(goxO™ ™) (resp.,wy = fu(gr0™)) be the encoding of the initial
(resp., accepting) configuration. Recall that we assume (thaloes not belong to
fu(C*QI™). By taking the direct product ofl(M, m) with a layered DFA for the
language

K ={0* @ wo,w; ® 0F} U{w@w | w e {0,1}*\ 0}

(which can be computed in spabegm), we obtain a layered DFA (M, z) with
L(A(M,z)) = L(A(M,m)) U K. Let G(M,) be the directed grap8(A(M,z))
defined by the DFAA (M,). Its node set i§0, 1}* and there is an edge fromto w if
and only ifv ® w € L(A(M,z)). Let adf M, x) be the adjacency matrix &f(M, x).
We computelet(adj(M, x)) by considering cycle covers of the graghM, z). Note
that node0® lies on a directed cycle if and only if there is a path fram to w; in
G(M, z). Moreover, sinceV/ is non-looping, every cycle cover 6 M, x) consists of
a path fromwy to w; together with the two edgdsv;, 0%) and(0*, wg) (such a cycle
has odd length and hence is a product of an even number optsitisns) together
with loops on the remaining nodes. It follows thiat (adj(M, z)) is equal to the num-
ber of paths fromw, to w; in G(M, z). But this number is equal to the number of
accepting computations of the machiheon inputz, which is eithel0 or 1 (since M
is deterministic). By Lemmla3 applied to the DEAM,), we obtain in logspace an
MTDD G (with integer entrie® and1 only) such thatal(G) = adj(M, z). This shows
the lower bound in (1).

Let us finally prove the lower bound in (2). Let us take two palgnial space
bounded Turing machine®/; and M> with the same input alphabet. We can also as-
sume that\/; and M, have the same state ggtand tape alphabét. In particular, we

17

can assume thaty, = ku,. Let f = fu, = far, be the binary coding mapping for
QUI. Letq be the initial state of\/; and}M, andgy the unique accepting state bf;
and M>. We make the same assumptions that we have mad¥ fior the lower bound
proof for statement (1). We can also assume that the polyalgii) is a space bound
for M, as well asM,.

Letz be an input fod\/; andM;, of lengthn, and letn = p(n), k = ka, (m+1) =
ks, (m +1). With LemmdI# we can construct in spa@éog m) = O(log n) layered
DFAs A(M;,m) and A(M,, m) of depthk such that

L(A(M;,m)) = {f(c1) ® f(c2) | c1,e2 € QL™ |e1| = |e2| = m 4+ 1,¢1 Fag, 2}

Let wo = f(gozO™ ™) be the encoding of the initial configuration, and let =
f(gsO™) be the encoding of the unique accepting configuration. Réttal we as-
sumed thab* does not belong tg (1™ Q).

From the layered DFAg\ (M7, m) and A(M,, m) we now construct a layered DFA
A(My, My, m) of depthk + 1 such that

L(A(My,M3,m)) ={0u®0v |u®v e L(A(M;,m))} U
{lu®1lv | u®@v € L(A(Mz,m))}.

For this we basically have to take the disjoint uniondfA/;, m) and A(Ms, m). By
taking the product ofA(M;, M2, m) with a layered DFA for the language

K = {0 @ 0w, 0w; @ 0", 0F @ 1wy, 1wy ® 107,10 @ 0F} U
{fw@w|we {0,1}F1\ 0%}

(which can be easily constructed in sp&2@og k) = O(logn)), we can obtain a lay-
ered DFAA(M;, My, x) with

L(A(Ml, MQ,ZC)) = L(A(Ml, Mg,m)) UK.

LetG(M,, Ms, x) be the directed grapf(A(M;, Mo, z)) defined by the layered DFA
A(My, Ms, z). This graph consists of the disjoint union of the two gra@bs/;, m) :=
G(A(My,m)) andG (M3, m) := G(A(M2,m)) (basically the configurations graphs of
M, and M- on configurations of tape length) together with two node&*+* and10*
and the following edges:

— Edges from0¥*+! to 0w, and 1w, (the copies of the initial configuration in the
graphsG(M;,m) andG (M, m)).

— An edge from0wy (the copy of the accepting configurationgii}/;, m)) back to
0k+1.

— An edge fromlw; (the copy of the accepting configurationgiiMs, m)) to 10*.

— An edge from10* back to0**1.

— Loops at all nodes except fof+1.

Letadj M1, Ms, z) be the adjacency matrix of the directed gr&i§fif; , Ms, x). Letus
computedet(adj(M;, M, z)) by considering cycle covers of the gra@bi; , Mo,).
Note that nod@**! lies on a directed cycle if and only if there is a path framto w
in G(M, z) or fromwyg to wy in G(Ma,). Moreover, sincel! is non-looping, every
cycle cover ofG (M, x) consists of loops together with either

18

— a path fromDwy to 0wy (in G(M7,m)) together with the two edg@®**!, Ow,) and
(Owy, 0kF1) (every such cycle has odd length, and hence is a product ofem e
number of transpositions), or

— a path fromlwy to 1wy (in G(Ma, m)) together with the three edgé&*+1, 1wy),
(1wy, 10%), and(10%, 0**+1) (every such cycle has even length, and hence is a prod-
uct of an odd number of transpositions).

It follows thatdet(adj(M1, M», x)) is equal to the number of paths frdimg to Ow; in
G(M7, m) minus the number of paths froinw, to 1wy in G(M2, m). But this number
is equal to the number of accepting computations of the madhi, on inputx minus
the number of accepting computations of the machifyeon inputz. a

Note that the determinant of a diagonal matrix is zero if anty @f there is a zero-
entry on the diagonal. This can be easily checked in polyabtime for a diagonal
matrix produced by an MTDD. FaviTDD, (actually, for a sum of several MTDD-
represented matrices) we can shigR-completeness of this problem:

Theorem 16. It is NP-complete to checltet(val(G1) + - - - + val(G})) = 0 for given
MTDDs Gy, . . ., Gy, that produce diagonal matrices of the same dimension.

Proof. Membership inNP is easy: Simply guess a positian< i < 2", compute the
valuesn; = val(G,);; for 1 < j < k and check whethet; + - -- + n; = 0.

Our NP-hardness proof uses again the 3SAT encoding fidm [3] thaappdied in
the proof of Theorerh 12. Take a boolean formaGla= /\2’;1 C;, where evenC; is
a disjunction of three literals. Assume that, ..., x, are the boolean variables that
occur inC. For eachl < i < m letw; € {0,1}2" be the binary string of length,
where thej-th symbol ofw; (1 < k& < 2") is 1 if and only if the lexicographically
j-th truth assignment to the variables, . . . , x,, satisfies claus€’;. In [3] it is shown
that a fully balanced SLP (i.e., an SLP with a fully balancedwhtion tree) forw,; can
be constructed in logspace from the cladge We can use the same construction in
order to construct in logspace an MTOB of heightn such thaval(G;) is a diagonal
matrix with the wordw; on the diagonal. Here is the construction: K&t= (o;, V
aj, V ay,), wherel < j; < ja < j3 < nand evengy, is eitherz;, or —z;, . We take
variablesAy, ..., A,, Bo,...,Bn_1, Zo, - . ., Zn_1, WhereB; produces th¢2¢ x 2¢)-
dimensional identity matriX,: andZ; produces thé2’ x 2¢)-dimensional zero matrix.
For the variablesiy, ..., A,, we add the following rules: For evely < j < n with

j ¢ {j11j27j3} take the rule
A1 Zi_
Aj — i1 i-1 .
Zj,1 Aj,1
For everyj € {j1,j2,j3} such thaty; = z; take the rule
A1 Zi_
Aj — i=1 i=1 .
Zj—1 Bj1

19

For everyj € {j1, j2, j3} such thaty; = —x; take the rule

Bi_1 Z;_
Aj — < g1 J 1) .
Zj,1 Aj,1
Finally we take the ruledy — 0. Let A,, be the initial variable of~;. Then, indeed,
val(G;) is a diagonal matrix with the word; on the diagonal fot < i < m. LetG,,+1
be an MTDD such thatal(G,,,+1) = —mlI». Thenval(Gy) +- - - +val(Gpy1) is a di-

agonal matrix which has a zero on the diagonal @det(val(G1)+- - -+val(Gp11)) =
0) if and only if the 3CNF formula’ is satisfiable. a

6.4 Hardness of iterated multiplication and powering for MTDDs

Let us now discuss the complexity of iterated multiplicatamd powering. Computing
a specific entry, say at positidi, 1), of the product of: explicitly given matrices over
Z (resp.,N) is known to be complete fdgapL (resp.,#L) [32]. Corresponding results
hold for the computation of thél, 1)-entry of a matrix powerd™, wheren is given

in unary notation. Hence, the binary encodings of these rushtan be computed in
FSPACE(log?(n)). As usual, these problems become exponentially harder &rim
ces that are encoded by boolean circuits (see Sdctibn 42ud briefly discuss two
scenarios (recall the matric@sc ; andM¢ 2 defined from a circuit in Sectidn 4.2).

Definition 17. For a tupleC = (C4,...,C,) of boolean circuits we can define the
matrix productMy =[]}, M, 1.

Lemma 18. The functionC' — (Mz)1,1, where every matrid/c, ; is overN (resp.,
7), belongs to#P (resp.,GapP).

Proof. Let us first show the result fo#P. Let M¢, 1 = (agi;c)lgj7k§2m, wherem =
|Z] = |y]. We have

n 2™ gm 2m
(T),, =32 3"+ 3 aidally ol ol @
i=1 ii=lig=1 ip_1=1

We have to come up with a nondeterministic polynomial timerigimachineM that
has that many accepting computation paths on i@yt. .., C,,). Using(n — 1) - m
binary branchings, the machifié can produce an arbitrary tuplé , . . . ,i,—1), where
the numberg < iq,...,i,_1 < 2™ are written down in binary notation. Next, we can
compute in deterministic polynomial time the binary codirgf all natural numbers
afi)l : agf?iz, . ,al(:;l’znﬂ,af.:ihl. Then we compute the productf these numbers
again deterministically in polynomial time. £ = 0 then we reject on the current
computation path (this corresponds to ia the multiple sum[{4)). Otherwise, using the
binary coding ofx > 0 the machine branché#g a| many times in order to produce
many accepting computation paths.

For the statement concernigpP one can argue similarly. We have to come up
with two polynomial space bounded machines such @iﬁﬁl Mz-)L1 is equal to the

20

number of accepting computations of the first machine mihaswumber of accepting
computations of the second machine. These two machinesagoabove, but the first

(resp. second) machine only produces- o'} ,al*), ,....a{" " ol | many

1,417 i1,12) P i —2,in—17 in—

accepting computation pathsif> 0 (resp.a < 0). a

Definition 19. A boolean circuitC(w, 7,7y, z) with k = [w|, m = |Z|, andn = |y| =
|z| encodes a sequencedfmany(2" x 2™)-matrices: For every bit vectar € {0, 1}*,
define the circuiC; = C(@, 7,7, z) and the matrix\Mg = Mc_ ». Finally, let M¢ =
[Tz 0,13+ Ma be the product of all these matrices.

Lemma 20. The functionC'(w, 7,7, z) — M¢ belongs taFPSPACE.

Proof. The lemma follows from Lemmia 2 and the following two fact: Krom the
circuit C(w, 7,7y, Z) one can compute the tuple of matridédc.. 2)ac 0,13+ IN polyno-
mial space (simply iterate over all valuations for the baaleariabless, z, 7, z), and
(i) computing an iterated matrix product of explicitly gim matrices can be done in
FSPACE(log?(n)). 0

Lemmag 1B anld 20 yield the upper complexity bounds in theviotlg theorem.
Theorem 21. The following holds:

(1) The functionG,n) — (val(G)™)1,1 with G an MTDD overN (resp.Z) andn a
unary encoded number is complete 6P (resp.,GapP).

(2) The functionG,n) — (val(G)™)1,1 with G an MTDD overN (resp.Z) andn a
binary encoded number iPSPACE-complete (respGapPSPACE-complete).

Proof. It remains to prove the lower bound, for which we use agaimiswt versions
of Toda’s techniques from [32], similar to the proof of Theoi15.

Let us start with the statements concernyag and#PSPACE. We start with (1).
Let M be a fixed nondeterministic polynomial time Turing machi@ee can assume
that all maximal computations dff on an inputz of lengthn have lengthp(n) for
some polynomiap. Let = be an input forM of lengthn, and letm = p(n) andk =
kar(m +1). We now apply the construction from the proof of Lenima 14£f@ndm.
We obtain a layered DFA (M, m) such that

L(A(M,m)) = {fu(c)®frn(c2) | cr,c2 € I"QI™, |er| = |ea| = m+1, 1 Fas ca}

Let wy = fum(gxD™~ ") be the encoding of the initial configuration, ang =
far(gr0™) be the encoding of the unique accepting configuration. Rewi0* does
not belong tofx, (I'*Q1'*). As in the proof of Theorefn 15 we obtain a layered DFA
A(M, z) such that

L(A(M, x)) = L(A(M,m)) U {0* @ wo, w; @ 0F}.

Let G(M, x) be the directed grapi(A(M, z)), whose node set i, 1}* and there is

an edge from tow ifand only ifv®@w € L(A(M, z)). Letad] M,) be the adjacency
matrix of G(M, x). As in the proof of Theorer 15 we obtain an MTOB® such that

val(G) = adj(M, z).

21

Then the number of accepting computations of the machinen inputz is equal
to the number of paths of lengfiin) + 2 in the graphG (M, =) from node0* to node
0*. This number is equal tval(G)?(™+2), ;.

The #PSPACE-hardness in point (2) of the theorem is proven in the same way
For a nondeterministic polynomial space bounded Turinghirme one can assume that
all maximal computations o/ on an inputz of lengthn have lengt2?(™ for some
polynomialp. Hence, we only have to replace the numbet- 2 in the above proof by
2m 4+ 2.

Let us now turn to the lower bounds concern{BapP andGapPSPACE in the the-
orem. The proofs are very similar to the corresponding mémf#P and#PSPACE,
respectively. We only consider (2). We have to come up witMamD over{0,1—1}.
Such an MTDD correspondsto a layered DFA, where the last Ey@ains three states,
corresponding to the three possible matrix entiel and—1. Now, take two polyno-
mial space bounded Turing machinks and M- (with the same input alphabet), such
that all accepting computations 8f; and M> on an input of lengthm have length
2r(m) Moreover, letz be an input forM; and M,. We have to come up with a lay-
ered DFA (with three nodes in the last layer) that definesdHeviing {1, —1}-labeled
directed graply:

— G consists of a disjoint copy df (M1, m) andG(M,, m) (all edges are labelled
with 1) together with an additional node

— Thereis al-labeled edge from nodeto the copy of the initial configuration dff;
in Q(Ml, m)

— There is a—1-labeled edge from nodeto the copy of the initial configuration of
Ms in g(]\/fg, m)

— There arel-labeled edges from the copies of the unique accepting amafigns
in M, andMs, respectively, back to node

Analogously to the construction in the proof of (2) from Thew[1% we can construct
such a layered DFA. For the MTDD over {0, 1, —1} corresponding to this layered

DFA, (vaI(G)Qp(m)““?)l,l is equal to the number of accepting computationd/Gfon
inputz minus the number of accepting computationdff on inputz. a

By Theoreni 211, there is no polynomial time algorithm that poies for a given MTDD
G and a unary number a boolean circuit (or even aiTDD) for the poweral (G)™,
unless#P = FP.

By [32] and Theorerh 21, the complexity of computing a sped@ifitry of a matrix
power A™ covers three different counting classes, depending onethisentation of
the matrixA and the exponent (let us assume that is a matrix oveiN):

— #L-complete, ifA is given explicitly andh is given unary.
— #P-complete, ifA is given by an MTDD andh is given unary.
— #PSPACE-complete, ifA is given by an MTDD ana is given binary.

Let us also mention that in][6,/L3,27] the complexity of ewdilng iterated matrix prod-
ucts and matrix powers in a fixed dimension is studied. Itgwuat that multiplying
a sequence ofd x d)-matrices ovetZ in the fixed dimensioal > 3 is complete for

22

the classGapNC' (the counting version of the circuit complexity clas€) [6]. It is
open whether the same problem for matrices &Vés complete forsNC'. Moreover,
the casel = 2 is open too. Matrix powers for matrices in a fixed dimension bae
computed inTCP (if the exponent is represented in unary notation) usingagley-
Hamilton theorem [27]. Finally, multiplying a sequencd @k d)-matrices that is given
succinctly by a boolean circuit captures the clBBSPACE for anyd > 3 [13].

For the problem, whether a power of an MTDD-encoded matrzei® (a variant
of the classical mortality problem) we can finally show thidiwing:

Theorem 22. Itis coNP-complete (respPSPACE-complete) to check whethexl (G)™
is the zero matrix for a given MTDEDY and a unary (resp., binary) encoded number

Proof. Take the construction from the proof of the lower bound framp(1) of The-
orem[21. Recall thap(n) was the time bound of/. We assumed that all maximal
computation paths for an input of lengithave length exactly(n). Letm = p(n). We
can modify the Turing machin&/ in such a way that the gragh(M, m) (the configu-
ration graph ofM on configurations of tape length) does not have directed paths of
length larger thamn (e.g. by splitting the tape a¥/ into two tracks and incrementing
a unary counter on the second track). This means that in #hgi(M,) there is a
path of lengthm + 2 if and only if z is accepted by/. Thus,z is accepted by if
and only ifval(G)P("*2 is not the zero matrix. The statement concerr$PACE-
completeness is proven in the same way (we just have to ebguadding a binary
counter on the second track that the grg{iii/, m) does not have directed paths of
length larger thap?(™). i

Here is a more direct proof for tkeNP-hardness statement in Theorlem 22, which uses
a reduction from the complement of 3SAT.

Alternative proof of Theorem P2et C = A", C; be a 3CNF formula. In the proof
of TheorenIb we constructed MTDG,, . . ., G,, such thatval(G;) is the diagonal
matrix, where the diagonal is the binary string of all truétlues of the claus€;, taken
in lexicographic order. From the MTDIDr4, . . ., G,,, we easily obtain an MTDOZ
such that

Oval(Gy) 0 0 0 0

0 0 wval(Gs) 0 0 0

0 0 0 val(Gs) 0 0
val(G) =

0 0 0 0 - val(Gpoy) 0

0 0 0 0 - 0 val(Gm)

0 O 0 o - 0 0

Here, we have to assume that+ 1 is a power of two, which can be enforced by adding
dummy clauses. Since the matrice$(G;) commute (they are diagonal matrices) and
are idempotent (since all diagonal values @o 1), the matrixval(G)™ contains only
0-blocks except for the top right-most block, which[ig" ; val(G;). Thus,val(G)™ is

the zero matrix if and only i€” is unsatisfiable. O

23

7

Conclusion and future work

We studied algorithmic problems on matrices that are giwemblti-terminal decision
diagrams enriched by the operation of matrix addition. S&vimportant matrix prob-
lems can be solved in polynomial time for this representatiog., equality checking,
computing matrix entries, matrix multiplication, commgithe trace, etc. On the other
hand, computing determinants, matrix powers, and itenat@ix products are compu-
tationally hard. For further research, it should be ingzted whether the polynomial
time problems, like equality test, belong K. Also an experimental implementation

is

planned for testing practical efficiency.

References

1

2.

10.

11.

12.

13.

14.

15.

16.

. C.Alvarez and B. Jenner. A very hard log-space counting cla&seoretical Computer

Science107:3-30, 1993.

M. Beaudry and M. Holzer. The complexity of tensor ciraawvgluation. Computational

Complexity 16(1):60-111, 2007.

. P. Berman, M. Karpinski, L. L. Larmore, W. Plandowski, aldRytter. On the complexity
of pattern matching for highly compressed two-dimensitesds. Journal of Computer and
System Science85:332-350, 2002.

. A. Bertoni, C. Choffrut, and R. Radicioni. Literal shufiécompressed words. FRroceed-
ings of IFIP TCS 2008volume 273 ofFIP, 87-100. Springer, 2008.

. R. E. Bryant. Graph-based algorithms for boolean funati@nipulationlEEE Transactions
on Computers35(8):677-691, 1986.

. H. Caussinus, P. McKenzie, D. Thérien, and H. Vollmer.n8kterministicNC'! computa-
tion. Journal of Computer and System Scien&g%2):200-212, 1998.

. S. A. Cook. A taxonomy of problems with fast parallel aijons. Information and Contrql
64:2-22, 1985.

. C. Damm, M. Holzer, and P. McKenzie. The complexity of @rsalculus.Computational
Complexity 11(1-2):54-89, 2002.

. D. Eppstein, M. T. Goodrich, and J. Z. Sun. Skip quadtrBgaamic data structures for mul-

tidimensional point setdnternational Journal of Computational Geometry & Appliicans,

18:131-160, 2008.

J. Feigenbaum, S. Kannan, M. Y. Vardi, and M. Viswanatfidre complexity of problems

on graphs represented as obd@bicago Journal of Theoretical Computer Scient@99.

H. Fuijii, G. Ootomo, and C. Hori. Interleaving based &blé ordering methods for ordered

binary decision diagrams. Rroceedings of ICCAD 19938-41. IEEE Computer Society,

1993.

M. Fujita, P. C. McGeer, and J. C.-Y. Yang. Multi-ternlitnary decision diagrams:

An efficient data structure for matrix representatioformal Methods in System Design

10(2/3):149-169, 1997.

M. Galota and H. Vollmer. Functions computable in polyia space. Information and

Computation198(1):56—-70, 2005.

H. Galperin and A. Wigderson. Succinct representatibgsaphs.Information and Contrql

56:183-198, 1983.

V. Geffert, C. Mereghetti, and B. Palano. More conciggesentation of regular languages

by automata and regular expressiolmformation and Computatiqr208(4):385-394, 2010.

B. Grenet, P. Koiran, and N. Portier. On the complexitthefmultivariate resultanflournal

of Complexity29(2): 142-157, 2013.

24

17

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.
30.

31.

32.

33.

34.

35.

36.

. O.H.Ibarraand S. Moran. Probabilistic algorithms feciding equivalence of straight-line
programs.Journal of the Association for Computing MachingB@(1):217-228, 1983.

R. E. Ladner. Polynomial space counting proble8i&\M Journal on Computind. 8:1087—
1097, 1989.

T. Lengauer and K. W. Wagner. The correlation betweerdhgplexities of the nonhierar-
chical and hierarchical versions of graph problendsurnal of Computer and System Sci-
ences44:63-93, 1992.

H. Lenstra. Integer programming with a fixed number ofaldes. Mathematics of Opera-
tions ReseargHB:538-548, 1983.

M. Lohrey. Leaf languages and string compresdligiormation and Computatiqr209:951—
965, 2011.

M. Lohrey. Algorithmics on SLP-compressed strings: ey Groups, Complexity, Cryp-
tology, 4:241-299, 2012.

M. Lohrey and S. Maneth. The complexity of tree automatd XPath on grammar-
compressed treeFheoretical Computer Sciencg63(2):196—-210, 2006.

M. Lohrey and C. Mathissen. Isomorphism of regular traed words. Information and
Computation224: 71-105, 2013.

G. Malod. Succinct algebraic branching programs cheriaig non-uniform complexity
classes. IfProceedings of FCT 2011LNCS 6914205-216. Springer, 2011.

C. Meinel and T. Theobaldlgorithms and Data Structures in VLSI Design: OBDD - Foun-
dations and ApplicationsSpringer, 1998.

C. Mereghetti and B. Palano. Threshold circuits foraited matrix product and powering.
Informatique Théorique et Application34(1):39—-46, 2000.

W. Plandowski. Testing equivalence of morphisms inexiAfree languages. roceedings
of ESA 1994LNCS 855460-470. Springer, 1994.

H. SametThe Design and Analysis of Spatial Data Structurdddison-Wesley, 1990.

A. Storjohann and T. Mulders. Fast algorithms for foetinalgebra modulo N. IRroceed-
ings of ESA 1998 NCS 1461139-150. Springer, 1998.

M. A. Taclin. Algorithmic problems for commutative semigrouf@oklady Akademii Nauk
SSSR9(1):201-204, 1968.

S. Toda. Counting problems computationally equivaieobmputing the determinant. Tech-
nical Report CSIM 91-07, Tokyo University of Electro-Comnications, 1991.

S. Toda. PP is as hard as the polynomial-time hierar@iAM Journal on Computing
20:865-877, 1991.

L. G. Valiant. Completeness classes in algebraProteedings of STOC 197249-261.
ACM, 1979.

H. Veith. How to encode a logical structure by an OBDD.Phoceedings of 13th Annual
IEEE Conference on Computational Complexit2—131. IEEE Computer Society, 1998.
I. Wegener. The size of reduced OBDD’s and optimal rezmkdoranching programs for
almost all boolean functionsEEE Transactions on Computer3(11):1262-1269, 1994.

25

	Processing Succinct Matrices and Vectors

