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Abstract. We study the complexity of algorithmic problems for matrices that
are represented by multi-terminal decision diagrams (MTDD). These are a vari-
ant of ordered decision diagrams, where the terminal nodes are labeled with ar-
bitrary elements of a semiring (instead of0 and 1). A simple example shows
that the product of two MTDD-represented matrices cannot berepresented by an
MTDD of polynomial size. To overcome this deficiency, we extended MTDDs
to MTDD+ by allowing componentwise symbolic addition of variables (of the
same dimension) in rules. It is shown that accessing an entry, equality checking,
matrix multiplication, and other basic matrix operations can be solved in polyno-
mial time forMTDD+-represented matrices. On the other hand, testing whether
the determinant of a MTDD-represented matrix vanishes isPSPACE-complete,
and the same problem isNP-complete forMTDD+-represented diagonal matri-
ces. Computing a specific entry in a product of MTDD-represented matrices is
#P-complete.

1 Introduction

Algorithms that work on a succinct representation of certain objects can nowadays be
found in many areas of computer science. A paradigmatic example is the use of OBDDs
(ordered binary decision diagrams) in hardware verification [5,26]. OBDDs are a suc-
cinct representation of Boolean functions. Consider a boolean functionf(x1, . . . , xn)
in n input variables. One can representf by its decision tree, which is a full binary tree
of heightn with {0, 1}-labelled leaves. The leaf that is reached from the root via the
path (a1, . . . , an) ∈ {0, 1}n (whereai = 0 means that we descend to the left child
in the i-th step, andai = 1 means that we descend to the right child in thei-th step)
is labelled with the bitf(a1, . . . , an). This decision tree can be folded into a directed
acyclic graph by eliminating repeated occurrences of isomorphic subtrees. The result is
the OBDD forf with respect to the variable orderingx1, . . . , xn.3 Bryant was the first
who realized that OBDDs are an adequate tool in order to handle the state explosion
problem in hardware verification [5].

OBDDs can be also used for storing large graphs. A graphG with 2n nodes and ad-
jacency matrixMG can be represented by the boolean functionfG(x1, y1, . . . , xn, yn),
wherefG(a1, b1, . . . , an, bn) is the entry ofMG at position(a, b); herea1 · · · an (resp.,

⋆ The first (second) author is supported by the DFG grant LO 748/8-2 (SCHM 986/9-2).
3 Here, we are cheating a bit: In OBDDs a second elimination rule is applied that removes

nodes for which the left and right child are identical. On theother hand, it is known that
asymptotically the compression achieved by this elimination rule is negligible [36].
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b1 · · · bn) is the binary representation of the indexa (resp.b). Note that we use the so
called interleaved variable ordering here, where the bits of the two coordinatesa and
b are bitwise interleaved. This ordering turned out to be convenient in the context of
OBDD-based graph representation, see e.g. [11].

Classical graph problems (like reachability, alternatingreachability, existence of
a Hamiltonian cycle) have been studied for OBDD-represented graphs in [10,35]. It
turned out that these problems are exponentially harder forOBDD-represented graphs
than for explicitly given graphs. In [35] an upgrading theorem for OBDD-represented
graphs was shown. It roughly states that completeness of a problemA for a complexity
classC under quantifier free reductions implies completeness of the OBDD-variant of
A for the exponentially harder version ofC under polynomial time reductions.

In the same way as OBDDs represent boolean mappings, functions from{0, 1}n to
any setS can be represented. One simply has to label the leaves of the decision tree
with elements fromS. This yields multi-terminal decision diagrams (MTDDs) [12]. Of
particular interest is the case, whereS is a semiring, e.g.N or Z. In the same way as
an adjacency matrix (i.e., a boolean matrix) of dimension2n can be represented by an
OBDD, a matrix of dimension2n over any semiring can be represented by an MTDD.
As for OBDDs, we assume that the bits of the two coordinatesa andb are interleaved
in the ordera1, b1, . . . , an, bn. This implies that an MTDD can be viewed as a set of
rules of the form

A →

(

A1,1 A1,2

A2,1 A2,2

)

or B → a with a ∈ S. (1)

whereA, A1,1, A1,2, A2,1, andA2,2 are variables that correspond to certain nodes of
the MTDD (namely those nodes that have even distance from theroot node). Every
variable produces a matrix of dimension2h for someh ≥ 0, which we call the height
of the variable. The variablesAi,j in (1) must have the same heighth, andA has height
h+1. The variableB has height0. We assume that the additive monoid of the semiring
S is finitely generated, hence everya ∈ S has a finite representation.

MTDDs yield very compact representations of sparse matrices. It was shown that
an (n × n)-matrix with m nonzero entries can be represented by an MTDD of size
O(m log n) [12, Theorem 3.2], which is better than standard succinct representations
for sparse matrices. Moreover, MTDDs can also yield very compact representations
of non-sparse matrices. For instance, the Walsh matrix of dimension2n can be repre-
sented by an MTDD of sizeO(n), see [12]. In fact, the usual definition of then-th
Walsh matrix is exactly an MTDD. Matrix algorithms for MTDDsare studied in [12]
as well, but no precise complexity analysis is carried out. In fact, the straightforward
matrix multiplication algorithm for multi-terminal decision diagrams from [12] has an
exponential worst case running time, and this is unavoidable: The smallest MTDD that
produces the product of two MTDD-represented matrices may be of exponential size
in the two MTDDs, see Theorem 5. The first main contribution ofthis paper is a gen-
eralization of MTDDs that overcomes this deficiency: AnMTDD+ consists of rules of
the form (1) together with addition rules of the formA → B + C, where “+” refers to
matrix addition over the underlying semiring. Here,A, B, andC must have the same
height, i.e., produce matrices of the same dimension. We show that anMTDD+ for
the product of twoMTDD+-represented matrices can be computed in polynomial time
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(Theorem 6). In Section 4.1 we also present efficient (polynomial time) algorithms for
several other important matrix problems onMTDD+-represented input matrices: com-
putation of a specific matrix entry, computation of the trace, matrix transposition, tensor
and Hadamard product. Section 5 deals with equality checking. It turns out that equal-
ity of MTDD+-represented matrices can be checked in polynomial time, ifthe additive
monoid is cancellative, in all other cases equality checking is coNP-complete.

To the knowledge of the authors, complexity results similarto those from [10,35]
for OBDDs do not exist in the literature on MTDDs. Our second main contribution fills
this gap. We prove that already for MTDDs overZ it is PSPACE-complete to check
whether the determinant of the generated matrix is zero (Theorem 15). This result is
shown by lifting a classical construction of Toda [32] (showing that computing the
determinant of an explicitly given integer matrix is complete for the counting class
GapL) to configuration graphs of polynomial space bounded Turingmachines, which
are of exponential size. It turns out that the adjacency matrix of the configuration graph
of a polynomial space bounded Turing machine can be producedby a small MTDD.
Theorem 15 sharpens a recent result from [16] stating that itis PSPACE-complete to
check whether the determinant of a matrix that is represented by a boolean circuit (see
Section 4.2) vanishes. We also prove several hardness results for counting classes. For
instance, computing a specific entry of a matrix powerAn, whereA is given by an
MTDD overN is #P-complete (resp.#PSPACE-complete) ifn is given unary (resp.
binary). Here,#P (resp.#PSPACE) is the class of functions counting the number of
accepting computations of a nondeterministic polynomial time Turing machine [34]
(resp., a nondeterministic polynomial space Turing machine [18]). An example of a
natural#PSPACE-complete counting problem is counting the number of strings not
accepted by a given NFA [18].

2 Related work

Sparse matrices and quad-trees.To the knowledge of the authors, most of the litera-
ture on matrix compression deals with sparse matrices, where most of the matrix entries
are zero. There are several succinct representations of sparse matrices. One of which are
quad-trees, used in computer graphics for the representation of large constant areas in
2-dimensional pictures, see for example [29,9]. Actually,an MTDD can be seen as a
quad-tree that is folded into a dag by merging identical subtrees.

Two-dimensional straight-line programs. MTDDs are also a special case of 2-dimen-
sional straight-line programs (SLPs). A (1-dimensional) SLP is a context-free grammar
in Chomsky normal form that generates exactly one OBDD. An SLP withn rules can
generate a string of length2n; therefore an SLP can be seen as a succinct representation
of the string it generates. Algorithmic problems that can besolved efficiently (in poly-
nomial time) on SLP-represented strings are for instance equality checking (first shown
by Plandowski [28]) and pattern matching, see [22] for a survey.

In [3] a 2-dimensional extension of SLPs (2SLPs in the following) was defined.
Here, every variable of the grammar generates a (not necessarily square) matrix (or pic-
ture), where every position is labeled with an alphabet symbol. Moreover, there are two
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(partial) concatenation operations: horizontal composition (which is defined for two
pictures if they have the same height) and vertical composition (which is defined for
two pictures if they have the same width). This formalism does not share all the nice al-
gorithmic properties of (1-dimensional) SLPs [3]: Testingwhether two 2SLPs produce
the same picture is only known to be incoRP (co-randomized polynomial time). More-
over, checking whether an explicitly given (resp., 2SLP-represented) picture appears
within a 2SLP-represented picture isNP-complete (resp.,ΣP

2 -complete). Related hard-
ness results in this direction concern the convolution of two SLP-represented strings
of the same length (which can be seen as a picture of height 2).The convolution of
stringsu = a1 · · ·an andv = b1 · · · bn is the string(a1, b1) · · · (an, bn). By a result
from [4] (which is stated in terms of the related operation ofliteral shuffle), the size
of a shortest SLP for the convolution of two strings that are given by SLPsG andH
may be exponential in the size ofG andH . Moreover, it isPSPACE-complete to check
for two SLP-represented stringsu andv and an NFAT operating on strings of pairs of
symbols, whetherT accepts the convolution ofu andv [21].

MTDDs restrict 2SLPs by forbidding unbalanced derivation trees. The derivation
tree of an MTDD results from unfolding the rules in (1); it is atree, where every non-
leaf node has exactly four children and every root-leaf pathhas the same length.

Let us finally mention that straight-line programs are also used for the compact rep-
resentation of other objects, e.g. polynomials [17], trees[23], graphs [19], and regular
languages [15].

Tensor circuits. In [2,8], the authors investigated the problems of evaluating tensor
formulas and tensor circuits. Let us restrict to the latter.A tensor circuit is a circuit
where the gates evaluate to matrices over a semiring and the following operations are
used: matrix addition, matrix multiplication, and tensor product. Recall that the tensor
product of two matricesA = (ai,j)1≤i≤m,1≤i≤m andB is the matrix

A⊗B =







a1,1B · · · a1,mB
...

...
an,1B · · · an,mB







It is a (mk × nl)-matrix if B is a(k × l)-matrix. In [2] it is shown among other results
that computing the output value of a scalar tensor circuit (i.e., a tensor circuit that yields
a (1 × 1)-matrix) over the natural numbers is complete for the counting class#EXP.
An MTDD+ overZ can be seen as a tensor circuit that (i) does not use matrix multi-
plication and (ii) where for every tensor product the left factor is a(2 × 2)-matrix. To
see the correspondence, note that
(

A1,1 A1,2

A2,1 A2,2

)

=

(

1 0
0 0

)

⊗A1,1 +

(

0 1
0 0

)

⊗A1,2 +

(

0 0
1 0

)

⊗A2,1 +

(

0 0
0 1

)

⊗A2,2

(

a1,1 a1,2
a2,1 a2,2

)

⊗B =

(

a1,1B a1,2B

a2,1B a2,2B

)

Each of the matricesai,jB can be generated fromB and−B using log |ai,j | many
additions (here we use the fact that the underlying semiringis Z).
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3 Preliminaries

We consider matrices over a semiring(S,+, ·) with (S,+) a finitely generated commu-
tative monoid with unit0. The unit of the monoid(S, ·) is 1. We assume that0 · a =
a·0 = 0 for all a ∈ S. Hence, if|S| > 1, then1 6= 0 (0 = 1 impliesa = 1·a = 0·a = 0
for all a ∈ S). With Sn×n we denote the set of all(n× n)-matrices overS.

All time bounds in this paper implicitly refer to the RAM model of computation
with a logarithmic cost measure for arithmetical operations on integers, where arith-
metic operations onn-bit numbers need timeO(n). For a numbern ∈ Z let us denote
with bin(n) its binary encoding.

We assume that the reader has some basic background in complexity theory, in par-
ticular we assume that the reader is familiar with the classesNP, coNP, andPSPACE.
With polyL (polylogarithmic space) we denote the class

⋃

k≥1 DSPACE(log
k(n)) (which

by Savitch’s theorem is equal to
⋃

k≥1 NSPACE(log
k(n))).

A function f : {0, 1}∗ → {0, 1}∗ belongs to the classFSPACE(s(n)) (resp.
FTIME(s(n))) if f can be computed on a deterministic Turing machine in space (resp.,
time) s(n).4 As usual, only the space on the working tapes is counted. Moreover, the
output is written from left to right on the output tape, i.e.,in each step the machine
either outputs a new symbol on the output tape, in which case the output head moves
one cell to the right, or the machine does not output a new symbol in which case the
output head does not move. We define

FP =
⋃

k≥1

FTIME(nk),

FpolyL =
⋃

k≥1

FSPACE(logk(n)),

FPSPACE =
⋃

k≥1

FSPACE(nk).

Note that for a functionf ∈ FPSPACE we have|f(w)| ≤ 2|w|O(1)

for every input. The
function that maps an explicitly given integer matrix (withbinary encoded entries) to
its determinant belongs to uniformNC2 [7] and hence toFSPACE(log2(n)).

We need the following simple lemma, see e.g. [24, Lemma 2.1].

Lemma 1. If f ∈ FPSPACE andL ∈ polyL thenf−1(L) ∈ PSPACE.

The following result can be shown in the same way as Lemma 1:

Lemma 2. If f ∈ FPSPACE andg ∈ FpolyL then the mappingh defined byh(x) =
g(f(x)) for all inputsx belongs toFPSPACE.

The counting class#P consists of all functionsf : {0, 1}∗ → N for which there
exists a nondeterministic polynomial time Turing machineM with input alphabetΣ

4 The assumption that the input and output alphabet off is binary is made here to make the
definitions more readable; the extension to arbitrary finitealphabets is straightforward.
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such that for allx ∈ Σ∗, f(x) is the number of accepting computation paths ofM for
input x. If we replace nondeterministic polynomial time Turing machines by nonde-
terministic polynomial space Turing machines (resp. nondeterministic logspace Turing
machines), we obtain the class#PSPACE [18] (resp.#L [1]). Note that for a mapping
f ∈ #PSPACE, the numberf(x) may grow doubly exponential in|x|, whereas for
f ∈ #P, the numberf(x) is bounded singly exponential in|x|. Ladner [18] has shown
that a mappingf : Σ∗ → N belongs to#PSPACE if and only if the mappingx 7→
bin(f(x)) belongs toFPSPACE. One cannot expect a corresponding result for the class
#P: If for every functionf ∈ #P the mappingx 7→ bin(f(x)) belongs toFP, then by
Toda’s theorem [33] the polynomial time hierarchy collapses down toP. Forf ∈ #L,
the mappingx 7→ bin(f(x)) belongs toNC2 and hence toFP ∩ FSPACE(log2(n)) [1,
Theorem 4.1]. The classGapL (resp.,GapP,GapPSPACE) consists of all differences of
two functions in#L (resp.,#P, #PSPACE). From Ladner’s result [18] it follows eas-
ily that a functionf : {0, 1}∗ → Z belongs toGapPSPACE if and only if the mapping
x 7→ bin(f(x)) belongs toFPSPACE, see also [13, Theorem 6].

Logspace reductions between functions can be defined analogously to the language
case: Iff, g : {0, 1}∗ → X with X ∈ {N,Z}, thenf is logspace reducible tog if there
exists a functionh ∈ FSPACE(logn) such thatf(x) = g(h(x)) for all x. Toda [32] has
shown that computing the determinant of a given integer matrix is GapL-complete.

4 Succinct matrix representations

In this section, we introduce several succinct matrix representations. We formally de-
fine multi-terminal decision diagrams and their extension by the addition operation.
Moreover, we briefly discuss the representation of matricesby boolean circuits.

4.1 Multi-terminal decision diagrams

Fix a semiring(S,+, ·) with (S,+) a finitely generated commutative monoid, and let
Γ ⊆ S be a finite generating set for(S,+). Thus, every element ofS can be written as a
finite sum

∑

a∈Γ naa with na ∈ N. A multi-terminal decision diagramG with addition
(MTDD+) of heighth is a triple(N,P,A0), whereN is a finite set of variables which
is partitioned into non-empty setsNi (0 ≤ i ≤ h), Nh = {A0} (A0 is called thestart
variable), andP is a set of rules of the following three forms:

– A →

(

A1,1 A1,2

A2,1 A2,2

)

with A ∈ Ni andA1,1, A1,2, A2,1, A2,2 ∈ Ni−1 for some

1 ≤ i ≤ h

– A → A1 +A2 with A,A1, A2 ∈ Ni for some0 ≤ i ≤ h

– A → a with A ∈ N0 anda ∈ Γ ∪ {0}

Moreover, for every variableA ∈ N there is exactly one rule with left-hand sideA,
and the relation{(A,B) ∈ N ×N | B occurs in the right-hand side forA} is acyclic.
If A ∈ Ni then we say thatA has heighti. TheMTDD+ G is called anMTDD if for
every addition rule(A → A1 + A2) ∈ P we haveA,A1, A2 ∈ N0. In other words,
only scalars are allowed to be added. Since we assume that(S,+) is generated byΓ ,
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this allows to produce arbitrary elements ofS as matrix entries. For everyA ∈ Ni

we define a square matrixval(A) of dimension2i in the obvious way by unfolding
the rules. Moreover, letval(G) = val(A0) for the start variableA0 of G. This is a
(2h × 2h)-matrix. The size of a ruleA → a with a ∈ Γ ∪ {0} is 1, all other rules
have sizelog |N |. The size|G| of theMTDD+ G is the sum of the sizes of its rules;
this is up to constant factors the length of the binary codingof G. An MTDD+ G of
sizen logn can represent a(2n × 2n)-matrix. Note that only square matrices whose
dimension is a power of 2 can be represented. Matrices not fitting this format can be
filled up appropriately, depending on the purpose.

An MTDD, where all rules have the formA → a ∈ Γ ∪ {0} or A → B + C

generates an element of the semiringS. Such an MTDD is an arithmetic circuit in which
only input gates and addition gates are used, and is called a+-circuit in the following.
In case the underlying semiring isZ, a+-circuit withn variables can produce a number
of size2n, and the binary encoding of this number can be computed in timeO(n2) from
the+-circuit (since, we needn additions of numbers with at mostn bits). In general, for
a+-circuit over the semiringS, we can compute in quadratic time numbersna (a ∈ Γ )
such that

∑

a∈Γ na · a is the semiring element to which the+-circuit evaluates to.
Note that the notion of anMTDD+ makes sense for commutative monoids, since

we only used the addition of the underlying semiring. But soon, we want to multiply
matrices, for which we need a semiring. Moreover, the notionof anMTDD+ makes
sense in any dimension, here we only defined the 2-dimensional case.

Example 3.It is straightforward to produce the unit matrixI2n of dimension2n by an
MTDD of sizeO(n log n):

A0 → 1, 00 → 0, Aj →

(

Aj−1 0j−1

0j−1 Aj−1

)

, 0j →

(

0j−1 0j−1

0j−1 0j−1

)

(1 ≤ j ≤ n).

(the start variable isAn here). In a similar way, one can produce the lower triangular
(2n × 2n)-matrix, where entries on the diagonal and below are1. To produce the(2n ×
2n)-matrix overZ, where all entries in thek-th row arek, we need the following rules:

E0 → 1, Ej →

(

Ej−1 + Ej−1 Ej−1 + Ej−1

Ej−1 + Ej−1 Ej−1 + Ej−1

)

(1 ≤ j ≤ n)

C0 → 1, Cj →

(

Cj−1 Cj−1

Cj−1 + Ej−1 Cj−1 + Ej−1

)

(1 ≤ j ≤ n).

Here, we are bit more liberal with respect to the format of rules, but the above rules can
be easily brought into the form from the general definition ofanMTDD+. Note that
Ej generates the(2j ×2j)-matrix with all entries equal to2j, and thatCn generates the
desired matrix.

Note that the matrix from the last example cannot be producedby an MTDD of poly-
nomial size, since it contains an exponential number of different matrix entries (for
the same reason it cannot be produced by an 2SLP [3]). This holds for any non-trivial
semiring.
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Theorem 4. For any semiring with at least two elements, MTDD+ are exponentially
more succinct than MTDDs.

Proof. For simplicity we argue with MTDDs in dimension 1 (which generate vectors).
We must have1 6= 0 in S. Letm, d > 0 be such thatm = 2d. For0 ≤ i ≤ m − 1 let
Ai such thatval(Ai) has lengthm, the i-th entry is1 (the first entry is the0-th entry)
and all other entries are0. Moreover, letBi such thatval(Bi) is the concatenation of
2i copies ofval(Ai). LetC0 produce the0-vector of lengthm = 2d, and for0 ≤ i ≤
m − 1 let Ci+1 → (Ci, Ci + Bi). Thenval(Cm) is of length2d+m and consists of
the concatenation of all binary strings of lengthm. ThisMTDD+ for this vector is of
sizeO(m2 logm), whereas an equivalentMTDD must have size at least2m, since for
every binary string of lengthm there must exist a nonterminal. ⊓⊔

The following result shows that the matrix product of two MTDD-represented matrices
may be incompressible with MTDDs.

Theorem 5. For any semiring with at least two elements there exist MTDDsGn and
Hn of the same heightn and sizeO(n2 logn) such thatval(Gn) · val(Hn) can only be
represented by an MTDD of size at least2n.

Proof. The construction is similar to those in the proof of Theorem 4. We must have
0 6= 1 in S. Letm = 2d. For0 ≤ i ≤ m−1 letAi be such thatval(Ai) is the(m×m)-
matrix withval(Ai)1,i+1 = 1 and all other entries0. DefineBi,0 byBi,0 → Ai and

Bi,j →

(

Bi,j−1 Bi,j−1

0 0

)

for 1 ≤ j ≤ i. Thenval(Bi,i) is the(2d+i × 2d+i)-matrix, where the first row is the
vectorval(Bi) from the proof of Theorem 4, and all other entries are0. Finally add
nonterminalsC0, . . . , Cm, whereval(C0) is the(m×m)-matrix with all entries0 and

Ci+1 →

(

Ci Ci

0 Bi,i

)

0 ≤ i ≤ m−1. In this way we obtain an MTDD for the(2m+d×2m+d)-matrixval(Cm)
of sizeO(m2 logm). This matrix contains1 in the i-th column if and only if thei-th
entry in the vectorval(Cm) from the proof of Theorem 4 is1. Moreover, no column of
val(Cm) contains more than one1-entry. Hence, the product of the(2m+d × 2m+d)-
matrix where every entry is1 with val(Cm) a matrix where every row is the vector
val(Cm) from the proof of Theorem 4. ⊓⊔

On the other hand, the product of twoMTDD+-represented matrices can be represented
by a polynomially sizedMTDD+:

Theorem 6. For MTDD+ G1 and G2 of the same height one can compute in time
O(|G1| · |G2|) anMTDD+ G of sizeO(|G1| · |G2|) with val(G) = val(G1) · val(G2).
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Proof. Recall thatΓ is a finite generating set for the additive monoid of our underlying
semiringS. For all pairs(a, b) ∈ Γ ×Γ , we can write down a+-circuit of constant size
that computesab, letSa,b its start variable.

Given twoMTDD+ G1 andG2, we compute a newMTDD+ G that contains for
all variablesA of G1 andB of G2 of the same height a variable(A,B) such that
valG(A,B) = valG1(A) ·valG2(B). So, letA andB be variables ofG1 andG2, respec-
tively, of the same height.

1. If A andB are of height 0 and the corresponding rules areA → a, B → b with
a, b ∈ Γ ∪ {0}, then the rule for(A,B) is (A,B) → Sa,b (actually, we should
replaceSa,b by its corresponding right-hand side).

2. If the rule forA is of the formA → A1 + A2, then we add the rule(A,B) →
(A1, B) + (A2, B) toG.

3. If the right-hand side forA is not a sum but the rule forB is of the formB →
B1 +B2, then we add the rule(A,B) → (A,B1) + (A,B2) toG.

4. Finally, assume that neither the right-hand side forA nor for B is a sum or an
explicit integer. Then the rules forA andB have the form

A →

(

A1,1 A1,2

A2,1 A2,2

)

andB →

(

B1,1 B1,2

B2,1 B2,2

)

.

Then we add the following rules toG:

Ci,j → (Ai,1, B1,j) + (Ai,2, B2,j) for 1 ≤ i, j ≤ 2

(A,B) →

(

C1,1 C1,2

C2,1 C2,2

)

Clearly, if Si is the start variable ofGi, thenvalG(S1, S2) = val(G1) · val(G2). The
bound from the theorem for the construction and size ofG follows immediately from
the construction. Note that every ruleC → c of Gi with c ∈ Z contributeslog |c| to
the size ofGi. Hence in timeO(|G1| · |G2|) we can compute all productsab for rules
A → a andB → b of G1 andG2, respectively. ⊓⊔

The following proposition presents several further matrixoperations that can be easily
implemented in polynomial time for anMTDD+-represented input matrix.

Proposition 7. Let G,H be aMTDD+ with |G| = n, |H | = m, and 1 ≤ i, j ≤
2height(G)

(1) AnMTDD+ for the transposition ofval(G) can be computed in timeO(n).
(2) +-circuits for the sum of all entries ofval(G) and the trace ofval(G) can be com-

puted in timeO(n).
(3) A+-circuit for the matrix entryval(G)i,j can be computed in timeO(n).
(4) MTDD+ of sizeO(n ·m) for the tensor productval(G)⊗ val(H) (which includes

the scalar product) and the element-wise (Hadamard) product val(G) ◦ val(H)
(assumingheight(G) = height(H)) can be computed in timeO(n ·m).

9



Proof. Point (1) (transposition): We replace every rule inG of the form

A →

(

A1,1 A1,2

A2,1 A2,2

)

(2)

by the rule

A →

(

A1,1 A2,1

A1,2 A2,2

)

.

Point (2): The sum of all entries ofval(G) can be represented by the+-circuit that
contains all rulesA → A1,1+A1,2+A2,1+A2,2 for G-rules of the form (2). Similarly,
we can compute a+-circuit for the trace ofval(G) by replacing every rule (2) byA →
A1,1 +A2,2.

Point (3): We transform theMTDD+ G into a+-circuit G′ with the same set of vari-
ables such thatval(G′) = (val(G))i,j . Let (ih · · · i1) and(jh · · · j1) the binary expan-
sions ifi− 1 andj − 1 (numbers in the range[0, 2height(G) − 1]), respectively, whereih
andjh are the most significant bits. Here, we add leading zeros on the left so that both
numbers have exactlyh bits.

Now we can define the rules of the+-circuit G′. Rules of the formA → a with
a ∈ Z andA → A1 +A2 are simply copied toG′. For a rule of the form

A →

(

A0,0 A0,1

A1,0 A1,1

)

.

whereA has heightk we add toG′ the ruleA → Aik,jk .

Point (4): For every variableC of G and every variableD of H let (C,D) be a new
variable of heightheight(C) + height(D). We define the rule for(C,D) in such a way
thatval(C,D) = val(C)⊗val(D). The rules reflect the bilinearity of the tensor product.

If C → a andD → b for a, b ∈ Γ , then(C,D) → Sa,b, whereSa,b is the start
variable for a (constant size)+-circuit that computesa · b.

Now assume thatC → a but the rule forD is not terminal. IfD → D1 +D2, then
(C,D) → (C,D1) + (C,D2) and if

D →

(

D1,1 D1,2

D2,1 D2,2

)

then

(C,D) →

(

(C,D1,1) (C,D1,2)
(C,D2,1) (C,D2,2)

)

.

Finally, assume that the rule forC is not terminal. IfC → C1 + C2, then(C,D) →
(C1, D) + (C2, D), and if

C →

(

C1,1 C1,2

C2,1 C2,2

)

,

then

(C,D) →

(

(C1,1, D) (C1,2, D)
(C2,1, D) (C2,2, D)

)

.

The proof for the construction of the element-wise product is similar as for the tensor-
product. ⊓⊔
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4.2 Boolean circuits

Another well-studied succinct representation are booleancircuits [14]. A boolean cir-
cuit with n inputs represents a binary string of length2n, namely the string of output
values for the2n many input assignments (concatenated in lexicographic order). In a
similar way, we can use circuits to encode large matrices. Wepropose two alternatives:

A boolean circuitC(x, y, z) with |x| = m and|y| = |z| = n encodes a(2n × 2n)-
matrix MC,2 with integer entries bounded by22

m

that is defined as follows: For all
a ∈ {0, 1}m andb, c ∈ {0, 1}n, thea-th bit (in lexicographic order) of the matrix entry
at position(b, c) in MC is 1 if and only if C(a, b, c) = 1.

Note that in contrast toMTDD+, the size of an entry inMC,2 can be doubly
exponential in the size of the representationC (this is the reason for the index2 in
MC,2). The following alternative is closer toMTDD+: A boolean circuitC(x, y) with
|x| = |y| = n andm output gates encodes a(2n×2n)-matrixMC,1 with integer entries
bounded by2m that is defined as follows: For alla, b ∈ {0, 1}n, C(a, b) is the binary
encoding of the entry at position(a, b) in MC .

Circuit representations for matrices are at least as succinct asMTDD+. More pre-
cisely, from a givenMTDD+ G one can compute in logspace a Boolean circuitC such
thatMC,1 = val(G). This is a direct corollary of Proposition 7(3) (stating that a given
entry of anMTDD+-represented matrix can be computed in polynomial time) andthe
fact that polynomial time computations can be simulated by boolean circuits. Recently,
it was shown that checking whether for a given circuitC the determinant of the matrix
MC,1 vanishes isPSPACE-complete [16]. An algebraic version of this result for the al-
gebraic complexity classVPSPACE is shown in [25]. Theorem 15 from Section 6 will
strengthen the result from [16] to MTDD-represented matrices.

5 Testing equality

In this section, we consider the problem of testing equalityof MTDD+-represented
matrices. For this, we do not need the full semiring structure, but we only need the
finitely generated additive monoid(S,+). We will show that equality can be checked
in polynomial time if(S,+) is cancellative andcoNP-complete otherwise.

First we consider the case of a finitely generated abelian group. The proof of the
following lemma involves only basic linear algebra.

Lemma 8. Let ai,1x1 + · · · + ai,nxn = 0 for 1 ≤ i ≤ m ≤ n + 1 be equations over
a torsion-free abelian groupA, whereai,1, . . . , ai,n ∈ Z, and the variablesx1, . . . , xn

range overA. One can determine in time polynomial inn andmax{log |ai,j | | 1 ≤ i ≤
m, 1 ≤ j ≤ n} an equivalent set of at mostn linear equations.

Proof. Let ai = (ai,1, . . . , ai,n) ∈ Zn be the vector of coefficients of thei-th equation.
For0 ≤ i ≤ n letUi ⊆ Qn be the subspace of the vector space generated bya1, . . . , ai
(U0 is the 0-space). Fori = 1, . . . , n + 1, we now test whetherai ∈ Ui−1. This can
be checked by testing whether a system of linear equations has a solution inQn. This
problem can be solved in time polynomial inn andlog(max{|ai,j| | 1 ≤ i ≤ m, 1 ≤
j ≤ n}), e.g. by Gaussian elimination. Ifai ∈ Ui−1 then we obtain an equation

λiai = λ1a1 + · · ·+ λi−1ai−1
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with λ1, . . . , λi ∈ Z andλi 6= 0. Hence, if group elementsx1, . . . , xn ∈ A satisfy
aj,1x1+· · ·+aj,nxn = 0 for all 1 ≤ j ≤ i−1, then we getλi(ai,1x1+· · ·+ai,nxn) = 0
in A. SinceA is assumed to be torsion-free, we getai,1x1+· · ·+ai,nxn = 0. Hence, the
i-th equation is redundant. Moreover, there must be an1 ≤ i ≤ n+ 1 with ai ∈ Ui−1:
If ai 6∈ Ui−1 for 1 ≤ i ≤ n, thena1, . . . , an are linearly independent and therefore
generate the fullQn. But thenan+1 ∈ Un. ⊓⊔

Recall that theexponentof an abelian groupA is the smallest integerk (if it exists) such
thatkg = 0 for all g ∈ A. The following result is shown in [30]:

Lemma 9. Letk ≥ 2 and letA be an abelian group of exponentk. Letai,1x1 + · · ·+
ai,nxn = 0 for 1 ≤ i ≤ m ≤ n + 1 be equations, whereai,1, . . . , ai,n ∈ Z, and the
variablesx1, . . . , xn range overA. Then one can determine in time polynomial inn,
log(k), andmax{log |ai,j | | 1 ≤ i ≤ m, 1 ≤ j ≤ n} an equivalent set of at mostn
linear equations.

Proof. We can consider the coefficientsai,j as elements fromZk. By [30] we can com-

pute the Howell normal form of the matrix(ai,j)1≤i≤n+1,1≤j≤n ∈ Z
(n+1)×n

k in poly-
nomial time. The Howell normal form is an(n× n)-matrix with the same row span (a
subset of the moduleZn

k ) as the original matrix, and hence defines an equivalent set of
linear equations. ⊓⊔

Theorem 10. LetG be anMTDD+ over a finitely generated abelian groupS. Given
two different variablesA1, A2 of the same height, it is possible to checkval(A1) =
val(A2) in time polynomial in|G|.

Proof. Since every finitely generated group is a finite direct product of copies ofZ and
Zk (k ≥ 2), it suffices to prove the theorem only for these groups.

Consider the caseS = Z. The algorithm stores a system ofm equations (m will
be bounded later) of the formai,1B1 + · · · + ai,kBk = 0, where allB1, . . . , Bk are
pairwise different variables of the same heighth. We treat the variablesB1, . . . , Bk as
variables that range over the torsion-free abelian groupZ2h×2h . We start with the single
equationA1 −A2 = 0. We use the rules ofG to transform the system of equations into
another system of equations whose variables have strictly smaller height. Assume the
current height ish > 1. We iterate the following steps until only variables of height
h− 1 occur in the equations:

Step 1.Standardize equations: Transform all equations into the form a1B1 + · · · +
amBm = 0, where theBi are different variables and theai are integers.

Step 2.Reduce the number of equations, using Lemma 8 applied to the torsion-free
abelian groupZ2h×2h .

Step 3.If a variableA of heighth occurs in the equations, and the rule forA has the
formA → A1 +A2, then replace every occurrence ofA in the equations byA1 +A2.

Step 4.If none of steps 1–3 applies to the equations, then only rulesof the form

A →

(

A1,1 A1,2

A2,1 A2,2

)

(3)
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are applicable to a variableA (of heighth) occurring in the equations. Applying all
possible rules of this form for the current height results ina set of equations where all
variables are(2 × 2)-matrices over variables of heighth − 1 (like the right-hand side
of (3)). Hence, every equation can be decomposed into 4 equations, where all variables
are variables of heighth− 1.

If the height of all variables is finally 0, then only rules of the formA → a are
applicable. In this case, replace all variables by the corresponding integers, and check
whether all resulting equations are valid or not. If all equations hold, then the input
equation holds, i.e.,val(A1) = val(A2). Otherwise, if at least one equation is not valid,
thenval(A1) 6= val(A2).

The number of variables in the equations is bounded by the number of variables of
G. An upper bound on the absolute value of the coefficients in the equations is2|G|,
since only iterated addition can be performed to increase the coefficients. Lemma 8
shows that the number of equations after step 2 above is at most |G|, (the bound for the
number of different variables).

For the caseS = Zk the same procedure works, we only have to use Lemma 9
instead of Lemma 8. ⊓⊔

Corollary 11. LetM be a finitely generated cancellative commutative monoid. Given
anMTDD+ G overM and two variablesA1 andA2 of G, one can checkval(A1) =
val(A2) in time polynomial in|G|.

Proof. A cancellative commutative monoidM embeds into its Grothendieck groupA,
which is the quotient ofM×M by the congruence defined by(a, b) ≡ (c, d) if and only
if a+ d = c+ b in M . This is an abelian group, which is moreover finitely generated if
M is finitely generated. Hence, the result follows from Theorem 11. ⊓⊔

Let us now consider non-cancellative commutative monoids:

Theorem 12. LetM be a non-cancellative finitely generated commutative monoid. It
is coNP-complete to checkval(A1) = val(A2) for a givenMTDD+ G overM and
two variablesA1 andA2 of G.

Proof. We start with the upper bound. Let{a1, . . . , ak} be a finite generating set ofM .
Let G be anMTDD+ overM and letA1 andA2 two variables ofG. Assume thatA1

andA2 have the same heighth. It suffices to check in polynomial time for two given
indices1 ≤ i, j ≤ 2h whetherval(A1)i,j 6= val(A2)i,j . From1 ≤ i, j ≤ 2h we can
compute+-circuits for the matrix entriesval(A1)i,j andval(A2)i,j . From these circuits
we can compute numbersn1, . . . , nk,m1, . . . ,mk ∈ N in binary representation such
thatval(A1)i,j = n1a1+ · · ·+nkak andval(A2)i,j = m1a1+ · · ·+mkak. Now we can
use the following result from [31]: There is a semilinear subsetS ⊆ N2k (depending
only on our fixed monoidM ) such that for allx1, . . . , xk, y1, . . . , yk ∈ N we have:
x1a1 + · · · + xkak = y1a1 + · · · + ykak if and only if (x1, . . . , xk, y1, . . . , yk) ∈ S.
Hence, we have to check, whetherv =: (n1, . . . , nk,m1, . . . ,mk) ∈ S. The semilinear
setS is a finite union of linear sets. Hence, we can assume thatS is linear itself. Let

S = {v0 + λ1v1 + · · ·+ λlvl | λ1, . . . , λl ∈ N},

13



wherev0, . . . , vl ∈ N2k. Hence, we have to check, whether there existλ1, . . . , λl ∈ N

such thatv = v0 + λ1v1 + · · ·λlvl. This is an instance of integer programming in the
fixed dimension2k, which can be solved in polynomial time [20].

For the lower bound we take elementsx, y, z ∈ M such thatx 6= y butx+z = y+z.
These elements exist sinceM is not cancellative. We use an encoding of 3SAT from
[3]. Take a 3CNF formulaC =

∧m

i=1 Ci overn propositional variablesx1, . . . , xn,
and letCi = (αj1 ∨ αj2 ∨ αj3), where1 ≤ j1 < j2 < j3 ≤ n and everyαjk is
eitherxjk or ¬xjk . For every1 ≤ i ≤ m we define an MTDDGi as follows: The
variables areA0, . . . , An, andB0, . . . , Bn−1, whereBi produces the vector of length
2i with all entries equal to0 (which corresponds to the truth valuetrue, whereasz ∈ M

corresponds to the truth valuefalse). For the variablesA0, . . . , An we add the following
rules: For every1 ≤ j ≤ n with j 6∈ {j1, j2, j3} we take the ruleAj → (Aj−1, Aj−1).
For everyj ∈ {j1, j2, j3} such thatαj = xj (resp.αj = ¬xj ) we take the rule

Aj → (Aj−1, Bj−1) ( resp.Aj → (Bj−1, Aj−1)).

Finally add the ruleA0 → z and letAn be the start variable ofGi. Moreover, let
G (resp.H) be the 1-dimensional MTDD that produces the vector consisting of 2n

manyx-entries (resp.y-entries). Then,val(G) + val(G1)+ · · ·+ val(Gm) = val(H)+
val(G1) + · · ·+ val(Gm) if and only if C is unsatisfiable. ⊓⊔

It is worth noting that in the above proof forcoNP-hardness, we use addition only at
the top level in a non-nested way.

6 Computing determinants and matrix powers

In this section we present several completeness results forMTDDs over the ringsZ
andZn (n ≥ 2). It turns out that over these rings, computing determinants, iterated
matrix products, or matrix powers are infeasible for MTDD-represented input matrices,
assuming standard assumptions from complexity theory. Allcompleteness results in this
section are formulated for MTDDs, but they remain valid if weadd addition. In fact, all
upper complexity bounds in this section even hold for matrices that are represented by
circuits as defined in Section 4.2.

All hardness results in this section rely on the fact that theadjacency matrix of
the configuration graph of a polynomial space bounded machine can be produced by
a small MTDD (with terminal entries0 and1), see Section 6.2. This was also shown
in [10, proof of Theorem 7] in the context of OBDDs. We will prove this fact using
an automata theoretic framework that we introduce in Section 6.1. This framework will
simplify the technical details in the proofs in Sections 6.3and 6.4.

6.1 Layered automata and MTDDs

In the following we will use some standard notations concerning finite automata. A
layered DFA (deterministic finite automaton) of depthm is an acyclic DFAA for which
the state setQ is partitioned intom+ 1 layersQ0, . . . , Qm such that:

14



– Q0 only contains the initial stateq0 of A.
– Qm only contains two states, one of which is the unique final state ofA.
– Every transition goes from layerQi to Qi+1 for some0 ≤ i < m.
– For every stateq ∈ Qi (1 ≤ i < m) and every input lettera there exists ana-labeled

transition fromq to a state from layerQi+1.

Theconvolutionof a stringu = a1 · · · an ∈ Σ∗ and a stringv = b1 · · · bn ∈ Γ ∗ is the
stringu⊗v = (a1, b1) · · · (an, bn) over the alphabetΣ×Γ . A layered DFAA of depth
m with input alphabet{0, 1} × {0, 1} defines the directed graphG(A) with node set
{0, 1}m (all binary strings of lengthm) and an edge fromu ∈ {0, 1}m to v ∈ {0, 1}m

if and only ifu⊗v ∈ L(A). So,A recognizes the edge relation ofG(A). Layered DFAs
over the paired alphabet{0, 1} × {0, 1} are basically the same as MTDDs over{0, 1}
(or OBDDs with the interleaved variable ordering):

Lemma 13. One can construct in logspace from a given layered DFAA over the paired
alphabet{0, 1} × {0, 1} an MTDDsG over{0, 1} such thatval(G) is the adjacency
matrix of the graphG(A), and vice versa.

Proof. The variables ofG are the states of the automatonA, and the start variable is
the initial stateq0. LetP0, . . . , Pk be the layers ofA and letPk = {p0, p1}, wherep1
is the final state ofA. First, we add the transitionspi → i for i ∈ {0, 1} to G. Next,

let p ∈ Pi for somei < k and letp
(a,b)
−−−→ pa,b for a, b ∈ {0, 1} be the four outgoing

transitions from statep. Then we add the rule

p →

(

p0,0 p0,1
p1,0 p1,1

)

toG. The reverse transformation works similarly. ⊓⊔

6.2 Generating the configuration graph of a Turing machine byan MTDD

Let M be a nondeterministic Turing machine (NTM). LetQ be the set of states ofM ,
and letΓ be the tape alphabet ofM , whereQ ∩ Γ = ∅. As usual, configurations ofM
are encoded as words fromΓ ∗QΓ ∗. For two configurationsc1, c2 ∈ Γ ∗QΓ ∗ we write
c1 ⊢M c2 if M can move in one transition from configurationc1 to configurationc2.
Let us fix an injective encodingfM : Q ∪ Γ → {0, 1}kM \ 0∗, which is extended to
a homomorphism from(Q ∪ Γ )∗ to {0, 1}∗. Here,kM is a large enough constant. We
exclude words only consisting of0’s from the range offM for technical reasons. The
following proposition makes use of the folklore fact (see e.g. the work on automatic
structures) that a Turing machine transition only locally modifies the current configu-
ration and that this local modification can be recognized by afinite automaton. This
locality is not destroyed by an application of the coding functionfM :

Lemma 14. LetM be a fixed NTM. Form ∈ N, one can compute in spaceO(logm) a
layered DFAA(M,m) of depthkM (m+1) over the paired alphabet{0, 1}×{0, 1}such
thatL(A(M,m)) = {fM(c1)⊗fM (c2) | c1, c2 ∈ Γ ∗QΓ ∗, |c1| = |c2| = m+1, c1 ⊢M

c2}.
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Proof. Due to the local nature of Turing machines, there exists a fixed DFAA(M) over
the alphabet{(0, 0), (0, 1), (1, 0), (1, 1)} such that

L(A(M)) = {fM (c1)⊗ fM (c2) | c1, c2 ∈ Γ ∗QΓ ∗, |c1| = |c2|, c1 ⊢M c2}.

Using the classical product construction, we intersect this automaton with a layered
DFA of depthkM (m + 1) for the language{0, 1}kM(m+1) ⊗ {0, 1}kM(m+1). Such an
automaton can be constructed in logspace. By adding dummy states to the resulting
product automaton, we obtain a layered DFA with the desired properties. ⊓⊔

For the layered DFAA(M,m) from Lemma 14, the graphG(A(M,m)) is the configu-
ration graph ofM on configurations of tape lengthm. With Lemma 13 we can compute
in spacelogm an MTDD for the adjacency matrix of this configuration graph.

6.3 Hardness of the determinant for MTDDs

Recall that the determinant of a matrixA = (ai,j)1≤i,j≤n (over any ring) can be com-
puted as follows, whereSn denotes the set of all permutations on{1, . . . , n}:

det(A) =
∑

σ∈Sn

sgn(σ) ·
n
∏

i=1

Ai,σ(i).

Here, sgn(σ) denotes the signum of the permutationσ, which is1 (resp.,−1) if σ is a
product of an even (resp., odd) number of transpositions. IfA is the adjacency matrix
of a directed graphG, then we can computedet(A) by taking the sum over all cycle
covers ofG (a cycle cover ofG is a subset of the edges ofG such that the corresponding
subgraph is a disjoint union of directed cycles), where eachcycle cover contributes to
the sum by the signum of the corresponding permutation. Recall that det(A) 6= 0 if
and only ifA is invertible. The valuedet(val(G)) for an MTDDG may be of doubly
exponential size (and hence needs exponentially many bits): The diagonal(2n × 2n)-
matrix with2’s on the diagonal has determinant22

n

.
By the next theorem, computing the determinant of an MTDD-represented matrix is

indeed difficult. To prove this result we use a reduction of Toda showing that computing
the determinant of an explicitly given integer matrix isGapL-complete [32] (which in
turn is based on Valiant’s classical construction for the universality of the determinant
[34]). We apply this reduction to configuration graphs of polynomial space bounded
Turing machines, whose adjacency matrices can be produced by small MTDDs.

Theorem 15. The following holds for every ringS ∈ {Z} ∪ {Zn | n ≥ 2}:

(1) The set{G | G is an MTDD overS, det(val(G)) = 0} is PSPACE-complete.
(2) The functionG 7→ det(val(G)) withG an MTDD overZ isGapPSPACE-complete.

Proof. Let us start with the upper bounds. Membership inPSPACE in statement (1)
can be shown as follows: Since the determinant of an explicitly given integer matrix
can be computed inFSPACE(log2(n)), one can check inDSPACE(log2(n)) whether
the determinant of an explicitly given integer matrix is zero. Moreover, from a given
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MTDD G we can compute the matrixval(G) in polynomial space. For this, it suffices
to compute forG and given positionsi, j the entryval(G)i,j in PSPACE; then we can
iterate over all matrix positions(i, j). Actually, a specific matrix entryval(G)i,j can
be even computed in polynomial time by Theorem 7(3). Membership in PSPACE for
MTDD follows from Lemma 1. Note that the same argument even applies for matrices
that are represented by boolean circuits in the sense of Section 4.2.

The upper bounds in (2) can be shown in the same way using Lemma2 and the fact
that computing the determinant of an explicitly given integer matrix with binary coded
integer entries is inGapL.

Let us now prove the lower bound. We start with (1). Let us takea deterministic
polynomial space bounded Turing machineM . Let q0 be the initial state ofM and
qf the unique accepting state. Let✷ be the blank symbol. We can assume thatM is
non-looping in the sense that there does not exist a configuration c such thatc ⊢+

M c.
This property can be ensured by adding a binary counter toM that is decremented
during each transition of the original machine. Moreover, we can assume that every
accepting computation path ofM has odd length (i.e., an odd number of transitions),
and that every tape cell contains✷ as soon asM enters the accepting stateqf . Let
p(n) (a polynomial) be the space bound ofM and letx be an input forM of lengthn.
Moreover, letm = p(n) andk = kM (m+ 1). By Lemma 14 we can compute in space
O(logm) = O(log n) a layered DFAA(M,m) of depthk such that

L(A(M,m)) = {fM (c1)⊗fM(c2) | c1, c2 ∈ Γ ∗QΓ ∗, |c1| = |c2| = m+1, c1 ⊢M c2}.

Let w0 = fM (q0x✷
m−n) (resp.,wf = fM (qf✷

m)) be the encoding of the initial
(resp., accepting) configuration. Recall that we assume that 0k does not belong to
fM (Γ ∗QΓ ∗). By taking the direct product ofA(M,m) with a layered DFA for the
language

K = {0k ⊗ w0, wf ⊗ 0k} ∪ {w ⊗ w | w ∈ {0, 1}k \ 0∗}

(which can be computed in spacelogm), we obtain a layered DFAA(M,x) with
L(A(M,x)) = L(A(M,m)) ∪ K. Let G(M,x) be the directed graphG(A(M,x))
defined by the DFAA(M,x). Its node set is{0, 1}k and there is an edge fromv tow if
and only ifv ⊗ w ∈ L(A(M,x)). Let adj(M,x) be the adjacency matrix ofG(M,x).
We computedet(adj(M,x)) by considering cycle covers of the graphG(M,x). Note
that node0k lies on a directed cycle if and only if there is a path fromw0 to wf in
G(M,x). Moreover, sinceM is non-looping, every cycle cover ofG(M,x) consists of
a path fromw0 to wf together with the two edges(wf , 0

k) and(0k, w0) (such a cycle
has odd length and hence is a product of an even number of transpositions) together
with loops on the remaining nodes. It follows thatdet(adj(M,x)) is equal to the num-
ber of paths fromw0 to wf in G(M,x). But this number is equal to the number of
accepting computations of the machineM on inputx, which is either0 or 1 (sinceM
is deterministic). By Lemma 13 applied to the DFAA(M,x), we obtain in logspace an
MTDD G (with integer entries0 and1 only) such thatval(G) = adj(M,x). This shows
the lower bound in (1).

Let us finally prove the lower bound in (2). Let us take two polynomial space
bounded Turing machinesM1 andM2 with the same input alphabet. We can also as-
sume thatM1 andM2 have the same state setQ and tape alphabetΓ . In particular, we
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can assume thatkM1 = kM2 . Let f = fM1 = fM2 be the binary coding mapping for
Q∪Γ . Letq0 be the initial state ofM1 andM2 andqf the unique accepting state ofM1

andM2. We make the same assumptions that we have made forM in the lower bound
proof for statement (1). We can also assume that the polynomial p(n) is a space bound
for M1 as well asM2.

Letx be an input forM1 andM2 of lengthn, and letm = p(n), k = kM1(m+1) =
kM2(m+1). With Lemma 14 we can construct in spaceO(logm) = O(log n) layered
DFAsA(M1,m) andA(M2,m) of depthk such that

L(A(Mi,m)) = {f(c1)⊗ f(c2) | c1, c2 ∈ Γ ∗QΓ ∗, |c1| = |c2| = m+ 1, c1 ⊢Mi
c2}.

Let w0 = f(q0x✷
m−n) be the encoding of the initial configuration, and letwf =

f(qf✷
m) be the encoding of the unique accepting configuration. Recall that we as-

sumed that0k does not belong tof(Γ ∗QΓ ∗).
From the layered DFAsA(M1,m) andA(M2,m) we now construct a layered DFA

A(M1,M2,m) of depthk + 1 such that

L(A(M1,M2,m)) = {0u⊗ 0v | u⊗ v ∈ L(A(M1,m))} ∪

{1u⊗ 1v | u⊗ v ∈ L(A(M2,m))}.

For this we basically have to take the disjoint union ofA(M1,m) andA(M2,m). By
taking the product ofA(M1,M2,m) with a layered DFA for the language

K = {0k+1 ⊗ 0w0, 0wf ⊗ 0k+1, 0k+1 ⊗ 1w0, 1wf ⊗ 10k, 10k ⊗ 0k} ∪

{w ⊗ w | w ∈ {0, 1}k+1 \ 0∗}

(which can be easily constructed in spaceO(log k) = O(log n)), we can obtain a lay-
ered DFAA(M1,M2, x) with

L(A(M1,M2, x)) = L(A(M1,M2,m)) ∪K.

Let G(M1,M2, x) be the directed graphG(A(M1,M2, x)) defined by the layered DFA
A(M1,M2, x). This graph consists of the disjoint union of the two graphsG(M1,m) :=
G(A(M1,m)) andG(M2,m) := G(A(M2,m)) (basically the configurations graphs of
M1 andM2 on configurations of tape lengthm) together with two nodes0k+1 and10k

and the following edges:

– Edges from0k+1 to 0w0 and1w0 (the copies of the initial configuration in the
graphsG(M1,m) andG(M2,m)).

– An edge from0wf (the copy of the accepting configuration inG(M1,m)) back to
0k+1.

– An edge from1wf (the copy of the accepting configuration inG(M2,m)) to 10k.
– An edge from10k back to0k+1.
– Loops at all nodes except for0k+1.

Let adj(M1,M2, x) be the adjacency matrix of the directed graphG(M1,M2, x). Let us
computedet(adj(M1,M2, x)) by considering cycle covers of the graphG(M1,M2, x).
Note that node0k+1 lies on a directed cycle if and only if there is a path fromw0 towf

in G(M1, x) or fromw0 to wf in G(M2, x). Moreover, sinceM is non-looping, every
cycle cover ofG(M,x) consists of loops together with either
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– a path from0w0 to 0wf (in G(M1,m)) together with the two edge(0k+1, 0w0) and
(0wf , 0

k+1) (every such cycle has odd length, and hence is a product of an even
number of transpositions), or

– a path from1w0 to 1wf (in G(M2,m)) together with the three edges(0k+1, 1w0),
(1wf , 10

k), and(10k, 0k+1) (every such cycle has even length, and hence is a prod-
uct of an odd number of transpositions).

It follows thatdet(adj(M1,M2, x)) is equal to the number of paths from0w0 to 0wf in
G(M1,m) minus the number of paths from1w0 to 1wf in G(M2,m). But this number
is equal to the number of accepting computations of the machineM1 on inputx minus
the number of accepting computations of the machineM2 on inputx. ⊓⊔

Note that the determinant of a diagonal matrix is zero if and only if there is a zero-
entry on the diagonal. This can be easily checked in polynomial time for a diagonal
matrix produced by an MTDD. ForMTDD+ (actually, for a sum of several MTDD-
represented matrices) we can showNP-completeness of this problem:

Theorem 16. It is NP-complete to checkdet(val(G1) + · · ·+ val(Gk)) = 0 for given
MTDDsG1, . . . , Gk that produce diagonal matrices of the same dimension.

Proof. Membership inNP is easy: Simply guess a position1 ≤ i ≤ 2n, compute the
valuesnj = val(Gj)i,i for 1 ≤ j ≤ k and check whethern1 + · · ·+ nk = 0.

OurNP-hardness proof uses again the 3SAT encoding from [3] that weapplied in
the proof of Theorem 12. Take a boolean formulaC =

∧m

i=1 Ci, where everyCi is
a disjunction of three literals. Assume thatx1, . . . , xn are the boolean variables that
occur inC. For each1 ≤ i ≤ m let wi ∈ {0, 1}2

n

be the binary string of length2n,
where thej-th symbol ofwi (1 ≤ k ≤ 2n) is 1 if and only if the lexicographically
j-th truth assignment to the variablesx1, . . . , xn satisfies clauseCi. In [3] it is shown
that a fully balanced SLP (i.e., an SLP with a fully balanced derivation tree) forwi can
be constructed in logspace from the clauseCi. We can use the same construction in
order to construct in logspace an MTDDGi of heightn such thatval(Gi) is a diagonal
matrix with the wordwi on the diagonal. Here is the construction: LetCi = (αj1 ∨
αj2 ∨ αj3), where1 ≤ j1 < j2 < j3 ≤ n and everyαjk is eitherxjk or¬xjk . We take
variablesA0, . . . , An, B0, . . . , Bn−1, Z0, . . . , Zn−1, whereBi produces the(2i × 2i)-
dimensional identity matrixI2i andZi produces the(2i× 2i)-dimensional zero matrix.
For the variablesA0, . . . , An we add the following rules: For every1 ≤ j ≤ n with
j 6∈ {j1, j2, j3} take the rule

Aj →

(

Aj−1 Zj−1

Zj−1 Aj−1

)

.

For everyj ∈ {j1, j2, j3} such thatαj = xj take the rule

Aj →

(

Aj−1 Zj−1

Zj−1 Bj−1

)

.
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For everyj ∈ {j1, j2, j3} such thatαj = ¬xj take the rule

Aj →

(

Bj−1 Zj−1

Zj−1 Aj−1

)

.

Finally we take the ruleA0 → 0. Let An be the initial variable ofGi. Then, indeed,
val(Gi) is a diagonal matrix with the wordwi on the diagonal for1 ≤ i ≤ m. LetGm+1

be an MTDD such thatval(Gm+1) = −mI2n . Thenval(G1)+ · · ·+val(Gm+1) is a di-
agonal matrix which has a zero on the diagonal (i.e.,det(val(G1)+· · ·+val(Gm+1)) =
0) if and only if the 3CNF formulaC is satisfiable. ⊓⊔

6.4 Hardness of iterated multiplication and powering for MTDDs

Let us now discuss the complexity of iterated multiplication and powering. Computing
a specific entry, say at position(1, 1), of the product ofn explicitly given matrices over
Z (resp.,N) is known to be complete forGapL (resp.,#L) [32]. Corresponding results
hold for the computation of the(1, 1)-entry of a matrix powerAn, wheren is given
in unary notation. Hence, the binary encodings of these numbers can be computed in
FSPACE(log2(n)). As usual, these problems become exponentially harder for matri-
ces that are encoded by boolean circuits (see Section 4.2). Let us briefly discuss two
scenarios (recall the matricesMC,1 andMC,2 defined from a circuit in Section 4.2).

Definition 17. For a tupleC = (C1, . . . , Cn) of boolean circuits we can define the
matrix productMC =

∏n

i=1 MCi,1.

Lemma 18. The functionC 7→ (MC)1,1, where every matrixMCi,1 is overN (resp.,
Z), belongs to#P (resp.,GapP).

Proof. Let us first show the result for#P. Let MCi,1 = (a
(i)
j,k)1≤j,k≤2m , wherem =

|x| = |y|. We have

(

n
∏

i=1

Mi

)

1,1
=

2m
∑

i1=1

2m
∑

i2=1

· · ·
2m
∑

in−1=1

a
(1)
1,i1

a
(2)
i1,i2

· · ·a
(n−1)
in−2,in−1

a
(n)
in−1,1

. (4)

We have to come up with a nondeterministic polynomial time Turing machineM that
has that many accepting computation paths on input(C1, . . . , Cn). Using(n − 1) ·m
binary branchings, the machineM can produce an arbitrary tuple(i1, . . . , in−1), where
the numbers1 ≤ i1, . . . , in−1 ≤ 2m are written down in binary notation. Next, we can
compute in deterministic polynomial time the binary codings of all natural numbers
a
(1)
1,i1

, a
(2)
i1,i2

, . . . , a
(n−1)
in−2,in−1

, a
(n)
in−1,1

. Then we compute the producta of these numbers
again deterministically in polynomial time. Ifa = 0 then we reject on the current
computation path (this corresponds to a0 in the multiple sum (4)). Otherwise, using the
binary coding ofa > 0 the machine branches⌈log a⌉ many times in order to producea
many accepting computation paths.

For the statement concerningGapP one can argue similarly. We have to come up
with two polynomial space bounded machines such that

(
∏m

i=1 Mi

)

1,1
is equal to the
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number of accepting computations of the first machine minus the number of accepting
computations of the second machine. These two machines workas above, but the first
(resp. second) machine only producesa = a

(1)
1,i1

, a
(2)
i1,i2

, . . . , a
(n−1)
in−2,in−1

, a
(n)
in−1,1

many
accepting computation paths ifa > 0 (resp.a < 0). ⊓⊔

Definition 19. A boolean circuitC(w, x, y, z) with k = |w|, m = |x|, andn = |y| =
|z| encodes a sequence of2k many(2n×2n)-matrices: For every bit vectora ∈ {0, 1}k,
define the circuitCa = C(a, x, y, z) and the matrixMa = MCa,2. Finally, letMC =
∏

a∈{0,1}k Ma be the product of all these matrices.

Lemma 20. The functionC(w, x, y, z) 7→ MC belongs toFPSPACE.

Proof. The lemma follows from Lemma 2 and the following two facts: (i) From the
circuitC(w, x, y, z) one can compute the tuple of matrices(MCa,2)a∈{0,1}k in polyno-
mial space (simply iterate over all valuations for the boolean variablesw, x, y, z), and
(ii) computing an iterated matrix product of explicitly given matrices can be done in
FSPACE(log2(n)). ⊓⊔

Lemmas 18 and 20 yield the upper complexity bounds in the following theorem.

Theorem 21. The following holds:

(1) The function(G,n) 7→ (val(G)n)1,1 with G an MTDD overN (resp.Z) andn a
unary encoded number is complete for#P (resp.,GapP).

(2) The function(G,n) 7→ (val(G)n)1,1 with G an MTDD overN (resp.Z) andn a
binary encoded number is#PSPACE-complete (resp.,GapPSPACE-complete).

Proof. It remains to prove the lower bound, for which we use again succinct versions
of Toda’s techniques from [32], similar to the proof of Theorem 15.

Let us start with the statements concerning#P and#PSPACE. We start with (1).
Let M be a fixed nondeterministic polynomial time Turing machine.One can assume
that all maximal computations ofM on an inputx of lengthn have lengthp(n) for
some polynomialp. Let x be an input forM of lengthn, and letm = p(n) andk =
kM (m+ 1). We now apply the construction from the proof of Lemma 14 toM andm.
We obtain a layered DFAA(M,m) such that

L(A(M,m)) = {fM (c1)⊗fM(c2) | c1, c2 ∈ Γ ∗QΓ ∗, |c1| = |c2| = m+1, c1 ⊢M c2}.

Let w0 = fM (q0x✷
m−n) be the encoding of the initial configuration, andwf =

fM (qf✷
m) be the encoding of the unique accepting configuration. Recall that0k does

not belong tofM (Γ ∗QΓ ∗). As in the proof of Theorem 15 we obtain a layered DFA
A(M,x) such that

L(A(M,x)) = L(A(M,m)) ∪ {0k ⊗ w0, wf ⊗ 0k}.

Let G(M,x) be the directed graphG(A(M,x)), whose node set is{0, 1}k and there is
an edge fromv tow if and only if v⊗w ∈ L(A(M,x)). Let adj(M,x) be the adjacency
matrix of G(M,x). As in the proof of Theorem 15 we obtain an MTDDG such that
val(G) = adj(M,x).
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Then the number of accepting computations of the machineM on inputx is equal
to the number of paths of lengthp(n) + 2 in the graphG(M,x) from node0k to node
0k. This number is equal to(val(G)p(n)+2)1,1.

The#PSPACE-hardness in point (2) of the theorem is proven in the same way.
For a nondeterministic polynomial space bounded Turing-machine one can assume that
all maximal computations ofM on an inputx of lengthn have length2p(n) for some
polynomialp. Hence, we only have to replace the numberm+ 2 in the above proof by
2m + 2.

Let us now turn to the lower bounds concerningGapP andGapPSPACE in the the-
orem. The proofs are very similar to the corresponding proofs for#P and#PSPACE,
respectively. We only consider (2). We have to come up with anMTDD over{0, 1−1}.
Such an MTDD corresponds to a layered DFA, where the last layer contains three states,
corresponding to the three possible matrix entries0, 1, and−1. Now, take two polyno-
mial space bounded Turing machinesM1 andM2 (with the same input alphabet), such
that all accepting computations ofM1 andM2 on an input of lengthm have length
2p(m). Moreover, letx be an input forM1 andM2. We have to come up with a lay-
ered DFA (with three nodes in the last layer) that defines the following {1,−1}-labeled
directed graphG:

– G consists of a disjoint copy ofG(M1,m) andG(M2,m) (all edges are labelled
with 1) together with an additional nodes.

– There is a1-labeled edge from nodes to the copy of the initial configuration ofM1

in G(M1,m).
– There is a−1-labeled edge from nodes to the copy of the initial configuration of
M2 in G(M2,m).

– There are1-labeled edges from the copies of the unique accepting configurations
in M1 andM2, respectively, back to nodes.

Analogously to the construction in the proof of (2) from Theorem 15 we can construct
such a layered DFA. For the MTDDG over{0, 1,−1} corresponding to this layered

DFA, (val(G)2
p(m)+2)1,1 is equal to the number of accepting computations ofM1 on

inputx minus the number of accepting computations ofM2 on inputx. ⊓⊔

By Theorem 21, there is no polynomial time algorithm that computes for a given MTDD
G and a unary numbern a boolean circuit (or even anMTDD+) for the powerval(G)n,
unless#P = FP.

By [32] and Theorem 21, the complexity of computing a specificentry of a matrix
powerAn covers three different counting classes, depending on the representation of
the matrixA and the exponentn (let us assume thatA is a matrix overN):

– #L-complete, ifA is given explicitly andn is given unary.
– #P-complete, ifA is given by an MTDD andn is given unary.
– #PSPACE-complete, ifA is given by an MTDD andn is given binary.

Let us also mention that in [6,13,27] the complexity of evaluating iterated matrix prod-
ucts and matrix powers in a fixed dimension is studied. It turns out that multiplying
a sequence of(d × d)-matrices overZ in the fixed dimensiond ≥ 3 is complete for
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the classGapNC1 (the counting version of the circuit complexity classNC1) [6]. It is
open whether the same problem for matrices overN is complete for#NC1. Moreover,
the cased = 2 is open too. Matrix powers for matrices in a fixed dimension can be
computed inTC0 (if the exponent is represented in unary notation) using theCayley-
Hamilton theorem [27]. Finally, multiplying a sequence of(d×d)-matrices that is given
succinctly by a boolean circuit captures the classFPSPACE for anyd ≥ 3 [13].

For the problem, whether a power of an MTDD-encoded matrix iszero (a variant
of the classical mortality problem) we can finally show the following:

Theorem 22. It is coNP-complete (resp.,PSPACE-complete) to check whetherval(G)m

is the zero matrix for a given MTDDG and a unary (resp., binary) encoded numberm.

Proof. Take the construction from the proof of the lower bound from point (1) of The-
orem 21. Recall thatp(n) was the time bound ofM . We assumed that all maximal
computation paths for an input of lengthn have length exactlyp(n). Letm = p(n). We
can modify the Turing machineM in such a way that the graphG(M,m) (the configu-
ration graph ofM on configurations of tape lengthm) does not have directed paths of
length larger thanm (e.g. by splitting the tape ofM into two tracks and incrementing
a unary counter on the second track). This means that in the graphG(M,x) there is a
path of lengthm + 2 if and only if x is accepted byM . Thus,x is accepted byM if
and only if val(G)p(n)+2 is not the zero matrix. The statement concerningPSPACE-
completeness is proven in the same way (we just have to ensureby adding a binary
counter on the second track that the graphG(M,m) does not have directed paths of
length larger than2p(n)). ⊓⊔

Here is a more direct proof for thecoNP-hardness statement in Theorem 22, which uses
a reduction from the complement of 3SAT.

Alternative proof of Theorem 22.Let C =
∧m

i=1 Ci be a 3CNF formula. In the proof
of Theorem 16 we constructed MTDDG1, . . . , Gm such thatval(Gi) is the diagonal
matrix, where the diagonal is the binary string of all truth values of the clauseCi, taken
in lexicographic order. From the MTDDG1, . . . , Gm we easily obtain an MTDDG
such that

val(G) =























0 val(G1) 0 0 · · · 0 0
0 0 val(G2) 0 · · · 0 0
0 0 0 val(G3) · · · 0 0

...
0 0 0 0 · · · val(Gm−1) 0
0 0 0 0 · · · 0 val(Gm)
0 0 0 0 · · · 0 0























.

Here, we have to assume thatm+1 is a power of two, which can be enforced by adding
dummy clauses. Since the matricesval(Gi) commute (they are diagonal matrices) and
are idempotent (since all diagonal values are0 or 1), the matrixval(G)m contains only
0-blocks except for the top right-most block, which is

∏m

i=1 val(Gi). Thus,val(G)m is
the zero matrix if and only ifC is unsatisfiable. ⊓⊔
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7 Conclusion and future work

We studied algorithmic problems on matrices that are given by multi-terminal decision
diagrams enriched by the operation of matrix addition. Several important matrix prob-
lems can be solved in polynomial time for this representation, e.g., equality checking,
computing matrix entries, matrix multiplication, computing the trace, etc. On the other
hand, computing determinants, matrix powers, and iteratedmatrix products are compu-
tationally hard. For further research, it should be investigated whether the polynomial
time problems, like equality test, belong toNC. Also an experimental implementation
is planned for testing practical efficiency.
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