
Answering Conjunctive Queries with Inequalities∗

Paraschos Koutris1, Tova Milo2, Sudeepa Roy3, and Dan Suciu4

1 University of Washington
pkoutris@cs.washington.edu

2 Tel Aviv University
milo@cs.tau.ac.il

3 University of Washington
sudeepa@cs.washington.edu

4 University of Washington
suciu@cs.washington.edu

Abstract
In this parer, we study the complexity of answering conjunctive queries (CQ) with inequalities
(6=). In particular, we compare the complexity of the query with and without inequalities. The
main contribution of our work is a novel combinatorial technique that enables the use of any
Select-Project-Join query plan for a given CQ without inequalities in answering the CQ with
inequalities, with an additional factor in running time that only depends on the query. To
achieve this, we define a new projection operator that keeps a small representation (independent
of the size of the database) of the set of input tuples that map to each tuple in the output of the
projection; this representation is used to evaluate all the inequalities in the query. Second, we
generalize a result by Papadimitriou-Yannakakis [18] and give an alternative algorithm based on
the color-coding technique [4] to evaluate a CQ with inequalities by using an algorithm for the CQ
without inequalities. Third, we investigate the structure of the query graph, inequality graph, and
the augmented query graph with inequalities, and show that even if the query and the inequality
graphs have bounded treewidth, the augmented graph not only can have an unbounded treewidth
but can also be NP-hard to evaluate. Further, we illustrate classes of queries and inequalities
where the augmented graphs have unbounded treewidth, but the CQ with inequalities can be
evaluated in poly-time. Finally, we give necessary properties and sufficient properties that allow
a class of CQs to have poly-time combined complexity with respect to any inequality pattern.

1998 ACM Subject Classification H.2.4 [Systems]: Query Processing

Keywords and phrases query evaluation, conjunctive query, inequality, treewidth

Digital Object Identifier 10.4230/LIPIcs.ICDT.2015.76

1 Introduction

In this paper, we study the complexity of answering conjunctive queries (CQ) with a set of
inequalities of the form xi 6= xj between variables in the query. The complexity of answering
CQs without inequalities has been extensively studied in the literature during the past
three decades. Query evaluation of CQs is NP-hard in terms of combined complexity (both
query and database are inputs), while the data complexity of CQs (query is fixed) is in AC0
[1]. Yannakakis [23] showed that evaluation of acyclic CQs has polynomial-time combined

∗ This work has been partially funded by the NSF awards IIS-1247469 and IIS-0911036, European
Research Council under the FP7, ERC grant MoDaS, agreement 291071 and the Israel Ministry of
Science.

© Paraschos Koutris, Tova Milo, Sudeepa Roy, and Dan Suciu;
licensed under Creative Commons License CC-BY

18th International Conference on Database Theory (ICDT’15).
Editors: Marcelo Arenas and Martín Ugarte; pp. 76–93

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICDT.2015.76
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

P. Koutris, T. Milo, S. Roy, and D. Suciu 77

complexity. This result has been generalized later to CQs with bounded treewidth, bounded
querywidth, or bounded hypertreewidth: the combined complexity remains polynomial if the
width of a tree or query decomposition of the query (hyper-)graph is bounded [6, 10, 14, 9].

However, the complexity of query evaluation changes drastically once we add inequalities
in the body of the query. Consider the following Boolean acyclic CQ P k which can be solved
in O(k|D|) time on a database instance D:

P k() = R1(x1, x2), R2(x2, x3), . . . , Rk(xk, xk+1)

If we add the inequalities xi 6= xj for every i < j and evaluate it on an instance where each
R`, 1 ≤ ` ≤ k, corresponds to the edges in a graph with k + 1 vertices, query evaluation
becomes equivalent to asking whether the graph contains a Hamiltonian path, and therefore
is NP-hard in k. Papadimitriou and Yannakakis [18] observed this fact and showed that still
the problem is fixed-parameter tractable for acyclic CQs:

I Theorem 1 ([18]). Let q be an acyclic conjunctive query with inequalities and D be a
database instance. Then, q can be evaluated in time 2O(k log k) · |D| log2 |D| where k is the
number of variables in q that appear in some inequality.

The proof is based on the color-coding technique introduced by Alon-Yuster-Zwick in
[4] that finds subgraphs in a graph. In general, answering CQs with inequalities is closely
related to finding patterns in a graph, which has been extensively studied in the context of
graph theory and algorithms. For example, using the idea of representative sets, Monien [16]
showed the following: given a graph G(V,E) and a vertex s ∈ V , there exists a deterministic
O(k! · |E|) algorithm that finds all vertices v with a length-k path from s and also reports
these paths (a trivial algorithm will run in time O(|V |k)). Later, Alon et al. proposed the
much simpler color-coding technique that can solve the same problem in expected time
2O(k)|V | for undirected graphs and 2O(k)|E| for directed graphs. These two ideas have been
widely used to find other patterns in a graph, e.g., for finding cycles of even length [3, 25, 4].

In the context of databases, Papadimitriou and Yannakakis [18] showed that answering
acyclic CQs with comparison operators between variables (<,≤ etc.) is harder than answering
acyclic CQs with inequalities (6=) since this problem is no longer fixed-parameter tractable.
The query containment problem for CQs with comparisons and inequalities (6=, <,≤), i.e.,
whether Q1 ⊆ Q2, has been shown to be Πp

2-complete by van der Meyden [21]; the effect of
several syntactic properties of Q1, Q2 on the complexity of this problem has been studied by
Kolaitis et al. [14]. Durand and Grandjean [8] improved Theorem 1 from [18] by reducing
the time complexity by a log2|D| factor. Answering queries with views in the presence of
comparison operators has been studied by Afrati et al. [2]. Rosati [20] showed that answering
CQs with inequalities is undecidable in description logic.

Our Contributions. In this paper we focus on the combined complexity of answering CQs
with inequalities (6=) where we explore both the structure of the query and the inequalities.
Let q be a CQ with a set of variables, I be a set of inequalities of the form xi 6= xj , and k
be the number of variables that appear in one of the inequalities in I (k < |q|). We will use
(q, I) to denote q with inequalities I, and D to denote the database instance. We will refer
to the combined complexity in |D|, |q|, k by default (and not the data complexity on |D|)
unless mentioned otherwise.

The main result in this paper says that any query plan for evaluating a CQ can be
converted to a query plan for evaluating the same CQ with arbitrary inequalities, and the
increase in running time is a factor that only depends on the query:

ICDT 2015

78 Answering Conjunctive Queries with Inequalities

I Theorem 2 (Main Theorem). Let q be a CQ that can be evaluated in time T (|q|, |D|)
using a Select-Project-Join (SPJ) query plan Pq. Then, a query plan Pq,I for (q, I) can
be obtained to evaluate (q, I) in time g(q, I) ·max(T (|q|, |D|), |D|) for a function g that is
independent of the input database. 1

The key techniques used to prove the above theorem (Sections 3 and 4), and our other
contributions in this paper (Sections 5, 6, and 7) are summarized below.

1. (Section 3, 4) Our main technical contribution is a new projection operator, called
H-projection. While the standard projection in relational algebra removes all other
attributes for each tuple in the output, the new operator computes and retains a certain
representation of the group of input tuples that contribute to each tuple in the output.
This representation is of size independent of the database and allows the updated query
plan to still correctly filter out certain tuples that do not satisfy the inequalities. In
Section 3 we present the basic algorithmic components of this operator. In Section 4, we
show how to apply this operator to transform the given query plan to another query plan
that incorporates the added inequalities.

2. (Section 5) We generalize Theorem 1 to arbitrary CQs with inequalities (i.e., not
necessarily acyclic) by a simple application of the color-coding technique. In particular,
we show (Theorem 21) that any algorithm that computes a CQ q on a database D
in time T (|q|, |D|) can be extended to an algorithm that can evaluate (q, I) in time
f(k) · log(|D|) · T (|q|, |D|). While Theorem 2 and Theorem 21 appear similar, there are
several advantages of using our algorithm over the color-coding-based technique which
we also discuss in Section 5.

3. (Section 6) The multiplicative factors dependent on the query in Theorem 1, Theorem 21,
and (in the worst case) Theorem 2 are exponential in k. In Section 6 we investigate
the combined structure of the queries and inequalities that allow or forbid poly-time
combined complexity. We show that, even if q and I have a simple structure, answering
(q, I) can be NP-hard in k (Proposition 25). We also present a connection with the list
coloring problem that allows us to answer certain pairings of queries with inequalities in
poly-time combined complexity (Proposition 27).

4. (Section 7) We provide a sufficient condition for CQs, bounded fractional vertex cover,
that ensures poly-time combined complexity when evaluated with any set of inequalities
I. Moreover, we show that families of CQs with unbounded integer vertex cover are
NP-hard to evaluate in k (Theorem 29).

2 Preliminaries

We are given a CQ q, a set of inequalities I, and a database instance D. The goal is to
evaluate the query with inequality, denoted by (q, I), on D. We will use vars(q) to denote
the variables in the body of query q and Dom to denote the active domain of D. The set of
variables in the head of q (i.e., the variables that appear in the output of q) is denoted by
head(q). If head(q) = ∅, q is called a Boolean query, while if head(q) = vars(q), it is called a
full query.

The set I contains inequalities of the form xi 6= xj , where xi, xj ∈ vars(q) such that they
belong to two distinct relational atoms in the query. We do not consider inequalities of the

1 Some queries like q() = R(x)S(y) can be evaluated in constant time whereas to evaluate the inequality
constraints we need to scan the relations in D.

P. Koutris, T. Milo, S. Roy, and D. Suciu 79

form xi 6= c for some constant c, or of the form xi 6= xj where xi, xj only belong to the same
relational atoms because these can be preprocessed by scanning the database instance and
filtering out the tuples that violate these inequalities in time O(|I||D|). We will use k to
denote the number of variables appearing in I (k ≤ |vars(q)| < |q|).

Query Graph, Inequality Graph, and Augmented Graph. Given a CQ q and a set of
inequalities I, we define three undirected graphs on vars(q) as the set of vertices:

The query incidence graph or simply the query graph, denoted by Gq, of a query q contains
all the variables and the relational atoms in the query as vertices; an edge exists between a
variable x and an atom S if and only if x appears in S.

The inequality graph GI adds an edge between xi, xj ∈ vars(q) if the inequality xi 6= xj
belongs to I.

The query (q, I) can be viewed as an augmentation of q with additional predicates, where
for each inequality xi 6= xj we add a relational atom Iij(xi, xj) to the query q, and add new
relations Iij to D instantiated to tuples (a, b) ∈ Dom× Dom such that a 6= b. The augmented
graph Gq,I is the query incidence graph of this augmented query. Note that Gq,I includes
the edges from Gq, and for every edge (xi, xj) ∈ GI , it includes two edges (xi, Iij), (xj , Iij);
examples can be found in Section 6.

Treewidth and Acyclicity of a Query. We briefly review the definition of the treewidth of
a graph and a query.

I Definition 3 (Treewidth). A tree decomposition [19] of a graph G(V,E) is a tree T = (I, F),
with a set X(u) ⊆ V associated with each vertex u ∈ I of the tree, such that the following
conditions are satisfied:
1. For each v ∈ V , there is a u ∈ I such that v ∈ X(u),
2. For all edges (v1, v2) ∈ E, there is a u ∈ I with v1, v2 ∈ X(u),
3. For each v ∈ V , the set {u ∈ I : v ∈ X(u)} induces a connected subtree of T .
The width of the tree decomposition T = (I, F) is maxu∈I |X(u)| − 1. The treewidth of G is
the width of the tree decomposition of G having the minimum width.

Chekuri and Rajaraman defined the treewidth of a query q as the treewidth of the query incid-
ence graph Gq [6]. A query can be viewed as a hypergraph where every hyperedge corresponds
to an atom in the query and comprises the variables as vertices that belong to the relational
atom. The GYO-reduction [11, 24] of a query repeatedly removes ears from the query hyper-
graph (hyperedges having at least one variable that does not belong to any other hyperedge)
until no further ears exist. A query is acyclic if its GYO-reduction is the empty hypergraph,
otherwise it is cyclic. For example, the query P k() = R1(x1, x2), R2(x2, x3), . . . , Rk(xk, xk+1)
is acyclic, whereas the query Ck() = R1(x1, x2), R2(x2, x3), . . . , Rk(xk, x1) is cyclic.

There is another notion of width of a query called querywidth qw defined in terms of
query decomposition such that the decomposition tree has relational atoms from the query
instead of variables [6]; The relation between the querywidth qw and treewidth tw of a query
is given by the inequality tw/a ≤ qw ≤ tw + 1, where a is the maximum arity of an atom
in q. A query is acyclic if and only if its querywidth is 1; the treewidth of an acyclic query
can be > 1 [6]. The notion of hypertreewidth has been defined by Gottlob et al. in [10]. A
query can be evaluated in poly-time combined complexity if its treewidth, querywidth, or
hypertreewidth is bounded [23, 6, 10, 14, 9].

ICDT 2015

80 Answering Conjunctive Queries with Inequalities

x1

x2

y1

y2

y3

(a) The bipartite graph H0

R = {(1, 1), (1, 2), (1, 4), (1, 8),
(2, 1), (2, 2), (2, 3), (2, 4),
(3, 2), (5, 2), (10, 2)}

(b) The instance of R(x1, x2)

Figure 1 The running example (Example 5) for Section 3.

3 Main Techniques

In this section, we present the main techniques used to prove Theorem 2 with the help of a
simple query q2 that computes the cross product of two relations and projects onto the empty
set. In particular, we consider the query (q2, I) with an arbitrary set of inequalities I, where
q2() = R(x1, . . . , xm), S(y1, . . . , y`). A naïve way to evaluate the query (q2, I) is to iterate
over all pairs of tuples from R and S, and check if any such pair satisfies the inequalities in
I. This algorithm runs in time O(m`|R||S|). We will show instead how to evaluate (q2, I) in
time f(q2, I)(|R|+ |S|) for some function f that is independent of the relations R and S.

The key idea is to compress the information that we need from R to evaluate the
inequalities by computing a representation R′ of R of such that the size of R′ only depends
on I and not on R. Further, we must be able to compute R′ in time O(f ′(I)|R|). Then,
instead of iterating over the pairs of tuples from R,S, we can iterate over the pairs from
R′ and S, which can be done in time f ′′(q2, I)|S|. The challenge is to show that such a
representation R′ exists and that we can compute it efficiently.

We now formalize the above intuition. Let X = {x1, · · · , xm}, Y = {y1, · · · , y`}. Let
H = GI denote the inequality graph; since q2 has only two relations, H is a bipartite graph
on X and Y . If a tuple t from S satisfies the inequalities in I when paired with at least one
tuple in R, we say that t is H-accepted by R, and it contributes to the answer of (q2, I). For
a variable xi and a tuple t, let t[xi] denotes the value of the attribute of t that corresponds
to variable xi.

I Definition 4 (H-accepted Tuples). Let H = (X,Y,E) be a bipartite graph. We say that a
tuple t over Y is H-accepted by a relation R if there exists some tuple tR ∈ R such that for
every (xi, yj) ∈ E, we have tR[xi] 6= t[yj].

Notice that (q2, I) is true if and only if there exists a tuple tS ∈ S that is H-accepted by
R.

I Example 5 (Running Example). Let us define H0 = (X,Y,E) with X = {x1, x2}, Y =
{y1, y2, y3} and E = {(x1, y1), (x1, y2), (x2, y2), (x2, y3)} (see Figure 1(a)) and consider the
instance for R as depicted in Figure 1(b). This setting will be used as our running example.

Observe that the tuple t = (2, 1, 3) is H0-accepted by R. Indeed consider the tuple
t′ = (3, 2) in R: it is easy to check that all inequalities are satisfied by t, t′. In contrast, the
tuple (2, 1, 2) is not H0-accepted by R.

I Definition 6 (H-Equivalence). Let H = (X,Y,E) be a bipartite graph. Two relations
R1, R2 of arity m = |X| are H-equivalent if for any tuple t of arity ` = |Y |, the tuple t is
H-accepted by R1 if and only if t is H-accepted by R2.

P. Koutris, T. Milo, S. Roy, and D. Suciu 81

H-equivalent relations form an equivalence class comprising instances of the same arity m.
The main result in this section shows that for a given R, an H-equivalent instance R′ ⊆ R of
size independent of R can be efficiently constructed.

I Theorem 7. Let H = (X,Y,E) be a bipartite graph (|Y | = `) and R be a relation of arity
m = |X|. Let φ(H) = `!

∏
j∈[`] dH(yj), where dH(v) is the degree of a vertex v in H. There

exists an instance R′ ⊆ R such that:
1. R′ is H-equivalent with R
2. |R′| ≤ e · φ(H)
3. R′ can be computed in time O(φ(H)|R|).

To describe how the algorithm that constructs R′ works, we need to introduce another
notion that describes the tuples of arity ` that are not H-accepted by R. Let ⊥ be a value
that does not appear in the active domain Dom.

I Definition 8 (H-Forbidden Tuples). Let H = (X,Y,E) be a bipartite graph and R be a
relation of arity m = |X|. A tuple t over Y with values in Dom ∪ {⊥} is H-forbidden for R if
for any tuple tR ∈ R there exist yj ∈ Y and (xi, yj) ∈ E such that t[yj] = tR[xi].

I Example 9 (Continued). The reader can verify from Figure 1 that tuples of the form
(1, 2, x), where x can be any value, are H0-forbidden for R. Furthermore, notice that the
tuple (1, 2,⊥) is also H0-forbidden (in our construction (1, 2,⊥) being H0-forbidden implies
that any tuple of the form (1, 2, x) is H0-forbidden).

Next we formalize the intuition of the above example. We say that a tuple t1 defined
over Y subsumes another tuple t2 defined over Y if for any yj ∈ Y , either t1[yj] = ⊥ or
t1[yj] = t2[yj]. Observe that if t1 subsumes t2 and t1 is H-forbidden, t2 must be H-forbidden
as well. A tuple is minimally H-forbidden if it is H-forbidden and is not subsumed by
any other H-forbidden tuple. In our example, (1, 2, 1) is subsumed by (1, 2,⊥), so it is not
minimally H0-forbidden, but the tuple (1, 2,⊥) is. Lemma 10 stated below will be used to
prove Theorem 7:

I Lemma 10. Let H = (X,Y,E) be a bipartite graph, and R be a relation defined on X. Then,
the set of all minimally H-forbidden tuples of R has size at most φ(H) = `!

∏
j∈[`] dH(yj)

and it can be computed in time O(φ(H)|R|).

To prove the above lemma, we present an algorithm that encodes all the minimally
H-forbidden tuples of R in a rooted tree TH(R). The tree has labels for both the nodes and
the edges. More precisely, the label L(v) of some node v is either a tuple in R or a special
symbol ⊥∗ (only the leaves can have label ⊥∗), while the label of an edge of the tree is a pair
of the form (yj , a), where yj ∈ Y and a ∈ Dom. The labels of the edges are used to construct a
set of H-forbidden tuples that includes the set of all minimally H-forbidden tuples as follows:

For each leaf node v with label L(v) = ⊥∗, let (yj1 , aj1), . . . , (yjm
, ajm

) be the edge labels
in the order they appear from the root to the leaf. Then, the tuple tup(v) defined on Y as
follows is an H-forbidden tuple (but not necessarily minimally H-forbidden):

tup(v)[yj] =
{
aj if j ∈ {j1, . . . , jm}
⊥ otherwise

ICDT 2015

82 Answering Conjunctive Queries with Inequalities

⊥∗(5, 2)

(3, 2)

(1, 1)

(2, 3) (1, 4)(2, 1)

(2, 3)

(3, 2)

(5, 2)

y1 : 1

y2 : 3
y3 : 3

y2 : 2

y2 : 1

y2 : 2 y1 : 1y2 : 3y2 : 2 y1 : 3

y3 : 3

y3 : 2

y1 : 2

(1, 2, 3) (1, 2, 1) (1, 2, 1)(2, 1, 2)(1, 2,⊥)H0-forbidden:

(2, 3)

y3 : 1

(5, 2)

(2, 1)
y2 : 1

(3, 2)

(1, 2)

y3 : 1

y1 : 1 y2 : 1
y2 : 2

y1 : 2

(3, 2)

(2, 3)

⊥∗

⊥∗

⊥∗ ⊥∗

Figure 2 The tree TH(R) of the running example. The diagram also presents how theH0-forbidden
tuples are encoded by the tree.

Construction of TH(R). We construct TH(R) inductively by scanning through the tuples
of R in an arbitrary order. As we read the next tuple t from R, we need to ensure that the
H-forbidden tuples that have been so far encoded by the tree are not H-accepted by t: we
achieve this by expanding some of the leaves and adding new edges and nodes to the tree.
Therefore, after the algorithm has consumed a subset R′′ ⊆ R, the partially constructed tree
will be TH(R′′).

For the base of the induction, where R′′ = ∅, we define TH(∅) as a tree that contains a
single node (the root r) with label L(r) = ⊥∗.

For the inductive step, let TH(R′′) be the current tree and let t ∈ R be the next scanned
tuple. The algorithm processes (in arbitrary order) all the leaf nodes v of the tree with
L(v) = ⊥∗. Let (yj1 , aj1), . . . , (yjp

, ajp
) be the edge labels in the order they appear on the

path from root r to v. We distinguish two cases (for tuple t and a fixed leaf node v):
1. There exists j ∈ {j1, . . . , jp} and edge (xi, yj) ∈ E such that t[xi] = aj . In this case,

tup(v) will be H-forbidden in R′′ ∪ {t}; therefore, nothing needs to be done for this v.
2. Otherwise (i.e., there is no such j), tup(v) is not a H-forbidden tuple for R′′∪{t}. We set

L(v) = t (therefore, we never reassign the label of a node that has already been assigned
to some tuple in R). There are two cases:
a. If p = `, we cannot expand further from v (and will not expand in the future because

now L(v) 6= ⊥∗), since all yj-s have been already set.
b. If p < `, we expand the tree at node v. For every edge (xi, yj) ∈ E such that
j /∈ {j1, . . . , jp}, we add a fresh node vi,j with L(vi,j) = ⊥∗ and an edge (v, vi,j) with
label (yj , t[xi]). Notice that the tuples tup(vi,j) will be now H-forbidden in R′′ ∪ {t}.

The algorithm stops when either (a) all the tuples from R are scanned or (b) there exists no
leaf node with label ⊥∗.

I Example 11 (Continued). We now illustrate the steps of the algorithm through the
running example. After reading the first tuple, t1 = (1, 1), the algorithm expands the root
node r to three children (for y1, y2, y3), labels L(r) = (1, 1) and labels the new edges as
(y1, 1), (y2, 1), (y3, 1) and the new three leaves as ⊥∗.

Suppose the second tuple t2 = (1, 2) is read next. First consider the leaf node with
label ⊥∗ that is reached from the root through the edge (y1, 1). At this point, the node

P. Koutris, T. Milo, S. Roy, and D. Suciu 83

represents the tuple (1,⊥,⊥). Observe that are in case (1) of the algorithm, and so the
node is not expanded (t2[x1] = 1 and m = 1 < 3 = `). Consider now the third leaf node
with label ⊥∗, reached through the edge (y3, 1). We are now in case (2), and we have to
expand the node. The available edges (since we have already assigned a value to y3) are
(x1, y1), (x1, y2), (x2, y2). Hence, the node is labeled (1, 2), and expands into three children,
one for each of the above edges. These edges are labeled by (y1, 1), (y2, 1), (y2, 2) respectively;
then the algorithm continues and at the end the tree in Figure 2 is obtained.

The H-forbidden tuples encoded by the tree are not necessarily minimally H-forbidden.
However, for every minimally H-forbidden tuple there exists a node in the tree that encodes
it. In the running example, we find only two minimally H0-forbidden tuples for R: (1, 2,⊥)
and (2, 1, 2). Furthermore, the constructed tree is not unique for R and depends on the order
in which the tuples in R are scanned. The following lemma sums up the properties of the
tree construction, and directly implies Lemma 10; the proof is deferred to the full version of
the paper [15].

I Lemma 12. TH(R) satisfies the following properties:
1. The number of leaves is at most φ(H) = `!

∏
j∈[`] dH(yj).

2. Every leaf of TH(R) with label ⊥∗ encodes a H-forbidden tuple.
3. Every minimally H-forbidden tuple is encoded by some leaf of the tree with label ⊥∗.

For our running example, φ(H0) = 3! · (1 · 2 · 1) = 12, whereas the tree TH0(R) has only
10 leaves. We should note here that the bound φ(H) is tight, i.e. there exists an instance for
which the number of minimally H-forbidden tuples is exactly φ(H). 2

We now discuss how we can use the tree TH(R) to find a small H-equivalent relation to
R. It turns out that the connection is immediate: it suffices to collect the labels of all the
nodes (not only leaves) of the tree TH(R) that are not ⊥∗. More formally:

EH(R) = {L(v) | v ∈ TH(R), L(v) 6= ⊥∗} (1)

We can now show the following result, which completes the proof of Theorem 7:

I Lemma 13. The set EH(R) is H-equivalent to R and has size |EH(R)| ≤ e · φ(H).

I Example 14 (Continued). For our running example, the small H0-equivalent relation
will be: EH0(R) = {(1, 1), (1, 2), (1, 4), (2, 1), (2, 3), (3, 2), (5, 2)}. In other words, the tuples
(1, 8), (2, 2), (2, 4), (10, 2) are redundant and can be removed without affecting the answer to
the query (q2, I).

Although the set of minimally H-forbidden tuples is the same irrespective of the order
by which the algorithm scans the tuples, the relation EH(R) depends on this order. It is an
open problem to find the smallest possible H-equivalent relation for R.

4 Query Plans for Inequalities

In this section, we use the techniques presented in the previous section as building blocks
and prove Theorem 2. A Select-Project-Join (SPJ) query plan refers to a relational algebra
expression that uses only selection (σ), projection (Π), and join (on) operators. Let Pq be

2 For example, for H0 consider the instance {(1, 2), (3, 4), (5, 6)}. The reader can check that the resulting
tree has 12 leaves with label ⊥∗, and that every leaf leads to a different minimally H-forbidden tuple.

ICDT 2015

84 Answering Conjunctive Queries with Inequalities

Rule-2/3

ΠD

ΠC,E

R(A,B,E)

ΠD

R(A,B,E)

σE=‘a‘

R(A,B,E)

σE=‘a‘

ΠD

Rule-3 Rule-1
Pq0,>Pq0

onB=B′

onC=C′

S(B′, C)

σE=‘a‘’

ΠD

R(A,B,E)

ΠC,E

σE=‘a‘

S(B′, C)

T (C ′, D)

ΠC,C′,D,E

S(B′, C) S(B′, C)

T (C ′, D)T (C ′, D)

onC=C′

onC=C′ onC=C′

onB=B′onB=B′onB=B′

T (C ′, D)

Figure 3 The relational plan Pq0 for Example 15, and the transformation to the plan Pq0,>.

any SPJ query plan that computes a CQ q (without inequalities) on a database instance D
in time T (|q|, |D|). We will show how to transform Pq into a plan Pq,I that computes (q, I)
in time g(q, I) ·max(T (|q|, |D|). Without loss of generality, we assume that all the relation
names and attributes in the base and derived relations (at intermediate steps in the plan)
are distinct. Our running example for this section is given below:

I Example 15. Consider the query (q0, I), and the query plan Pq0 that computes q0:

q0(w) = R(x, y, ‘a‘), S(y, z), T (z, w), I = {x 6= z, y 6= w, x 6= w}
Pq0 = ΠD(σE=‘a‘(ΠC,E(R(A,B,E) onB=B′ S(B′, C))) onC=C′ T (C ′, D))

The query plan Pq0 is depicted in Figure 3.

Clearly, this plan by itself does not work for (q0, I) as it is losing information that is
essential to evaluate the inequlities, e.g., B(= B′) is being projected out and it is used later
in the inequality x 6= w with the attribute C of T . To overcome this problem while keeping
the same structure of the plan, we define a new projection operator that allows us to perform
valid algebraic transformations, even in the presence of inequalities. Let att(R) be the set
of attributes that appear in a base or derived relation R; a query plan or sub-plan P is a
derived relation with attributes att(P). If X ⊆ att(R), let X̄R = att(R) \X.

I Definition 16 (H-Projection). Let R be a base or a derived relation in P . Let X ⊆ att(R)
and H = (X̄R, att(P) \ att(R), E) be a bipartite graph. Then, the H-projection of R on X,
denoted ΠHX(R), is defined as

ΠHX(R) =
⋃

α∈ΠX(R)

EH(σX=α(R)) (2)

where EH denotes an H-equivalent subrelation as defined and constructed in equation (1).

Intuitively, H contains the inequalities between the attributes in X̄R (that are being projected
out) and the attributes of the rest of the query plan. The operator ΠHX first groups the
tuples from R according to the values of the X-attributes, but then instead of projecting out
the values of the attributes in X̄R for each such group, it computes a small H-equivalent
subrelation according to the graph H.

P. Koutris, T. Milo, S. Roy, and D. Suciu 85

I Observation 17. The H-projection of a relation R on X satisfies the following proper-
ties:
1. ΠX(R) = ΠX(ΠHX(R))
2. |ΠHX(R)| ≤ e · φ(H) · |ΠX(R)| (ref. Lemma 7)

First step. To construct the plan Pq,I from Pq, we first create an equivalent query plan
Pq,> by pulling all the projections in Pq to the top of the plan. The equivalence of Pq and
Pq,> is maintained by the following standard algebraic rules regarding projections:

(Rule-1) Absorption: If X ⊆ Y , then ΠX(R) = ΠX(ΠY (R)).
(Rule-2) Distribution: If X1 ⊆ att(R1) and X2 = att(R2), then ΠX1∪X2(R1 × R2) =

ΠX1(R1)×R2.
(Rule-3) Commutativity with Selection: If the selection condition θ is over a subset of X,

then σθ(ΠX(R)) = ΠX(σθ(R)).

Figure 3 depicts how each rule is applied in our running example to transform the initial
query plan Pq0 to Pq0,>, where the only projection occurs in the top of the query plan.
Observe that to distribute a projection over a join R1 onA1=A2 R2 (and not a cartesian
product), we can write it as σA1=A2(R1 ×R2), use both (Rule-2) and (Rule-3) to push the
projection, and then write it back in the form as R1 onA1=A2 R2.

The plan Pq,> will be of the form Pq,> = ΠX(P0), where P0 is a query plan that contains
only selections and joins. Notice that the plan ΠX(σI(P0)) correctly computes (q, I), since
it applies the inequalities before projecting out any attributes.3 However, the running time
is not comparable with that of Pq since the structures of the plans Pq and ΠX(σI(P0)) are
very different. To achieve comparable running time, we modify ΠX(σI(P0)) by applying the
corresponding rules of (Rule-1), (Rule-2), (Rule-3) for H-projection in the reverse order.

Second step. To convert projections to H-projections, first, we replace ΠX with ΠH0
X , where

H0 = (att(P0) \X, ∅, ∅). Notice that ΠH0
X is essentially like ΠX , but instead of removing the

attributes that are not in X, the operator keeps an arbitrary witness. Thus, if we compute
ΠH0
X (σI(P0)), we not only get all tuples t in (q, I), but for every such tuple we obtain a

tuple t′ from (qf , I) such that t = t′[X]. For our running example, X = {D}, and therefore,
H0 = ({A,B,B′, C, C ′, E}, ∅, ∅) (see the rightmost plan in Figure 4).

Third step. We next present the rules for H-projections to convert ΠH0
X (σI(P0)) to the

desired plan Pq,I . To show that the rules are algebraically correct, we need a weaker version
of plan equivalence.

I Definition 18 (Plan Equivalence). Two plans P1,P2 are equivalent under ΠHX , denoted
P1 ≡HX P2, if for every tuple α, EH(σX=α(P1)) and EH(σX=α(P2)) are H-equivalent.

In other words, we do not need to have the same values of the attributes that are being
projected out by ΠX in the small sub-relations EH. We write I[X1, X2] ⊆ I to denote
the inequalities between attributes in subsets X1 and X2. For convenience, we also write
I[X,X] = I[X]. We use E[X1, X2] in a similar fashion, where E is the set of edges in a
bipartite graph. Let A = att(P0). We apply the transformation rules for a sub-plan that is
of the form ΠHX(σI(S)), where I is defined on att(S) and H = (X̄S ,A, E). 4 The rules are:

3 From here on we let I denote inequalities on attributes and not variables.
4 For the sake of simplicity, we do not write the bipartite graph as H = (X̄S , A \ att(S), E). However,

the transformation rules ensure that the edges E in the bipartite graph are always between X̄S and
A \ att(S).

ICDT 2015

86 Answering Conjunctive Queries with Inequalities

R(A,B,E)

R(A,B,E)

σE=‘a‘

Rule-1’Rule-3’

ΠH0
D

σA 6=C,B 6=D,A6=D

ΠH0
D

S(B′, C)

onB=B′

T (C ′, D)

onC=C′

ΠH1
C,C′,D,E

Rule-2’/3’

σA 6=C,B 6=D,A6=D

σE=‘a‘

S(B′, C)

T (C ′, D)

onB=B′

onC=C′

Pq0,I

R(A,B,E)

ΠH0
D

onC=C′

T (C ′, D)ΠH2
C,E

σE=‘a‘

onB=B′

σB 6=D,A6=D

σA 6=C

R(A,B,E) S(B′, C)

T (C ′, D)

onB=B′

ΠH0
D

σB 6=D,A6=D

onC=C′

σA 6=C

ΠH2
C,E

σE=‘a‘

S(B′, C)

Figure 4 The reverse application of rules for Example 15. The bipartite graphs defined have
edge sets E(H0) = ∅, E(H1) = ∅ and E(H2) = {(A, D), (B, D)}.

(Rule-1’). If X ⊆ Y and H′ = (Ȳ S ,A, E[Ȳ S ,A]), then

ΠHX(σI(S)) ≡HX ΠHX(ΠH
′

Y (σI(S)))

In the running example, we have X = {D}, Y = {C,C ′, D,E}, and att(S) = A =
{A,B,B′, C, C ′, D,E}. The new bipartite graph for Rule-1’ in Figure 4 (corresponding
to Rule-1 in Figure 3) is H1 = ({A,B,B′},A, ∅).

(Rule-2’). Let S = R1×R2, and X = X1∪Z2, where X1 ⊆ att(R1) = Z1 and Z2 = att(R2).
If we define H′ = (Z1 \X1, A, E[Z1 \X1,A] ∪ I[Z1 \X1, Z2]), then

ΠHX1∪Z2
(σI(R1 ×R2)) ≡HX σI\I[Z1](ΠH

′

X1
(σI[Z1](R1))×R2)

This rule adds new edges to the bipartite graph (which is initially empty) from the set of
inequalities I. In the running example, we have X1 = {C,E} ⊆ {A,B,B′, C,E} = Z1 and
Z2 = {C ′, D}. Since E(H1) = ∅, to construct the edge set of the new bipartite graph H2, we
need to find the inequalities that have one attribute in Z1 \X1 = {A,B,B′} and the other in
Z2 = {C ′, D}: these are A 6= D and B 6= D. Hence, H2 = ({A,B,B′},A, {(A,D), (B,D)}),
and the application of the rule is depicted in Figure 4.

(Rule-3’). If θ is defined over a subset of X, and S = σθ(R):

ΠHX(σI(σθ(R))) ≡HX σθ(ΠHX(σI(R)))

In the running example, we move the selection operator σE=‘a‘ before the projection operator
ΠH2
C,E as the last step of the transformation.
The proof of correctness of these transformations (i.e., (Rule-1’), (Rule-2’), (Rule-3’)

preserve the equivalence of the plans under ΠHX) is deferred to the full version of the paper [15].
After applying the above transformations in the reverse order, the following lemma holds:

P. Koutris, T. Milo, S. Roy, and D. Suciu 87

I Lemma 19. Let Pq be an SPJ plan for q. For a set of inequalities I, the transformed plan
Pq,I has the following properties:
1. If Pq,> = ΠX(P0), the plan ΠX(Pq,I) computes (q, I) (after projecting out the attributes

that served as witness from Pq,I).
2. For every ΠX operator in Pq, there exists a corresponding ΠHX operator in Pq,I for some

appropriately constructed H.
3. Every intermediate relation R in Pq,I has size at most e ·maxH{φ(H)} · |R′|, where R′ is

the corresponding intermediate relation in Pq.
4. If T (|q|, |D|) is the time to evaluate Pq, the the time to evaluate Pq,I increases by a factor

of at most (e ·maxH{φ(H)})2.

Theorem 2 directly follows from the above lemma. To prove the bound on the running
time, we use the fact that each operator (selection, projection or join) can be implemented
in at most quadratic time in the size of the input (i.e., T (MN) ≤ cM2T (N)). Additionally,
notice that, if k is the vertex size of the inequality graph, then maxH{φ(H)} ≤ k!kk. Hence,
the running time can increase at most by a factor of 2O(k log k) when inequalities are added
to the query. In our running example, φ(H0) = 1, φ(H0) = 1 and φ(H2) = 2, hence the
resulting intermediate relations in will be at most 2e times larger than the ones in Pq0 .

The following query with inequalities is an example where our algorithm gives much
better running time than the color-coding-based or treewidth-based techniques described in
the subsequent sections.

I Example 20. Consider P k() = R1(x1, x2), R2(x2, x3), · · · , Rk(xk, xk+1) with inequalities
I = {xi 6= xi+2 | i ∈ [k − 1]}. Let P be the SPJ plan that computes this acyclic query in
time O(k|D|) by performing joins from left to right and projecting out the attributes as soon
as they join. Then, the plan PI that is constructed has constant maxH{φ(H)}; thus, (P k, I)
can be evaluated in time O(k|D|) as well.

I Remark. In this section we compared the running time of queries with inequalities with
SPJ plans that compute the query without the inequalities. However, optimal algorithms
that compute CQs may not use SPJ plans, as the recent worst-case optimal algorithms
in [17, 22] show. These algorithms apply to conjunctive queries without projections, where
any inequality can be applied at the end without affecting the asymptotic running time.
However, there are cases where nonstandard algorithms for Boolean CQs run faster than
SPJ algorithms, e.g. q() = R(x1, x2), R(x2, x3), . . . , R(x2k, x1), can be computed in time
O(N2−1/k), where N = |R|. We show in the full version [15] that our techniques can be
applied in this case as well. However, it is an open whether we can use them for any black-box
algorithm.

5 Color-coding Technique and Generalization of Theorem 1

In this section, we will review the color-coding technique from [4] and use it to generalize
Theorem 1 for arbitrary CQs with inequalities (i.e., not necessarily acyclic queries)5.

I Theorem 21. Let q be a CQ that can be evaluated in time T (|q|, |D|). Then, (q, I) can be
computed in time 2O(k log k) · log(|D|) · T (|q|, |D|) where k is the number of variables in I.

5 The log2(|D|) factor in Theorem 1 is reduced to log(|D|) in Theorem 21, but this is because one log
factor was due to sorting the relations in the acyclic query, and now this hidden in the term T (|q|, |D|).

ICDT 2015

88 Answering Conjunctive Queries with Inequalities

First, we state the original randomized color-coding technique to describe the intuition:
randomly color each value of the active domain by using a hash function h, use these colors to
check the inequality constraints, and use the actual values to check the equality constraints.

For a CQ q, let qf denote the full query (without inequalities), where every variable in
the body appears in the head of the query q. For a variable xi and a tuple t, t[xi] (or simply
t[i] where it is clear from the context) denotes the value of the attribute of t that corresponds
to variable xi. Let t ∈ qf (D). We say that t satisfies the inequalities I, denoted by t |= I, if
for each xi 6= xj in I, t[xi] 6= t[xj]. We say that t satisfies the inequalities I with respect to
the hash function h, denoted by t |=h I, if for each such inequaity h(t[xi]) 6= h(t[xj]).

Recall that k is the number of variables that appear in I. Let h be a perfectly random
hash function h : Dom→ [p] (where p ≥ k). For any t ∈ qf (D) if t satisfies I, then with high
probability it also satisfies I with respect to h, i.e., Prh[t |=h I | t |= I] ≥ p(p−1)···(p−k+1)

pk

≥ e−2
∑k−1

i=1
(i/p) ≥ e−k, where we used the fact that 1 − x ≥ e−2x for x ≤ 1

2 . Therefore,
by repeating the experiment 2O(k) times we can evaluate a Boolean query with constant
probability.

This process can be derandomized leading to a deterministic algorithm (for evaluating
any CQ, not necessarily Boolean) by selecting h from a family F of k-perfect hash functions.
A k-perfect family guarantees that for every tuple of arity at most k (with values from
the domain Dom), there will be some h ∈ F such that for all i, j ∈ [k], if t[i] 6= t[j], then
h(t[i]) 6= h(t[j]) (and thus if t |= I, then t |=h I) It is known (see [4]) that we can construct
a k-perfect family of size |F| = 2O(k) log(|Dom|) = 2O(k) log |D|.6

A coloring c of the vertices of the inequality graph GI with k colors is called a valid
k-coloring, if for each xi 6= xj we have that ci 6= cj where ci denotes the color of variable
xi under c. Let C(GI) denote all the valid colorings of GI . For each such coloring c and
any given hash function h : Dom → [k], we can define a subinstance D[c, h] ⊆ D such that
for each relation R, RD[c,h] = {t ∈ RD | ∀xi ∈ vars(R), h(t[xi]) = ci}. In other words, the
subinstance D[c, h] picks only the tuples that under the hash function h agree with the
coloring c of the inequality graph. Then the algorithm can be stated as follows:

Deterministic Algorithm: For every hash function h : Dom→ [k] in a k-perfect hash
family F , for every valid k-coloring c ∈ C(GI) of the variables, evaluate the query q
on the sub-instance D[c, h]. Output

⋃
h∈F

⋃
c∈C(GI) q(D[c, h]).

The correctness argument for the above algorithm is presented in [15]. The running time
of the algorithm is O(|F| · |C(GI)| · T (q, |D|)). Since |F| ≤ 2O(p) log |D| and |C(GI)| ≤ kk,
Theorem 21 follows.

Comparison of Theorem 2 with Theorem 21. The factors dependent on the query in these
two theorems (g(q, I) in Theorem 2 and f(k) in Theorem 21) are both bounded by 2O(k log k).
However, our technique outperforms the color-coding technique in several respects. First,
the randomized color-coding technique is simple and elegant, but is unsuitable to implement
in a database system that typically aims to find deterministic answers. On the other hand,
apart from the additional log(|D|) factor, the derandomized color-coding technique demands
the construction of a new k-perfect hash family for every database instance and query, and
therefore may not be efficient for practical purposes. Our algorithm requires no preprocessing
and can be applied in a database system by maintaining the same query plan and using

6 Assuming Dom includes only the attributes that appear as variables in the query q, |Dom| ≤ |D||q|.

P. Koutris, T. Milo, S. Roy, and D. Suciu 89

x1	

x2	

x3	

x4	

x5	

x6	

(a)	

x1	

x2	

x3	

x4	

x5	

x6	

x7	

x8	

(b)	

x7	

x8	

x2	

x3	

x4	

x5	

x6	

x7	

x8	

x1	

(c)	

x1

x6

x7

x2

x4

x8

(d)

x3

x5

x9

Figure 5 Augmented graphs for Example 22 (k = 7) and Example 23 (k = 8). The solid and
dotted edges come from the query and inequalities respectively; the blue squares denote variables,
and red circles denote (unnamed) relational atoms: (a) (P 7, I1), (b) (P 7, I2), (c) (P 7, I3), (d)
(P 7, I4).

a more sophisticated projection operation. More importantly, the color coding technique
is oblivious of the combined structure of the query and the inequalities. As an example,
consider the path query P k, together with the inequalities I1 = {xi 6= xi+2 : i ∈ [k − 1]}.
The color-coding-based algorithm has a running time of 2O(k log k)|D| log |D|. However, as
discussed in Section 4, we can compute this query in time O(k|D|), thus the exponential
dependence on k is eliminated.

6 CQs and Inequalities with Polynomial Combined Complexity

In this section, we investigate classes of queries and inequalities that entail a poly-time
combined complexity for (q, I) in terms of the treewidths of query graph Gq, inequality
graph GI , and augmented graph Gq,I . If the augmented graph Gq,I has bounded treewidth,
then (q, I) can be answered in poly-time combined complexity [23, 6]. We give examples of
such q and I below:

I Example 22. Consider the path query: P k() = R1(x1, x2), R2(x2, x3), . . . , Rk(xk, xk+1),
which is acyclic, and consider the following inequality patterns (see Figure 5): (i) (P k, I1)
where I1 = {xi 6= xi+2 : i ∈ [k − 1]} has treewidth 2. (ii) (P k, I2) where I2 = {xi 6= xi+ k

2
:

i ∈ [k+1
2]} has treewidth 3 (k is odd). (iii) (P k, I3) where I3 = {xi 6= xk−i+1 : i ∈ [k+1

2]} has
treewidth 2 (k is odd).

However, for certain inputs our algorithm in Section 4 can outperform the treewidth-based
techniques since it considers the inequality structure more carefully. For instance, even
though the augmented graph of (P k, I1) has treewidth 2 (see Figure 5 (a)), the techniques
of [23] will give an algorithm with running time O(poly(k)|D|2), whereas the algorithm in
Section 4 gives a running time of O(k|D|).

Indeed, the treewidth of Gq,I is at least as large as the treewidth of Gq and GI . As
mentioned earlier, when GI is the complete graph on k+1 variables (with treewidth = k+1),
answering (P k, I) is as hard as finding if a graph on k + 1 vertices has a Hamiltonian path,
and therefore is NP-hard in k. Interestingly, even when both Gq and GI have bounded
treewidths, Gq,I may have unbounded treewidth as illustrated by the following example:

I Example 23. Consider (P k, I4) (see Figure 5(d)), where k+1 = p2 for some p. Algebraically,
we can write I4 as: I4 = {xi 6= xbi/pc+1+2p−(i mod p) | i = 1, . . . , p(p− 1)}. The edges for
P k are depicted in the figure as an alternating path on the grid with solid edges, whereas

ICDT 2015

90 Answering Conjunctive Queries with Inequalities

the remaining edges are dotted and correspond to the inequalities. Here both GPk and GI4

have treewidth 1, but GPk,I4 has treewidth Θ(
√
k).

However, this does not show that evaluation of the query (P k, I4) is NP-hard in k, which we
prove below by a reduction from the list coloring problem:

I Definition 24 (List Coloring). Given an undirected graph G = (V,E), and a list of
admissible colors L(v) for each vertex v ∈ V , list coloring asks whether there exists a coloring
c(v) ∈ L(v) for each vertex v such that the adjacent vertices in G have different colors.

The list coloring problem generalizes the coloring problem, and therefore is NP-hard. List
coloring is NP-hard even on grid graphs with 4 colors and where 2 ≤ |L(v)| ≤ 3 for each
vertex v [7]; we show NP-hardness for (P k, I4) by a reduction from list coloring on grids.
I Proposition 25. The combined complexity of evaluating (P k, I4) is NP-hard, where both
the query P k and the inequality graph G are acyclic (have treewidth 1).
In fact, the above proposition can be generalized as follows: if the graph Gq,I is NP-hard for
list coloring for a query q where each relation has arity 2, then evaluation of the query (q, I)
is also NP-hard in the size of the query.

On the contrary, (q, I) may not be hard in terms of combined complexity if the treewidth
of Gq,I is unbounded, which we also show with the help of the list coloring problem. Consider
the queries F k() = R1(x1), R2(x2), . . . , Rk(xk). Given inequalities I, the evaluation of
(F k, I) is equivalent to the list coloring problem on the graph GI when the available colors
for each vertex xi are the tuples in Ri(xi). Since list coloring is NP-hard:
I Proposition 26. The evaluation of (F k, I) is NP-hard in k for arbitrary inequalities I.
Therefore, answering (F k, I) becomes NP-hard in k even for this simple class of queries if
we allow arbitrary set of inequalities I (this also follows from Theorem 29). However, list
coloring can be solved in polynomial time for certain graphs GI : (i) Trees (the problem
can be solved in time O(|V |) independent of the available colors[13]), and in general graphs
of constant treewidth. (ii) Complete graphs (by a reduction to bipartite matching).7 In
general, if the connected components of G are either complete graphs or have constant
treewidth, list coloring can be solved in polynomial time. Therefore, on such graphs as GI ,
the query (F k, I) can be computed in poly-time in k and |D|. Here we point out that none of
the other algorithms given in this paper can give a poly-time algorithm in k, |D| for (F k, I)
when GI is the complete graph (and therefore has treewidth k). The following proposition
generalizes this property:
I Proposition 27. Let q be a Boolean CQ, where each relational atom has arity at most 2. If
q has a vertex cover (a set of variables that can cover all relations in q) of constant size and
the list coloring problem on GI can be solved in poly-time, then (q, I) can be answered in
poly-time combined complexity.
The proof is given in the full version of the paper. To see an example, consider the star query
Zn() = R1(y, x1), . . . , Rn(y, xn) which has a vertex cover {y} of size 1. We iterate over
all possible values of y: for each such value α ∈ Dom, the query R1(α, x1), . . . , Rn(α, xn) is
equivalent to Fn, and therefore (Zn, I) can be evaluated in poly-time in combined complexity
when GI is an easy instance of list coloring.

7 We can construct a bipartite graph where all vertices v appear on one side, the colors appear on the
other side, and there is an edge (v, c) if c ∈ L(v). Then the list coloring problem on complete graph is
solvable if and only if there is a perfect matching in the graph.

P. Koutris, T. Milo, S. Roy, and D. Suciu 91

7 CQs with Polynomial Combined Complexity for All Inequalities

This section aims to find CQs q such that computing (q, I) has poly-time combined complexity,
no matter what the choice of I is. Here we present a sufficient condition for this, and a
stronger necessary condition.

A fractional edge cover of a CQ q assigns a number vR to each relation R ∈ q such that for
each variable x,

∑
R:x∈vars(R) vR ≥ 1. A fractional vertex packing (or, independent set) of q

assigns a number ux to each variable x, such that
∑
x∈vars(R) ux ≤ 1 for every relation R ∈ q.

By duality, the minimum fractional edge cover is equal to the maximum fractional vertex
packing. When each vR ∈ {0, 1} we get an integer edge cover, and when each ux ∈ {0, 1} we
get an integer vertex packing.

I Definition 28. A family Q of Boolean CQs has unbounded fractional (resp. integer) vertex
packing if there exists a function T (n) such that for every integer n > 0 it can output in time
poly(n) a query q ∈ Q that has a fractional (resp. integer) vertex packing of size at least n
(counting relational atoms as well as variables).

A family Q of Boolean CQs has bounded fractional (resp. integer) vertex packing if there
exists a constant b > 0 such that for any q ∈ Q, the size of any fractional (resp. integer)
vertex packing is ≤ b.

Path queries P k() = R1(x1, x2), R2(x2, x3), . . . , Rk(xk, xk+1) and cycle queries Ck() =
R1(x1, x2), R2(x2, x3), . . . , Rk(xk, x1) are examples of classes of unbounded vertex packing.

I Theorem 29.
1. If a family of Boolean CQs Q has unbounded integer vertex packing, the combined

complexity of (q, I) for q ∈ Q is NP-hard.
2. If a family of CQs Q has bounded fractional vertex packing, then for each q ∈ Q, (q, I)

can be evaluated in poly-time combined complexity for any I.

The NP-hardness in this theorem follows by a reduction from 3-Coloring, whereas the
poly-time algorithm uses the bound given by Atserias-Grohe-Marx [12, 5] in terms of the size
of minimum fractional edge cover of the query, and the duality between minimum fractional
edge cover and maximum fractional vertex packing. The formal proof of the above theorem
will appear in the full version of the paper.

In this paper, we illustrate the properties with examples. Consider the family Sk() =
R(x1, . . . , xk) for k ≥ 1: this has vertex packing of size = 1 and therefore can be answered
trivially in poly-time in combined complexity for any inequality pattern I. On the other
hand, the class of path queries P k mentioned earlier has unbounded vertex packing (has
a vertex packing of size ≈ k

2), and therefore for certain set of inequalities (e.g., when GI
is a complete graph), the query evaluation of (P k, I) is NP-hard in k. Similarly, the class
F k() = R1(x1), R2(x2), . . . , Rk(xk) mentioned earlier has unbounded vertex packing, and is
NP-hard in k with certain inequality patterns (see Proposition 26).

Theorem 29 is not a dichotomy or a characterization of easy CQs w.r.t. inequalities, since
there is a gap between the maximum fractional and integer vertex packing.8

8 For example, for the complete graph on k vertices, the maximum integer vertex packing is of size 1
whereas the maximum fractional vertex packing is of size k

2 .

ICDT 2015

92 Answering Conjunctive Queries with Inequalities

8 Conclusion

We studied the complexity of CQs with inequalities and compared the complexity of query
answering with and without the inequality constraints. Several questions remain open: Is
there a property that gives a dichotomy of query evaluation with inequalities both for the
class of CQs, and for the class of CQs along with the inequality graphs? What can be
said about unions of conjunctive queries (UCQ) and recursive datalog programs? Can our
techniques be used as a black-box to extend any algorithm for CQs, i.e., not necessarily
based on SPJ query plans, to evaluate CQs with inequalities?

References
1 Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-

Wesley, 1995.
2 Foto Afrati, Chen Li, and Prasenjit Mitra. Answering queries using views with arithmetic

comparisons. In PODS, pages 209–220, 2002.
3 Noga Alon, Raphael Yuster, and Uri Zwick. Finding and counting given length cycles.

Algorithmica, 17(3):209–223, 1997.
4 Noga Alon, Raphael Yuster, and Uri Zwick. Color coding. In Ming-Yang Kao, editor,

Encyclopedia of Algorithms. Springer, 2008.
5 Albert Atserias, Martin Grohe, and Daniel Marx. Size bounds and query plans for relational

joins. FOCS, pages 739–748, 2008.
6 Chandra Chekuri and Anand Rajaraman. Conjunctive query containment revisited. Theor.

Comput. Sci., 239(2):211–229, 2000.
7 Marc Demange and Dominique De Werra. On some coloring problems in grids. Theor.

Comput. Sci., 472:9–27, February 2013.
8 Arnaud Durand and Etienne Grandjean. The complexity of acyclic conjunctive queries

revisited. CoRR, abs/cs/0605008, 2006.
9 Jörg Flum, Markus Frick, and Martin Grohe. Query evaluation via tree-decompositions. J.

ACM, 49(6):716–752, November 2002.
10 Georg Gottlob, Nicola Leone, and Francesco Scarcello. Hypertree decompositions and

tractable queries. In PODS, pages 21–32, 1999.
11 M.H. Graham. On the universal relation. Technical Report, University of Toronto, Ontario,

Canada, 1979.
12 Martin Grohe and Dániel Marx. Constraint solving via fractional edge covers. In SODA,

pages 289–298, 2006.
13 Klaus Jansen and Petra Scheffler. Generalized coloring for tree-like graphs. Discrete Applied

Mathematics, 75(2):135–155, 1997.
14 Phokion G. Kolaitis, David L. Martin, and Madhukar N. Thakur. On the complexity of

the containment problem for conjunctive queries with built-in predicates. In PODS, pages
197–204, 1998.

15 Paraschos Koutris, Tova Milo, Sudeepa Roy, and Dan Suciu. Answering conjunctive queries
with inequalities. CoRR, abs/1412.3869, 2014.

16 B. Monien. How to find long paths efficiently. In G. Ausiello and M. Lucertini, editors, Ana-
lysis and Design of Algorithms for Combinatorial Problems, volume 109 of North-Holland
Mathematics Studies, pages 239 – 254. North-Holland, 1985.

17 Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra. Worst-case optimal join
algorithms: [extended abstract]. In Proceedings of the 31st ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, PODS 2012, Scottsdale, AZ, USA,
May 20-24, 2012, pages 37–48, 2012.

P. Koutris, T. Milo, S. Roy, and D. Suciu 93

18 Christos H. Papadimitriou and Mihalis Yannakakis. On the complexity of database queries.
In PODS, pages 12–19, 1997.

19 Neil Robertson and P.D Seymour. Graph minors. iii. planar tree-width. Journal of Com-
binatorial Theory, Series B, 36(1):49 – 64, 1984.

20 Riccardo Rosati. The limits of querying ontologies. In ICDT, pages 164–178, 2007.
21 Ron van der Meyden. The complexity of querying indefinite data about linearly ordered

domains. J. Comput. Syst. Sci., 54(1):113–135, February 1997.
22 Todd L. Veldhuizen. Triejoin: A simple, worst-case optimal join algorithm. In Proc. 17th

International Conference on Database Theory (ICDT), Athens, Greece, March 24-28, 2014.,
pages 96–106, 2014.

23 Mihalis Yannakakis. Algorithms for acyclic database schemes. In VLDB, pages 82–94.
IEEE Computer Society, 1981.

24 C.T. Yu and M. Z. Ozsoyoglu. An algorithm for tree-query membership of a distributed
query. In COMPSAC, pages 306–312, 1979.

25 Raphael Yuster and Uri Zwick. Finding even cycles even faster. SIAM J. Discrete Math.,
10(2):209–222, 1997.

ICDT 2015

	Introduction
	Preliminaries
	Main Techniques
	Query Plans for Inequalities
	Color-coding Technique and Generalization of Theorem 1
	CQs and Inequalities with Polynomial Combined Complexity
	CQs with Polynomial Combined Complexity for All Inequalities
	Conclusion

