Parameterized Algorithms for Graph Partitioning Problems

Hadas Shachnai and Meirav Zehavi
Department of Computer Science, Technion, Haifa 32000, Israel
\{hadas, meizeh\}@cs.technion.ac.il

Abstract

We study a broad class of graph partitioning problems, where each problem is specified by a graph $G=(V, E)$, and parameters k and p. We seek a subset $U \subseteq V$ of size k, such that $\alpha_{1} m_{1}+\alpha_{2} m_{2}$ is at most (or at least) p, where $\alpha_{1}, \alpha_{2} \in \mathbb{R}$ are constants defining the problem, and m_{1}, m_{2} are the cardinalities of the edge sets having both endpoints, and exactly one endpoint, in U, respectively. This class of fixed cardinality graph partitioning problems (FGPP) encompasses Max $(k, n-k)$-Cut, Min k Vertex Cover, k-Densest Subgraph, and k-Sparsest Subgraph. Our main result is an $O^{*}\left(4^{k+o(k)} \Delta^{k}\right)$ algorithm for any problem in this class, where $\Delta \geq 1$ is the maximum degree in the input graph. This resolves an open question posed by Bonnet et al. [IPEC 2013]. We obtain faster algorithms for certain subclasses of FGPPs, parameterized by p, or by $(k+p)$. In particular, we give an $O^{*}\left(4^{p+o(p)}\right)$ time algorithm for MAX $(k, n-k)$-Cut, thus improving significantly the best known $O^{*}\left(p^{p}\right)$ time algorithm.

1 Introduction

Graph partitioning problems arise in many areas including VLSI design, data mining, parallel computing, and sparse matrix factorizations (see, e.g., [12]7]). We study a broad class of graph partitioning problems, where each problem is specified by a graph $G=(V, E)$, and parameters k and p. We seek a subset $U \subseteq V$ of size k, such that $\alpha_{1} m_{1}+\alpha_{2} m_{2}$ is at most (or at least) p, where $\alpha_{1}, \alpha_{2} \in \mathbb{R}$ are constants defining the problem, and m_{1}, m_{2} are the cardinalities of the edge sets having both endpoints, and exactly one endpoint, in U, respectively. This class encompasses such fundamental problems as Max and Min $(k, n-k)$-Cut, Max and Min k-Vertex Cover, k-Densest Subgraph, and k-Sparsest Subgraph. For example, Max $(k, n-k)$-Cut is a max-FGPP (i.e., maximization FGPP) satisfying $\alpha_{1}=0$ and $\alpha_{2}=1$, $\operatorname{Min}(k, n-k)$-Cut is a min-FGPP (i.e., minimization FGPP) satisfying $\alpha_{1}=0$ and $\alpha_{2}=1$, and Min k-Vertex Cover is a min-FGPP satisfying $\alpha_{1}=\alpha_{2}=1$.

A parameterized algorithm with parameter k has running time $O^{*}(f(k))$ for some function f, where O^{*} hides factors polynomial in the input size. In this paper, we develop a parameterized algorithm with parameter $(k+\Delta)$ for the class of all FGPPs, where $\Delta \geq 1$ is the maximum degree in the graph G. For certain subclasses of FGPPs, we develop algorithms parameterized by p, or by $(k+p)$.

Related Work: Parameterized by k, Max and Min $(k, n-k)$-Cut, and Max and Min k-Vertex Cover are W[1]-hard 8411]. Moreover, k-Clique and k-Independent Set, two well-known W[1]-hard problems [9], are special cases of k-Densest Subgraph where $p=k(k-1)$, and k-Sparsest Subgraph where $p=0$, respectively. Therefore, parameterized by $(k+p), k$-Densest Subgraph and k-Sparsest Subgraph are W[1]-hard. Cai et al. [5] and Bonnet et al. [2] studied the parameterized complexity of FGPPs with respect to $(k+\Delta)$. Cai et al. [5] gave $O^{*}\left(2^{(k+1) \Delta}\right)$ time algorithms for k-Densest Subgraph and k-Sparsest Subgraph. Recently, Bonnet et al. [2] presented an $O^{*}\left(\Delta^{k}\right)$ time algorithm for degrading FGPPs. This subclass includes max-FGPPs in which $\alpha_{1} / 2 \leq \alpha_{2}$, and min-FGPPs in which $\alpha_{1} / 2 \geq \alpha_{2} \|^{1}$ They also proposed an $O^{*}\left(k^{2 k} \Delta^{2 k}\right)$ time algorithm for all FGPPs, and posed as an open question the existence of constants a and b such that any FGPP can be solved in time $O^{*}\left(a^{k} \Delta^{b k}\right)$. In this paper we answer this question affirmatively, by developing an $O^{*}\left(4^{k+o(k)} \Delta^{k}\right)$ time algorithm for any FGPP.

Parameterized by p, Max and Min k-Vertex Cover can be solved in times $O^{*}\left(1.396^{p}\right)$ and $O^{*}\left(4^{p}\right)$, respectively, and in randomized times $O^{*}\left(1.2993^{p}\right)$ and $O^{*}\left(3^{p}\right)$, respectively [14]. Moreover, Max $(k, n-k)$ Cut can be solved in time $O^{*}\left(p^{p}\right)$ [2], and Min $(k, n-k)$ Cut can be solved in time $O\left(2^{O\left(p^{3}\right)}\right.$) 6]. Parameterized by $(k+p)$, Min $(k, n-k)$ Cut can be solved in time $\left.O^{*}\left(k^{2 k}(k+p)^{2 k}\right) ~ 2\right]$.

We note that the parameterized complexity of FGPPs has also been studied with respect to other parameters, such as the treewidth and the vertex cover number of G (see, e.g., 13|3|2]).
Contribution: Our main result is an $O^{*}\left(4^{k+o(k)} \Delta^{k}\right)$ time algorithm for the class of all FGPPs, answering affirmatively the question posed by Bonnet et al. [2] (see Section 2). In Section 3, we develop an $O^{*}\left(4^{p+o(p)}\right)$ time algorithm for Max $(k, n-k)$-Cut, that significantly improves the $O^{*}\left(p^{p}\right)$ running time obtained in [2]. We also obtain (in Section 4) an $O^{*}\left(2^{k+\frac{p}{\alpha_{2}}+o(k+p)}\right)$ time algorithm for the subclass of positive min-FGPPs, in which $\alpha_{1} \geq 0$ and $\alpha_{2}>0$. Finally, we develop (in Section 5) a faster algorithm for non-degarding positive min-FGPPs (i.e., min-FGPPs satisfying $\alpha_{2} \geq \frac{\alpha_{1}}{2}>0$). In particular, we thus solve Min k-VERTEX Cover in time $O^{*}\left(2^{p+o(p)}\right)$, improving the previous randomized $O^{*}\left(3^{p}\right)$ time algorithm.
Techniques: We obtain our main result by establishing an interesting reduction from non-degrading FGPPs to the Weighted k^{\prime}-Exact Cover (k^{\prime}-WEC) problem (see Section 2). Building on this reduction, combined with an algorithm for degrading FGPPs given in [2], and an algorithm for k^{\prime}-WEC given in [18, we develop an algorithm for any FGPP. To improve the running time of our algorithm, we use a fast construction of representative families 10 17].

In designing algorithms for FGPPs, parameterized by p or $(k+p)$, we use as a key tool randomized separation [5] (see Sections 35). Roughly speaking, randomized separation finds a 'good' partition of the nodes in the input graph G via randomized coloring of the nodes in red or blue. If a solution exists, then,

[^0]with some positive probability, there is a set X of only red nodes that is a solution, such that all the neighbors of nodes in X that are outside X are blue. Our algorithm for Max $(k, n-k)$-CuT makes non-standard use of randomized separation, in requiring that only some of the neighbors outside X of nodes in X are blue. This yields the desired improvement in the running time of our algorithm.

Our algorithm for non-degrading positive FGPPs is based on a somewhat different application of randomized separation, in which we randomly color edges rather than the nodes. If a solution exists, then, with some positive probability, there is a node-set X that is a solution, such that some edges between nodes in X are red, and all edges between nodes in X and nodes outside X are blue. In particular, we require that the subgraph induced by X, and the subgraph induced by X from which we delete all blue edges, contain the same connected components. We derandomize our algorithms using universal sets [16].
Notation: Given a graph $G=(V, E)$ and a subset $X \subseteq V$, let $E(X)$ denote the set of edges in E having both endpoints in X, and let $E(X, V \backslash X)$ denote the set of edges in E having exactly one endpoint in X. Moreover, given a subset $X \subseteq V$, let $\operatorname{val}(X)=\alpha_{1}|E(X)|+\alpha_{2}|E(X, V \backslash X)|$.

2 Solving FGPPs in Time $O^{*}\left(4^{k+o(k)} \Delta^{k}\right)$

In this section we develop an $O^{*}\left(4^{k+o(k)} \Delta^{k}\right)$ time algorithm for the class of all FGPPs. We use the following steps. In Section 2.1 we show that any nondegrading FGPP can be reduced to the Weighted k^{\prime}-Exact Cover (k^{\prime} WEC) problem, where $k^{\prime}=k$. Applying this reduction, we then show (in Section 2.2) how to decrease the size of instances of k^{\prime}-WEC, by using representative families. Finally, we show (in Section 2.3) how to solve any FGPP by using the results in Sections 2.1 and 2.2, an algorithm for k^{\prime}-WEC, and an algorithm for degrading FGPPs given in 2 .

2.1 From Non-Degrading FGPPs to \boldsymbol{k}^{\prime}-WEC

We show below that any non-degrading max-FGPP can be reduced to the maximization version of k^{\prime}-WEC. Given a universe U, a family \mathcal{S} of nonempty subsets of U, a function $w: \mathcal{S} \rightarrow \mathbb{R}$, and parameters $k^{\prime} \in \mathbb{N}$ and $p^{\prime} \in \mathbb{R}$, we seek a subfamily \mathcal{S}^{\prime} of disjoint sets from \mathcal{S} satisfying $\left|\bigcup \mathcal{S}^{\prime}\right|=k^{\prime}$ whose value, given by $\sum_{S \in \mathcal{S}^{\prime}} w(S)$, is at least p^{\prime}. Any non-degrading min-FGPP can be similarly reduced to the minimization version of k^{\prime}-WEC.

Let Π be a max-FGPP satisfying $\frac{\alpha_{1}}{2} \geq \alpha_{2}$. Given an instance $\mathcal{I}=(G=$ $(V, E), k, p)$ of Π, we define an instance $f(\mathcal{I})=\left(U, \mathcal{S}, w, k^{\prime}, p^{\prime}\right)$ of the maximization version of k^{\prime}-WEC as follows.

- $U=V$.
- $\mathcal{S}=\bigcup_{i=1}^{k} \mathcal{S}_{i}$, where \mathcal{S}_{i} contains the node-set of any connected subgraph of G on exactly i nodes.
$-\forall S \in \mathcal{S}: w(S)=\operatorname{val}(S)$.
$-k^{\prime}=k$, and $p^{\prime}=p$.
We illustrate the reduction in Figure 1 (see Appendix A). We first prove that our reduction is valid.

Lemma 1. \mathcal{I} is a yes-instance iff $f(\mathcal{I})$ is a yes-instance.
Proof. First, assume there is a subset $X \subseteq V$ of size k satisfying $\operatorname{val}(X) \geq p$. Let $G_{1}=\left(V_{1}, E_{1}\right), \ldots, G_{t}=\left(V_{t}, E_{t}\right)$, for some $1 \leq t \leq k$, be the maximal connected components in the subgraph of G induced by X. Then, for all $1 \leq \ell \leq t, V_{\ell} \in \mathcal{S}$. Moreover, $\sum_{\ell=1}^{t}\left|V_{\ell}\right|=|X|=k^{\prime}$, and $\sum_{\ell=1}^{t} w\left(V_{\ell}\right)=\operatorname{val}(X) \geq p^{\prime}$.

Now, assume there is a subfamily of disjoint sets $\left\{S_{1}, \ldots, S_{t}\right\} \subseteq \mathcal{S}$, for some $1 \leq t \leq k$, such that $\sum_{\ell=1}^{t}\left|S_{\ell}\right|=k^{\prime}$ and $\sum_{\ell=1}^{t} w\left(S_{\ell}\right) \geq p^{\prime}$. Thus, there are connected subgraphs $G_{1}=\left(V_{1}, E_{1}\right), \ldots, G_{t}=\left(V_{t}, E_{t}\right)$ of G, such that $V_{\ell}=S_{\ell}$, for all $1 \leq \ell \leq t$. Let $X_{\ell}=\bigcup_{j=\ell}^{t} V_{j}$, for all $1 \leq \ell \leq t$. Clearly, $\left|X_{1}\right|=k$. Since $\frac{\alpha_{1}}{2} \geq \alpha_{2}$, we get that

$$
\begin{aligned}
\operatorname{val}\left(X_{1}\right) & =\operatorname{val}\left(V_{1}\right)+\operatorname{val}\left(X_{2}\right)+\alpha_{1}\left|E\left(V_{1}, X_{2}\right)\right|-2 \alpha_{2}\left|E\left(V_{1}, X_{2}\right)\right| \\
& \geq \operatorname{val}\left(V_{1}\right)+\operatorname{val}\left(X_{2}\right) \\
& =\operatorname{val}\left(V_{1}\right)+\operatorname{val}\left(V_{2}\right)+\operatorname{val}\left(X_{3}\right)+\alpha_{1}\left|E\left(V_{2}, X_{3}\right)\right|-2 \alpha_{2}\left|E\left(V_{2}, X_{3}\right)\right| \\
& \geq \operatorname{val}\left(V_{1}\right)+\operatorname{val}\left(V_{2}\right)+\operatorname{val}\left(X_{3}\right) \\
& \cdots \\
& \geq \sum_{\ell=1}^{t} \operatorname{val}\left(V_{\ell}\right) .
\end{aligned}
$$

Thus, $\operatorname{val}\left(X_{1}\right) \geq \sum_{\ell=1}^{t} w\left(V_{\ell}\right) \geq p$.
We now bound the number of connected subgraphs in G.
Lemma 2 ([15]). There are at most $4^{i}(\Delta-1)^{i}|V|$ connected subgraphs of G on at most i nodes, which can be enumerated in time $O\left(4^{i}(\Delta-1)^{i}(|V|+|E|)|V|\right)$.

Thus, we have the next result.
Lemma 3. The instance $f(\mathcal{I})$ can be constructed in time $O\left(4^{k}(\Delta-1)^{k}(|V|+\right.$ $|E|)|V|)$. Moreover, for any $1 \leq i \leq k,\left|\mathcal{S}_{i}\right| \leq 4^{i}(\Delta-1)^{i}|V|$.

2.2 Decreasing the Size of Inputs for \boldsymbol{k}^{\prime}-WEC

In this section we develop a procedure, called Decrease, which decreases the size of an instance $\left(U, \mathcal{S}, w, k^{\prime}, p^{\prime}\right)$ of k^{\prime}-WEC. To this end, we find a subfamily $\widehat{\mathcal{S}} \subseteq \mathcal{S}$ that contains "enough" sets from \mathcal{S}, and thus enables to replace \mathcal{S} by $\widehat{\mathcal{S}}$ without turning a yes-instance to a no-instance. The following definition captures such a subfamily $\widehat{\mathcal{S}}$.

Definition 1. Given a universe E, nonnegative integers k and p, a family \mathcal{S} of subsets of size p of E, and a function $w: \mathcal{S} \rightarrow \mathbb{R}$, we say that a subfamily $\widehat{\mathcal{S}} \subseteq \mathcal{S} \max (\mathrm{min})$ represents \mathcal{S} if for any pair of sets $X \in \mathcal{S}$, and $Y \subseteq E \backslash X$ such that $|Y| \leq k-p$, there is a set $\widehat{X} \in \widehat{\mathcal{S}}$ disjoint from Y such that $w(\widehat{X}) \geq w(X)$ $(w(\widehat{X}) \leq w(X))$.

The following result states that small representative families can be computed efficiently ${ }^{2}$
Theorem 1 ([17]). Given a constant $c \geq 1$, a universe E, nonnegative integers k and p, a family \mathcal{S} of subsets of size p of E, and a function $w: \mathcal{S} \rightarrow \mathbb{R}$, a subfamily $\widehat{\mathcal{S}} \subseteq \mathcal{S}$ of size at most $\frac{(c k)^{k}}{p^{p}(c k-p)^{k-p}} 2^{o(k)} \log |E|$ that max (min) represents \mathcal{S} can be computed in time $O\left(\mathcal{S}\left|(c k /(c k-p))^{k-p} 2^{o(k)} \log \right| E|+|\mathcal{S}| \log | \mathcal{S} \mid\right)$.
We next consider the maximization version of k^{\prime}-WEC and max representative families. The minimization version of k^{\prime}-WEC can be similarly handled by using min representative families. Let $\operatorname{Rep} \operatorname{Alg}(E, k, p, \mathcal{S}, w)$ denote the algorithm in Theorem 1 where $c=2$, and let $\mathcal{S}_{i}=\{S \in \mathcal{S}:|S|=i\}$, for all $1 \leq i \leq k^{\prime}$.

We now present procedure Decrease (see the pseudocode below), which replaces each family \mathcal{S}_{i} by a family $\widehat{\mathcal{S}}_{i} \subseteq \mathcal{S}_{i}$ that represents \mathcal{S}_{i}. First, we state that procedure Decrease is correct (the proof is given in Appendix C).

```
Procedure Decrease \(\left(U, \mathcal{S}, w, k^{\prime}, p^{\prime}\right)\)
    for \(i=1,2, \ldots, k^{\prime}\) do \(\widehat{\mathcal{S}} i \Leftarrow \operatorname{RepAlg}\left(U, k^{\prime}, i, \mathcal{S}_{i}, w\right)\). end for
    \(\widehat{\mathcal{S}} \Leftarrow \bigcup_{i=1}^{k} \widehat{\mathcal{S}}_{i}\).
    return \(\left(U, \widehat{\mathcal{S}}, w, k^{\prime}, p^{\prime}\right)\).
```

Lemma 4. ($U, \mathcal{S}, w, k^{\prime}, p^{\prime}$) is a yes-instance iff $\left(U, \widehat{\mathcal{S}}, w, k^{\prime}, p^{\prime}\right)$ is a yes-instance.
Theorem 1 immediately implies the following result.
Lemma 5. Procedure Decrease runs in time $O\left(\sum_{i=1}^{k^{\prime}}\left(\left|\mathcal{S}_{i}\right|\left(\frac{2 k^{\prime}}{2 k^{\prime}-i}\right)^{k^{\prime}-i} 2^{o\left(k^{\prime}\right)} \log |U|\right.\right.$ $\left.\left.+\left|\mathcal{S}_{i}\right| \log \left|\mathcal{S}_{i}\right|\right)\right)$. Moreover, $|\widehat{\mathcal{S}}| \leq \sum_{i=1}^{k^{\prime}} \frac{\left(2 k^{\prime}\right)^{k^{\prime}}}{i^{i}\left(2 k^{\prime}-i\right)^{k^{\prime}-i}} 2^{o\left(k^{\prime}\right)} \log |U| \leq 2.5^{k^{\prime}+o\left(k^{\prime}\right)} \log |U|$.

2.3 An Algorithm for Any FGPP

We now present FGPPAIg, which solves any FGPP in time $O^{*}\left(4^{k+o(k)} \Delta^{k}\right)$. Assume w.l.o.g that $\Delta \geq 2$, and let $\operatorname{Deg} \operatorname{Alg}(G, k, p)$ denote the algorithm solving any degrading FGPP in time $O\left((\Delta+1)^{k+1}|V|\right)$, given in [2].

The algorithm given in Section 5 of [18] solves a problem closely related to k^{\prime}-WEC, and can be easily modified to solve k^{\prime}-WEC in time $O\left(2.851^{k^{\prime}}|\mathcal{S} \| U|\right.$. $\left.\log ^{2}|U|\right)$. We call this algorithm $\operatorname{WECAlg}\left(U, \mathcal{S}, w, k^{\prime}, p^{\prime}\right)$.

Let Π be an FGPP having parameters α_{1} and α_{2}. We now describe algorithm FGPPAlg (see the pseudocode below). First, if Π is a degrading FGPP, then FGPPAlg solves Π by calling DegAlg. Otherwise, by using the reduction f, FGPPAlg transforms the input into an instance of k^{\prime}-WEC. Then, FGPPAlg decreases the size of the resulting instance by calling the procedure Decrease. Finally, FGPPAlg solves Π by calling WECAIg.

[^1]```
Algorithm 1 FGPPAlg \((G=(V, E), k, p)\)
 if (\(\Pi\) is a max-FGPP and \(\frac{\alpha_{1}}{2} \leq \alpha_{2}\)) or (\(\Pi\) is a min-FGPP and \(\frac{\alpha_{1}}{2} \geq \alpha_{2}\)) then
 accept iff \(\operatorname{Deg} \operatorname{Alg}(G, k, p)\) accepts.
 end if
 \(\left(U, \mathcal{S}, w, k^{\prime}, p^{\prime}\right) \Leftarrow f(G, k, p)\).
 \(\left(U, \widehat{\mathcal{S}}, w, k^{\prime}, p^{\prime}\right) \Leftarrow \operatorname{Decrease}\left(U, \mathcal{S}, w, k^{\prime}, p^{\prime}\right)\).
 accept iff WECAIg \(\left(U, \widehat{\mathcal{S}}, w, k^{\prime}, p^{\prime}\right)\) accepts.
```

Theorem 2. Algorithm FGPPAlg solves $\Pi$ in time $O\left(4^{k+o(k)} \Delta^{k}(|V|+|E|)|V|\right)$.
Proof. The correctness of the algorithm follows immediately from Lemmas 1 and 4 , and the correctness of DegAlg and WECAIg.

By Lemmas 3 and 5, and the running times of DegAlg and WECAlg, algorithm FGPPAlg runs in time

$$
\begin{aligned}
& O\left(4^{k}(\Delta-1)^{k}(|V|+|E|)|V|+\sum_{i=1}^{k}\left(4^{i}(\Delta-1)^{i}|V|\left(\frac{2 k}{2 k-i}\right)^{k-i} 2^{o(k)} \log |V|\right)\right. \\
& \left.+2.851^{k} 2.5^{k+o(k)}|V| \log ^{3}|V|\right) \\
= & O\left(4^{k} \Delta^{k}(|V|+|E|)|V|+2^{o(k)}|V| \log |V|\left[\max _{0 \leq \alpha \leq 1}\left\{4^{\alpha} \Delta^{\alpha}\left(\frac{2}{2-\alpha}\right)^{1-\alpha}\right\}\right]^{k}\right) \\
= & O\left(4^{k} \Delta^{k}(|V|+|E|)|V|+4^{k+o(k)} \Delta^{k}|V| \log |V|\right) \\
= & O\left(4^{k+o(k)} \Delta^{k}(|V|+|E|)|V|\right)
\end{aligned}
$$

## 3 Solving Max ( $k, n-k)$ Cut in Time $O^{*}\left(4^{p+o(p)}\right)$

We give below an $O^{*}\left(4^{p+o(p)}\right)$ time algorithm for Max $(k, n-k)$ Cut. In Section 3.1 we show that it suffices to consider an easier variant of Max $(k, n-k)$ Cut, that we call NC-MAx $(k, n-k)$-Cut. We solve this variant in Section 3.2 Finally, our algorithm for Max $(k, n-k)$ Cut is given in Section 3.3 .

### 3.1 Simplifying Max $(\boldsymbol{k}, \boldsymbol{n}-\boldsymbol{k})$ Cut

We first define an easier variant of Max $(k, n-k)$ Cut. Given a graph $G=(V, E)$ in which each node is either red or blue, and positive integers $k$ and $p$, NC-MAx $(k, n-k)$-CuT asks if there is a subset $X \subseteq V$ of exactly $k$ red nodes and no blue nodes, such that at least $p$ edges in $E(X, V \backslash X)$ have a blue endpoint.

Given an instance $(G, k, p)$ of Max $(k, n-k)$ Cut, we perform several iterations of coloring the nodes in $G$; thus, if $(G, k, p)$ is a yes-instance, we generate at least one yes-instance of NC-MAx $(k, n-k)$-Cut. To determine how to color the nodes in $G$, we need the following definition of universal sets.
Definition 2. Let $\mathcal{F}$ be a set of functions $f:\{1,2, \ldots, n\} \rightarrow\{0,1\}$. We say that $\mathcal{F}$ is an $(n, t)$-universal set if for every subset $I \subseteq\{1,2, \ldots, n\}$ of size $t$ and a function $f^{\prime}: I \rightarrow\{0,1\}$, there is a function $f \in \mathcal{F}$ such that for all $i \in I, f(i)=f^{\prime}(i)$.
The following result asserts that small universal sets can be computed efficiently.
Lemma 6 ([16]). There is an algorithm, UniSetAlg, that given a pair of integers $(n, t)$, computes an $(n, t)$-universal set $\mathcal{F}$ of size $2^{t+o(t)} \log n$ in time $O\left(2^{t+o(t)} n \log n\right)$.

We now present ColorNodes (see the pseudocode below), a procedure that given an input $(G, k, p, q)$, where $(G, k, p)$ is an instance of MAx $(k, n-k)$ Cut and $q=$ $k+p$, returns a set of instances of NC-MAx $(k, n-k)$-Cut. Procedure ColorNodes first constructs a $(|V|, k+p)$-universal set $\mathcal{F}$. For each $f \in \mathcal{F}$, ColorNodes generates a colored copy $V^{f}$ of $V$. Then, ColorNodes returns a set $\mathcal{I}$, including the resulting instances of NC-MAx $(k, n-k)$-Cut.

```
Procedure ColorNodes \((G=(V, E), k, p, q)\)
 let \(V=\left\{v_{1}, v_{2}, \ldots, v_{|V|}\right\}\).
 \(\mathcal{F} \Leftarrow\) UniSetAlg \((|V|, q)\).
 for all \(f \in \mathcal{F}\) do
 let \(V^{f}=\left\{v_{1}^{f}, v_{2}^{f}, \ldots, v_{|V|}^{f}\right\}\), where \(v_{i}^{f}\) is a copy of \(v_{i}\).
 for \(i=1,2, \ldots,|V|\) do
 if \(f(i)=0\) then color \(v_{i}^{f}\) red. else color \(v_{i}^{f}\) blue. end if
 end for
 end for
 return \(\mathcal{I}=\left\{\left(G_{f}=\left(V_{f}, E\right), k, p\right): f \in \mathcal{F}\right\}\).
```

The next lemma states the correctness of procedure ColorNodes.
Lemma 7. An instance ( $G, k, p$ ) of Max $(k, n-k)$-CuT is a yes-instance iff ColorNodes $(G, k, p, k+p)$ returns a set $\mathcal{I}$ containing at least one yes-instance of NC-MAx $(k, n-k)$-Cut.
Proof. If $(G, k, p)$ is a no-instance of Max $(k, n-k)$-Cut, then clearly, for any coloring of the nodes in $V$, we get a no-instance of NC-MAx $(k, n-k)$-Cut. Next suppose that $(G, k, p)$ is a yes-instance, and let $X$ be a set of $k$ nodes in $V$ such that $|E(X, V \backslash X)| \geq p$. Note that there is a set $Y$ of at most $p$ nodes in $V \backslash X$ such that $|E(X, Y)| \geq p$. Let $X^{\prime}$ and $Y^{\prime}$ denote the indices of the nodes in $X$ and $Y$, respectively. Since $\mathcal{F}$ is a $(|V|, k+p)$-universal set, there is $f \in \mathcal{F}$ such that: (1) for all $i \in X^{\prime}, f(i)=0$, and (2) for all $i \in Y^{\prime}, f(i)=1$. Thus, in $G_{f}$, the copies of the nodes in $X$ are red, and the copies of the nodes in $Y$ are blue. We get that $\left(G_{f}, k, p\right)$ is a yes-instance of NC-MAx $(k, n-k)$-Cut.
Furthermore, Lemma 6 immediately implies the following result.
Lemma 8. Procedure ColorNodes runs in time $O\left(2^{q+o(q)}|V| \log |V|\right)$, and returns a set $\mathcal{I}$ of size $O\left(2^{q+o(q)} \log |V|\right)$.

### 3.2 A Procedure for NC-MAX $(\boldsymbol{k}, \boldsymbol{n}-\boldsymbol{k})$-CuT

We now present SolveNCMaxCut, a procedure for solving NC-MAx $(k, n-k)$-Cut (see the pseudocode below). Procedure SolveNCMaxCut orders the red nodes in $V$ according to the number of their blue neighbors in a non-increasing manner. If there are at least $k$ red nodes, and the number of edges between the first $k$ red nodes and blue nodes is at least $p$, procedure SolveNCMaxCut accepts; otherwise, procedure SolveNCMaxCut rejects.

Clearly, the following result concerning SolveNCMaxCut is correct.
Lemma 9. Procedure SolveNCMaxCut solves NC-MAx $(k, n-k)$-Cut in time $O(|V| \log |V|+|E|)$.

```
Procedure SolveNCMaxCut \((G=(V, E), k, p)\)
 for all red \(v \in V\) do compute the number \(n_{b}(v)\) of blue neighbors of \(v\) in \(G\). end for
 let \(v_{1}, v_{2}, \ldots, v_{r}\), for some \(0 \leq r \leq|V|\), denote the red nodes in \(V\), such that
 \(n_{b}\left(v_{i}\right) \geq n_{b}\left(v_{i+1}\right)\) for all \(1 \leq i \leq r-1\).
 accept iff \(\left(r \geq k\right.\) and \(\left.\sum_{i=1}^{k} n_{b}\left(v_{i}\right) \geq p\right)\).
```


### 3.3 An Algorithm for Max ( $\boldsymbol{k}, \boldsymbol{n}-\boldsymbol{k}$ ) Cut

Assume w.l.o.g that $G$ has no isolated nodes. Our algorithm, MaxCutAlg, for Max $(k, n-k)$ Cut, proceeds as follows. First, if $p<\min \{k,|V|-k\}$, then MaxCutAlg accepts, and if $|V|-k<k$, then MaxCutAlg calls itself with $|V|-k$ instead of $k$. Then, MaxCutAlg calls ColorNodes to compute a set of instances of NC-MAx $(k, n-k)$-Cut, and accepts iff SolveNCMaxCut accepts at least one of them.

```
Algorithm 2 MaxCutAlg \((G=(V, E), k, p)\)
 if \(p<\min \{k,|V|-k\}\) then accept. end if
 if \(|V|-k<k\) then accept iff \(\operatorname{MaxCutAlg}(G,|V|-k, p)\) accepts. end if
 \(\mathcal{I} \Leftarrow \operatorname{ColorNodes}(G, k, p, k+p)\).
 for all \(\left(G^{\prime}, k^{\prime}, p^{\prime}\right) \in \mathcal{I}\) do
 if SolveNCMaxCut \(\left(G^{\prime}, k^{\prime}, p^{\prime}\right)\) accepts then accept. end if
 end for
 reject.
```

The next lemma implies the correctness of Step 1 in MaxCutAlg.
Lemma 10 ([2]). In a graph $G=(V, E)$ having no isolated nodes, there is a subset $X \subseteq V$ of size $k$ such that $|E(X, V \backslash X)| \geq \min \{k,|V|-k\}$.

Our main result is the following.
Theorem 3. Algorithm MaxCutAlg solves Max $(k, n-k)$ Cut in time $O\left(4^{p+o(p)}\right.$. $\left.(|V|+|E|) \log ^{2}|V|\right)$.

Proof. Clearly, $(G, k, p)$ is a yes-instance iff $(G,|V|-k, p)$ is a yes-instance. Thus, Lemmas 7.9 and 10 immediately imply the correctness of MaxCutAlg.

Denote $m=\min \{k,|V|-k\}$. If $p<m$, then MaxCutAlg runs in time $O(1)$. Next suppose that $p \geq m$. Then, by Lemmas 8 and 9 , MaxCutAlg runs in time $O\left(2^{m+p+o(m+p)}(|V|+|E|) \log ^{2}|V|\right)=O\left(4^{p+o(p)}(|V|+|E|) \log ^{2}|V|\right)$.

## 4 Solving Positive Min-FGPPs in Time $O^{*}\left(2^{k+\frac{p}{\alpha_{2}}+o(k+p)}\right)$

Let $\Pi$ be a min-FGPP satisfying $\alpha_{1} \geq 0$ and $\alpha_{2}>0$. In this section we develop an $O^{*}\left(2^{k+\frac{p}{\alpha_{2}}+o(k+p)}\right)$ time algorithm for $\Pi$. Using randomized separation, we show in Section 4.1 that we can focus on an easier version of $\Pi$. We solve this version in Section 4.2, using dynamic programming. Then, Section 4.3 gives our algorithm.

### 4.1 Simplifying the Positive Min-FGPP $\Pi$

We first define an easier variant of $\Pi$. Given a graph $G=(V, E)$ in which each node is either red or blue, and parameters $k \in \mathbb{N}$ and $p \in \mathbb{R}, N C-\Pi$ asks if there is a subset $X \subseteq V$ of exactly $k$ red nodes and no blue nodes, whose neighborhood outside $X$ includes only blue nodes, such that $\operatorname{val}(X) \leq p$.

The simplification process is similar to that performed in Section 3.1. However, we now use the randomized separation procedure ColorNodes, defined in Section 3.1, with instances of $\Pi$, and consider the set $\mathcal{I}$ returned by ColorNodes as a set of instances of $\mathrm{NC}-\Pi$. We next prove that ColorNodes is correct.

Lemma 11. An instance ( $G, k, p$ ) of $\Pi$ is a yes-instance iff ColorNodes $(G, k, p, k+$ $\left.\frac{p}{\alpha_{2}}\right)$ returns a set $\mathcal{I}$ containing at least one yes-instance of $\mathrm{NC}-\Pi$.

Proof. If $(G, k, p)$ is a no-instance of $\Pi$, then clearly, for any coloring of the nodes in $V$, we get a no-instance of $\mathrm{NC}-\Pi$. Next suppose that $(G, k, p)$ is a yesinstance, and let $X$ be a set of $k$ nodes in $V$ such that $\operatorname{val}(X) \leq p$. Let $Y$ denote the neighborhood of $X$ outside $X$. Note that $|Y| \leq \frac{p}{\alpha_{2}}$. Let $X^{\prime}$ and $Y^{\prime}$ denote the indices of the nodes in $X$ and $Y$, respectively. Since $\mathcal{F}$ is a $\left(|V|, k+\frac{p}{\alpha_{2}}\right)$-universal set, there is $f \in \mathcal{F}$ such that: (1) for all $i \in X^{\prime}, f(i)=0$, and (2) for all $i \in Y^{\prime}$, $f(i)=1$. Thus, in $G_{f}$, the copies of the nodes in $X$ are red, and the copies of the nodes in $Y$ are blue. We get that $\left(G_{f}, k, p\right)$ is a yes-instance of NC- $\Pi$.

### 4.2 A Procedure for NC - $\boldsymbol{\Pi}$

We now present SolveNCP, a dynamic programming-based procedure for solving NC- $\Pi$ (see the pseudocode below). Procedure SolveNCP first computes the nodesets of the maximal connected red components in $G$. Then, procedure SolveNCP generates a matrix M , where each entry $[i, j]$ holds the minimum value $\operatorname{val}(X)$ of a subset $X \subseteq V$ in $S o l_{i, j}$, the family containing every set of exactly $j$ nodes in $V$ obtained by choosing a union of sets in $\left\{C_{1}, C_{2} \ldots, C_{i}\right\}$, i.e., $S o l_{i, j}=\left\{\left(\bigcup \mathcal{C}^{\prime}\right)\right.$ : $\left.\mathcal{C}^{\prime} \subseteq\left\{C_{1}, C_{2}, \ldots, C_{i}\right\},\left|\bigcup \mathcal{C}^{\prime}\right|=j\right\}$. Procedure SolveNCP computes M by using dynamic programming, assuming an access to a non-existing entry returns $\infty$, and accepts iff $\mathrm{M}[t, k] \leq p$.

```
Procedure SolveNCP \((G=(V, E), k, p)\)
 use DFS to compute the family \(\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{t}\right\}\), for some \(0 \leq t \leq|V|\), of the
 node-sets of the maximal connected red components in \(G\).
 let M be a matrix containing an entry \([i, j]\) for all \(0 \leq i \leq t\) and \(0 \leq j \leq k\).
 initialize \(\mathrm{M}[i, 0] \Leftarrow 0\) for all \(0 \leq i \leq t\), and \(\mathrm{M}[0, j] \Leftarrow \infty\) for all \(1 \leq j \leq k\).
 for \(i=1,2, \ldots, t\), and \(j=1,2, \ldots, k\) do
 \(\mathrm{M}[i, j] \Leftarrow \min \left\{\mathrm{M}[i-1, j], \mathrm{M}\left[i-1, j-\left|C_{i}\right|\right]+\operatorname{val}\left(C_{i}\right)\right\}\).
 end for
 accept iff \(\mathrm{M}[t, k] \leq p\).
```

The following lemma states the correctness and running time of SolveNCP.
Lemma 12. Procedure SolveNCP solves NC- $\Pi$ in time $O(|V| k+|E|)$.

Proof. For all $0 \leq i \leq t$ and $0 \leq j \leq k$, denote $\operatorname{val}(i, j)=\min _{X \in S o l_{i, j}}\{\operatorname{val}(X)\}$. Using a simple induction on the computation of M , we get that $\mathrm{M}[i, j]=\operatorname{val}(i, j)$. Since $(G, k, p)$ is a yes-instance of NC- $\Pi$ iff $\operatorname{val}(t, k) \leq p$, we have that SolveNCP is correct. Step 1, and the computation of $\operatorname{val}(C)$ for all $C \in \mathcal{C}$, are performed in time $O(|V|+|E|)$. Since M is computed in time $O(|V| k)$, we have that SolveNCP runs in time $O(|V| k+|E|)$.

### 4.3 An Algorithm for $\Pi$

We now conclude PAlg, our algorithm for $\Pi$ (see the pseudocode below). Algorithm PAlg calls ColorNodes to compute several instances of NC- $\Pi$, and accepts iff SolveNCP accepts at least one of them.

```
Algorithm \(3 \operatorname{PAlg}(G=(V, E), k, p)\)
 \(\mathcal{I} \Leftarrow \operatorname{ColorNodes}\left(G, k, p, k+\frac{p}{\alpha_{2}}\right)\).
 for all \(\left(G^{\prime}, k^{\prime}, p^{\prime}\right) \in \mathcal{I}\) do
 if SolveNCP \(\left(G^{\prime}, k^{\prime}, p^{\prime}\right)\) accepts then accept. end if
 end for
 reject.
```

By Lemmas 8,11 and 12 , we have the following result.
Theorem 4. Algorithm PAlg solves $\Pi$ in time $O\left(2^{k+\frac{p}{\alpha_{2}}+o(k+p)}(|V|+|E|) \log |V|\right)$.

## 5 Solving a Subclass of Positive Min-LGPPs Faster

Let $\Pi$ be a min-FGPP satisfying $\alpha_{2} \geq \frac{\alpha_{1}}{2}>0$. Denote $x=\max \left\{\frac{p}{\alpha_{2}}, \min \left\{\frac{p}{\alpha_{1}}, \frac{p}{\alpha_{2}}+\right.\right.$ $\left.\left.\left(1-\frac{\alpha_{1}}{\alpha_{2}}\right) k\right\}\right\}$. In this section we develop an $O^{*}\left(2^{x+o(x)}\right)$ time algorithm for $\Pi$, that is faster than the algorithm in Section 4. Applying a divide-and-conquer step to the edges in the input graph $G$, Section 5.1 shows that we can focus on an easier version of $\Pi$. This version is solved in Section 5.2 by using dynamic programming. We give the algorithm in Section 5.3

### 5.1 Simplifying the Non-Degrading Positive Min-FGPP $\Pi$

We first define an easier variant of $\Pi$. Suppose we are given a graph $G=(V, E)$ in which each edge is either red or blue, and parameters $k \in \mathbb{N}$ and $p \in \mathbb{R}$. For any subset $X \subseteq V$, let $\mathrm{C}(X)$ denote the family containing the node-sets of the maximal connected components in the graph $G_{r}=\left(X, E_{r}\right)$, where $E_{r}$ is the set of red edges in $E$ having both endpoints in $X$. Also, let $\operatorname{val}^{*}(X)=\sum_{C \in \mathrm{C}(X)} \operatorname{val}(C)$. The variant EC- $\Pi$ asks if there is a subset $X \subseteq V$ of exactly $k$ nodes, such that all the edges in $E(X, V \backslash X)$ are blue, and $\operatorname{val}^{*}(X) \leq p$.

We now present a procedure, called ColorEdges (see the pseudocode below), whose input is an instance ( $G, k, p$ ) of $\Pi$. Procedure ColorEdges uses a universal set to perform several iterations coloring the edges in $G$, and then returns the resulting set of instances of EC- П.

The following lemma states the correctness of ColorEdges.

```
Procedure ColorEdges \((G=(V, E), k, p)\)
 let \(E=\left\{e_{1}, e_{2}, \ldots, e_{|E|}\right\}\).
 \(\mathcal{F} \Leftarrow \operatorname{UniSetAlg}(|E|, x)\).
 for all \(f \in \mathcal{F}\) do
 let \(E^{f}=\left\{e_{1}^{f}, e_{2}^{f}, \ldots, e_{|E|}^{f}\right\}\), where \(e_{i}^{f}\) is a copy of \(e_{i}\).
 for \(i=1,2, \ldots,|E|\) do
 if \(f(i)=0\) then color \(e_{i}^{f}\) red. else color \(e_{i}^{f}\) blue. end if
 end for
 end for
 return \(\mathcal{I}=\left\{\left(G_{f}=\left(V, E_{f}\right), k, p\right): f \in \mathcal{F}\right\}\).
```

Lemma 13. An instance ( $G, k, p$ ) of $\Pi$ is a yes-instance iff ColorEdges ( $G, k, p$ ) returns a set $\mathcal{I}$ containing at least one yes-instance of $\mathrm{EC}-\Pi$.
Proof. Since $\alpha_{2} \geq \frac{\alpha_{1}}{2}, \operatorname{val}^{*}(X) \geq \operatorname{val}(X)$ for any set $X \subseteq V$ and coloring of edges in $E$. Thus, if $(G, k, p)$ is a no-instance of $\Pi$, then clearly, for any coloring of edges in $E$, we get a no-instance of EC- $\Pi$. Next suppose that $(G, k, p)$ is a yesinstance, and let $X$ be a set of $k$ nodes in $V$ such that $\operatorname{val}(X) \leq p$. Let $\widetilde{E}_{r}=E(X)$, and $E_{b}=E(X, V \backslash X)$. Also, choose a minimum-size subset $E_{r} \subseteq \widetilde{E}_{r}$ such that the graphs $G_{r}^{\prime}=\left(X, \widetilde{E}_{r}\right)$ and $G_{r}=\left(X, E_{r}\right)$ contain the same set of maximal connected components. Let $E_{r}^{\prime}$ and $E_{b}^{\prime}$ denote the indices of the edges in $E_{r}$ and $E_{b}$, respectively. Note that $\left|E_{r}^{\prime}\right|+\left|E_{b}^{\prime}\right| \leq x$. Since $\mathcal{F}$ is an $(|E|, x)$-universal set, there is $f \in \mathcal{F}$ such that: (1) for all $i \in E_{r}^{\prime}, f(i)=0$, and (2) for all $i \in E_{b}^{\prime}, f(i)=1$. Thus, in $G_{f}$, the copies of the edges in $E_{r}$ are red, and the copies of the edges in $E_{b}$ are blue. Then, $\operatorname{val}^{*}(X)=\operatorname{val}(X)$. We get that $\left(G_{f}, k, p\right)$ is a yes-instance of $\mathrm{EC}-\Pi$.

Furthermore, Lemma 6 immediately implies the following result.
Lemma 14. Procedure ColorEdges runs in time $O\left(2^{x+o(x)}|E| \log |E|\right)$, and returns a set $\mathcal{I}$ of size $O\left(2^{x+o(x)} \log |E|\right)$.

### 5.2 A Procedure for EC- $\boldsymbol{\Pi}$

By modifying the procedure given in Section 4.2, we get a procedure, called SolveECP, satisfying the following result (see Appendix B).
Lemma 15. Procedure SolveECP solves EC- $\Pi$ in time $O(|V| k+|E|)$.

### 5.3 A Faster Algorithm for $\Pi$

Our faster algorithm for $\Pi$, FastPAlg, calls ColorEdges to compute several instances of EC- $\Pi$, and accepts iff SolveECP accepts at least one of them (see the pseudocode below).

By Lemmas 13,14 and 15 , we have the following result.
Theorem 5. Algorithm FastPAlg solves $\Pi$ in time $O\left(2^{x+o(x)}(|V| k+|E|) \log |E|\right)$.
Since Min $k$-Vertex Cover satisfies $\alpha_{1}=\alpha_{2}=1$, we have the following result.
Corollary 1. Algorithm FastPAlg solves Min $k$-Vertex Cover in time $O\left(2^{p+o(p)}(|V| k+|E|) \log |E|\right)$.

```
Algorithm 4 FastPAlg \((G=(V, E), k, p)\)
 \(\mathcal{I} \Leftarrow \operatorname{ColorEdges}(G, k, p)\).
 for all \(\left(G^{\prime}, k^{\prime}, p^{\prime}\right) \in \mathcal{I}\) do
 if SolveECP \(\left(G^{\prime}, k^{\prime}, p^{\prime}\right)\) accepts then accept. end if
 end for
 reject.
```


## References

1. Berkhin, P.: A survey of clustering data mining techniques. Grouping Multidimensional Data Recent Advances in Clustering, Eds. J. Kogan and C. Nicholas and M. Teboulle pp. 25-71 (2006)
2. Bonnet, E., Escoffier, B., Paschos, V.T., Tourniaire, E.: Multi-parameter complexity analysis for constrained size graph problems: using greediness for parameterization. In: IPEC. pp. 66-77 (2013)
3. Bourgeois, N., Giannakos, A., Lucarelli, G., Milis, I., Paschos, V.T.: Exact and approximation algorithms for densest $k$-subgraph. In: IPEC. pp. 66-77 (2013)
4. Cai, L.: Parameterized complexity of cardinality constrained optimization problemss. Comput. J. 51(1), 102-121 (2008)
5. Cai, L., Chan, S.M., Chan, S.O.: Random separation: A new method for solving fixed-cardinality optimization problems. In: IPEC. pp. 239-250 (2006)
6. Cygan, M., Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Minimum bisection is fixed parameter tractable. In: STOC (2014, to appear)
7. Donavalli, A., Rege, M., Liu, X., Jafari-Khouzani, K.: Low-rank matrix factorization and co-clustering algorithms for analyzing large data sets. In: ICDEM. pp. 272-279 (2010)
8. Downey, R.G., Estivill-Castro, V., Fellows, M.R., Prieto, E., Rosamond, F.A.: Cutting up is hard to do: the parameterized complexity of $k$-cut and related problems. Electr. Notes Theor. Comput. Sci. 78, 209-222 (2003)
9. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness II: on completeness for W[1]. Theor. Comput. Sci. 141(1\&2), 109-131 (1995)
10. Fomin, F.V., Lokshtanov, D., Saurabh, S.: Efficient computation of representative sets with applications in parameterized and exact agorithms. In: SODA. pp. 142151 (2014)
11. Guo, J., Niedermeier, R., Wernicke, S.: Parameterized complexity of vertex cover variants. Theory Comput. Syst. 41(3), 501-520 (2007)
12. Kahng, A.B., Lienig, J., Markov, I.L., Hu, J.: VLSI Physical Design - From Graph Partitioning to Timing Closure. Springer (2011)
13. Kloks, T.: Treewidth, computations and approximations. LNCS 842, Springer (1994)
14. Kneis, J., Langer, A., Rossmanith, P.: Improved upper bounds for partial vertex cover. In: WG. pp. 240-251 (2008)
15. Komusiewicz, C., Sorge, M.: Finding dense subgraphs of sparse graphs. In: IPEC. pp. 242-251 (2012)
16. Naor, M., Schulman, L.J., Srinivasan, A.: Splitters and near-optimal derandomization. In: FOCS. pp. 182-191 (1995)
17. Shachnai, H., Zehavi, M.: Faster computation of representative families for uniform matroids with applications. CoRR abs/1402.3547 (2014)
18. Zehavi, M.: Deterministic parameterized algorithms for matching and packing problems. CoRR abs/1311.0484 (2013)

## A An Illustration of the Reduction $f$

$$
\begin{aligned}
& \begin{array}{l}
G \\
f \text {, }
\end{array}, \begin{array}{l}
v_{1} \\
v_{3}
\end{array} \\
& \begin{array}{l}
v_{2}=1, \alpha_{2}=0.25 \\
\mathcal{v}_{5}=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}, k^{\prime}=2, p^{\prime}=1.5 \\
\mathcal{S}_{1}=\left\{\left\{v_{1}\right\},\left\{v_{2}\right\},\left\{v_{3}\right\},\left\{v_{4}\right\},\left\{v_{5}\right\}\right\} \\
w\left(\left\{v_{1}\right\}\right)=w\left(\left\{v_{2}\right\}\right)=0.25, w\left(\left\{v_{3}\right\}\right)=w\left(\left\{v_{4}\right\}\right)=w\left(\left\{v_{5}\right\}\right)=0.5 \\
\mathcal{S}_{2}=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{3}, v_{4}\right\},\left\{v_{3}, v_{5}\right\},\left\{v_{4}, v_{5}\right\}\right\} \\
w\left(\left\{v_{1}, v_{2}\right\}\right)=1, \\
w\left(\left\{v_{3}, v_{4}\right\}\right)=w\left(\left\{v_{3}, v_{5}\right\}\right)=w\left(\left\{v_{4}, v_{5}\right\}\right)=1.5
\end{array} \\
& \hline
\end{aligned}
$$

Fig. 1. An illustration of the reduction $f$, given in Section 2.1.

## B A Procedure for EC- $\boldsymbol{\Pi}$ (Cont.)

We now present the details of procedure SolveECP (see the pseudocode below). Procedure SolveECP first computes the node-sets of the maximal connected components in the graph obtained by removing all the blue edges from $G$. Then, procedure SolveECP generates a matrix M, where each entry $[i, j]$ holds the minimum value $\operatorname{val}^{*}(X)$ of a subset $X \subseteq V$ in $S o l_{i, j}$, the family containing every set of exactly $j$ nodes in $V$ obtained by choosing a union of sets in $\left\{C_{1}, C_{2} \ldots, C_{i}\right\}$, i.e., $\operatorname{Sol}_{i, j}=\left\{\left(\bigcup \mathcal{C}^{\prime}\right): \mathcal{C}^{\prime} \subseteq\left\{C_{1}, C_{2}, \ldots, C_{i}\right\},\left|\bigcup \mathcal{C}^{\prime}\right|=j\right\}$. Procedure SolveNCP computes M by using dynamic programming, assuming an access to a non-existing entry returns $\infty$, and accepts iff $\mathrm{M}[t, k] \leq p$.

```
Procedure SolveECP \((G=(V, E), k, p)\)
 1: use DFS to compute the family \(\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{t}\right\}\), for some \(0 \leq t \leq|V|\), of the
 node-sets of the maximal connected components in the graph obtained by removing
 all the blue edges from \(G\).
 let M be a matrix containing an entry \([i, j]\) for all \(0 \leq i \leq t\) and \(0 \leq j \leq k\).
 initialize \(\mathrm{M}[i, 0] \Leftarrow 0\) for all \(0 \leq i \leq t\), and \(\mathrm{M}[0, j] \Leftarrow \infty\) for all \(1 \leq j \leq k\).
 for \(i=1,2, \ldots, t\), and \(j=1,2, \ldots, k\) do
 \(\mathrm{M}[i, j] \Leftarrow \min \left\{\mathrm{M}[i-1, j], \mathrm{M}\left[i-1, j-\left|C_{i}\right|\right]+\operatorname{val}^{*}\left(C_{i}\right)\right\}\).
 end for
 accept iff \(\mathrm{M}[t, k] \leq p\).
```

We next prove the correctness of Lemma 15
Proof. For all $0 \leq i \leq t$ and $0 \leq j \leq k$, denote $\operatorname{val}(i, j)=\min _{X \in \operatorname{Sol}_{i, j}}\left\{\operatorname{val}^{*}(X)\right\}$. Using a simple induction on the computation of M , we get that $\mathrm{M}[i, j]=\operatorname{val}(i, j)$.

Since $(G, k, p)$ is a yes-instance of $\mathrm{EC}-\Pi \operatorname{iff} \operatorname{val}(t, k) \leq p$, we have that SolveECP is correct. Step 11 and the computation of val* $(C)$ for all $C \in \mathcal{C}$, are performed in time $O(|V|+|E|)$. Since M is computed in time $O(|V| k)$, we have that SolveECP runs in time $O(|V| k+|E|)$.

## C Some Proofs

Proof of lemma 4. First, assume that $\left(U, \mathcal{S}, w, k^{\prime}, p^{\prime}\right)$ is a yes-instance. Let $\mathcal{S}^{\prime}$ be a subfamily of disjoint sets from $\mathcal{S}$, such that $\left|\bigcup \mathcal{S}^{\prime}\right|=k^{\prime}, \sum_{S \in \mathcal{S}^{\prime}} w(S) \geq p^{\prime}$, and there is no subfamily $\mathcal{S}^{\prime \prime}$ satisfying these conditions, and $\left|\mathcal{S}^{\prime} \cap \widehat{\mathcal{S}}\right|<\left|\mathcal{S}^{\prime \prime} \cap \widehat{\mathcal{S}}\right|$. Suppose, by way of contradiction, that there is a set $S \in\left(\mathcal{S}_{i} \cap \mathcal{S}^{\prime}\right) \backslash \widehat{\mathcal{S}}$, for some $1 \leq i \leq k^{\prime}$. By Theorem 1, there is a set $\widehat{S} \in \widehat{\mathcal{S}}_{i}$ such that $w(\widehat{S}) \geq w(S)$, and $\widehat{S} \cap S^{\prime}=\emptyset$, for all $S^{\prime} \in \mathcal{S}^{\prime} \backslash\{S\}$. Thus, $\mathcal{S}^{\prime \prime}=\left(\mathcal{S}^{\prime} \backslash\{S\}\right) \cup\{\widehat{S}\}$ is a solution to $\left(U, \mathcal{S}, w, k^{\prime}, p^{\prime}\right)$. Since $\left|\mathcal{S}^{\prime} \cap \widehat{\mathcal{S}}\right|<\left|\mathcal{S}^{\prime \prime} \cap \widehat{\mathcal{S}}\right|$, this is a contradiction.

Now, assume that $\left(U, \widehat{\mathcal{S}}, w, k^{\prime}, p^{\prime}\right)$ is a yes-instance. Since $\widehat{\mathcal{S}} \subseteq \mathcal{S}$, we immediately get that $\left(U, \mathcal{S}, w, k^{\prime}, p^{\prime}\right)$ is also a yes-instance.


[^0]:    ${ }^{1}$ A max-FGPP (min-FGPP) is non-degrading if $\alpha_{1} / 2 \geq \alpha_{2}\left(\alpha_{1} / 2 \leq \alpha_{2}\right)$.

[^1]:    ${ }^{2}$ This result builds on a powerful construction technique for representative families presented in 10.

