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Abstract
We show an algorithm for dynamic maintenance of connectivity information in an undirected
planar graph subject to edge deletions. Our algorithm may answer connectivity queries of the
form ‘Are vertices u and v connected with a path?’ in constant time. The queries can be
intermixed with any sequence of edge deletions, and the algorithm handles all updates in O(n)
time. This results improves over previously known O(n logn) time algorithm.
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1 Introduction

The dynamic graph connectivity problem consists in maintaining connectivity information
about an undirected graph, which is undergoing modifications. Typically, the modifications
are additions or removals of edges or vertices. In this paper we focus on the problems in
which each modification adds or removes a single edge. These problems have three variants:
in the incremental version, edges can only be added to the graph, in the decremental one
the edges may only be removed, whereas in the fully dynamic version both edge insertions
and deletions are allowed. Graph updates are intermixed with a set of connectivity queries
of the form ‘Are vertices u and w in the same connected component?’

We consider the decremental connectivity problem for planar graphs, and show an al-
gorithm that may answer connectivity queries in constant time and process any sequence
of edge deletions in O(n) time. The previously known best running time of O(n logn) was
obtained by using the fully dynamic algorithm. We assume word-RAM model with standard
operations.
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1.1 Prior work

It is easy to see that incremental graph connectivity can be solved using an algorithm for
the union-find problem. It follows from the result of Tarjan [16] that a sequence of t edge
insertions and t queries can be handled in O(tα(t)) time, where α(t) is the extremely slowly
growing inverse Ackermann function.

There has been a long line of research considering the fully dynamic connectivity in
general graphs [6, 3, 8, 10, 19, 11, 21]. The best currently known algorithms have polylog-
artithmic update and query time. Thorup [19] has shown a randomized Monte Carlo al-
gorithm with O(logn(log logn)3) amortized update and O(logn/ log log logn) query time.1
An algorithm by Wulff-Nilsen [21] handles updates in slightly worse O(log2 n/ log logn)
amortized time, but it is deterministic and answers queries in O(logn/ log logn) time. The
best algorithm with worst-case update guarantee is a randomized algorithm by Kapron,
King and Mountjoy [11], which processes updates in O(log5 n) time and answers queries in
O(logn/ log logn) time. However, if we require a deterministic algorithm with worst-case
running time guarantee, nothing better than a O(

√
n) time algorithm is known [6, 3, 2].

For the decremental variant, Thorup [18] has shown a randomized algorithm, which can
process any sequence of edge deletions in O(m log(n2/m) + n(logn)3(log logn)2) time and
answers queries in constant time. Here, m is the initial number of edges in the graph. If
m = Θ(n2), the update time is O(m), whereas form = Ω(n(logn log logn)2) it is O(m logn).

The picture is much simpler in case of planar graphs. Eppstein et. al [5] gave a fully
dynamic algorithm which handles updates and queries in O(logn) amortized time, but
requires that the graph embedding remains fixed. For the general case (i.e., when the
embedding may change) Eppstein et. al [4] gave an algorithm with O(log2 n) worst-case
update time and O(logn) query time.

In planar graphs, the best known solution for the incremental connectivity problem is
the union-find algorithm. However, for the special case when the final resulting planar graph
is given upfront, and the edge insertions and queries are given later in a dynamic fashion
Gustedt [7] has shown an O(n) time algorithm. On the other hand, for the decremental
problem nothing better than a direct application of the fully dynamic algorithm is known.
This is different from both general graphs and trees, where the decremental connectivity
problems have better solutions than what could be achieved by a simple application of
their fully dynamic counterparts. In case of general graphs, the best total update time
was O(m logn) [18] (except for very sparse graphs, including planar graphs), compared
to O(m logn(log logn)3) time for the fully dynamic variant. For trees, only O(n) time is
necessary to perform all updates in the decremental scenario [1], while in the fully dynamic
case one can use dynamic trees and obtain O(logn) worst case update time.

There has also been some progress in obtaining lower bounds for dynamic connectivity
problems. Tarjan and La Poutré [17, 15] have shown that incremental connectivity requires
Ω(α(n)) time per operation on a pointer machine. Henzinger and Fredman [9] considered the
fully dynamic problem and RAM model and obtained a lower bound of Ω(logn/ log logn),
which also works for plane graphs. This was improved by Demaine and Pǎtraşcu [14] to a
lower bound of Ω(logn) in cell-probe model. The lower bound holds also for plane graphs.

1 Throughout the paper we use n and m to denote, respectively, the number of vertices and the number
of edges in the graph.
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1.2 Our results
We show an algorithm for the decremental connectivity problem in planar graphs, which
processes any sequence of edge deletions in O(n) time and answers queries in constant time.
This improves over the previous bound of O(n logn), which can be obtained by applying
the fully dynamic algorithm by Eppstein [5], and matches the running time of decremental
connectivity on trees [1].

In fact, we present a O(n) time reduction from the decremental connectivity problem to a
collection of incremental problems in graphs of total size O(n). These incremental problems
have a specific structure: the set of allowed union operations forms a planar graph and is
given in advance. As shown by Gustedt [7], such a problem can be solved in linear time. Our
result shows that in terms of total update time, the decremental connectivity problem in
planar graphs is definitely not harder than the incremental one. It should be noted that the
union-find algorithm can process any sequence of k query or update operations in O(kα(n))
time, while in our algorithm we are only able to bound the time to process any sequence of
edge deletions.

Moreover, since fully dynamic connectivity has a lower bound of Ω(logn) (even in plane
graphs) shown by Demaine and Pǎtraşcu [14], our results imply that in planar graphs decre-
mental connectivity is strictly easier than the fully dynamic one. We suspect that the same
holds for general graphs, and we conjecture that it is possible to break the Ω(logn) bound
for a single operation of a decremental connectivity algorithm, or the Ω(m logn) bound for
processing a sequence of m edge deletions.

Our algorithm, unlike the majority of algorithms for maintaining connectivity, does not
maintain the spanning tree of the current graph. As a result, it does not have to search for a
replacement edge when an edge from the spanning tree is deleted. Our approach is based on
a novel and very simple approach for detecting bridges, which alone gives O(n logn) total
update time. We use the fact that a deletion of edge uw in the graph causes some connected
component to split if both sides of uw belong to the same face. This condition can in turn be
verified by solving an incremental connectivity problem in the dual graph. When we detect
a deletion that splits a connected component, we start two parallel DFS searches from u

and w to identify the smaller of the two new components. Once the first search finishes, the
other one is stopped. A simple argument shows that this algorithm runs in O(n logn) time.

We then show that the DFS searches can be speeded up using an r-division, that is a
decomposition of a planar graph into subgraphs of size at most r = log2 n. This gives an
algorithm running in O(n log logn) time. For further illustration of this idea we show how to
apply it twice in order to obtain an O(n log log logn) time algorithm. Then, we observe that
the O(n log log logn) time algorithm reduces the problem of maintaining connectivity in the
input graph to maintaining connectivity in a number of graphs of size at most O(log2 logn).
The number of such graphs is so small that we can simply precompute the answers for
all of them and use these precomputed answers to obtain the main result of the paper.
The preprocessing of all graphs of bounded size is again an idea that, to the best of our
knowledge, has never been previously used for designing dynamic graph algorithms.

1.3 Organization of the paper
In Section 2 we introduce notation and recall some of the concepts that we later use. The fol-
lowing sections describe our algorithm. We start with the description of the simple O(n logn)
time algorithm in Section 3, and then in every section we show an improvement in the run-
ning time.
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In Section 4 we show how to use r-division to get an O(n log logn) algorithm. Sec-
tion 5, shows how to improve the reduction, so that it can be used more than once, which
results in an O(n log log logn) time algorithm. Finally, in Section 6 we show how to solve
the decremental connectivity in optimal time for graphs of size O(log2 logn), after initial
preprocessing. This, combined with the reduction applied twice, gives the main result of the
paper.

2 Preliminaries

Let G = (V,E) be an undirected, unweighted planar graph, and n = |V |. By V (G), E(G)
and F (G) we denote the sets of vertices, edges and faces ofG. The Euler’s formula states that
|V (G)| − |E(G)|+ |F (G)| = |CC(G)|+ 1, where CC(G) is the set of connected components
of G. The dual graph G∗ is constructed from G by embedding a single vertex in every face
of G and connecting the vertices in adjacent faces of G. Note that if two faces f1, f2 share
more than one edge, G∗ has multiple edges between f1 and f2.

In the paper we deal with algorithms that maintain the connectivity information about
a graph G subject to edge deletions. By the total running time we denote the total time of
handling deletions of all edges from the graph.

The identifier of a connected component (henceforth denoted cc-identifier) is a value as-
signed to a vertex v ∈ V , which uniquely identifies the connected component of G, i.e., two
vertices have the same cc-identifier if and only if they belong to the same connected com-
ponent. The cc-identifiers change as the edges are deleted, and they may not be preserved
after edge deletion. An algorithm maintains cc-identifiers explicitly if after every deletion
it returns the list of changes to the cc-identifiers. We assume that cc-identifiers are inte-
gers that require logn + O(1) bits.2 Note that an algorithm which maintains cc-identifiers
explicitly can be simply turned into an algorithm with constant query time. In order to
answer a query regarding two vertices, it suffices to compare the cc-identifiers of the two
vertices. By definition, the vertices are in the same connected component if and only if their
cc-identifiers are equal.

Let us now recall the notion of an r-division. A region R is an edge-induced subgraph
of G. A boundary vertex of a region R is a vertex v ∈ V (R) that is adjacent to an edge
e 6∈ E(R). We denote the set of boundary vertices of a region R by ∂(R). An r-division
P of G is a partition of G into O(n/r) edge-disjoint regions (which might share vertices),
such that each region contains at most r vertices and O(

√
r) boundary vertices. The set of

boundary vertices of a division P, denoted ∂(P) is the union of the sets ∂(R) over all regions
R of P. Note that |∂(P)| = O(n/

√
r).

I Lemma 1 ([13, 20]). Let G = (V,E) be an n-vertex biconnected triangulated planar graph
and 1 ≤ r ≤ n. An r-division of G can be constructed in O(n) time.

Let G be a planar graph. In the preprocessing phase of our algorithms, we build an
r-division of G. This r-division will be updated in a natural way, as edges are deleted from
G. Namely, when an edge is deleted from the graph, we update its r-division by deleting
the corresponding edge. However, if we strictly follow the definition, what we obtain may
no longer be an r-division.

For that reason, we loosen the definition of an r-division, so that it includes the divisions
obtained by deleting edges. Consider an r-division P built for a graph G. Moreover, let G′

2 Throughout this paper, log n denotes binary logarithm.
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Figure 1 The graphs from the proof of Lemma 3. Edges of G are drawn with solid black lines,
whereas the gray lines depict edges that have been deleted from G. The small squares are vertices
of DG, and the dotted lines are edges of DG.

be a graph obtained from G by deleting edges, and let P ′ be the r-division P updated in
the following way. Let R be a region of P. Then, we define the graph R′ in P obtained by
removing edges from R to be a region of P ′, although it may no longer be an edge-induced
subgraph of G′, e.g., it may contain isolated vertices. Similarly, we define the set of boundary
vertices of P ′ to be the set of boundary vertices of P. Again, according to this definition,
a boundary vertex v of P ′ may be incident to edges of a single region (because the edges
incident to v that belonged to other regions have been deleted). In the following, we say
that P ′ is an r-division of G′.

Since Lemma 1 requires the graph to be biconnected and triangulated, in order to obtain
an r-division for a graph which does not have these properties, we first add edges to G to
make it biconnected and triangulated, then compute the r-division of G, and then delete
the added edges both from G and its division.

Without loss of generality, we can assume that each vertex v ∈ V has degree at most 3.
This can be assured by triangulating the dual graph in the very beginning. In particular,
this assures that each vertex belongs to a constant number of regions in an r-division.

3 O(n log n) Time Algorithm

Let G be a planar graph subject to edge deletions. We call an edge deletion critical if and
only if it increases the number of components of G, i.e., the deleted edge is a bridge in G. We
first show a dynamic algorithm that for every edge deletion decides, whether it is critical.
It is based on a simple relation between the graph G and its dual.

I Lemma 2. Let G be a planar graph subject to edge deletions. There exists an algorithm
that for each edge deletion decides whether it is critical. It runs in O(n) total time.

Proof. The intuition behind the proof is as follows. We maintain the number of faces in
G. In order to do that, when an edge e is deleted, we simply merge faces on both sides of
e (if they are different from each other). This can be implemented using union-find data
structure on the vertices of the dual graph.

More formally, we build and maintain a graph DG. Initially, this is a graph consisting
of vertices of G∗ (faces of G). When an edge is deleted from G, we add its dual edge to
DG (see Fig. 1). Clearly, the connected components of DG are exactly the faces of G. Since
edges are only added to DG, we can easily maintain the number of connected components
in DG with a union-find data structure.
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This allows us to detect critical deletions in G. After every edge deletion, we know the
number of edges and vertices of G. Moreover, we know that the number of faces of G is
equal to the number of connected components of DG, which we also maintain. As a result,
by Euler’s formula, we get the number of connected components of G, so in particular we
may check if the deletion caused the number of connected components to increase. The
algorithm executes O(n) find and union operations on the union-find data structure.

In addition to that, the sequence of union operations has a certain structure. Let G1
be the initial version of the graph G (before any edge deletion). Observe that each union
operation takes as arguments the endpoints of an edge of G∗1. The variant of the union-
find problem, in which the set of allowed union operations forms a planar graph given
during initialization, was considered by Gustedt [7]. He showed that for this special case of
the union-find problem there exists an algorithm that may execute any sequence of O(n)
operations in O(n) time (for an n-vertex planar graph). Thus, we infer that our algorithm
runs in O(n) time. J

We can now use Lemma 2 to show a simple decremental connectivity algorithm that
runs in O(n logn) total time.

I Lemma 3. Let G be a planar graph subject to edge deletions. There exists a decremental
connectivity algorithm that for every vertex of G maintains its cc-identifier explicitly. It
runs in O(n logn) total time.

Proof. We use Lemma 2 to detect critical deletions. When an edge uw is deleted, and the
deletion is not critical, nothing has to be done. Otherwise, after a critical deletion, some
connected component C breaks into two components Cu and Cw (u ∈ Cu, w ∈ Cw) and we
start two parallel depth-first searches from u and w. We stop both searches once the first of
them finishes. W.l.o.g. assume that it is the search started from u. Thus, we know that the
size of Cu is at most half of the size of C.3 We can now iterate through all vertices of Cu and
change their cc-identifiers to a new unique number. All these steps require O(|Cu|) time.
The running time of the algorithm is proportional to the total number of changes of the
cc-identifiers. Since every vertex changes its identifier only when the size of its connected
component halves, we infer that the total running time is O(n logn). J

4 O(n log log n) Time Algorithm

In order to speed up the O(n logn) algorithm, we need to speed up the linear depth-first
searches that are run after a critical edge deletion. We build an r-division P of G for r =
log2 n and use a separate decremental connectivity algorithm to maintain the connectivity
information inside each region. On top of that, we maintain a skeleton graph that represents
connectivity information between the set of boundary vertices (and possibly some other
vertices that we consider important). Loosely speaking, since the number of boundary
vertices is O(n/ logn) we can pay a cost of O(logn) for maintaining the cc-identifier for
each of them.

I Definition 4. Consider an r-division P of a planar graph G = (V,E) and a set Vs (called
a skeleton set), such that ∂(P) ⊆ Vs ⊆ V . The skeleton graph for P and Vs is a graph over
the skeleton set Vs and some additional auxiliary vertices. Consider a region R of P. Group

3 Since the graph has constant degree, we may assure that both searches are synchronized in terms of
the number of visited vertices.
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(a)
(b)

(c) (d) (e)

Figure 2 Panels 2a and 2b show a sample graph G and its r-division into three regions (boundary
vertices are marked with small circles). In panel 2c there is graph G′ obtained from G by a sequence
of edge deletions. Panel 2d shows its r-division obtained from the r-division of G (again, boundary
vertices are marked with small circles). Finally, panel 2e contains the skeleton graph of G′. Auxiliary
vertices are marked with squares.

vertices of Vs ∩ V (R) into sets V1, . . . , Vk, such that two vertices belong to the same set if
and only if there is a path in R that connects them. For each set Vi add a new auxiliary
vertex wi and add an edge wix for every x ∈ Vi.

For illustration, see Fig. 2.

I Lemma 5. The skeleton graph has O(|Vs|) vertices and edges.

Proof. For each region R, we add at most one vertex and edge per each vertex of Vs∩V (R).
Since each vertex belongs to a constant number of regions, we get the desired bound. J

I Lemma 6. If u,w ∈ Vs, then u and w are connected in the skeleton graph if and only if
they are connected in G.

Proof. Consider a region R of the r-division. From the construction it follows that two
vertices of Vs ∩ V (R) are connected in G with a path inside R iff they are connected in the
part of the skeleton graph built for this region.
( =⇒ ) Follows directly from the above observation.
( ⇐= ) Consider a path P in G between u and w. Break this path into subpaths at each
element of Vs. Since ∂(P) ⊆ Vs ⊆ V , each resulting subpath is fully contained in one region
of the r-division. Clearly, from the property given at the beginning of the proof, for each
subpath there exists a corresponding path in the skeleton graph. J

In our algorithm we will update the skeleton graph of G, as edges are deleted. Similarly
to the O(n logn) algorithm, we need a way of detecting whether an edge deletion in G

increases the number of connected components in the skeleton graph.
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I Lemma 7. Let G be a dynamic planar graph, subject to edge deletions. Assume that we
maintain its skeleton graph Gs computed for an r-division P and a skeleton set Vs. An edge
deletion in G causes an increase in the number of connected components in Gs if and only if
the deletion is critical in G and there exists a region of P, in which the deletion disconnects
some two vertices of Vs.

Before we proceed with the proof, let us note that all its conditions are necessary. In
particular, a critical deletion in G may not disconnect some two vertices of a skeleton set
in a region (e.g. edge uw in Fig. 2c, whose deletion does not affect the skeleton graph at
all). It may also happen that the deletion is not critical in G, but inside some region it
disconnects some two vertices of Vs (e.g. edge xy in Fig. 2c).

Proof. By Lemma 6, two vertices of Vs are connected in G iff they are connected in Gs.
( =⇒ ) If two vertices of Vs become disconnected in Gs, they also become disconnected in
G, so the edge deletion is critical. The deletion has to disconnect some two vertices in a
region, because otherwise the graph Gs would not change at all.
( ⇐= ) Assume that the deletion disconnected vertices u,w ∈ Vs in a region R. Thus, the
deleted edge was on some path from u to w. Since the edge deletion is critical in G, the
deleted edge was a bridge in G. After the deletion there is no path from u to w in G and
consequently also in Gs. J

Before we proceed with the algorithm, we show how to extend an algorithm maintaining
cc-identifiers with two useful operations.

I Lemma 8. Let G = (V,E) be a planar graph and let X ⊆ V . Assume there exists a
decremental connectivity algorithm that maintains cc-identifiers of a set X ⊆ V explicitly
and processes updates in Ω(n) total time. Then, we can extend the algorithm, so that:

after every edge deletion, if the deletion disconnects some two vertices of X, it reports a
pair of vertices that become disconnected,
given a cc-identifier, it returns a vertex v ∈ X with the same cc-identifier (or reports
that such a vertex does not exist).

The extended algorithm has the same asymptotic running time.

Proof. Since each cc-identifier can be encoded in logn+O(1) bits, there are O(n) possible
cc-identifiers. Thus, for each possible cc-identifier c, we maintain a list Lc of vertices of X,
whose cc-identifier is c. Note that maintaining these lists takes time that is linear in the
number of changes of cc-identifiers. Moreover, we need O(n) time to initialize the lists Lc.

Observe that the lists allow us to find a vertex of X of given cc-identifier in constant
time, so the second claim follows. To show the first claim, consider a case when after an
edge deletion some (but not all) elements from a list Lc are removed. All this elements
have to be added to a single list Lc′ and Lc′ must have been empty before the new elements
were added. This means that the number of distinct cc-identifiers have increased, and some
elements of X became disconnected. We can now take any u ∈ Lc and w ∈ Lc′ and report
that u and w became disconnected. J

We are ready to show the main building block of our O(n log logn) algorithm.

I Lemma 9. Let G be a planar graph. Assume there exists a decremental connectivity
algorithm that runs in f(n) time and maintains cc-identifiers explicitly. Then, there exists a
decremental connectivity algorithm that runs in O(n+n ·f(log2 n)/ log2 n) time and answers
queries in O(1) time.
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Proof. We build an r-division P of G for r = log2 n. By Lemma 1, this takes O(n) time.
For each region R of the division, we run the assumed decremental algorithm to handle edge
deletions. We use AR to denote the algorithm run for region R. AR maintains cc-identifiers
of V (R) explicitly. We call these cc-identifiers local cc-identifiers. We also extend each AR

according to Lemma 8, taking X = ∂(P) ∩ V (R). Moreover, we use Lemma 2 to detect
critical deletions in G.

We build the skeleton graph Gs for G, r-division P and a skeleton set Vs = ∂(P). We
maintain Gs, as edges are deleted, that is the deletions in G are reflected in Gs. This can
be done using the algorithms AR. By Lemma 8, AR can report that some two vertices of
Vs become disconnected inside R. This means that Gs needs to be updated. Observe that
the part of Gs inside a region R can be implicitly represented as a partition of Vs ∩ V (R),
where two vertices belong to the same element of the partition, if they are connected in R.
Thus, if a deletion causes t local cc-identifiers to change, we may update Gs in O(t) time.
As a result, the time for updating Gs is linear in the number of local cc-identifiers that are
changed.

For every vertex of Gs, we maintain its cc-identifier (called a global cc-identifier). Once
Gs is updated after an edge deletion, we use Lemma 7 to check whether the number of
connected components of Gs increased. According to the Lemma, it suffices to check whether
the deletion is critical in G (this is reported by the algorithm of Lemma 2), and whether some
two elements of the skeleton set became disconnected within some region (using Lemma 8).

When we detect that the number of connected components of the skeleton graph Gs has
increased, similarly to the O(n logn) algorithm, we run two parallel DFS searches to identify
the smaller of the two new connected components, and update the global cc-identifiers.

In order to answer a query regarding two vertices u and w, we perform two checks. First,
if the vertices belong to the same region, we check whether there exists a path connecting
them that does not contain any boundary vertices. This can be done by querying algorithm
AR for the appropriate region.

Then, we check whether there is a path from u to w that that contains some boundary
vertex. For each of the two vertices, we find two arbitrary boundary vertices bu and bw that
u and w are connected to (using Lemma 8). Then, we check whether bu and bw have the
same global cc-identifier.

Let us now analyze the running time. The algorithm of Lemma 2 requires O(n) time.
The algorithms AR take O(n · f(r)/r) = O(n · f(log2 n)/ log2 n) time. Lastly, we bound the
running time of the DFS searches performed to update the global cc-identifiers. We use an
argument similar to the one in the proof of Lemma 3. The skeleton graph has O(n/ logn)
vertices, and each global cc-identifier can change at most O(log(n/ logn)) = O(logn) times.
Hence, the DFS searches require O((n/ logn) logn) = O(n) time. The lemma follows. J

By applying Lemma 3 to Lemma 9, we obtain the following.

I Lemma 10. There exists a decremental connectivity algorithm for planar graphs that runs
in O(n log logn) total time.

Proof. The total update time of the algorithm of Lemma 3 is f(n) = O(n logn). Thus, the
running time is O(n+n·f(log2 n)/ log2 n) = O(n+n log2 n log logn/ log2 n) = O(n log logn).

J
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5 O(n log log log n) Time Algorithm

In order to obtain a faster algorithm, we would like to use Lemma 9 multiple times, starting
from the O(n logn) algorithm, and each time applying the Lemma to the algorithm obtained
in the previous step. This, however, cannot be done directly. While the Lemma requires an
algorithm that maintains all cc-identifiers explicitly, it does not produce an algorithm with
this property. We deal with this problem in this section.

Observe that in the proof of Lemma 9 we only needed the assumed decremental algorithm
to maintain the cc-identifiers of the vertices of the skeleton set. This fact can be exploited
in the following way. We show that if we have an algorithm that maintains cc-identifiers of
some vertices, we may construct another (possibly faster) algorithm with the same property.

I Lemma 11. Assume there exists a decremental connectivity algorithm for planar graphs
that, given a graph G = (V,E) and a set Ve ⊆ V (called an explicit set):

maintains cc-identifiers of the vertices of Ve explicitly,
processes updates in f(n) +O(|Ve| logn) time,
may return the cc-identifier of any vertex in g(n) time,

where f(n) and g(n) are nondecreasing functions.
Then, there exists a decremental connectivity algorithm for planar graphs, which, given

a graph G = (V,E) and a set Ve ⊆ V :
maintains cc-identifiers of the vertices of Ve explicitly,
processes updates in O(n+ |Ve| logn+ n · f(log2 n)/ log2 n) time,
may return the cc-identifier of any vertex in g(log2 n) +O(1) time.

Proof. We build an r-division P of G for r = log2 n. By Lemma 1, this takes O(n) time.
We also build a skeleton graph Gs, by taking a skeleton set Vs := Ve ∪ ∂(P). Hence,
|Vs| = |Ve|+ n/ logn.

For each region R of P, we run a copy AR of the assumed decremental connectivity
algorithm, extended according to Lemma 8. Observe that in the proof of Lemma 9, we only
need AR to explicitly maintain cc-identifiers of Vs ∩ V (R). Thus, the set of explicit vertices
for algorithm AR is Vs ∩ V (R). Hence, AR maintains local cc-identifiers of these vertices.

We maintain the graph Gs and its global cc-identifiers in the same way as in the proof
of Lemma 9. The only difference is that now the skeleton set Vs is bigger. Let us bound the
running time. First, algorithm AR uses f(log2 n) + O(|Vs ∩ V (R)| logn) time. Summing it
over all regions, we obtain∑

R∈P
f(log2 n) +O(|Vs ∩ V (R)| logn)

= O(n · f(log2 n)/ log2 n+ |Vs| logn)
= (n · f(log2 n)/ log2 n+ |Ve| logn+ n/ logn · logn)
= (n · f(log2 n)/ log2 n+ |Ve| logn+ n).

Note that we use the fact that each vertex is contained in a constant number of regions.
The the running time of depth-first searches used to update the global cc-identifiers is

O(|Vs| logn) = O(n/ logn · logn+ |Ve| logn) = O(n+ |Ve| logn).

Thus, the total update time is O(n+ |Ve| logn+ n · f(log2 n)/ log2 n).
Since the cc-identifiers of vertices of Gs are maintained explicitly, in particular we ex-

plicitly maintain the cc-identifiers of vertices of Ve. It remains to describe the process of
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computing the global cc-identifier of an arbitrary vertex v ∈ V . Assume that v belongs to a
region R (in case v is a boundary vertex, we may use an arbitrary region containing it). We
first query AR to obtain the local cc-identifier of v. We use Lemma 8 to check whether there
exists a vertex bv in Vs ∩ V (R) that has the same local cc-identifier as v. If this is the case,
since bv belongs to the skeleton set, we return its global cc-identifier (maintained explicitly).
Otherwise, we return a new cc-identifier by encoding as an integer a pair consisting of the
identifier of the region containing v (this requires logO(n/ log2 n) = logn+O(1)−2 log logn
bits) and the local cc-identifier of v (which requires log log2 n+O(1) = 2 log logn+O(1) bits).
Overall, the resulting cc-identifier requires logn+O(1) bits. Thus, obtaining a cc-identifier
of an arbitrary vertex requires g(log2 n) +O(1) time. J

The main advantage of Lemma 11 over Lemma 9 is that we may apply Lemma 11
recursively to obtain better algorithms. We can view applying Lemma 11 as reducing con-
nectivity in a graph of size n to connectivity in a collection of graphs of size log2 n. If we
apply Lemma 11 to itself, we obtain the following.

I Lemma 12. Assume there exists a decremental connectivity algorithm for planar graphs
that, given a graph G = (V,E) and a set Ve ⊆ V (called an explicit set):

maintains cc-identifiers of the vertices of Ve explicitly,
processes updates in f(n) +O(|Ve| logn) time,
may return the cc-identifier of any vertex in g(n) time,

where f(n) and g(n) are nondecreasing functions.
Then, there exists a decremental connectivity algorithm for planar graphs, which, given

a graph G = (V,E) and a set Ve ⊆ V :
maintains cc-identifiers of the vertices of Ve explicitly,
processes updates in O(n+ |Ve| logn+ n · f(log2 log2 n)/ log2 log2 n) time,
may return the cc-identifier of any vertex in g(log2 log2 n) +O(1) time.

Proof. We apply Lemma 11 to the assumed algorithm and obtain an algorithm with total
update time f1(n) +O(|Ve| logn), where f1(n) = O(n+n · f(log2 n)/ log2 n) and query time
g1(n) = g(log2 n) + O(1). Then, we apply the Lemma again to the new algorithm and get
a new algorithm, whose total update time is

O(n+ |Ve| logn+ n · f1(log2 n)/ log2 n) =
= O(n+ |Ve| logn+ n(log2 n+ log2 n · f(log2 log2 n)/ log2 log2 n)/ log2 n)
= O(n+ |Ve| logn+ n · f(log2 log2 n)/ log2 log2 n).

It answers queries in g(log2 log2 n) +O(1) time. J

We may now apply Lemma 12 to the simple O(n logn) algorithm (see Lemma 3) to
obtain the following.

I Lemma 13. There exists a decremental connectivity algorithm, which processes any se-
quence of updates in O(n log log logn) time.

Proof. The simple algorithm processes updates in f(n) = O(n logn) time. Thus, we have
f(log2 log2 n) = O((log2 log2 n) log(log2 log2 n)) = O((log2 log2 n) log log logn), so the total
update time is O(n log log logn). Since g(n) = O(1), the query time is constant. J
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6 O(n) Time Algorithm

In this section we finally show an algorithm that runs in O(n) time. Observe that in
Lemma 12, we run the assumed decremental algorithm on graphs of size log2 log2 n. However,
the number of all such graphs is so small, that we may precompute all necessary connectivity
information for all of them.

I Lemma 14. Let w be the word size and logn ≤ w. After preprocessing in o(n) time,
we may repeatedly initialize and run algorithms for decremental maintenance of connected
components in graphs of size t = O(log2 logn). These algorithms may be given a set of
vertices Ve, and maintain the cc-identifiers of vertices of Ve explicitly. An algorithm for a
graph of size t runs in O(t+ |Ve| log t) time and may return the cc-identifier of every vertex
in O(1) time.

Proof. We will call the set Ve the explicit set. The state of the algorithm is uniquely
described by the current set of edges in the graph and the explicit set. There are 2t(t−1)/2

labeled undirected graphs on t vertices (including non-planar graphs) and O(2t) possible
explicit sets. Thus, there are O(2t2) possible states, which, for t = O(log2 logn) gives
2O(log4 log n) = 2o(log n) = o(n). In particular, each state can be encoded as a binary string
of length O(log4 logn) which fits in a single machine word.

For each state, we precompute cc-identifiers. Moreover, for each pair of state and an edge
to be deleted, we compute the changes to the cc-identifiers of vertices in the explicit set.
Observe that if the edge deletion is critical, we simply need to compute the set of vertices in
the smaller out of the two connected components that are created and store the intersection
of this set and Ve. These vertices should be assigned new, unique cc-identifiers.

We encode the graph by a binary word of length O(log4 logn), where each bit represents
an edge between some pair of vertices. Thus, when an edge is deleted, we may compute the
new state of the algorithm in constant time by switching off a single bit. For any planar
graph and any sequence of deletions, the number of changes of cc-identifiers of vertices of
Ve is O(|Ve| logn) (using the analysis similar to the one from the proof of Lemma 3). The
query time is constant, since the cc-identifiers are maintained explicitly. For each of the
2O(log4 log n) states, we require O(log4 logn) preprocessing time. Thus, the preprocessing
time is o(n). J

We may now apply Lemma 12 to the algorithm of Lemma 14 to obtain the main result
of this paper.

I Theorem 15. There exists a decremental connectivity algorithm for planar graphs that
supports updates in O(n) total time and answers queries in constant time.

7 Conclusion and Open Problems

We have shown a reduction from the decremental connectivity problem in planar graphs to
incremental connectivity. As a result, we obtain an algorithm for decremental connectiv-
ity that processes all updates in optimal O(n) time and answers queries in constant time.
This shows that the total time complexity of the deceremental problem is not Ω(n logn),
which seemed to be a natural bound. In other words we have shown that a lower bound of
Ω(n logn), that would be an analogous to the lower bound in [14], cannot hold for decre-
mental algorithms in planar graphs. We actually conjecture that even for general graphs
with O(n) edges there exists an o(n logn) time decremental algorithm.
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620 Optimal Decremental Connectivity in Planar Graphs

An interesting question would be to study the worst-case time complexity of decremental
connectivity in planar graphs, which has not been fully understood yet. And, contrary to
the incremental problem, no nontrivial lower bounds are known.
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