
ETH Library

Computing and Listing st-Paths in
Public Transportation Networks

Journal Article

Author(s):
Böhmová, Kateřina; Häfliger, Luca; Mihalák, Matúš; Pröger, Tobias; Sacomoto, Gustavo; Sagot, Marie-France

Publication date:
2018-04

Permanent link:
https://doi.org/10.3929/ethz-b-000128244

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Theory of Computing Systems 62(3), https://doi.org/10.1007/s00224-016-9747-4

Funding acknowledgement:
138117 - Context Sensitive Information: Robust Optimization by Information Theoretic Regularization (SNF)

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000128244
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1007/s00224-016-9747-4
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Theory Comput Syst (2018) 62:600–621
DOI 10.1007/s00224-016-9747-4

Computing and Listing st-Paths in Public
Transportation Networks
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Abstract Given a set of directed paths (called lines) L, a public transportation net-
work is a directed graph GL = (VL, AL) which contains exactly the vertices and
arcs of every line l ∈ L. An st-route is a pair (π, γ ) where γ = 〈l1, . . . , lh〉 is a line
sequence and π is an st-path in GL which is the concatenation of subpaths of the
lines l1, . . . , lh, in this order. Given a threshold β, we present an algorithm for listing
all st-paths π for which a route (π, γ ) with |γ | ≤ β exists, and we show that the run-
ning time of this algorithm is polynomial with respect to the input and the output size.
We also present an algorithm for listing all line sequences γ with |γ | ≤ β for which
a route (π, γ ) exists, and show how to speed it up using preprocessing. Moreover, we
show that for the problem of finding an st-route (π, γ ) that minimizes the number of
different lines in γ , even computing an o(log |V |)-approximation is NP-hard.
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3 INRIA Grenoble Rhône-Alpes, Montbonnot-Saint-Martin, France

4 UMR CNRS 5558 – LBBE, Université Lyon 1, Lyon, France
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1 Introduction

Motivation Given a public transportation network (in the following called transit
network) and two locations s and t , a common goal is to find a fastest journey from
s to t , i.e. an st-journey whose travel time is minimum among all st-journeys. A
fundamental feature of any public transportation information system is to provide,
given s, t and a target arrival time tA, a fastest st-journey that reaches t no later than
at time tA. This task can be solved by computing a shortest path in an auxiliary graph
that also reflects time [20]. However, if delays occur in the network (which often
happens in reality [14]), then the goal of computing a robust st-journey that likely
reaches t on time, naturally arises.

The problem of finding robust journeys received much attention in the literature
(for a survey, see, e.g., [1]). Recently, Böhmova et al. [4, 6] proposed the following
two-stage approach for computing robust journeys. In the first step, all structural
alternative length-bounded routes (ignoring time) are listed explicitly, and only after
that, timetables and historic traffic data are incorporated to evaluate the robustness
of each possible route. From a practical point of view it is reasonable to restrict
the maximum number of transfers for two reasons: 1) the number of listed routes
might be huge, hence listing all possible routes leads to a non-satisfactory running
time, and 2) many routes might be unacceptable for the user, e.g., because they use
many more transfers than necessary. Having a huge number of transfers is not only
uncomfortable, but usually also has a negative impact on the robustness of routes,
since each transfer bears a risk of missing the next connection when vehicles are
delayed.

Our contribution The main contribution of the present paper are three algorithms
that list all st-routes for which the number of transfers does not exceed a given thresh-
old β. The running times of our algorithms are polynomial with respect to the sum of
the input and the output size. As a subroutine of this algorithm we need to compute a
route with a minimum number of transfers which is known to be solvable efficiently
[20]. However, we show that finding a route with a minimum number of different
lines cannot be approximated within (1 − ε) ln n for any ε > 0 unless NP = P.

We note that for bus networks it is reasonable to consider directed networks
(instead of undirected ones), because real-world transit networks (such as the one in
the city of Barcelona) may contain one-way streets in which busses can only operate
in a single direction.

Related work Listing combinatorial objects (such as paths, cycles, spanning trees,
etc.) in graphs is a widely studied field in computer science (see, e.g., [2]). The cur-
rently fastest algorithm for listing all st-paths in directed graphs was presented by
Johnson [16] in 1975 and runs in time O((n + m)(κ + 1)) where n and m are the
number of vertices and arcs, respectively, and κ is the number of all st-paths (i.e.,
the size of the output). For undirected graphs, an optimal algorithm was presented by
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Birmelé et al. [3]. A related problem is the K-shortest path problem, which asks, for
a given constant K , to compute the first K distinct shortest st-paths. Yen [27] and
Lawler [19] studied this problem for directed graphs. Their algorithm uses Dijkstra’s
algorithm [10] and can be implemented to run in time O(K(nm + n2 log n)) using
Fibonacci heaps [15]. For undirected graphs, Katoh et al. [18] proposed an algorithm
with running time O(K(m + n log n)). Eppstein [13] gave an O(K + m + n log n)

algorithm for listing the first K distinct shortest st-walks, i.e., paths in which vertices
are allowed to appear more than once. Recently, Rizzi et al. [22] studied a different
parameterization of the K shortest path problem where they ask to list all st-paths
with length at most α for a given α. The difference to the classical K shortest path
problem is that the lengths (instead of the overall number) of the paths output is
bounded. Thus, depending on the value of α, K might be exponential in the input
size. The running time of the proposed algorithm coincides with the running time of
the algorithm of Yen and Lawler for directed graphs, and with the running time of
the algorithm of Katoh et al. for undirected graphs. However, the algorithm of Rizzi
et al. uses only O(n+m) space which is linear in the input size. All these algorithms
cannot directly be used for our listing problem, since we have the additional con-
straint to list only paths for which a route of length at most β exists, and since lines
can share multiple transfers. A more detailed explanation is given in Section 6.

Xu et al. [26] studied the problem of listing all paths in a transit network that have
at most two transfers. They encode the various possible situations that may occur
directly into their algorithm. This algorithm is then used as a subroutine to list the k

earliest-arriving paths. The same problem was addressed very recently by Vo et al.
[25]. They propose a time-dependent version of Yen’s algorithm [27]. To avoid the
generation of similar paths, they propose a similarity measure between two paths P1
and P2 which essentially relates the number of common lines in both paths to the
minimum number of lines that give rise to P1 and to P2, respectively. Nguyen et al.
[21] studied an implicit listing problem in hypergraphs. Every hyperarc has exactly
one tail t and multiple heads H , and the authors assume that for any H ′ ⊆ H , the
hyperarc from t to H ′ is also implicitly contained. Essentially, the tail represents a
stop s, and every vertex in H represents one line that visits s. Vehicles of the lines are
assumed to arrive according to a given distribution. Now, for a given departure stop
d and a given target stop t , one aims to identify so-called efficient hyperarcs (i, H ′)
such that for every j ∈ H ′ the expected travel time from j to t is smaller than the
expected travel time from i to t . Hence, they do not explicitly list all possible paths,
but encode the reasonable paths implicitly using efficient hyperarcs.

2 Preliminaries

Mathematical preliminaries Let G = (V , A) be a directed graph. A walk in G is
a sequence of vertices 〈v0, . . . , vk〉 such that (vi−1, vi) ∈ A for all i ∈ [1, k]. For
a walk w = 〈v0, . . . , vk〉 and a vertex v ∈ V , we write v ∈ w if and only if there
exists an index i ∈ [0, k] such that v = vi . Analogously, for a walk w = 〈v0, . . . , vk〉
and an arc a = (u, v) ∈ A, we write a ∈ w if and only if there exists an index
i ∈ [1, k] such that u = vi−1 and v = vi . The length of a walk w = 〈v0, . . . , vk〉
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is k, the number of arcs in the walk, and is denoted by |w|. A walk w of length
|w| = 0 is called degenerate, and non-degenerate otherwise. For two walks w1 =
〈u0, . . . , uk〉 and w2 = 〈v0, . . . , vl〉 with uk = v0, w1 ·w2 denotes the concatenation
〈u0, . . . , uk = v0, . . . , vl〉 of w1 and w2. A path is a walk π = 〈v0, . . . , vk〉 such
that vi 	= vj for all i 	= j in [0, k], i.e. a path is a walk without crossings. Given a
path π = 〈v0, . . . , vk〉, every contiguous subsequence π ′ = 〈vi, . . . , vj 〉 is called a
subpath of π . A path π = 〈s = v0, v1, . . . , vk−1, vk = t〉 is called an st-path. For a
vertex v ∈ V , let N+

G(v) denote the out-neighborhood of v. Given two integers i, j ,
we define the function δij (Kronecker delta) as 1 if i = j and 0 if i 	= j .

Lines and transit networks Given a set of non-degenerate paths (called lines) L, the
transit network induced by L is the graph GL = (VL, AL) where VL contains exactly
the vertices v for which L contains a line l with v ∈ l, and AL contains exactly the
arcs a for which L contains a line l with a ∈ l. This definition is similar to the defi-
nition of the station graph in [23], and it does not include travel times or timetables
since we are only interested in the structure of the network. The modeling differs
from classical graph-based models like the time-expanded or the time-dependent
model which incorporate travel times explicitly by adding additional vertices or cost
functions in the arcs, respectively (see, e.g., [8, 20] for more information on these
models). However, for finding robust routes with the approach in [6], the above def-
inition is sufficient since travel times are integrated at a later stage. In the following,
let ML = ∑

l∈L |l| denote the sum of the lengths of all lines. In the rest of this paper,
we omit the index L from VL, AL and ML to simplify the notation.

Given a path π = 〈v0, . . . , vk〉 in GL and a sequence of lines γ = 〈l1, . . . , lh〉, we
say that the pair (π, γ ) is a route if π is equal to the concatenation of non-degenerate
subpaths π1, . . . , πh of the lines l1, . . . , lh, in this order. Notice that a line might
occur multiple times in γ (see Fig. 1); however, we assume that any two consecutive
lines in γ are different. For every i ∈ {1, . . . , h − 1}, we say that a line change
between the lines li and li+1 occurs. The length of the route (π, γ ) is |γ |, i.e. the
number of line changes plus one. Given two vertices u, v ∈ V , a uv-route is a route
(π, γ ) such that π is a uv-path. A minimum uv-route has smallest length among all
uv-routes in GL, and we define the L-distance dL(u, v) from u to v as the length of a
minimum uv-route. For a path π and a line l ∈ L, let l − π be the union of (possibly
degenerate) paths that we obtain after removing every vertex v ∈ π and its adjacent

Fig. 1 A transit network with one-way streets induced by a line l1 = 〈v1, . . . , v12〉 (solid) and a line
l2 = 〈v13, v2, v11, v14〉 (dotted). To travel from s = v1 to t = v12, it is reasonable to use l1 until v2, after
that use l2 from v2 to v11 and from there finally use l1 again



604 Theory Comput Syst (2018) 62:600–621

Fig. 2 Let l = 〈a, b, c, d, e, f, g〉 be a line (solid) and π = 〈s, b, c, v, e, t〉 be a path (dotted). Then,
l − π = 〈a, d, f, g〉 is the disjoint union of the degenerate lines 〈a〉 and 〈d〉, and the non-generated line
〈f, g〉

arcs from l (see Fig. 2). For simplicity, we also call each of these unions of paths
a line, although they might be disconnected and/or degenerated. However, we note
that all algorithms in this paper also work for disconnected and/or degenerate lines.
Given a path π and a set L of lines, let L − π = {l − π | l ∈ L} denote the set of all
lines in which every vertex from π has been removed. Analogously to our previous
definitions, given a path π and a graph G, we define G − π as the graph from which
every vertex v ∈ π and its adjacent arcs have been removed.

Problems An algorithm that systematically lists all or a specified subset of solutions
of a combinatorial optimization problem is called a listing algorithm. The delay of a
listing algorithm is the maximum of the time elapsed until the first solution is output
and the times elapsed between any two consecutive solutions are output [17, 22].

Problem 1 (Finding a minimum st-route) Given a transit network GL = (V , A) and
two vertices s, t ∈ V , find a minimum route from s to t .

Problem 2 (Finding an st-route with a minimum number of different lines) Given a
transit network GL = (V , A) and two vertices s, t ∈ V , find a route from s to t that
uses a minimum number of different lines from L.

Notice that, although Problems 1 and 2 sound similar, they are in general not
equivalent. Figure 3 shows an example for a transit network in which the optimal
solutions of the problems differ.

Fig. 3 A transit network induced by the lines l1 = 〈s, a〉, l2 = 〈a, b〉, l3 = 〈b, t〉, l4 = 〈d, e, s, c〉
and l5 = 〈e, t, c, d〉. The route r1 = (〈s, a, b, t〉, 〈l1, l2, l3〉) is an optimal solution for Problem 1. It
uses three different lines and two transfers. However the optimal solution for Problem 2 is the route
r2 = (〈s, c, d, e, t〉, 〈l4, l5, l4, l5〉) which uses only two different lines but three transfers
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A natural listing problem is to list all possible st-routes. However, this formulation
has the disadvantage that the number of possible solutions is huge, and that there
might exist many redundant solutions since a path π can give rise to multiple distinct
routes (e.g., if some arc of π is shared by two lines) and vice versa. Moreover, from
a practical point of view, also routes that contain many line changes are undesirable.
Thus, we formulate the following two listing problems.

Problem 3 (Listing β-bounded line sequences) Given a transit network GL =
(V , A), two vertices s, t ∈ V , and β ∈ N, output all line sequences γ such that there
exists at least one route (π, γ ) with length at most β.

Problem 4 (Listing β-bounded st-paths) Given a transit network GL = (V , A), two
vertices s, t ∈ V , and β ∈ N, output all st-paths π such that there exists at least one
route (π, γ ) with length at most β.

3 Finding an Optimal Solution

In this section we discuss solutions to the Problems 1 and 2. As a preliminary obser-
vation we show that for undirected lines (i.e., undirected connected graphs where
every vertex has degree 2 or smaller) and undirected transit networks, the prob-
lems are equivalent and can be solved in time 	(M). Essentially they are easy
because lines can always be traveled in both directions. Of course, this does not
hold in the case of directed graphs (see Fig. 3). While Problem 1 can be solved in
time 	(M) using Dial’s (implementation of Dijkstra’s) algorithm [9] on an auxil-
iary graph similar to the one presented in [20], Problem 2 turns out to be NP-hard to
approximate.

Theorem 1 If all lines in L are undirected and GL is the undirected induced transit
network, then Problems 1 and 2 coincide and can be solved in time 	(M) where
M = ∑

l∈L |l| is the input size.

Proof Let r = (π, γ ) with π = (π1, . . . , πh) and γ = (l1, . . . , lh) be an optimal
solution to Problem 2. We first show that there always exists an optimal solution
r̄ = (π̄ , γ̄ ) that uses every line in γ̄ exactly once. Suppose that some line l occurred
multiple times in γ . Let i be the smallest index such that li = l, and let j be the
largest index such that lj = l. Let v be the first vertex on πi (i.e., the first vertex on
the subpath served by the first occurrence of l), and let w be the last vertex on πj

(i.e., the last vertex on the subpath served by the last occurrence of l). Let πsv be the
subpath of π starting in s and ending in v, πvw be a subpath of l from v to w, and
πwt be the subpath of π starting in w and ending in t . The route r ′ = (π ′, γ ′) with
π ′ = πsv ·πvw ·πwt and γ ′ = (l1, . . . , li−1, l, lj+1, . . . , lh) is still an st-route, it uses
the line l exactly once, and overall it does not use more different lines than r does.
Thus, repeating the above argument for every line l that occurs multiple times, we
obtain a route r̄ = (π̄ , γ̄ ) which uses every line in γ̄ exactly once and which is still
an optimal solution to Problem 2.



606 Theory Comput Syst (2018) 62:600–621

The above argument can also be applied to show that every optimal solution (π, γ )

to Problem 1 uses every line in γ exactly once. Now it easy to see that Problem 1 has
a solution with exactly k line changes if and only if Problem 2 has a solution with
exactly k + 1 different lines. Therefore, Problems 1 and 2 are equivalent. They can
efficiently be solved as follows. For a given transit network GL = (V , A), consider
the vertex-line incidence graph G′ = (V ·∪ L,A′) where

A′ = {{v, l} | v ∈ V ∧ l ∈ L ∧ line l contains vertex v} . (1)

Breadth-first search can be used to find a shortest st-path 〈s, l1, v1, . . . , vk−1, lk, t〉
in G′. Let γ = (l1, . . . , lk) be the sequence of lines in this path. Now we use a simple
greedy strategy to find a path π in the transit network GL such that π is the concate-
nation of subpaths of l1, . . . , lk: we start in s, follow l1 in an arbitrary direction until
we find the vertex v1; if v1 is not found, we traverse l1 in the opposite direction until
we find v1. From v1 we search v2 on line l2, and continue correspondingly until we
reach t on line lk . Now the pair (π, γ ) is a route with a minimum number of transfers
(and, with a minimum number of different lines).

We have |V ·∪ L| ∈ O(M) and |A′| ∈ 	(M), thus the breadth-first search runs in
time 	(M). Furthermore, G′ can be constructed from GL in time 	(M). Thus, for
undirected lines and undirected transit networks, Problems 1 and 2 can be solved in
time 	(M).

To solve Problem 1 for a directed transit network GL = (V , A), one can construct
a weighted auxiliary graph 
[GL] = (V [
], A[
]) such that V ⊆ V [
], and for any
two vertices s, t ∈ V the cost of a shortest st-path in 
[GL] is exactly dL(s, t). For
a given vertex v ∈ V , let Lv ⊆ L be the set of all lines that contain v. We add every
vertex v ∈ V to V [
]. Additionally, for every vertex v ∈ V and every line l ∈ Lv ,
we create a new vertex vl and add it to V [
]. The set A[
] contains three different
types of arcs:

1) For every arc a = (u, v) in a line l, we create a traveling arc (ul, vl) with cost
0. These arcs are used for traveling along a line l.

2) For every vertex v and every line l ∈ Lv , we create a boarding arc (v, vl) with
cost 1. These arcs are used to board the line l at vertex v.

3) For every vertex v and every line l ∈ Lv , we create a leaving arc (vl, v) with
cost 0. These arcs are used to leave the line l at vertex v.

This construction is similar to the train-route graph for the Minimum Number of
Transfers Problem described by Müller-Hannemann et al. [20] except that we penal-
ize boarding arcs instead of leaving arcs. We nevertheless describe and analyze it
explicitly because it will be used as a subroutine in the listing algorithms in the
Sections 4 and 6, and the details of the construction are important for the running
time analysis of our listing algorithms.

Theorem 2 Problem 1 is solvable in time 	(M) where M = ∑
l∈L |l| is the input

size.

Proof Let GL = (V , A) be a transit network and s, t ∈ V be arbitrary. We com-
pute the graph 
[GL] and run Dial’s algorithm [9] on the vertex s. Let πst be a
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shortest st-path in 
[GL]. It is easy to see that the cost of πst is exactly dL(s, t) [20].
Furthermore, πst induces an st-path in GL by replacing every traveling arc (vl, wl)

by (v, w), and ignoring the arcs of the other two types [23]. Analogously the line
sequence can be extracted from πst by considering the lines l of all boarding arcs
(v, vl) in πst (or, alternatively, by considering the lines l of all leaving arcs (vl, v) in
πst ).

For every vertex v served by a line l, 
[GL] contains at most two vertices (namely,
vl and v), thus we have |V [
]| ∈ O(M). Furthermore, A[
] contains every arc a

of every line, and exactly two additional arcs for every vertex vl . Thus we obtain
|A[
]| ∈ O(M). Since the largest arc weight is C = 1 and Dial’s algorithm runs in
time O(|V [
]|C + |A[
]|), Problem 1 can be solved in time O(M).

In contrast to the previous Theorem, we will show now that finding a route with a
minimum number of different lines is NP-hard to approximate.

Theorem 3 Problem 2 is NP-hard to approximate within (1 − ε) ln n for any ε > 0
unless NP = P.

Proof We construct an approximation preserving reduction from SETCOVER. The
reduction is similar to the one presented in [28] for the minimum-color path problem.
Given an instance I = (X, S ) of SETCOVER, where X = {x1, . . . , xn} is the ground
set, and S = {S1, . . . , Sm} is a family of subsets of X, the goal is to find a minimum
cardinality subset S ′ ⊆ S such that the union of the sets in S ′ contains all elements
from X.

We construct from I a set of lines L that induces a transit network GL = (V , A)

as follows. See Fig. 4 along with the construction. The set L consists of m + 1
lines and induces 2n vertices. The vertex set V = {va

1 , vb
1 , va

2 , vb
2 , . . . , va

n, vb
n}

contains two vertices va
i and vb

i for each element xi of the ground set X. Let
V O = 〈va

1 , vb
1 , . . . , va

n, vb
n〉 be the order naturally defined by V . The set of

lines L = {l1, . . . , lm, laux} contains one line for each set in S , and one
additional auxiliary line laux . For a set Si ∈ S , consider the set of ver-
tices that correspond to the elements in Si and order them according to V O

to obtain the sequence 〈va
i1
, vb

i1
, va

i2
, vb

i2
, . . . , va

ir
, vb

ir
〉. Now we define the line

li as 〈va
ir
, vb

ir
, va

i(r−1)
, vb

i(r−1)
, . . . , va

i1
, vb

i1
〉. The auxiliary line laux is defined as

〈vb
n−1, v

a
n, vb

n−2, v
a
n−1, . . . , v

b
1 , va

2 〉. Observe that the set of arcs A induced by L con-
tains two types of arcs. First, there are arcs of the form (va

i , vb
i ) or of the form

(vb
i , va

i+1) for some i ∈ [1, n]. These are the only arcs in A whose direction agrees
with the order V O , and we refer to them as forward arcs. Second, for all the other

Fig. 4 The correspondence between a set S1 ⊆ X and a line li of the transit network
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arcs (u, v) ∈ A we have u > v with respect to the order V O , and we refer to these
arcs as backward arcs. We note that every line li is constructed so that the forward
arcs of li correspond to those elements of X that are contained in Si , and the back-
ward arcs connect the forward arcs, in the order opposite to V O , thus making the
lines connected. The auxiliary line laux consists of all the forward arcs of the form
(vb

i , va
i+1), that are again connected in the opposite order by backward arcs.

Now, for s = va
1 and t = vb

n, we show that an st-route with a minimum number
of different lines in the given transit network GL provides a minimum SETCOVER

for I , and vice versa. Since t is after s in the order V O , and the only forward arcs
in GL are of the form (va

i , vb
i ) or (vb

i , va
i+1) for some i, it follows that any route

from s to t in GL goes via all the vertices, in the order V O . Recall that we defined a
route as a pair (π, γ ) where π is a path and γ is a sequence of lines. Since paths are
not allowed to revisit vertices, it even follows that every st-route (π, γ ) consists of
the path π = 〈va

1 , vb
1 , va

2 , vb
2 , . . . , va

n, vb
n〉, and never uses a backward arc (otherwise,

there would be a vertex that is visited at least twice, contradicting the assumption
that π is a path). In particular, the st-route that minimizes the number of different
lines follows this path π . Clearly, laux must be used in every st-route, as it represents
the only way to reach va

i+1 from vb
i . Now, if a line li is used in the st-route r , all

the forward arcs in li correspond to the arcs (va
i , vb

i ) of the path in r and in this way
the line li “covers” these arcs. Since there is a one to one mapping between the lines
l1, . . . , lm and the sets in S , by finding an st-route with k + 1 different lines, one
finds a solution of size k to the original SETCOVER. Similarly each solution of size
k to the original SETCOVER can be mapped to an st-route with k + 1 lines. Thus
our reduction is approximation preserving (up to an addend +1), and based on the
inapproximability of SETCOVER [11] this concludes the proof.

4 Listing all β-bounded Line Sequences

A solution to Problem 3 In [6], the following algorithm for solving Problem 3 is
proposed. In a first step, an undirected auxiliary graph GI is built that contains a
vertex for every line l ∈ L, and two vertices li and lj are directly connected if and
only if li and lj have at least one common stop. Then a modified breadth-first search
is used to compute all line sequences γ for which there exists a route (w, γ ) with
length at most β. When this modified breadth first search visits an arc (li , lj ), it
proceeds with lj only if a transfer from li to lj is possible. We note that unlike in
the original definition of a route, in this section we allow the concatenation of the
subpaths of the lines in γ to repeat vertices, i.e., here it is sufficient that w is a walk in
GL instead of a path. To avoid the explicit construction of the graph GI as proposed
in [6], we reformulate the algorithm as follows.

The algorithm works recursively and obtains as parameters a partial line sequence
γ = 〈l1, . . . , lk〉, k ≤ β, and the earliest vertex u on lk which can be reached from
lk−1 among all possible st-routes (π, γ ); see Fig. 5 for an example. If lk visits t after
u, then we output the line sequence γ . Moreover, if k < β, we also check whether γ

can be extended. Figure 1 gave an example of a transit network where it is reasonable
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Fig. 5 The earliest transfer from l3 to l1 is v3. However, the earliest transfer using the route 〈l4, l3, l1〉 is v4.
We have ν(l1, l2, v1) = v2 and ν(l1, l2, vk) = ∞ for every k 	= 1. We have ν(l1, l3, v5) = ν(l1, l3, v6) =
∞, ν(l1, l3, v3) = ν(l1, l3, v4) = v5 and ν(l1, l3, v1) = ν(l1, l3, v2) = v3

to extend the current line sequence even if t is reachable via lk . For extending γ , we
compute a set L′ of possible line candidates l that can be reached from lk after u, and
also the transfer vertices vl by which l is reached as early as possible (i.e., there is no
vertex v′

l visited by lk after u that l visits prior to vl). This can be done by considering
the successors of u on lk with increasing distance from u, and keeping track of the
optimal transfer from lk . Now, for every l ∈ L′, we perform a recursive call with the
line sequence γ ′ = 〈l1, . . . , lk, l〉 and the transfer vertex vl .

Already the original algorithm (that explicitly constructs the auxiliary graph GI )
works reasonably fast for medium-sized urban transit networks such as the one in
Zürich [4], at least if β is relatively small. However observe that the theoretical worst-
case running time of the algorithm might be �(
β) where 
 is the largest degree of
a vertex in GI , even if only few (or even none at all) line sequences are output. This
is unacceptable from a theoretical point of view, and it might also be unacceptable in
a real-world application when both the network and β are large.

An improved solution to Problem 3 To improve the above algorithm, we use an
idea similarly used by Rizzi et al. [22] who perform a recursive call only if such a call is
guaranteed to output eventually at least one solution. To make use of this idea in the
context of listing line sequences, for the transit network GL, two vertices v, t ∈ V

and a line l ∈ Lv (the set of all lines that visit v), we define dL
GL

(v, t, l) to be the L-
distance from v to t in GL = (V , A) such that lj is the first line used. Observe that
for a fixed target t , all values dL

GL
(v, t, l) for every v ∈ V and every l ∈ Lv can easily

be computed using the solution to Problem 1: one simply considers the reverse graph
(GL)R of GL (with all the arcs and lines in L reversed), computes 
[(GL)R] and
runs Dial’s algorithm on the vertex t . Then, the length of a shortest path in 
[(GL)R]
from t to vlj is exactly dL

GL
(v, t, lj ). A similar idea (traversing the graph 
[(GL)R]

from the target stop t backwards to compute for every stop v the length of a shortest
vt-route) was used in [12]; however, it was not used in the context of listing all
length-bounded line sequences but as a speedup heuristic in a multi-criteria version
of Dijkstra’s algorithm to avoid the generation of unnecessary labels. Here, we also
go one step further and take the first line of the corresponding route into account.

To obtain a polynomial-delay listing algorithm for Problem 3, we modify the algo-
rithm described in the previous paragraph as follows. We first compute the values
dL
GL

(v, t, l) for every vertex v and every line l that contains v (using the solution to
Problem 1). After that, we execute the recursive listing algorithm exactly as described
before, but we recursively extend γ by a line l only if dL

GL
(vl, t, l) ≤ β − k. In such a
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case there exists a vlt-route starting with the line l, and extending γ by l gives a route
of length at most β. Algorithm 1 shows the details. To solve Problem 3, it is sufficient
to invoke LISTLINESEQUENCES(s, 〈l〉) for every l ∈ Ls where dL

GL
(s, t, l) ≤ β. As

the following theorem shows, this modified listing algorithm has a polynomial delay.

Theorem 4 Algorithm 1 has delayO(βM), and its overall time complexity isO(βM·
κ), where M = ∑

l∈L |l| is the input size and κ is the number of returned solutions.
Moreover, the space complexity is O(M).

Proof As before, step 1 can be computed using O(M) operations and requires O(M)

space. Steps 3–6 can also be implemented to run in time O(M), as every step 6 takes
only constant time and is performed at most once for every vertex v and every line l

containing v. Since the recursive calls in step 9 are only performed if it is guaranteed
to output a solution, we observe (similar to [22]) that the height of the recursion tree is
bounded by O(β), hence the delay of the algorithm is O(βM). The time complexity
of O(βM · κ) immediately follows.

As in [6], we assumed in the above running time analysis that the test whether a
given vertex v is visited by a line l can be performed in constant time using suitable
hash tables. The same is true for the test whether a line visits a vertex v earlier than
some other vertex w. Moreover, when the algorithm is invoked with the parameters
γ = 〈l1, . . . , lk〉 and u, and if additionally t is visited by lk after u, then in practice
the successors of t on lk do not have to be visited any more in step 3 of the Algorithm
1, hence the current call of the algorithm can terminate after γ is output in step 4.

A faster algorithm with preprocessing From a practical point of view, an overall
running time of O(βM · κ) is still undesirable. Algorithm 1 has delay O(βM) for
two reasons: 1) initially we compute the values dL

GL
(·, t, ·), and 2) for every partial

line sequence 〈l1, . . . , lk〉 we investigate all possible transfer vertices from lk to other
lines to find the optimal one for every line. Issue 1) can easily be solved by computing
the values dL

GL
(v, t, l) for every v, t ∈ V and every line l ∈ L in advance and then

storing them. Since for every t there are at most O(M) many values dL
GL

(·, t, ·) and
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all of them can be computed in time O(M), we need overall time O(M|V |). To solve
issue 2), we precompute for every line l, every vertex v on l and every line l′ 	= l

the vertex f (l, l′, v) which is visited by l after v and by which l′ is reached as early
as possible (on l′). If no such a vertex exists, we set f (l, l′, v) = ∞. For every line
l = 〈v1, . . . , vk〉 ∈ L, the values f (l, ·, ·) can be computed as follows. We consider
the vertices vk, . . . , v1 in this order. We set f (l, l′, vk) = ∞ for every l′ ∈ L. After
that, considering a vertex vi , we set

f (l, l′, vi) =
⎧
⎨

⎩

vi+1 if l′ ∈ Lvi+1 and f (l, l′, vi+1) = ∞
vi+1 if l′ ∈ Lvi+1 and l′ visits vi+1 before f (l, l′, vi+1)

f (l, l′, vi+1) otherwise
(2)

Since the computation of each entry requires only constant time, the values f (l, l′, v)

can be computed using time and space O(M|L|). Hence, for preprocessing time and
space O(M(|V | + |L|)) suffice. Now, however, st-route listing queries can be per-
formed much faster using the following algorithm. Figure 5 gives an example for a
transit network and the corresponding values ν(l, l′, vi).

Theorem 5 The values dL
GL

(v, t, l) and f (l, l′, v) can be precomputed using time
and space O(M(|V | + |L|)). Assuming that these values have been precomputed,
Algorithm 2 has delay O(β|L|), and its overall time complexity is O(β|L| ·κ), where
|L| is the number of lines and κ is the number of returned solutions.

Proof The straightforward proof is similar to the proof of Theorem 4.

To see the speedup, remember that Algorithm 1 has a delay of O(βM) while
Algorithm 2 has a delay of only O(β|L|). In real transit networks, M = ∑

l∈L |l| is
usually way larger than |L| is.

5 Modeling Consequences: Line Sequences vs. Routes

In the following we discuss some consequences of the way how we modeled transit
networks. In particular we consider situations that arise when modeling the transit
network of Zürich, because this network will be used later as a basis for the exper-
imental evaluation of our algorithms. The most critical point in our model is our
definition of a line as an (ordered) sequence of stops. Although no two lines have the
same stop sequence, they may have the same identifier (such as “Bus 31”) in reality
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and might therefore be considered equivalent from a travelers’s perspective. Figure 6
gives an example for various lines that might be operated under the same identifier
which we now explain in more detail.

– Standard realization of a line. In most cases, a line l = 〈v1, . . . , vk〉 is realized
throughout the whole day with high frequency. This line corresponds to lstandard

in Fig. 6. Often there exists a similar line (a backward line) in the opposite direc-
tion l′ = 〈vk, . . . , v1〉 which contains the same stops as l but in reverse order.
In some rare cases, the stop sequence of the backward line slightly differs. This
mostly happens when busses travel along one-way streets.

– Standard realization changes over the day. In most cities there exist observ-
able patterns of how people use public transportation. During the work days,
there are clearly visible peak hours at which people commute to or from work.
The planned schedule of public transportation services usually tries to react to
increased or decreased demand. As a consequence, the planned frequency of a
line may change during the day. Sometimes, however, also the realization of the
line itself changes, e.g. because in the evening certain stops are completely left
out and some other stops are visited instead. Hence we have to introduce a new
line to model such a situation. In Fig. 6, levening is an example for such a line.

Such lines clearly introduce difficulties in the context of finding robust routes:
if, at some point, the realization of a line changes from lstandard to levening and
a traveler misses the last trip of lstandard , then following the earlier computed
route does not lead to an arrival at the target stop on that day. In reality, however,
if one does not want to travel to one of the stops that is left out, one could have
just used levening instead.

– A vehicle comes from or goes to the depot. At the beginning of an operational
day (and shortly before the beginning of the rush hours), vehicles come from the
depot to start the service. Analogously, at the end of the operational day (and
after the rush hours) vehicles travel back to the depot. Often these lines can also
be used for traveling, but their line sequence may differ considerably from the
standard realization. The low frequency of such lines makes an inclusion of them
into a robust route highly undesirable. For example, consider Fig. 6 and assume
that we want to travel from y to f . It might be tempting to use l2 until a, and
from there use ldepot . Now, if the planned trip of l2 is slightly delayed and the

Fig. 6 Different lines with the same identifier. The line lstandard describes the most frequent realization.
The line levening leaves a stop out, but this happens only in the evening. Towards the end of the operational
day, the line ldepot goes back to the depot. Sometimes early in the morning, busses by plan turn around in
advance such that there is a fast and good coverage of vehicles. An example for such a line is lturn around
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transfer to ldepot fails, one cannot continue the recommended journey until the
next trip of ldepot arrives, which might be only a few hours later (or even only on
the next day).

– Cyclic lines. In some rare cases, a line l does not have a corresponding back-
ward line going in the opposite direction. Instead, after visiting the last stop on l

the realizing vehicle travels back to the first stop of l, hence l has a cyclic topol-
ogy. Such a situation is rather difficult to capture, because in a journey it might
be necessary to take two consecutive trips of the same line. Although the trip is
changed, the transfer should not be counted because it is the same physical vehi-
cle. One way out might be to concatenate l with itself, but then we violate our
previously made assumption that every line visits every stop of the network at
most once. This assumption was not used in Algorithm 1, but it is crucial for the
correctness of Algorithm 3 that is discussed in the next section.

However, the algorithms itself can be modified to handle such a situation. For
that, we could also give an additional number as a parameter to each recursive
call that counts how many real transfers have already been used. At the end of a
cyclic line we also must allow a transfer to the line itself, and the aforementioned
counter is increased only if the current transfer to a “new” line is also a trans-
fer in reality. Moreover, we would have to modify the auxiliary graph 
[GL]:
For every cyclic line l = 〈v, . . . , w〉 (where v is visited directly after w again),
we have to insert an additional arc from vl to wl (with cost 0). A similar mod-
ification can be used to model the situation when vehicles serve multiple lines
l1, l2, l3, . . . one after another, and no physical transfer from li to li+1 is neces-
sary to change the line (because one can simply stay in the vehicle). One just has
be careful that such a “transfer” can take place only at the end of a line. However,
adapting the implementation to consider such special situations might be more
a technical than a conceptional problem. Therefore we don’t discuss this issue
further.

– A vehicle turns back in advance. Shortly after the beginning of an operational
day, one especially tries to spread vehicles as fast as possible such that many
stops are covered. Therefore, vehicles sometimes are planned to turn around in
advance such that the most important stops of that line are covered already early
in the morning. Since this behavior can be found in the planned timetable, we
introduce an additional line (e.g., lturn around in Fig. 6).

Beside the fact that these lines are operated under the same identifier, they also have
many common stops. In urban areas one generally can often observe that different
lines have more than just one common stop. Assume, e.g., that two lines li and lj have
the common stops v1, . . . , vk . From a traveler’s perspective, when traveling from
any of these stops to any other of these stops, one may either use li or lj , whatever
arrives first. Figure 7 shows a real-life example from Zürich, where much more line
sequences than actual paths in GL exist. Hence, considering paths in transit networks
instead of line sequences seems to be more natural because it allows to consider
different lines as one joint line. In some way, computing journeys from paths was
already proposed in [24]; there, however, paths are not listed explicitly, and they are
bounded by their geographical length instead of by the number of transfers.
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Fig. 7 An extract of the transit network in Zürich when traveling from s = Sihlpost to t =
ETH/Universitätsspital. The lines are lPB = 〈v3, t〉, l3 = l31 = 〈s, v1, v2, v3, v5, v6〉, l6 = 〈v2, v3, v4, t〉,
l9 = 〈v6, v7, t〉, l10 = 〈v1, v2, v3, v4, t〉, and l14 = 〈s, v1, v2〉. There is no direct connection between s and
t , but there are 10 line sequences γ with |γ | = 2 for which GL contains a route (π, γ ). However, observe
that only three line sequences differ substantially (i.e., have different paths in the network)

6 Listing all β-bounded Paths

Motivation We saw in the previous section that listing all length-bounded paths in
GL seems more natural than listing all st-routes. A naı̈ve approach for solving Prob-
lem 4 is to use Algorithm 1 or 2 to generate all feasible line sequences γ and then to
compute the corresponding paths (there might be more than one) for each feasible γ .
However, this approach does not only have the disadvantage of a possibly huge run-
ning time, also for every path π there might be exponentially many line sequences γ

such that (π, γ ) is route in GL. Since we want to output every path π at most once,
we would also need to store �(κ) many paths. To some extent, such an approach was
used by Xu et al. [26] whose algorithm outputs each path as often as some route real-
izes this path (instead of just once), and also only lists paths with no more than two
transfers.

Another straightforward idea to solve Problem 4 might be to construct an auxiliary
graph from GL and then use one of the well-known algorithms for listing paths, e.g.,
Yen’s algorithm. For example, one could create a directed graph GX = (V , AX)

where AX contains an arc between v and w if there exists a line that visits v before
w. Any path between s and t in GX of length at most β induces an st-path in GL.
However, as before, exponentially many paths in GX might correspond to one path
in GL which again might lead to an exponential gap between the running time and
the sum of the input and the output size.

Improved idea for Problem 4 Let P
β
st (L) denote the set of all st-paths π such that

there exists a route (π, γ ) with length at most β in the transit network GL. To obtain
a polynomial delay algorithm that uses only O(M) space, we use the so-called binary
partition method described in [3, 22]: The transit network GL is traversed in a depth
first search fashion starting from s, and the solution space P

β
st (L) is recursively

partitioned at every call until it contains exactly one solution (i.e., one path) that is
then output.

When the algorithm considers a partial su-path πsu, we first check whether u = t .
In that case, πsu is output. Otherwise, we compute the graph G′ that is the transit
network GL from which all vertices (and all adjacent arcs) in πsu are removed. To
bound the running time of the algorithm we maintain the invariant that the current
partition (i.e., the paths in P

β
st (L) with prefix πsu) contains at least one solution.

More concretely, we require that G′ contains at least one ut-path πut that extends
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πsu so that πsu · πut ∈ P
β
st (L). The idea behind this algorithm is similar to the

one in [22] for listing all α-bounded paths; here, however, new ideas to maintain the
invariant are necessary because our objective is to list only paths π for which a length-
bounded route (π, γ ) in GL exists (instead of listing all paths whose length itself is
bounded).

Checking whether to recurse or not Let πsu be the su-path that the algorithm
currently considers, L′ = L − πsu, G′ = GL − πsu = GL′ , and v ∈ N+

GL
(u) ∩ G′,

i.e., v is a neighbor of u that is not contained in πsu. We recursively continue on
πsu · (u, v) only if the invariant (I) is satisfied, i.e., if P

β
st (L) contains a path with

prefix πsu · (u, v).
Let dGL

(πsu, (u, v), li) be the length of a minimum route (πsu · (u, v), γ ) in GL

such that li is the last line of γ . Let dL′
G′(v, t, lj ) be the L′-distance from v to t in G′

such that lj is the first line used. For a vertex v ∈ V , let Lv ⊆ L be the set of all lines
that contain an outgoing arc from v. Analogously, for an arc (u, v) ∈ A, let L(u,v)

be the set of all lines that contain (u, v). Now, the set P
β
st (L) contains a path with

prefix πsu · (u, v) if and only if

min
{
dGL

(πsu, (u, v), li) − δij + dL′
G′(v, t, lj ) | li ∈ L(u,v) and lj ∈ Lv

}
≤ β . (3)

Basically, min{dGL
(πsu, (u, v), li) − δij + dL′

G′(v, t, lj ) | li ∈ L(u,v) and lj ∈ Lv} is
the length of the minimum route that has prefix πsu · (u, v).

Computing dGL
(πsu, (u, v), li) and dL′

G′ (v, t, lj ) We can use the solution for

Problem 1 to compute the values dGL
(πsu, (u, v), li) and dL′

G′(v, t, lj ). The values
dGL

(πsu, (u, v), li) need to be computed only for arcs (u, v) ∈ A with v /∈ πsu (i.e.,
only for arcs from u to a vertex v ∈ N+

GL
(u) ∩ G′), and only for lines li ∈ L(u,v).

Consider the graph G′′ that contains every arc from πsu and every arc (u, v) ∈ A with
v /∈ πsu, and that contains exactly the vertices incident to these arcs. Now we com-
pute H = 
[G′′] and run Dial’s algorithm on the vertex s. For every v ∈ N+

GL
(u)∩G′

and every line li ∈ L(u,v), the length of a shortest path in H from s to vli is exactly
dGL

(πsu, (u, v), li). For computing dL′
G′(v, t, lj ), we can consider the L′-distances

from t in the reverse graph G′R (with all the arcs and lines in L′ reversed). Consid-
ering G′ instead of GL ensures that lines do not use vertices that have been deleted
in previous recursive calls of the algorithm. Thus we compute 
[G′R] and run Dial’s
algorithm on the vertex t . Then, the length of a shortest path in 
[G′R] from t to vlj

is exactly dL′
G′(v, t, lj ).

Algorithm Algorithm 3 shows the details of the aforementioned approach. To limit
the space consumption of the algorithm, we do not pass the graph G′ as a parameter
to the recursive calls, but compute it at the beginning of each recursive call from
the current prefix πsu. For the same reason, we do not perform the recursive calls
immediately in step 8, but first create a list VR ⊆ V of vertices for which the invariant
(I) is satisfied, and only then recurse on (v, πsu · (u, v)) for every v ∈ VR . To list all
paths in P

β
st , we invoke LISTPATHS(s, 〈s〉).
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Theorem 6 Algorithm 3 has delay O(nM), where n is the number of vertices in
GL and M = ∑

l∈L |l| is the input size. The overall time complexity is O(nM ·
κ), where κ is the number of returned solutions. Moreover, the space complexity is
O(M).

Proof We first analyze the cost of a given call to the algorithm without includ-
ing the cost of the recursive calls performed inside. Theorem 2 states that steps 3
and 4 can be performed in time O(M). We will now show that steps 6–8 can be
implemented in time O(M). Notice that for a fixed prefix πsu and a fixed vertex
v ∈ N+

GL
(u) ∩ G′, for computing the minimum in step 7, we need to consider only

the values dGL
(πsu, (u, v), li) that are minimum among all dGL

(πsu, (u, v), ·), and
only the values dL′

G′(v, t, lj ) that are minimum among all dL′
G′(v, t, ·). Let �v ⊆ L(u,v)

be the list of all lines li for which dGL
(πsu, (u, v), li) is minimum among all

dGL
(πsu, (u, v), ·). Analogously, let �′

v ⊆ Lv be the list of all lines lj for which
dL′
G′(v, t, lj ) is minimum among all dL′

G′(v, t, ·). Let

μv = min
{
dGL

(πsu, (u, v), li) | li ∈ �v

}
(4)

μ′
v = min

{
dL′
G′(v, t, lj ) | lj ∈ �′

v

}
(5)

be the minimum values of dGL
(πsu, (u, v), ·) and dL′

G′(v, t, ·), respectively. Both val-
ues as well as the lists �v and �′

v can be computed in steps 3 and 4, and their
computation only takes overall time O(M). Now the expression in step 7 evaluates
to μv + μ′

v if �v ∩ �′
v = ∅, and to μv + μ′

v − 1 otherwise. Assuming that �v and
�′

v are ordered ascendingly by the index of the contained lines li , it can easily be
checked with |�v| + |�′

v| ≤ |L(u,v)| + |Lv| many comparisons if their intersection
is empty or not. Using this method, each of the values dGL

(πsu, ·, ·) and dL′
G′(·, t, ·)

is accessed exactly once (when computing �v and �′
v), and since each of these val-

ues has a unique corresponding vertex in the graphs H and 
[G′R], there exist at
most O(M) many such values. Thus, the running time of the steps 6–8 is bounded
by O(M) which is also an upper bound on the running time of Algorithm 3 (ignoring
the recursive calls).
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To prove the delay of O(nM), we again use an argument similar to one in [22]:
since every recursive call appends one vertex to the current partial path πdu and the
length of πdu is bounded by n, the height of the recursion tree is bounded by n.
Hence, after a path is output, at most n many previous recursive calls terminate and
at most n many new recursive calls are invoked until the next path is output.

For analyzing the space complexity, observe that both L′ and G′ as well as all
values dGL

(πsu, (u, v), li) and dL′
G′(v, t, lj ) can be removed from the memory after

step 8 since they are not needed any more. Thus, we only need to store the lists
VR between the recursive calls. Consider a path in the recursion tree, and for each
recursive call i, let ui be the vertex u and V i

R be the list VR of the i-th recursive call.
Since V i

R contains only vertices adjacent to ui and ui is never being considered again
in any succeeding recursive call j > i, we have

∑

i

|V i
R| ≤ |AL|, (6)

which proves the space complexity of O(M).

7 Experimental Evaluation

We implemented Algorithm 3 to investigate its running time and the number of paths
it computes. We used the data from the transit network of Zürich, Switzerland, includ-
ing trams and busses. The network has 401 stops and 292 lines (of which many are
operated under the same identifier, see Section 5 for an explanation on the reasons).
The algorithm was implemented in Java 8, and it was executed on one core of an Intel
Core i7-6700 CPU. Even though most modern CPUs have more than one core and
the algorithm seems to be easily parallelizable, we implemented only a serial version
of the algorithm for two reasons: first, our goal was to investigate how fast the algo-
rithm can be even under “bad” conditions, for example when the algorithm was used
in a web application and there were more queries than available cores. Moreover, in
practical applications it might be sufficient to compute only few (e.g., 10) alterna-
tive paths. Since the algorithm turned out to perform sufficiently well when only few
paths are computed (see below), the additional overhead might reduce the speedup
achieved by the parallelization.

We generated 1’000 st-pairs (with s 	= t and dL(s, t) ≤ 3) uniformly at random,
and computed the set P

β
st (L) for every β ∈ {dL(s, t), dL(s, t) + 1, dL(s, t) + 2}

(i.e., we computed all paths along routes with a minimum number of transfers, all
paths along routes that may use one additional transfer and all paths along routes that
may use two additional transfers). The sets P

β
st (L) contained between 1 and 8,365

paths, and the running times for computing these paths ranged between less than
one millisecond and 202 seconds. Figure 8 (left) shows a more detailed overview.
For each of the 3,000 experimental outcomes (1,000 st-pairs with three values of
β each), the figure contains a point of this outcome where the x-coordinate denotes
the number of solutions and the y-coordinate the corresponding running time of the
algorithm (in seconds). One can clearly see that the running time and the number of
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Fig. 8 The running time of the algorithm in comparison to the number of solutions output (left). Average
running times and the correspoding fraction of outcomes when outcomes are grouped by the number of
computed solutions in buckets of length 5 (right)

solutions are correlated, and that there are relatively few outcomes where the running
time exceeds a minute.

From a practical point of view, even query times in the magnitude of seconds are
unacceptable. We therefore grouped all outcomes according to the number of solu-
tions computed into buckets of 5 solutions, i.e., the first bucket contains all outcomes
where the number of computed solutions is not larger than 5, the second bucket con-
tains all outcomes where the number of computed solutions ranges between 6 and
10, and so on. Then, for every bucket we computed the average running time of the
outcomes in this bucket and also related their number to the overall number of out-
comes. Figure 8 (right) shows the results for the outcomes which computed not more
than 50 paths. First, one again can observe a linear correlation between the number
of computed solutions and the corresponding running times. The average running
time remains below 1.5s and even below 250ms when 10 or less paths are computed.
Notice that more than 25 % of all outcomes had 5 or less paths, and fewer than 45 %
had more than 50 paths.

To investigate how often this is the case, we grouped our 1′000 st-pairs into three
groups containing all pairs with dL(s, t) = 1 (i.e., pairs between which a direct
connection exists), dL(s, t) = 2 (i.e., pairs which require at least one transfer) and
dL(s, t) = 3 (i.e., pairs which require at least two transfers). We note that in Zürich
there are only few pairs that require more than three transfers. Now, for each group,
we computed the minimum, average and maximum number as well as the median,
the 10th and the 90th percentile of solutions over all outcomes that use zero, one
and two additional transfers, respectively. Figure 9 shows the results for the st-pairs
with dL(s, t) = 1 (left), dL(s, t) = 2 (middle) and dL(s, t) = 3 (right). One can
observe that allowing one more transfer than necessary leads to a moderate increase
of the number of computed paths while allowing two additional transfers increases
the number of computed paths drastically.

Again, we should take a closer look at the concrete numbers. We observed that
for all st-pairs with dL(s, t) = 1, the maximum number of computed paths with
β = 2 is 39. Moreover, the median number of computed paths with β = 3 is 38,
while the average is below 65. For the st-pairs with dL(s, t) = 2, the median and
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average number of solutions with β = 3 are 30 and 41.27, respectively, and for
the st-pairs with dL(s, t) = 3, the median number of solutions with β = 3 is 7
while the average is 10.29. Although alternative ways to travel are clearly useful, in
practice it seems unlikely that one needs more than 10 alternative solutions. Hence,
it seems that allowing three transfers is likely to give a fair compromise between the
number of solutions output and the running time. A more sophisticated way might
be the following: one first computes P

β
st (L) for β = dL(s, t), and if the number of

computed paths is below a fixed threshold (e.g., 10), one successively increases β

until the number of solutions is sufficiently large. Since also in practice the running
time seems to linearly depend on the number of computed solutions, this might be
feasible for real-life applications.

8 Conclusion

In this paper, we studied the problem of computing and listing st-paths in transit
networks. As a first result, we showed how the existing listing algorithm in [6] for
listing all line sequences γ for which a length-bounded route along γ exists can be
modified such that the worst-case running time becomes polynomial in the sum of the
input and the output size. Moreover, we argued that many routes might correspond
to the same path in the transit network, and might therefore be considered equivalent
from a traveler’s perspective. Therefore we proposed an algorithm to compute the
set of all paths in the transit network for which a suitable route using at most β

lines exist. The running time of this algorithm again is polynomial in the sum of the
input and the output size. Our preliminary experimental study showed that the real
running time of the algorithm indeed linearly depends on the number of solutions
output, and we also saw that the algorithm is sufficiently fast for real applications
if the number of computed paths is small (i.e., not above 10). However, it would
certainly be worthwhile to further study whether heuristical speedup techniques (such
as pruning based on the geography of the stops) helps to decrease the running time,
and how such techniques influence the quality of the solutions.
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