
ar
X

iv
:1

50
9.

07
60

0v
1

 [
cs

.D
S]

 2
5

Se
p

20
15

Minimax Regret 1-Median Problem

in Dynamic Path Networks

Yuya Higashikawa1,6, Siu-Wing Cheng2, Tsunehiko Kameda3, Naoki Katoh4,6⋆,
and Shun Saburi5

1 Department of Information and System Engineering, Chuo University, Japan,
higashikawa.874@g.chuo-u.ac.jp

2 Department of Computer Science and Engineering, The Hong Kong University of
Science and Technology, Hong Kong, scheng@cse.ust.hk

3 School of Computing Science, Simon Fraser University, Canada, tiko@sfu.ca
4 Department of Informatics, Kwansei Gakuin University, Japan,

naoki.katoh@gmail.com
5 Department of Architecture and Architectural Engineering, Kyoto University,

Japan, as-saburi@archi.kyoto-u.ac.jp
6 CREST, Japan Science and Technology Agency (JST), Japan

Abstract. This paper considers the minimax regret 1-median problem
in dynamic path networks. In our model, we are given a dynamic path
network consisting of an undirected path with positive edge lengths,
uniform positive edge capacity, and nonnegative vertex supplies. Here,
each vertex supply is unknown but only an interval of supply is known.
A particular assignment of supply to each vertex is called a scenario.
Given a scenario s and a sink location x in a dynamic path network, let
us consider the evacuation time to x of a unit supply given on a vertex
by s. The cost of x under s is defined as the sum of evacuation times to
x for all supplies given by s, and the median under s is defined as a sink
location which minimizes this cost. The regret for x under s is defined
as the cost of x under s minus the cost of the median under s. Then, the
problem is to find a sink location such that the maximum regret for all
possible scenarios is minimized. We propose an O(n3) time algorithm for
the minimax regret 1-median problem in dynamic path networks with
uniform capacity, where n is the number of vertices in the network.

Keywords: minimax regret, sink location, dynamic flow, evacuation
planning

1 Introduction

The Tohoku-Pacific Ocean Earthquake happened in Japan on March 11, 2011,
and many people failed to evacuate and lost their lives due to severe attack by
tsunamis. From the viewpoint of disaster prevention from city planning and evac-
uation planning, it has now become extremely important to establish effective
evacuation planning systems against large scale disasters in Japan. In particular,
arrangements of tsunami evacuation buildings in large Japanese cities near the

⋆ Supported by JSPS Grant-in-Aid for Scientific Research(A)(25240004)

http://arxiv.org/abs/1509.07600v1

coast has become an urgent issue. To determine appropriate tsunami evacuation
buildings, we need to consider where evacuation buildings are located and how
to partition a large area into small regions so that one evacuation building is
designated in each region. This produces several theoretical issues to be consid-
ered. Among them, this paper focuses on the location problem of the evacuation
building assuming that we fix the region such that all evacuees in the region are
planned to evacuate to this building. In this paper, we consider the simplest case
for which the region consists of a single road.

In order to represent the evacuation, we consider the dynamic setting in
graph networks, which was first introduced by Ford et al. [11]. In a graph net-
work under the dynamic setting, each vertex is given supply and each edge is
given length and capacity which limits the rate of the flow into the edge per
unit time. We call such networks under the dynamic setting dynamic networks.
Unlike in static networks, the time required to move supply from one vertex to
a sink can be increased due to congestion caused by the capacity constraints,
which require supplies to wait at vertices until supplies preceding them have
left. In this paper, we consider the flow on dynamic networks as continuous,
that is, each input value is given as a real number, and supply, flow and time
are defined continuously. Then each supply can be regarded as fluid, and edge
capacity is defined as the maximum amount of supply which can enter an edge
per unit time. The 1-sink location problem in dynamic networks is defined as the
problem which requires to find the optimal location of a sink in a given dynamic
network so that all supplies are sent to the sink as quickly as possible.

In order to evaluate an evacuation, we can naturally consider two types of
criteria: completion time criterion and total time criterion. In this paper we
adopt the latter one (for the former one, refer to [12,15,17,18]). We here define
a unit as an infinitesimally small portion of supply. Given a sink location x in
a dynamic network, let us consider an evacuation to x starting at time 0 and
define the evacuation time of a unit to x as the time at which the unit reaches x
in the evacuation. The total time for the evacuation to x is defined as the sum of
evacuation times over all infinitesimal units to x. Then, the minimum total time
for all possible evacuations to x could be the criterion for the optimality of sink
location, which we adopt. Given a dynamic network, we define the 1-median
problem as the problem which requires to find a sink location minimizing the
minimum total time, and the optimal solution is called the median.

Although the above criterion is reasonable for the sink location, it may not
be practical since the number of evacuees in an area may vary depending on
the time (e.g., in an office area in a big city, there are many people during the
daytime on weekdays while there are much less people on weekends or during
the night time). So, in order to take into account the uncertainty of population
distribution, we consider the maximum regret for a sink location as another eval-
uation criterion assuming that for each vertex, we only know an interval of vertex
supply. Then, the minimax regret 1-median problem in dynamic path networks is
formulated as follows. A particular assignment of supply to each vertex is called
a scenario. Here, for a sink location x and a scenario s, we denote the minimum
total time by Φs(x). Also let ms denote the median under s. The problem can
be understood as a 2-person Stackelberg game as follows. The first player picks

a sink location x and the second player chooses a scenario s that maximizes the
regret defined as Φs(x)−Φs(ms). The objective of the first player is to choose x
that minimizes the maximum regret.

Related to the minimax regret facility location in graph networks, especially
for trees, some efficient algorithms have been presented by [2,3,5,6,7,9]. For dy-
namic networks, Cheng et al. [8] first studied theminimax regret 1-center problem
in path networks, which requires to find a sink location in a path that minimizes
the maximum regret where the completion time criterion is adopted instead of
the total time one. They presented an O(n log2 n) time algorithm. Higashikawa
et al. [13] improved the time bound by [8] to O(n log n), and also Wang [19]
independently achieved the same time bound of O(n log n) with better space
complexity. Very recently, Bhattacharya et al. [4] have improved the time bound
to O(n). The above problem was extended to the multiple sink location version
by Arumugam et al. [1]. For the minimax regret k-center problem in dynamic
path networks with uniform capacity, they presented an O(kn3 log n) time algo-
rithm, and this time bound was improved to O(kn3) recently [12]. On the other
hand, for dynamic tree networks, only the minimax regret 1-center problem was
solved in O(n2 log2 n) time [14,16].

This paper first considers the minimax regret median problem in dynamic
networks while all the above works for dynamic networks treated center prob-
lems. In this paper, we address the minimax regret 1-median problem in dynamic
path networks with uniform capacity and present an O(n3) time algorithm.

2 Preliminaries

2.1 Dynamic path networks under uncertain supplies

Let P = (V,E) be an undirected path with ordered vertices V = {v1, v2, . . . , vn}
and edges E = {e1, e2, . . . , en−1} where ei = (vi, vi+1) for i ∈ {1, . . . , n− 1}. Let
N = (P, l, w, c, τ) be a dynamic network with the underlying path graph P ; l is a
function that associates each edge ei with positive length li, w is a function that
associates each vertex vi with positive weight wi, amount of supply at vi; c is the
capacity, a positive constant representing the amount of supply which can enter
an edge per unit time; τ is a positive constant representing the time required
for a flow to travel a unit distance. In our model, instead of the weight function
w on vertices, we are given the weight interval function W that associates each
vertex vi ∈ V with an interval of supply Wi = [w−

i , w
+
i] with 0 < w−

i ≤ w+
i .

We call such a network N = (P, l,W, c, τ) with path structures a dynamic path
network under uncertain supplies.

In the following, we write p ∈ P to indicate that a point is a vertex of P or
lies on one of the edges of P . For any point p ∈ P , we abuse this notation by also
letting p denote the distance from v1 to p. Informally we can regard P as being
embedded on a real line with v1 = 0. For two points p, q ∈ P satisfying p < q,
let [p, q] (resp. [p, q), (p, q] and (p, q)) denote an interval in P consisting of all
points x ∈ P such that p ≤ x ≤ q (resp. p ≤ x < q, p < x ≤ q and p < x < q).

2.2 Scenarios

Let S denote the Cartesian product of all Wi for i ∈ {1, . . . , n}:

S =

n
∏

i=1

Wi. (1)

An element of S, i.e., a particular assignment of weight to each vertex, is called
a scenario. Given a scenario s ∈ S, we denote by ws

i the weight of a vertex vi
under s.

2.3 Total evacuation time

In our model, the supply is defined continuously. We define a unit as an infinites-
imally small portion of supply. Given a sink location x ∈ P and a scenario s ∈ S,
without loss of generality, an evacuation to x under s is assumed to satisfy the
following assumptions. When a unit arrives at a vertex v on its way to x, it has
to wait for the departure if there are already some units waiting for leaving v.
All units waiting at v for leaving v are processed in the first-come first-served
manner.

For a given x ∈ P and s ∈ S, let us consider an evacuation to x under s
starting at time 0 and define the evacuation time of a unit to x under s as the
time at which the unit reaches x. Let Φs(x) denote the sum of evacuation times
over all infinitesimal units to x under s. Also let Φs

L(x) (resp. Φ
s
R(x)) denote the

sum of evacuation times to x under s for all units on [v1, x) (resp. (x, vn]). Then,
Φs(x) is obviously the sum of Φs

L(x) and Φs
R(x), i.e.,

Φs(x) = Φs
L(x) + Φs

R(x). (2)

Without loss of generality, we assume Φs
L(v1) = 0 and Φs

R(vn) = 0.
We will show the formula of Φs(x) that has been proved in [15,17]. Suppose

that x is located in an open interval (vh, vh+1) with 1 ≤ h ≤ n− 1, i.e., x ∈ eh.
We here show only the formula of Φs

L(x) (the case of Φ
s
R(x) is symmetric). First,

let us define the vertex indices ρ1, . . . , ρk inductively as

ρi = argmax

{

τ(vh − vj) +

∑j
l=ρi−1+1 w

s
l

c

∣

∣

∣

∣

j ∈ {ρi−1 + 1, . . . , h}

}

, (3)

where ρ0 = 0. Obviously ρk = h holds. We then call a set of all units on
[vρi−1+1, vρi

] i-th cluster, and a vertex vρi
the head of i-th cluster (see Fig. 1).

x

(h=) ρe
ρ
2

ρ
11

Fig. 1. Illustration of left clusters for x where i-th cluster is headed by a vertex vρi

Also, for i ∈ {1, . . . , k}, we define σi as σi =
∑ρi

l=ρi−1+1 w
s
l , which is called

the weight of i-th cluster. The interpretation can be derived from [15,17] as
follows. The first unit on each vρi

does not encounter any congestion on its way
to x. Here, although ρi may not be uniquely determined by (3), we choose the
maximum index as ρi. By this assumption and (3), the following inequality holds
for i ∈ {2, . . . , k}:

τ(vρi
− vρi−1

) >
σi

c
. (4)

In other words, even if we transform the input so that all units on [vρi−1+1, vρi
)

are moved to vρi
for i ∈ {1, . . . , k}, the sum of evacuation times over [v1, x)

never changes. In the following, we call such a transformation the left-clustering
for x and clusters obtained by the left-clustering for x left clusters for x (the
right-clustering and right clusters are symmetric). Then as in [15,17], Φs

L(x) is
written as

Φs
L(x) =

k
∑

i=1

(

σiτ(x − vρi
) +

σi
2

2c

)

. (5)

2.4 Minimax regret formulation

For a scenario s ∈ S, let ms be a point in P that minimizes Φs(x) over x ∈ P ,
called the median under s. We now define the regret for x under s as

Rs(x) = Φs(x) − Φs(ms). (6)

Moreover, we also define the maximum regret for x as

Rmax(x) = max{Rs(x) | s ∈ S}. (7)

If ŝ = argmax{Rs(x) | s ∈ S}, we call ŝ the worst case scenario for x. The
goal is to find a point x∗ ∈ P , called the minimax regret median, that minimizes
Rmax(x) over x ∈ P , i.e., the objective is to

minimize {Rmax(x) | x ∈ P}. (8)

2.5 Known properties for the fixed scenario case

We here show some properties on the 1-median problem in a dynamic path
network N = (P = (V,E), l, ws, c, τ) when a scenario s ∈ S is given, which were
basically presented in [15,17]. We first introduce the following two lemmas.

Lemma 1 [15,17] For a scenario s ∈ S, ms is at a vertex in V .

Lemma 2 [15,17] For a scenario s ∈ S, all Φs(vi) over i ∈ {1, . . . , n} can be
computed in O(n) time in total.

We then can see a corollary of these lemmas.

Corollary 1 [15,17] For a scenario s ∈ S, ms and Φs(ms) can be computed in
O(n) time.

Now let us look at the formula of (5). Even if x is moving on an edge ei
(not including endpoints vi and vi+1), the formation of left clusters for x does
not change over x ∈ ei. Therefore, Φ

s
L(x) is a linear function of x ∈ ei, and

symmetrically, Φs
R(x) is also a linear function. For i ∈ {1, . . . , n− 1}, letting asi

and bsi be the values such that for x ∈ ei,

Φs(x) = asix+ bsi , (9)

we can derive the following lemma from [15,17].

Lemma 3 For a scenario s ∈ S, all asi and bsi over i ∈ {1, . . . , n − 1} can be
computed in O(n) time in total.

3 Properties of worst case scenarios

In this section, we show the important properties which worst case scenarios
have. In our problem, a main difficulty lies in evaluating Rs(x) over s ∈ S to
compute Rmax(x) even for a fixed x since the size of S is infinite. We thus aim
to find a scenario set with a finite size (in particular, a polynomial size) which
includes a worst case scenario for any x ∈ P . In order to do this, we introduce
a new concept, the gap between two points x, y ∈ P under a scenario s ∈ S,
defined by

Γ s(x, y) = Φs(x) − Φs(y). (10)

By Lemma 1 and the definition of (6), we have

Rs(x) = max{Γ s(x, y) | y ∈ V }, (11)

and by (7) and (11),

Rmax(x) = max{max{Γ s(x, y) | y ∈ V } | s ∈ S}

= max{max{Γ s(x, y) | s ∈ S} | y ∈ V }. (12)

From (12), if we can compute max{Γ s(x, y) | s ∈ S} for a fixed pair 〈x, y〉 ∈
P ×V , Rmax(x) can also be computed by repeating the same maximization over
y ∈ V . We call a scenario that maximizes Γ s(x, y) for a fixed 〈x, y〉 a worst case
scenario for 〈x, y〉. In the following, we show a scenario set of size O(n) that
includes a worst case scenario for a fixed 〈x, y〉, which implies a scenario set of
size O(n2) that includes a worst case scenario for a fixed x.

3.1 Bipartite scenario

We first introduce the concept of the bipartite scenario, which was originally
introduced as the dominant scenario in [8,13]. Let us consider a scenario s ∈ S.

A scenario s is said to be left-bipartite (resp. right-bipartite) if ws
j = w+

j (resp.

w−

j) over j ∈ {1, . . . , i} and ws
j = w−

j (resp. w+
j) over j ∈ {i+1, . . . , n} for some

i ∈ {1, . . . , n− 1}. Obviously the number of such scenarios is O(n). The authors
of [8,13] treated the minimax regret 1-center problem in dynamic path networks,
which requires to find a sink location in a path that minimizes the maximum
regret similarly defined as (7) where the completion time criterion is adopted
instead of the total time one. They proved that for any point in an input path,
at least one worst case scenario is left-bipartite or right-bipartite.

3.2 Pseudo-bipartite scenario

We here introduce the concept of the pseudo-bipartite scenario. A scenario s is
said to be left-pseudo-bipartite (resp. right-pseudo-bipartite) if ws

j = w+
j (resp.

w−

j) over j ∈ {1, . . . , i − 1} and ws
j = w−

j (resp. w+
j) over j ∈ {i + 1, . . . , n}

for some i ∈ {2, . . . , n − 1}. In this definition, we do not care about the weight
of a vertex vi, called the intermediate vertex. Given a pseudo-bipartite scenario
with the intermediate vertex vi, we call intervals [v1, vi) and (vi, vn] the left part
and the right part, respectively. Let SL (resp. SR) denote a set of all left-pseudo-
bipartite scenarios (resp. right-pseudo-bipartite scenarios). We then prove the
following lemma (the proof is given in Appendix A).

Lemma 4 Given a pair 〈x, y〉 ∈ P × V satisfying y < x (resp. x < y), there
exists a worst case scenario for 〈x, y〉 belonging to SL (resp. SR) such that y
(resp. x) is in the left part and x (resp. y) is in the right part.

3.3 Critical pseudo-bipartite scenario

By Lemma 4, we studied the property of a worst case scenario for a fixed 〈x, y〉 ∈
P × V , however the sizes of SL and SR are still infinite since the weight of the
intermediate vertex in a pseudo-bipartite scenario is not fixed. In the rest of this
section, we focus on the weight of the intermediate vertex in a pseudo-bipartite
scenario which is worst for 〈x, y〉.

Given a pair 〈x, y〉 ∈ P ×V satisfying y < x, let us consider a scenario s ∈ SL

such that the intermediate vertex is vi and y < vi < x. Suppose that the weight
of vi is set as the minimum, i.e., ws

i = w−

i . Performing the right-clustering for y
under s (mentioned in Section 2.3), we will get right clusters for y such that for
l ∈ {1, . . . , k}, the head of l-th cluster is ρl and the weight of l-th cluster is σl.
Then, suppose that the intermediate vertex vi belongs to j-th cluster.

Now let us increase the weight of vi, little by little, without changing the
weight of any other vertex. Let s(w) be a scenario in SL such that the interme-
diate vertex is vi whose weight is w ∈ [w−

i , w
+
i]. Suppose that when the weight

of vi reaches some value ω, the following equality holds:

τ(vρj−1
− vρj

) =
σj + (ω − w−

i)

c
. (13)

Note that σj +(ω−w−

i) corresponds to the weight of j-th cluster under s(ω). At
that moment, referring to (4), (j−1)-th cluster is merged to j-th cluster. We then

call s(ω) a critical left-pseudo-bipartite scenario for y. Also, s(w−

i) and s(w+
i)

are assumed to be critical left-pseudo-bipartite scenarios for y even if any merge
does not occur at those moments. Critical right-pseudo-bipartite scenarios for y
are symmetrically defined. Let Sy denote a set of all critical left-pseudo-bipartite
scenarios and critical right-pseudo-bipartite scenarios for y, and S∗ =

⋃

y∈V Sy.

We will show two lemmas (the proof of Lemma 5 is given in Appendix B).

Lemma 5 Given a pair 〈x, y〉 ∈ P × V , there exists a worst case scenario for
〈x, y〉 belonging to Sy.

Lemma 6 For a vertex y ∈ V , the size of Sy is O(n), and all scenarios in Sy

can be computed in O(n) time.

Proof. We first prove that the number of critical left-pseudo-bipartite scenarios
for y is O(n) (the case of critical right-pseudo-bipartite scenarios is symmetric).
Suppose that y = vj . For i ∈ {j + 1, . . . , n} and w ∈ [w−

i , w
+
i], let s(i, w) be a

scenario in SL such that the intermediate vertex is vi whose weight is w. Here,
let us define the order between two scenarios s(i, w) and s(i′, w′): s(i, w) ≺
s(i′, w′) holds if and only if (a) i < i′ or (b) i = i′ and w < w′. For i ∈
{j + 1, . . . , n}, we also define pi and qi as follows. Let pi be the number of
critical left-pseudo-bipartite scenarios for y such that the intermediate vertex is
vi (including s(i, w−

i) and s(i, w+
i)). Let qi be, under a scenario s(i, w+

i), the
number of right clusters for y that follow a cluster including vi.

Let us consider computing all critical left-pseudo-bipartite scenarios for y in
ascending order, and suppose that the weight of vi now increases from w−

i to
w+

i . While it increases, since pi − 2 critical left-pseudo-bipartite scenarios for
y occur (except s(i, w−

i) and s(i, w+
i)), and at each such scenario, one or more

clusters are merged into one of vi, at least pi − 2 clusters are merged into one of
vi in total. We thus have qi ≤ qi−1 − (pi − 2) for i ∈ {j + 1, . . . , n}, i.e.,

pi ≤ qi−1 − qi + 2. (14)

Note that the total number of critical left-pseudo-bipartite scenarios for y is
exactly 1 +

∑n
i=j+1(pi − 1). By (14), we have

n
∑

i=j+1

(pi − 1) ≤
n
∑

i=j+1

(qi−1 − qi + 1) = qj − qn + (n− j), (15)

which is O(n) since qj ≤ n− j and qn = 0.
In the rest of the proof, we show that all critical left-pseudo-bipartite scenar-

ios for y = vj can be computed in O(n) time. Recall that all critical left-pseudo-
bipartite scenarios for y are computed in ascending order. The algorithm first
gets s(j +1, w−

j+1), and performs the right clustering for y under s(j +1, w−

j+1).

As claimed in [15,17], it is easy to see that the right clustering for a fixed y can
be done in O(n) time.

Suppose that for particular i ∈ {j + 1, . . . , n} and ω ∈ [w−

i , w
+
i], s(i, ω) is

critical for y, and the algorithm has already obtained s(i, ω) and the right clusters
for y. We then show how to compute the subsequent critical left-pseudo-bipartite

scenario. Let cy be a right cluster for y including vi and c′y be a right cluster for
y immediately following cy. Also, let ρy (resp. ρ′y) be the index of a vertex that
corresponds to the head of cy (resp. c′y), and σy (resp. σ′

y) be the weight of cy
(resp. c′y).

There are two cases: [Case 1] ω < w+
i ; [Case 2] ω = w+

i . For Case 2, we notice
that s(i + 1, w−

i+1) is equivalent to s(i, w+
i). Therefore, this case immediately

results in Case 1 by letting i be i + 1 and ω be w−

i+1 (although a right cluster
for y including vi+1 may be c′y, not cy). We thus consider only Case 1 in the
following.

The algorithm will compute the subsequent critical left-pseudo-bipartite sce-
nario s(i, ω′) where ω′ satisfies ω < ω′ ≤ w+

i . In order to compute ω′, the
algorithm test if there exists w ∈ (ω,w+

i] such that

τ(vρ′

y
− vρy

) =
σy + (w − ω)

c
, (16)

which is similar to (13). If yes, for such w, the algorithm returns ω′ = w and
updates the right clusters for y by merging c′y into cy. Otherwise, ω′ = w+

i

is just returned. Such testing and updating are done in O(1) time. Since the
number of critical left-pseudo-bipartite scenarios for y is O(n) and each of those
is computed in O(1) time, we completes the proof. ⊓⊔

By (12), we have a corollary of Lemma 5.

Corollary 2 Given a point x ∈ P , there exists a worst case scenario for x
belonging to S∗.

Also, a corollary of Lemma 6 immediately follows.

Corollary 3 The size of S∗ is O(n2), and all scenarios in S∗ can be computed
in O(n2) time.

4 Algorithm

In this section, we show an algorithm that computes the minimax regret median,
which minimizes Rmax(x) over x ∈ P . The algorithm basically consists of two
phases:
[Phase 1] Compute Rmax(vi) over i ∈ {1, . . . , n}, and
[Phase 2] Compute min{Rmax(x) | x ∈ ei} over i ∈ {1, . . . , n− 1}.
After these, the algorithm evaluates all the 2n− 1 values obtained and finds the
minimax regret median in O(n) time.

By Corollary 2, we only have to consider scenarios in S∗ to compute Rmax(x)
for any x ∈ P . Therefore, the algorithm computes all scenarios in S∗ in advance,
which can be done in O(n2) time by Corollary 3. Subsequently, it computes all
the values Φs(ms) over s ∈ S∗ for Phase 1 and Phase 2. By Corollaries 1 and 3,
this can be done in O(n3) time in total.

First let us see details in Phase 1. For a fixed scenario s ∈ S∗, since all
Φs(vi) over i ∈ {1, . . . , n} can be computed in O(n) time by Lemma 2 and

Φs(ms) has already been computed before Phase 1, all Rs(vi) over i ∈ {1, . . . , n}
can also be computed in O(n) time (refer to (6)). After the algorithm obtains
Rs(v1), . . . , R

s(vn) over s ∈ S∗ in O(n3) time, for each i ∈ {1, . . . , n}, Rs(vi)
over s ∈ S∗ are evaluated to obtain Rmax(vi). Thus, it is easy to see that Phase
1 can be done in O(n3) time in total.

We next focus on Phase 2. As mentioned at the end of Section 2.5, for a fixed
scenario s ∈ S∗, Φs(x) is a linear function of x ∈ ei for each i ∈ {1, . . . , n − 1}
(not including vi and vi+1). Therefore, R

s(x) is also linear for x ∈ ei for each i.
Referring to (9), a function Rs(x) on an edge ei is written as

Rs(x) = asix+ bsi − Φs(ms). (17)

Recall that Φs(ms) has already been computed. Then, by Lemma 3, Rs(x) on ei
over i ∈ {1, . . . , n− 1} can be computed in O(n) time. After the algorithm does
the same computation over s ∈ S∗ in O(n3) time, on each edge ei, we have O(n2)
linear functions Rs(x) over s ∈ S∗. By the definition of (7), min{Rmax(x) | x ∈
ei} can be obtained by solving a linear programming problem in two dimensions
with O(n2) constraints, i.e.,

minimize y

subject to asix+ bsi − Φs(ms) ≤ y, ∀s ∈ S∗

vi ≤ x ≤ vi+1.

This problem can be solved in O(n2) time by [10]. Repeating the same operations
over i ∈ {1, . . . , n− 1}, Phase 2 is completed in O(n3) time.

Theorem 1 The minimax regret 1-median problem in dynamic path networks
with uniform capacity can be solved in O(n3) time.

5 Conclusion

In this paper, we address the minimax regret 1-median problem in dynamic
path networks with uniform capacity and present an O(n3) time algorithm.
Additionally, this is the first work that treats the minimax regret facility location
problem in dynamic networks where the total time criterion is adopted. Two
natural questions immediately follow. The first one is whether we can reduce
the number of scenarios to be considered. The other one is whether we can
extend the problem to the k-median version with k ≥ 2, or the problem in more
general networks.

References

1. G. P. Arumugam, J. Augustine, M. J. Golin, P. Srikanthan, “A polynomial time al-
gorithm for minimax-regret evacuation on a dynamic path”, CoRR abs/1404.5448,
arXiv:1404.5448.

2. I. Averbakh and O. Berman, “Algorithms for the robust 1-center problem on a
tree”, European Journal of Operational Research, 123(2), pp. 292-302, 2000.

http://arxiv.org/abs/1404.5448

3. B. Bhattacharya and T. Kameda, “A linear time algorithm for computing minmax
regret 1-median on a tree”, Proc. the 18th Annual International Computing and
Combinatorics Conference (COCOON 2012), LNCS 7434, pp. 1-12, 2012.

4. B. Bhattacharya, T. Kameda, “Improved algorithms for computing minmax regret
1-sink and 2-sink on path network”, Proc. The 8th Combinatorial Optimization
and Applications (COCOA 2014), LNCS 8881, pp. 146-160, 2014.

5. B. Bhattacharya, T. Kameda and Z. Song, “A linear time algorithm for computing
minmax regret 1-median on a tree network”, Algorithmica, pp. 1-20, 2013.

6. G. S. Brodal, L. Georgiadis and I. Katriel, “An O(n log n) version of the Averbakh-
Berman algorithm for the robust median of a tree”, Operations Research Letters,
36(1), pp. 14-18, 2008.

7. B. Chen and C. Lin, “Minmax-regret robust 1-median location on a tree”, Net-
works, 31(2), pp. 93-103, 1998.

8. S. W. Cheng, Y. Higashikawa, N. Katoh, G. Ni, B. Su and Y. Xu, “Minimax
regret 1-sink location problems in dynamic path networks”, Proc. The 10th Annual
Conference on Theory and Applications of Models of Computation (TAMC 2013),
LNCS 7876, pp. 121-132, 2013.

9. E. Conde, “A note on the minmax regret centdian location on trees”, Operations
Research Letters, 36(2), pp. 271-275, 2008.

10. M. E. Dyer, “Linear time algorithms for two- and three-variable linear programs”,
SIAM Journal on Computing, 13(1), pp. 31-45, 1984.

11. L. R. Ford Jr., D. R. Fulkerson, “Constructing maximal dynamic flows from static
flows”, Operations Research, 6, pp. 419-433, 1958.

12. Y. Higashikawa, “Studies on the Space Exploration and the Sink Location under
Incomplete Information towards Applications to Evacuation Planning”, Doctoral
Dissertation, Kyoto University, 2014.

13. Y. Higashikawa, J. Augustine, S. W. Cheng, N. Katoh, G. Ni, B. Su and Y. Xu,
“Minimax Regret 1-Sink Location Problem in Dynamic Path Networks”, Theoret-
ical Computer Science, DOI: 10.1016/j.tcs.2014.02.010, 2014.

14. Y. Higashikawa, M. J. Golin, N. Katoh, “Minimax Regret Sink Location Problem
in Dynamic Tree Networks with Uniform Capacity”, Proc. The 8th International
Workshop on Algorithms and Computation (WALCOM 2014), LNCS 8344, pp. 125-
137, 2014.

15. Y. Higashikawa, M. J. Golin, N. Katoh, “Multiple sink location problems in dy-
namic path networks”, Proc. The 10th International Conference on Algorithmic
Aspects of Information and Management (AAIM 2014), LNCS 8546, pp. 149-161,
2014.

16. Y. Higashikawa, M. J. Golin, N. Katoh, “Minimax Regret Sink Location Problem
in Dynamic Tree Networks with Uniform Capacity”, Journal of Graph Algorithms
and Applications, 18(4), pp. 539-555, 2014.

17. Y. Higashikawa, M. J. Golin, N. Katoh, “Multiple Sink Location
Problems in Dynamic Path Networks”, Theoretical Computer Science,
DOI:10.1016/j.tcs.2015.05.053.

18. S. Mamada, T. Uno, K. Makino and S. Fujishige, “An O(n log2 n) algorithm for
the optimal sink location problem in dynamic tree networks”, Discrete Applied
Mathematics, 154(16), pp. 2387-2401, 2006.

19. H. Wang, “Minmax regret 1-facility location on uncertain path networks”,
Proc. The 24th International Symposium on Algorithms and Computation (ISAAC
2013), LNCS 8283, pp. 733-743, 2013.

Appendices

Appendix A: Proof of Lemma 4

We only treat the case of 〈x, y〉 ∈ P × V satisfying y < x since the other case is
symmetric.

We first prove the following claim.

Claim 1 Given a pair 〈x, y〉 ∈ P ×V satisfying y < x, there exists a worst case
scenario for 〈x, y〉 such that the weight of every vertex vi ∈ [v1, y] is w+

i .

Proof of Claim 1. We here assume y > v1: if y = v1, the proof is straightforward.
Let s1 be a worst case scenario for 〈x, y〉. If there are more than one worst case
scenario, we choose the one such that all weights are lexicographically maximized
in the order of ascending indices among all worst case scenarios. We prove by
contradiction: suppose ws1

i < w+
i for some vertex vi ∈ [v1, y]. Under a scenario

s1, let us perform the left-clustering for x and y, respectively (refer to Section
2.3). Performing the left-clustering for x, let cx be a left cluster for x including
vi, ρx be the index of a vertex that corresponds to the head of cx, and σx be
the weight of cx. Also, performing the left-clustering for y, cy, ρy and σy are
similarly defined. When cy evacuates to x, by the definition of a cluster, the first
unit of cy does not encounter any congestion in the interval (vρy

, y), however,
it may encounter congestions at some vertices in [y, x). If it does not encounter
any congestion in (vρy

, x), cy is never merged to any other cluster for x, which
implies ρx = ρy and σx = σy. Otherwise, cy is eventually merged into a left
cluster for x headed by a vertex vρx

∈ [y, x), i.e., cx. We thus consider two cases:
[Case 1] ρx = ρy and σx = σy ; [Case 2] ρy < y ≤ ρx and σx > σy .

Now let s2 be a scenario obtained from s1 by increasing the weight of vi by
infinitesimally small δ > 0, i.e., ws2

i = ws1
i + δ and ws2

j = ws1
j for j 6= i. We then

show the following claim for the proof of Claim 1.

Claim 2 While s1 changes to s2, the formation of left clusters for x (resp. y)
remains the same.

Proof of Claim 2. Performing the left-clustering for x under s1, let c
′

x be a left
cluster for x immediately following cx, and ρ′x be the index of a vertex that
corresponds to the head of c′x. Referring to (4), the following inequality holds:

τ(vρx
− vρ′

x
) >

σx

c
=

∑ρx

l=ρ′

x+1 w
s1
l

c
. (18)

Then, for a sufficiently small δ > 0, we have

τ(vρx
− vρ′

x
) >

(
∑ρx

l=ρ′

x+1 w
s1
l) + δ

c
=

∑ρx

l=ρ′

x+1 w
s2
l

c
. (19)

The inequality of (18) means that after performing the left-clustering for x under
s1, the first unit of c′x does not catch up with the last unit of cx at vρx

, and by
(19), this remark also holds even for s2. Under s2, if c

′

x is not merged to cx,

any other merge never occurs. Thus, the formation of left clusters for x does not
change, and similarly, it does not change for y. ⊓⊔

By Claim 2 and the definitions of (2) and (5), we have

Φs2(x) − Φs1(x) = Φs2
L (x) − Φs1

L (x)

= (σx + δ)τ(x − vρx
) +

(σx + δ)2

2c
−

{

σxτ(x − vρx
) +

σ2
x

2c

}

= δτ(x − vρx
) +

δσx

c
+

δ2

2c
, (20)

and similarly,

Φs2(y)− Φs1(y) = δτ(y − vρy
) +

δσy

c
+

δ2

2c
. (21)

Also by the definition of (10), we have

Γ s2(x, y)− Γ s1(x, y) = Φs2(x)− Φs2 (y)− (Φs1 (x)− Φs1 (y))

= Φs2(x)− Φs1 (x)− (Φs2 (y)− Φs1 (y)). (22)

From (20), (21) and (22), we can derive

Γ s2(x, y)− Γ s1(x, y) = δτ(x − vρx
) +

δσx

c
+

δ2

2c
−

{

δτ(y − vρy
) +

δσy

c
+

δ2

2c

}

= δτ(x − y − vρx
+ vρy

) +
δ(σx − σy)

c
. (23)

If Case 1 occurs, we can immediately see that the right side of (23) is greater
than zero, i.e., Γ s2(x, y) > Γ s1(x, y), which contradicts that s1 is a worst case
scenario for 〈x, y〉.

If Case 2 occurs, performing the left-clustering for xmerges cy into cx as men-
tioned above, and then, all units on (vρy

, vρx
] are also merged into cx. Therefore,

if we consider an input such that all units on (vρy
, vρx

) are moved to vρx
, the

first unit of cy must catch up with the last unit of supply at vρx
, i.e.,

τ(vρx
− vρy

) ≤

∑ρx

l=ρy+1 w
s1
l

c
. (24)

Since cx includes cy and all units on (vρy
, vρx

], we have

ρx
∑

l=ρy+1

ws1
l ≤ σx − σy . (25)

Note that in (25), the left side is less than the right side when cx also includes
some clusters for y following cy. From (23), (24) and (25), we can derive

Γ s2(x, y)− Γ s1(x, y) ≥ δτ(x − y) > 0, (26)

which contradicts that s1 is a worst case scenario for 〈x, y〉. ⊓⊔

If we consider a worst case scenario for 〈x, y〉 such that the weight of every
vertex vi ∈ [v1, y] is w+

i and weights of all other vertices in (y, vn] are lexico-
graphically minimized in the order of descending indices, the following claim is
also proved in a similar manner as in the proof of Claim 1.

Claim 3 Given a pair 〈x, y〉 ∈ P ×V satisfying y < x, there exists a worst case
scenario for 〈x, y〉 such that the weight of every vertex vi ∈ [v1, y] is w+

i and the
weight of every vertex vi ∈ [x, vn] is w−

i .

Now, let s3 be a worst case scenario for 〈x, y〉 such that the weight of every
vertex vi ∈ [v1, y] is w

+
i , the weight of every vertex vi ∈ [x, vn] is w

−

i , and weights
of all other vertices in the open interval (y, x) are lexicographically maximized
in the order of ascending indices. Then, s3 ∈ SL can be proved. We prove by
contradiction: there exist two vertices vi, vj ∈ (y, x) satisfying i < j such that
ws3

i < w+
i and ws3

j > w−

j . Let s4 be a scenario obtained from s3 by increasing
the weight of vi by infinitesimally small δ > 0 and decreasing the weight of vj
by the same δ, i.e., ws4

i = ws3
i + δ, ws4

j = ws3
j − δ and ws4

k = ws3
k for k 6= i, j.

Then, we immediately see Φs4(x) ≥ Φs3(x) and Φs4 (y) ≤ Φs3(y), therefore

Φs4(x) − Φs4(y) ≥ Φs3(x) − Φs3(y), i.e.,

Γ s4(x, y) ≥ Γ s3(x, y). (27)

The inequality of (27) implies that s4 is also a worst case scenario for 〈x, y〉, which
contradicts the lexicographical maximality of weights on the open interval (y, x)
under s3. ⊓⊔

Appendix B: Proof of Lemma 5

For a fixed pair 〈x, y〉 ∈ P × V satisfying y < x, let us consider a worst case
scenario in SL such that the intermediate vertex is vi (y ≤ vi < x). We now
consider the weight of vi as a variable w ∈ [w−

i , w
+
i], and let s(w) be a scenario

in SL such that the intermediate vertex is vi whose weight is w. Then, let Γ (w)
denote the gap between x and y under s(w), i.e.,

Γ (w) = Φs(w)(x) − Φs(w)(y). (28)

Suppose that s(w) is critically left-pseudo-bipartite for y when w = ω1, . . . , ωp,
where p is a positive integer and w−

i = ω1 < . . . < ωp = w+
i . In the following,

we prove that a function Γ (w) is convex and piecewise-linear for w ∈ [ωj, ωj+1]
for every j ∈ {1, . . . , p− 1}.

Under a scenario s(w), let us perform the left-clustering for x and the right-
clustering for y, respectively. Performing the left-clustering for x, let cx(w) be a
left cluster for x including vi, ρx(w) be the index of a vertex that corresponds
to the head of cx(w), and σx(w) be the weight of cx. Also, performing the right-
clustering for y, cy(w), ρy(w) and σy(w) are similarly defined.

We first show the following claim.

Claim 4 Γ (w) is continuous for w ∈ [w−

i , w
+
i].

Proof of Claim 4. The statement is equivalent to

lim
δ→+0

Γ (w + δ) = Γ (w) ∀w ∈ [w−

i , w
+
i), and (29)

lim
δ→+0

Γ (w − δ) = Γ (w) ∀w ∈ (w−

i , w
+
i]. (30)

We here prove (29) (the case of (30) is similarly treated). By (28), we only have
to prove

lim
δ→+0

Φs(w+δ)(x) = Φs(w)(x) ∀w ∈ [w−

i , w
+
i). (31)

Note that, similarly as in Claim 2, while s(w) changes to s(w+δ), the formation
of left clusters for x remains the same. Therefore, by the definitions of (2) and
(5), we have

Φs(w+δ)(x) = Φs(w)(x) + δτ(x− vρx(w)) +
δσx(w)

c
+

δ2

2c
, (32)

which leads (31) by letting δ go to positive zero. ⊓⊔

For an integer j ∈ {1, . . . , p− 1}, we consider the right-derivative of Γ (w) for
w ∈ [ωj , ωj+1), i.e.,

Γ ′

+(w) = lim
δ→+0

Γ (w + δ)− Γ (w)

δ
. (33)

Similarly to (32), we have

Φs(w+δ)(y) = Φs(w)(y) + δτ(vρy(w) − y) +
δσy(w)

c
+

δ2

2c
. (34)

From (28), (32) and (34), we derive

Γ (w + δ)− Γ (w) = Φs(w+δ)(x)− Φs(w+δ)(y)−
{

Φs(w)(x) − Φs(w)(y)
}

= δτ(x + y − vρx(w) − vρy(w)) +
δ {σx(w)− σy(w)}

c
, (35)

and by (33) and (35),

Γ ′

+(w) = τ(x + y − vρx(w) − vρy(w)) +
σx(w) − σy(w)

c
. (36)

We here notice that as w increases, ρx(w) and ρy(w) never change (even if left
clusters for x following cx(w) and right clusters for y following cy(w) are merged
to cx(w) and cy(w), respectively). Also, since both of cx(w) and cy(w) include

vi, σx(w) and σy(w) can be represented as follows:

σx(w) = w + σj
x(w), and (37)

σy(w) = w + σj
y(w), (38)

where σj
x(w) and σj

y(w) are functions of w. In addition, σj
x(w) increases only if a

left cluster for x following cx(w) is merged to cx(w), i.e., σ
j
x(w) is an increasing

step function, and σj
y(w) is a constant function of w ∈ [ωj, ωj+1) since the

formation of right clusters for y does not change over w ∈ [ωj , ωj+1) (recall the
definition of critical left-pseudo-bipartite scenarios for y in Section 3.3). From the
above observations, and (36), (37) and (38), we derive that for w ∈ [ωj , ωj+1),

Γ ′

+(w) =
σj
x(w)

c
+ const., (39)

which is an increasing step function. By this fact and the continuity of Γ (w) by
Claim 4, we have the following claim.

Claim 5 For an integer j ∈ {1, . . . , p− 1}, Γ (w) is convex and piecewise-linear
for w ∈ [ωj , ωj+1].

By Claim 5, a solution that maximizes Γ (w) must be in {ω1, . . . , ωp}, i.e., a
worst case scenario for 〈x, y〉 is critically left-pseudo-bipartite for y. ⊓⊔

	Minimax Regret 1-Median Problem in Dynamic Path Networks

